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Introduction

During the last two decades, a considerable amount of attention has been paid to stability and control of linear systems with time-varying delays (see e.g., [START_REF] Fridman | Introduction to Time-Delay Systems[END_REF], [START_REF] Richard | Time-delay systems: An overview of some recent advances and open problems[END_REF] and the references therein).

One of the popular methods is the use of Lyapunov-Krasovskii functionals (LKF) to derive socalled delay-dependent sufficient conditions in terms of linear matrix inequalities (LMIs) (see e.g., [START_REF] Fridman | Delay-dependent stability and H ∞ control: constant and timevarying delays[END_REF], [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF], [START_REF] Shao | New delay-dependent stability criteria for systems with interval delay[END_REF], [START_REF] Liu | Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality[END_REF], [START_REF] Xu | New insight into delay-dependent stability of time-delay systems[END_REF], [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF]). There are some degrees of freedom: 1) the selection of the functional; 2) the application of one of the existing integral inequalities; 3) the application of matrix inequalities. These three steps are the important ways to derive sufficient stability conditions and to reduce their conservatism. Many bounding techniques have been developed for delay-dependent stability analysis, for example, the Park's inequality [START_REF] Park | A delay-dependent stability criterion for systems with uncertain time-invariant delays[END_REF], the Moon et al.'s inequality [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF], the Jensen inequality [START_REF] Gu | Stability of Time-Delay Systems[END_REF], [START_REF] Liu | Stability of linear systems with general sawtooth delay[END_REF], the free-weighting matrix approach [START_REF] He | Delay-range-dependent stability for systems with time-varying delay[END_REF], [START_REF] He | Further improvement of free-weighting matrices technique for systems with time-varying delay[END_REF], the convex approach [START_REF] Park | Stability and robust stability for systems with a time-varying delay[END_REF], [START_REF] Shao | New delay-dependent stability criteria for systems with interval delay[END_REF] and the combinations of some techniques above.

It is noted that the utilization of Jensen inequality to estimate the upper bound of the derivative of the LKF usually yields the following quadratic terms (see e.g., [START_REF] Liu | Delay-dependent methods and the first delay interval[END_REF], [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF]):

-1 α(t) ξ T 1 (t)Rξ 1 (t) -1 1-α(t) ξ T 2 (t)Rξ 2 (t), (1) 
where 0 < α(t) < 1 is a time-varying continuous function, ξ 1 (t) and ξ 2 (t) are two real column vectors with appropriate dimension, and R is a positive symmetric matrix with the same dimension as ξ 1 and ξ 2 . The main difficulty relies on the fact that this term is not convex with respect to α(t) and, consequently, yields some difficulties when one wants to implement and to test the resulting LMI conditions. Therefore, to obtain stability criteria via LMI setup, the upper bound of (1) can be further estimated by virtue of the Park's inequality or the Moon et al.'s inequality together with the convex analysis [START_REF] Park | Stability and robust stability for systems with a time-varying delay[END_REF]. Among the recent results, [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF] introduced a reciprocally convex approach, which not only achieves the same upper bound of the time-varying delay as the one provided by [START_REF] Park | Stability and robust stability for systems with a time-varying delay[END_REF] but also decreases the number of decision variables dramatically.

On the other hand, many different techniques have been introduced to reduce the bound on the gap of the Jensen inequality, see e.g., [START_REF] Briat | Convergence and equivalence results for the Jensen's inequality-application to timedelay and sampled-data systems[END_REF], [START_REF] Hien | New finite-sum inequalities with applications to stability of discrete time-delay systems[END_REF], [START_REF] Zhang | Delay-variation-dependent stability of delayed discrete-time systems[END_REF], [START_REF] Zhang | Summation inequalities to bounded real lemmas of discrete-time systems with time-varying delay[END_REF], [START_REF] Zhang | Robust H ∞ filtering for a class of uncertain linear systems with time-varying delay[END_REF] and [START_REF] Zhang | Delay-dependent stabilization of linear systems with time-varying state and input delays[END_REF]. Among them, an alternative inequality called Wirtinger-based inequality, which encompasses Jensen inequality as a particular case, was developed in [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF] and [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF]. By the reciprocally convex combination inequality introduced in [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF], the resulting stability conditions in [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF] and [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF] are less conservative than those of [START_REF] Park | Stability and robust stability for systems with a time-varying delay[END_REF] and [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF] that are based on the Jensen inequality.

In this paper, we present a comparison of bounding methods for cross terms in deriving the delaydependent stability criteria for linear systems with time-varying delays. The main contributions are as follows:

inequality with convex analysis lead to identical admissible upper bound of the time-varying delay.

2. Moreover, we prove that the feasibility of an LMI condition derived by the Moon et al.'s inequality as well as convex analysis implies the feasibility of an LMI condition induced by the reciprocally convex combination inequality.

