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SUMMARY

This paper deals with robust stability and stabilization of linear discrete-time systems subject to uncertainties
and network constraints. In network control systems, the control loop is closed over a network, which induces
additional dynamics to the original control loop such as delays, sampling, quantization among many others.
This paper focuses on networked induced delays due to unreliable network for which packet losses may
occur. An equivalent periodic-like representation of the resulting system is proposed. This allows first, to
revisit existing results in this framework and second, to take model uncertainties into account by analyzing
the closed-loop model by means of a recent method based on robust control for discrete-time time-varying
systems. Stability analysis and dynamic state-feedback stabilization are characterized via new conditions,
whose conservatism is extensively discussed. Effectiveness of the proposed methodology is illustrated by
numerical examples. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Due to the emergence of new technologies, it is now reasonable to consider applications where the
various components of a control loop are closed through a single or several wireless network links.
The benefits of such a distribution of the components are for instance the possibility to avoid closing
the loop with wires, to get scalability properties among many others. The network may induce
additional dynamics, which may disturb or even destroy the performances and stability properties of
the closed-loop system. Among these dynamics, one of the most studied in the context of networked
control systems is due to packet losses [1, 2]. This phenomenon appears when a (wireless) network
link is not reliable and data packets are often lost between transmitters and receivers. In some
applications such as in underwater communication or multi-hop networks, analyzing the effect
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2 J.-F. TRÉGOUËT, A. SEURET AND M. DI LORETO

of this phenomenon in a control loop becomes crucial. It is usually assumed that, when a data
packet is lost, the control input will use the last available data to compute the next control input.
Among the possible solutions to address this problem, one may look at a method based on an
equivalent formulation of the input delay approach for continuous-time sampled-data systems [3]
to discrete-time systems [4]. The interest of this method is that the network closed-loop system
subject to packet losses is rewritten as a system affected by a time-varying input delay governed by
a particular dynamic. In the context of the stability analysis of discrete-time delay systems, several
methods have been provided in the literature to derive delay-dependent stability conditions. The
reader may refer for instance to [5, 6, 7, 8, 9] for Lyapunov-Krasovskii methods, to [10] for Integral
Quadratic Constraints approaches, or to [11, 12] for switched systems approaches with average
dwell times conditions [13]. Notably, an equivalence between the Lyapunov-Krasovskii and the
switched systems approaches was shown in [14].

Most of these papers consider that the time-varying delay function is bounded by some known
and constant lower and upper bounds. Therefore, since no assumptions are required on the variations
of the delay function, these papers are concerned with a more general class of systems with
time-varying delays than control systems with packet losses. In order to have a more dedicated
analysis, several approaches have been considered. In [15], the problem is recast into a finite
dimensional discrete-time jump linear system with transition jumps being modeled as finite-state
Markov processes. In [10], a particular attention has been paid to include additional assumptions on
the variations of the delay function. In [16, 12, 17], methods to take into account in an exact manner
the packet dropout phenomena are proposed. A switched system approach is used which leads to
sufficient stability conditions.

In this paper, we focus on control system subject not only to packet losses but also to polytopic-
type model uncertainties. In such a case, the stability analysis strategy proposed in [17] comes up
with Linear Matrix Inequality (LMI) conditions which are non linear with respect to the system
matrices, preventing then from an extension to robust stability. In the present paper, this difficulty is
tackled by constructing an equivalent time-varying augmented model from the original closed-loop
systems with time-delay. It appears that the obtained time-varying model switches from a periodic
dynamics to another. The roots of this approach can be traced back to [18, 19], where periodic
controllers with memory were considered, and to [20], which deals with asynchronous sampling.
This reformulation allows (i) to revisit the stability conditions of [17] and, in particular, to establish
that when the time-delay is constant, those conditions are also necessary and their associated
numerical complexity is independent from the value of the time-delay and (ii) to develop a novel
methodology for the analysis and design of such control systems which, in constrast with [17],
consider time-varying state-feedback controller gains. The latter achievement relies on a relaxation
technique preserving linearity with respect to system matrices. Conservatism associated to new LMI
conditions is extensively discussed. Numerical examples illustrate the effectiveness of the proposed
methodology as well as the benefits of allowing the controller gains to be time-varying.

The paper is organized as follows. Section 2 describes the problem formulation. Section 3 and 4
develop the analysis and the control design of nominal and uncertain systems, respectively. Some
numerical examples are presented in Section 5.

The following notations are used throughout the paper. The symbol 1n stands for the identity
matrix of dimensions n× n. The null matrix of size m× n is denoted by 0m×n. When the
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A PERIODIC APPROACH FOR INPUT-DELAY PROBLEMS 3

dimensions are clear from the context, they are omitted. The set of l × l symmetric matrices
(respectively positive-definite symmetric matrices) are denoted by Sl (resp. Sl+). For a real square
matrix A, we define He {A} = A+AT . For a matrix R, R⊥ is such that R⊥R = 0. The operator
‘diag’ builds block-diagonal matrix from input arguments. For given integers k and N , we denote
by dkeN the remainder of k divided by N . The symbol ? is used to complete symmetric matrices.

The following lemma results from standard application of Finsler’s Lemma (see e.g. [21]).

Lemma 1
For any matrix Q and R of appropriate dimensions and such that Q is symmetric, the following
matrix inequalities are equivalent:

RT⊥QRT⊥T ≺ 0 (1)

∃ρ ∈ R : Q+ ρRTR ≺ 0 (2)

∃F : Q+ He{FR} ≺ 0 (3)

2. PROBLEM STATEMENT

Consider the linear discrete-time system

Σ(θ) : xk+1 = A(θ)xk +B(θ)uk, (4)

where xk ∈ Rn and uk ∈ Rm refer to the state and the input vectors, respectively. This model is
subject to polytopic uncertainties such that

[
A(θ) B(θ)

]
=

L∑
q=1