The structure of this paper is as follows. The system and some preliminaries are described in Section 2. Section 3 recalls some bounding techniques for cross terms and provides a theoretical comparison. In Section 4 we present several delay-dependent stability conditions, the comparison of conservatism and complexity of which is given. Examples of numerical simulation are illustrated in Section 5.

Notations: Throughout the paper R n denotes the n-dimensional Euclidean space with vector norm | • |, R n×m is the set of all n × m real matrices. The notation P ≻ 0, for P ∈ R n×n , means that P is symmetric and positive definite. The set S n + represents the set of symmetric positive definite matrices of R n×n . Moreover, for any square matrix A ∈ R n×n , we define He(A) = A + A T . The matrix I represents the identity matrix of appropriate dimension. The notation 0 n,m stands for the matrix in R n×m whose entries are zero and, when no confusion is possible, the subscript will be omitted. For any function x : [-h, +∞) → R n , the notation x t (θ) stands for x(t + θ), for all t ≥ 0 and all θ ∈ [-h, 0].

Problem formulation

In order to illustrate the comparison of stability criteria for system with time-varying delays, we will consider a linear time-delay system of the form:

{ ẋ(t) = Ax(t) + A d x(t -h(t)), ∀t ≥ 0, x(t) = ϕ(t), ∀t ∈ [-h 2 , 0], (2) 
where x(t) ∈ R n is the state vector, ϕ is the initial condition, A and A d are constant matrices with appropriate dimensions. The delay is assumed to be time-varying and satisfies the following constraint

h(t) ∈ [h 1 , h 2 ], (3) 
where 0 ≤ h 1 ≤ h 2 . We also assume that the derivative of the delay is not constrained. For simplicity, the time argument is omitted when there is no possible confusion, meaning, more especially, that in the sequel h stands for h(t).

Among the LKFs that applied to the delay-dependent stability analysis of such time-delay systems, one of the most relevant terms, which was introduced in [3] is a double integral quadratic term given by

V ( ẋt ) = h 12 ∫ -h 1 -h 2 ∫ t t+θ ẋT (s)R 2 ẋ(s)dsdθ, where h 12 = h 2 -h 1 , R 2 ∈ S n
+ , and ẋt (θ) = ẋ(t + θ) represents the time-derivative state of the time-delay system. This class of Lyapunov-Krasovskii terms has been widely used in the literature mainly because the computation of its time-derivative leads to conditions which depend on the explicit value of the delay h 1 , h 2 . Indeed when differentiating this term with respect to the time variable t, we obtain

V ( ẋt ) = h 2 12 ẋT (t)R 2 ẋ(t) -h 12 ∫ -h 1 -h 2 ẋT t (s)R 2 ẋt (s)ds. ( 4 
)
This term is relevant to ensure the negativity of V (x t ) because of the negative contribution of the second term. In order to transform (4) into a suitable LMI setup, this integral term should be expressed appropriately in terms of x t (-h 1 ), x t (-h) and x t (-h 2 ). Therefore, in order to obtain a more accurate bound for this integral term, and thus, to reduce the conservatism of the resulting stability conditions, various bounding techniques have been employed in the literature. Among them, we are concentrated on the use of the Jensen inequality [START_REF] Gu | Stability of Time-Delay Systems[END_REF], Wirtinger-based inequality [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF] together with the use of convex approach. The objective of this paper is to compare the conservatism of several bounding methods in the derivation of stability criteria for systems with time-varying delays.

Bounding techniques

In this section, we introduce several efficient bounding techniques to be used to deal with the quadratic terms that arise in the derivation of the LKF.

Integral inequalities

Integral inequalities for quadratic functions play an important role in deriving the delay-dependent stability criteria for linear time-delay systems. In the following, a brief recall of three integral inequalities are proposed.

Jensen inequality

The first method to analyze the stability of time-delay systems is based on the Jensen inequality formulated in the next lemma.

Lemma 1 [START_REF] Gu | Stability of Time-Delay Systems[END_REF] For any matrix R in S n + and any differentiable function x : [a, b] → R n , the following inequality holds:

∫ b a ẋT (u)R ẋ(u)du ≥ 1 b-a ξ T 0 Rξ 0 , ( 5 
)
where

ξ 0 = x(b) -x(a). ( 6 
)
By applying Lemma 1 to the second term of (4) after splitting the integral into two parts, we arrive at

-h 12 ∫ -h 1 -h 2 ẋT t (s)R 2 ẋt (s)ds = -h 12 [ ∫ -h 1 -h ẋT t (s)R 2 ẋt (s)ds + ∫ -h -h 2 ẋT t (s)R 2 ẋt (s)ds ] ≤ -h 12 h-h 1 η T 0 (t)R 2 η 0 (t) -h 12 h 2 -h η T 1 (t)R 2 η 1 (t) = - [ η 0 (t) η 1 (t) ] T [ 1 α R 2 0 * 1 1-α R 2 ] [ η 0 (t) η 1 (t) ] , (7) 
where

α = h-h 1 h 12 , η 0 (t) = x(t -h 1 ) -x(t -h), η 1 (t) = x(t -h) -x(t -h 2 ). (8)

Wirtinger-based integral inequality

The following lemma provides an inequality called Wirtinger-based inequality, which encompasses Jensen inequality as a particular case, and was recently proposed in [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF].

Lemma 2 [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF] For any matrix R ∈ S + n and any differentiable function x : [a, b] → R n , the following inequality holds:

∫ b a ẋT (u)R ẋ(u)du ≥ 1 b-a [ ξ 0 ξ 1 ] T R [ ξ 0 ξ 1 ] , ( 9 
)
where ξ 0 is given by ( 6) and

ξ 1 = x(b) + x(a) -2 b-a ∫ b a x(u)du, R = diag(R, 3R). ( 10 
)
The application of Lemma 2 to the second term of (4) yields

-h 12 ∫ -h 1 -h 2 ẋT t (s)R 2 ẋt (s)ds ≤ -h 12 h-h 1 ζ T 0 (t) R2 ζ 0 (t) -h 12 h 2 -h ζ T 1 (t) R2 ζ 1 (t) = - [ ζ 0 (t) ζ 1 (t) ] T [ 1 α R2 0 * 1 1-α R2 ] [ ζ 0 (t) ζ 1 (t) ] , ( 11 
)
where α is given in [START_REF] He | Delay-range-dependent stability for systems with time-varying delay[END_REF] and

R2 = diag(R 2 , 3R 2 ), ζ 0 (t) = [ x(t -h 1 ) -x(t -h) x(t -h 1 )+x(t -h)-2 h-h 1 ∫ t-h 1 t-h x(s)ds ] , ζ 1 (t) = [ x(t -h) -x(t -h 2 ) x(t -h)+x(t -h 2 )-2 h 2 -h ∫ t-h t-h 2 x(s)ds ] . ( 12 
)

Free-matrix-based integral inequality

Recently, a free-matrix-based integral inequality was provided in [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF] to estimate the bound of the second term of (4).

Lemma 3 [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF] Let

x be a differentiable function [a, b] → R n . For any matrices R ∈ S + n and Z 1 , Z 3 , ∈ S + 3n , and matrices Z 2 ∈ R 3n×3n , N 1 , N 2 ∈ R 3n×n , satisfying    Z 1 Z 2 N 1 * Z 3 N 2 * * R    ≽ 0, ( 13 
)
the following inequality holds

∫ b a ẋT (u)R ẋ(u)du ≥ ρ T Σρ, ( 14 
)
where ρ = [ x T (b) x T (a) 1 b-a ∫ b a x T (u)du ] T , Σ = (b -a)(-Z 1 -Z 3 3 ) -He(N 1 Π 1 + N 2 Π 2 ), Π 1 = [ I -I 0 ] , Π 2 = [ I I -2I
] .

(

) 15 
The utilization of Lemma 3 to the second term of (4) leads to

-h 12 ∫ -h 1 -h 2 ẋT t (s)R 2 ẋt (s)ds = -h 12 [ ∫ -h 1 -h ẋT t (s)R 2 ẋt (s)ds + ∫ -h -h 2 ẋT t (s)R 2 ẋt (s)ds ] ≤ -ρ T 1 Σ 1 ρ 1 -ρ T 2 Σ 2 ρ 2 , ( 16 
)
where

ρ 1 = [ x T t (-h 1 ) x T t (-h) 1 h-h 1 ∫ -h 1 -h x T t (u)du ] T , ρ 2 = [ x T t (-h) x T t (-h 2 ) 1 h 2 -h ∫ -h -h 2 x T t (u)du ] T , Σ 1 = (h -h 1 )(X 1 1 + X 1 3 3 ) + He(N 1 1 Π 1 + N 1 2 Π 2 ), Σ 2 = (h 2 -h)(X 2 1 + X 2 3 3 ) + He(N 2 1 Π 1 + N 2 2 Π 2 ) (17) with    X i 1 X i 2 N i 1 * X i 3 N i 2 * * R 2    ≽ 0, i = 1, 2. ( 18 
)
The right-hand side of the inequality ( 16) can be transformed into a suitable LMI setup by convex optimization approach with h = h 1 and h = h 2 [START_REF] Fridman | New conditions for delay-derivative-dependent stability[END_REF].

Comparison of Wirtinger-based and free-matrix-based integral inequalities

In this section, we illustrate a theoretical comparison of Wirtinger-based and free-matrix-based integral inequalities. By defining in Lemma 3

N = [ N T 1 N T 2 ] , Π = [ Π 1 Π 2 ] ,
it is easy to see that

He(N 1 Π 1 + N 2 Π 2 ) = He(N T Π) = Θ -1 b-a Π T RΠ -(b -a)N T R-1 N, ( 19 
)
where R is defined in [START_REF] Hien | New finite-sum inequalities with applications to stability of discrete time-delay systems[END_REF] and

Θ = (b -a)( 1 b-a RΠ + N ) T R-1 ( 1 b-a RΠ + N ). (20) 
Then, it follows that Σ given in [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF] can be rewritten as

Σ = (b -a)(-Z 1 -Z 3 3 ) -Θ + 1 b-a Π T RΠ + (b -a)N T R-1 N = 1 b-a Π T RΠ -Θ -(b -a)(Z 1 -N 1 R -1 N T 1 ) -b-a 3 (Z 3 -N 2 R -1 N T 2 ) ≼ 1 b-a Π T RΠ. ( 21 
)
The latter inequality holds because of Θ ≽ 0 and the fact that application of Schur complement to [START_REF] Liu | Stability of linear systems with general sawtooth delay[END_REF] implies

Z 1 -N 1 R -1 N T 1 ≽ 0 and Z 3 -N 2 R -1 N T 2 ≽ 0. Hence, from (21) and ρ T Π T = [ ξ T 0 ξ T 1 ]
, it is verified that the free-matrix-based integral inequality ( 14) with ( 13) cannot deliver a more tight lower bound of ∫ b a ẋT (u)R ẋ(u)du than (9) although more free matrices are involved in [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF].

Convex approaches

It is noted that in [START_REF] Gyurkovics | A note on wirtinger-type integral inequalities for time-delay systems[END_REF] and [START_REF] Liu | Delay-dependent methods and the first delay interval[END_REF], the positive definite matrix [

1 α R 0 * 1 1-α R ] (22) 
with R = R 2 or R2 is time-varying due to time-varying 1 α and 1 1-α with 0 < α < 1. To derive stability conditions in terms of LMIs, the time-varying matrix [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF] needs to be estimated by some bounding techniques. For example, in [START_REF] Fridman | Delay-dependent stability and H ∞ control: constant and timevarying delays[END_REF] and [START_REF] Wu | Delay-dependent criteria for robust stability of timevarying delay systems[END_REF], the matrix [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF] was estimated as follows:

[

1 α R 0 * 1 1-α R ] ≽ [ R 0 * 0 ] . ( 23 
)
By including a useful term, the matrix [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF] was further estimated in [START_REF] He | Delay-range-dependent stability for systems with time-varying delay[END_REF] as

[ 1 α R 0 * 1 1-α R ] ≽ [ R 0 * R ] . ( 24 
)
Compared to [START_REF] Shao | New delay-dependent stability criteria for systems with interval delay[END_REF], inequality [START_REF] Sun | Delay-dependent stability and stabilization of neutral time-delay systems[END_REF] possesses a more tight lower bound of ( 22) and thus, can derive less conservative LMI stability conditions than [START_REF] Shao | New delay-dependent stability criteria for systems with interval delay[END_REF]. However, [START_REF] Sun | Delay-dependent stability and stabilization of neutral time-delay systems[END_REF] still leaves some room for a more tight lower bound of (22).

Moon et al.'s inequality

Lemma 4 [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF] Suppose that there exists matrices

Q, Z in S n + , matrix X ∈ R n×n satisfying [ Q X * Z ] ≽ 0.
Then the following inequality holds for any x, y ∈ R n , any matrix

N ∈ R n×n -2x T N y ≤ [ x y ] T [ Q X -N * Z ] [ x y ] . ( 25 
)
For any scalar ε > 0, any matrix R in S n + , it follows from [START_REF] Wu | Delay-dependent criteria for robust stability of timevarying delay systems[END_REF] with the choice of

Q = ε -1 R, Z = εR -1 , X = N = -I that
Lemma 5 For any x, y ∈ R n , any scalar ε > 0, any matrix R in S n + , the following inequality holds

2x T y ≤ ε -1 x T Rx + εy T R -1 y. ( 26 
)
Then for any matrices M i in R 2n×n , i = 1, 2, we have

1 α [ I 0 ] R [ I 0 ] + αM 1 R -1 M T 1 ≽ He(M 1 [I 0]) and 1 1-α [ 0 I ] R [ 0 I ] + (1 -α)M 2 R -1 M T 2 ≽ He(M 2 [0 I]).
Therefore, the equality [

1 α R 0 * 1 1-α R ] = He(M 1 [I 0] + M 2 [0 I])-αM 1 R -1 M T 1 -(1 -α)M 2 R -1 M T 2 + Θ 1 (α) + Θ 2 (α) (27) 
holds for all scalar α ∈ (0, 1), where

Θ 1 (α) = α( 1 α R[I 0] -M T 1 ) T R -1 ( 1 α R[I 0] -M T 1 ) ≽ 0, Θ 2 (α) = (1 -α)( 1 1-α R[0 I] -M T 2 ) T R -1 ( 1 1-α R[0 I] -M T 2 ) ≽ 0.
(28)

Reciprocally convex combination inequality

Recall the reciprocally convex combination lemma (RCCL) provided in [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF]:

Lemma 6 (RCCL) For a given matrix R ∈ S n + , assume that there exists a matrix

X ∈ R n×n such that [ R X * R ] ≽ 0. ( 29 
)
Then the equality [

1 α R 0 * 1 1-α R ] = [ R X * R ] + Θ(α) ( 30 
)
holds for all scalar α ∈ (0, 1), where

Θ(α) = [ 1-α α R -X * α 1-α R ] = [ √ 1-α α I 0 * - √ α 1-α I ] [ R X * R ] [ √ 1-α α I 0 * - √ α 1-α I ] ≽ 0.

Comparison of (27) and (30) with (29)

In order to apply [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF] or [START_REF] Zhang | Delay-variation-dependent stability of delayed discrete-time systems[END_REF] to derive LMI stability conditions of system (2), the lower bound of [

1 α R 0 * 1 1-α R ]
needs to be estimated since both Θ i (α), i = 1, 2, in [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF] and Θ(α) in [START_REF] Zhang | Delay-variation-dependent stability of delayed discrete-time systems[END_REF] are not affine in the convex parameter α. Then we have the following result: Lemma 7 The equality [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF] provides a tighter lower bound of ( 22) that is affine in α than equality [START_REF] Zhang | Delay-variation-dependent stability of delayed discrete-time systems[END_REF] with [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF].

Proof 1 Suppose now that there exist matrices R ∈ S n

+ and X ∈ R n×n such that ( 29) and ( 30) are satisfied. In [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF], choose

M T 1 = R[I 0] + X[0 I], M T 2 = R[0 I] + X T [I 0].
Then, the sum of Θ 1 (α) and Θ 2 (α) in ( 28) can be presented as

Θ 1 (α) + Θ 2 (α) = [ (1-α) 2 α R 0 * α 2 1-α R ] + [ 0 -X * 0 ] + [ 0 0 * αX T R -1 X ] + [ (1 -α)XR -1 X T 0 * 0 ] = Θ(α) - [ (1-α)(R-XR -1 X T ) 0 * α(R-X T R -1 X) ] ≼ Θ(α).
The latter inequality is guaranteed by the fact that application of Schur complement to ( 29) yields R -XR -1 X T ≽ 0 and R -X T R -1 X ≽ 0. Then, by comparing ( 30) and ( 27) we arrive at

[ R X * R ] ≼ He(M 1 [I 0] + M 2 [0 I]) -αM 1 R -1 M T 1 -(1 -α)M 2 R -1 M T 2 ,
which shows that the RCCL is a particular case of the Moon et al.'s inequality.

An alternative proof of Lemma 7 can be found in [START_REF] Zhang | Stability analysis of systems with timevarying delay via relaxed integral inequalities[END_REF]. From Lemma 7, it is then expected that the stability conditions resulting from the application of the RCCL is more conservative than the ones obtained from the application of Moon et al.'s inequality.

In Section 3.1.4, although it is verified that the free-matrix-based inequality ( 14) with ( 13) cannot deliver a more tight lower bound of ∫ b a ẋT (u)R ẋ(u)du than Wirtinger-based inequality ( 9), this formulation still has some interest with respect to the original Wirtinger-based inequality, as noticed in [START_REF] Gyurkovics | A note on wirtinger-type integral inequalities for time-delay systems[END_REF]. Indeed, when one has to test stability of time-varying delay systems, Lemma 3 can deliver tighter lower bounds than the one based on the Wirtinger-based integral inequality together with the RCCL. In light of [START_REF] Gyurkovics | A note on wirtinger-type integral inequalities for time-delay systems[END_REF] and on the previous considerations, this reduction of the conservatism is mainly due to the application of the convex optimization approach. Indeed when one uses the Wirtinger-based inequality together with the Moon et al.'s inequality and convex analysis, one can derive less conservative stability conditions than the one based on inequality [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF] and also with a lower number of decision variables.

Delay-dependent stability conditions and comparison of conservatism and complexity

This section first presents several delay-dependent stability conditions obtained by means of the Jensen inequality or Wirtinger-based integral inequality together with the convex approaches provided in Section 3.2 and then provides a comparison of the conservatism and numerical complexity of different methods. For the simplicity of presentation, the following notations will be used in this section.

e i = [0 n×(i-1)n I n 0 n×(7-i)n ], i = 1, . . . , 7, G 0 = Ae 1 + A 1 e 3 , Γ = [G T 3 G T 4 ] T , G 1 (h) = [e T 1 h 1 e T 5 (h -h 1 )e T 6 + (h 2 -h)e T 7 ] T , G 2 = [e T 1 -e T 2 e T 1 + e T 2 -2e T 5 ] T , G 3 = [e T 2 -e T 3 e T 2 + e T 3 -2e T 6 ] T , G 4 = [e T
3 -e T (31)

Stability conditions

Consider the standard LKF for the stability analysis of systems with time-varying delay from the interval [h 1 , h 2 ] (see e.g., [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF]). The application of Moon et al.'s inequality in Lemma 5 to [START_REF] Gyurkovics | A note on wirtinger-type integral inequalities for time-delay systems[END_REF] and the Jensen inequality leads to the following condition for stability of system [START_REF] Fridman | Introduction to Time-Delay Systems[END_REF].

Lemma 8 (Jensen-Moon-Convex) Assume that there exist two scalars h 2 > h 1 ≥ 0, matrices P , S i , and R i in S n + , and two matrices

Y i in R 4n×n , i = 1, 2, such that the following LMIs are satisfied [ Φ -h 12 He(Y 1 F 23 + Y 2 F 34 ) h 12 Y i * -R 2 ] ≺ 0, i = 1, 2, (32) 
where

Φ = He(F T 1 P F 0 )+S +F T 0 (h 2 1 R 1 +h 2 12 R 2 )F 0 -F T 12 R 1 F 12 , F 0 = [ A 0 A d 0 ] , F 1 = [ I 0 0 0 ] , F 12 = [ I -I 0 0 ] , F 23 = [ 0 I -I 0 ] , F 34 = [ 0 0 I -I ] , S = diag(S 1 , S 2 -S 1 , 0, -S 2 ). (33) 
Then the system (2) is asymptotically stable for the time-varying delay h satisfying (3).

Recently, Lemma 6 together with the Jensen inequality is widely employed to derive stability condition for systems with time-varying delay. The stability condition is summarized in the following theorem, taken from [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF].

Lemma 9 (Jensen-RCCL) Assume that there exist two scalars h 2 > h 1 ≥ 0, matrices P , S i , and R i , i = 1, 2, in S n + , and a matrix X in R n×n such that the following LMIs are satisfied

Ψ = [ R 2 X * R 2 ] ≽ 0, Φ - [ F T 23 F T 34 ] Ψ [ F T 23 F T 34 ] T ≺ 0, ( 34 
)
where Φ, F 23 and F 34 are given in [START_REF] Zhang | Robust H ∞ filtering for a class of uncertain linear systems with time-varying delay[END_REF]. Then the system (2) is asymptotically stable for the timevarying delay h satisfying (3).

To employ Lemma 2 for delay-dependent analysis of systems with time-varying delays, an augmented LKF was suggested in [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF]. The stability condition that derived in [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF] by means of Lemma 6 as well as Wirtinger-based integral inequality in Lemma 2 is summarized in the following theorem.

col{η(t), 1 h 1 ∫ 0 -h 1 x t (s)ds, 1 h-h 1 ∫ -h 1 -h x t (s)ds, 1 h 2 -h ∫ -h -h 2 x t (s)ds} with η(t) = col{x(t), x(t -h 1 ), x(t - h), x(t -h 2 )}.
By Lemma 2 the differentiation of V (x t , ẋt ) along the trajectories of ( 2) leads to

V (x t , ẋt ) ≤ ζ T (t)Φ 0 (h)ζ(t) -h 12 ∫ -h 1 -h 2 ẋT t (s)R 2 ẋt (s)ds, ( 39 
)
where Φ 0 (h) is given in (36). Furthermore, from [START_REF] Liu | Delay-dependent methods and the first delay interval[END_REF] the following inequality

-h 12 ∫ -h 1 -h 2 ẋT t (s)R 2 ẋt (s)ds ≤ -ζ T (t) [ G T 3 G T 4 ] [ 1 α R2 0 * 1 1-α R2 ] [ G 3 G 4 ] ζ(t) ≤ -ζ T (t) [ G T 3 G T 4 ] [ He 
( [ h 12 Ŷ1 0 ] [I 0] + [ 0 h 12 Ŷ2 ] [0 I] ) -h 12 (h-h 1 ) [ Ŷ1 0 ] R-1 2 [ Ŷ T 1 0] -h 12 (h 2 -h) [ 0 Ŷ2 ] R-1 2 [0 Ŷ T 2 ] ] [ G 3 G 4 ] ζ(t)
(40) holds for any matrices Ŷ1 , Ŷ2 ∈ R 2n×2n , where α = (h -h 1 )/h 12 . The latter inequality is guaranteed by Lemma 5,with 

M 1 = h 12 [ Ŷ T 1 0] T and M 2 = h 12 [0 Ŷ T 2 ] T . Thus, by letting Y 1 = G T 3 Ŷ1 and Y 2 = G T 4 Ŷ2
, we obtain from ( 39) and (40) that

V (x t , ẋt ) ≤ ζ T (t)Φ(h)ζ(t),
where

Φ(h) = Φ 0 (h)-h 12 He(Y 1 G 3 +Y 2 G 4 )+h 12 (h-h 1 )Y 1 R-1 2 Y T 1 +h 12 (h 2 -h)Y 2 R-1 2 Y T 2 .
Since Φ(h) is affine with respect to h, the two matrix inequalities Φ(h 1 ) ≺ 0 and Φ(h 2 ) ≺ 0 imply Φ(h) ≺ 0 for all h ∈ [h 1 , h 2 ]. This means that by Schur complement if the two LMIs Ω(h) |h=h i ≺ 0, i = 1, 2, then V (x t , ẋt ) < 0, implying asymptotic stability of system [START_REF] Fridman | Introduction to Time-Delay Systems[END_REF] for all time-varying delay in the interval

[h 1 , h 2 ].
Remark 1 Lemmas 10,[START_REF] Liu | Delay-dependent methods and the first delay interval[END_REF] and Theorem 1 are also applicable to the stability analysis of systems with interval delays, which may be unstable for small delays (or without delays). It is worth noting that Lemmas 8 and 9 that correspond to classical Lyapunov-Krasovskii approaches based on Jensen inequality cannot assess stability of such systems.

Remark 2 More recently, generalized integral inequalities were developed in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of timedelay systems[END_REF] based on Bessel's inequality and Legendre polynomials, which includes Jensen and Wirtinger-based inequalities and the recent inequalities based on auxiliary functions ( [START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF], [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF]) as particular cases. Therefore, the stability criteria of and Theorem 1 could be further improved by employing generalized integral inequalities together with Lemma 5 or 6. 

Comparison of numerical complexity of different conditions

Based on the discussions in Sections 3.1.4 and 3.2.3, and the fact of Wirtinger-based inequality encompassing the Jensen inequality, Table 1 shows the comparison of the maximum values of h 2 that preserve the stability by applying Lemmas 8-11 and Theorem 1 with given lower bound h 1 .

The numerical complexity of the resulting LMIs under different bounding techniques is illustrated in Table 2.

From Tables 1 and2, it is seen that Lemma 9, which is derived by Jensen inequality and the reciprocally convex combination approach, possesses the least number of scalar decision variables while Theorem 1, which is obtained by Wirtinger-based inequality and the Moon et al.'s inequality together with convex analysis, leads to the least conservative results regardless of the complexity.

Numerical Examples

To demonstrate the effectiveness and the comparison of the stability criteria Lemmas 8-11 and Theorem 1, we consider two numerical examples as follows. 

Example 1

Consider the following linear time-delay system (2) with:

A = [ -2.0 0.0 0.0 -0.9 ] , A d = [ -1.0 0.0 -1.0 -1.0 ] . ( 41 
)
It is well-known that this system is stable for constant delay h ≤ 6.1725. The results for timevarying delays by applying Lemmas 8-11 and Theorem 1 are summarized in Table 3. In Lemmas 8 and 9, the stability conditions are restricted by the use of the Jensen inequality. The results obtained by solving Lemma 10 show a clear reduction of the conservatism. This is due to the use of both reciprocally convex combination Lemma 6 and Wirtinger-based integral inequality provided in Lemma 2. The conservatism can be further reduced by substitution Lemma 5 for reciprocally convex combination Lemma 6.

Moreover, less conservative criteria can be obtained by including other techniques, e.g., additional triple integral term in LKF [START_REF] Sun | Delay-dependent stability and stabilization of neutral time-delay systems[END_REF], delay-partitioning approach [START_REF] Fridman | New conditions for delay-derivative-dependent stability[END_REF], developed integral inequalities [START_REF] Zhang | Delay-variation-dependent stability of delayed discrete-time systems[END_REF], [START_REF] Zhang | Summation inequalities to bounded real lemmas of discrete-time systems with time-varying delay[END_REF], [START_REF] Zhang | Robust H ∞ filtering for a class of uncertain linear systems with time-varying delay[END_REF], [START_REF] Zhang | Event-based H ∞ filtering for sampled-data systems[END_REF]. This is not our focus in the present paper.

Example 2

Consider the system (2) with: Notice that Re(eig(A + A d )) = 0.05 > 0, the delay free system is unstable, therefore, in this case, Lemmas 8 and 9 that correspond to classical Lyapunov-Krasovskii approaches based on Jensen inequality are not applicable any more. For the constant delay case, a frequency approach shows that the solutions of this system are stable if the delay belongs to the interval [0.10017, 1.7178] [START_REF] Gu | Stability of Time-Delay Systems[END_REF].

The stability conditions of Lemma 10 and Theorem 1 can be applied to assess the stability of such systems due to the use of Wirtinger-based integral inequality provided in Lemma 2. Table 4 shows that Theorem 1 leads to a larger delay interval that preserve the stability of systems than Lemma 10. 

Conclusions

In this paper, we have revealed that the reciprocally convex combination approach is effective only with the use of Jensen inequality. When the Jensen inequality is replaced by Wirtinger-based inequality, the Moon et al.'s inequality instead of the reciprocally convex combination approach is suggested for delay-dependent stability analysis of linear time-delay systems. Polytopic uncertainties in the system model can be easily included in the analysis.

Table 1 :

 1 The comparison of admissible upper bound h 2 for different methods.

	Methods	Lemma 1	Lemma 2	Lemma 3
		(Jensen)	(Wirtinger)	(free-matrix)
	Lemma 6	h 2 {Lem. 9} =⇒ (≤) h 2 {Lem.10}	---
	(reciprocally convex)	⇕ (=)	⇓ (≤)	
	Lemma 5	h 2 {Lem.8}	h 2 {Th.1} (≥) ⇐= h 2 {Lem.11}
	(Moon et al.)			

Table 2 :

 2 The comparison of the numerical complexity of different methods.

	Decision variables	Lemma 1	Lemma 2	Lemma 3
	No. and order of LMIs	(Jensen)	(Wirtinger)	(free-matrix)
	Lemma 6	3.5n 2 + 2.5n 10.5n 2 + 3.5n	
		1 of 2n × 2n 1 of 4n × 4n	---
		1 of 4n × 4n 1 of 7n × 7n	
	(reciprocally convex)	(Lem.9)	(Lem.10)	
	Lemma 5	10.5n 2 + 2.5n 20.5n 2 + 3.5n	54.5n 2 + 9.5n
		2 of 5n × 5n 2 of 8n × 8n 2 of 3n × 3n, 1 of 7n × 7n
	(Moon et al.)	(Lem.8)	(Th.1)	(Lem.11)

Table 3 :

 3 Admissible upper bound h 2 for various h 1 for the system described in Example (41).

	Methods \ h 1 0.0 0.4 0.7 1.0 2.0 3.0
	Lemma 8	1.86 1.88 1.95 2.06 2.61 3.31
	Lemma 9	1.86 1.88 1.95 2.06 2.61 3.31
	Lemma 10	2.11 2.17 2.23 2.31 2.79 3.49
	Lemma 11	2.18 2.21 2.25 2.32 2.79 3.49
	Theorem 1	2.24 2.27 2.29 2.34 2.80 3.49

Table 4 :

 4 Admissible upper bound h 2 for various h 1 for the system described in Example (42). Methods \ h 1 0.11 0.3 0.5 0.8 1.0 1.3

	Lemma 11	0.40 1.09 1.34 1.49 1.53 1.54
	Lemma 10	0.42 1.09 1.36 1.52 1.56 1.57
	Theorem 1	0.42 1.10 1.38 1.54 1.57 1.57

1. We reveal that the reciprocally convex combination approach is effective only with the use of Jensen inequality. When the Jensen inequality is replaced by Wirtinger-based inequality, the Moon et al.'s inequality together with convex analysis can lead to less conservative stability conditions than the reciprocally convex combination inequality. This is different from the utilization of Jensen inequality, where the reciprocally convex combination inequality and the Moon et al.'s Acknowledgment This work was supported by the National Natural Science Foundation of China (grant no. 61503026, 11602025, 71601019), the ANR project SCIDiS contract number 15-CE23-0014, and the Foundation of Beijing Institute of Technology (grant no. 20150642003).

Lemma 10 (Wirtinger-RCCL) Assume that there exist matrices P in S 3n + , S i , and R i , i = 1, 2, in S n + , and a matrix X in R 2n×2n such that the following matrix inequalities are satisfied for h in

where

and the notations are given in [START_REF] Liu | Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality[END_REF] and [START_REF] Zhang | Stability analysis of systems with timevarying delay via relaxed integral inequalities[END_REF]. Then the system (2) is asymptotically stable for all time-varying delay functions h satisfying (3). Moreover, following [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF] and applying Lemma 3 to the second term of (4) after splitting the integral into two parts, we derive the following result: Lemma 11 (Free-matrix and Convex) Assume that there exist matrices P, [START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF] and the following matrix inequalities are satisfied for

where the notations Φ 0 (h) and G 5 , G 6 are given in ( 36) and [START_REF] Zhang | Stability analysis of systems with timevarying delay via relaxed integral inequalities[END_REF], respectively. Then, the system (2) is asymptotically stable for all time-varying delay functions h satisfying (3).

The application of Lemma 5 to [START_REF] Liu | Delay-dependent methods and the first delay interval[END_REF] and Wirtinger-based integral inequality also allows us to derive stability criterion via LMI setup. In such situation, the following theorem is provided.

Theorem 1 (Wirtinger-Moon-Convex) Assume that there exist matrices P in S 3n + , S i , and R i in S n + , and two matrices Y i in R 7n×2n , i = 1, 2, such that the following LMIs are satisfied for h in

where the notations R2 , Φ 0 (h) and G 3 , G 4 are given in ( 12), ( 36) and [START_REF] Zhang | Stability analysis of systems with timevarying delay via relaxed integral inequalities[END_REF], respectively. Then the system (2) is asymptotically stable for all time-varying delay functions h satisfying (3).

Proof 2

The proof follows from the standard arguments for the delay-dependent stability analysis with the use of Wirtinger-based integral inequality (9), Moon et al.'s inequality [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF] and convex analysis. Consider the augmented Lyapunov functional V (x t , ẋt ) given in [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF] and define ζ(t) =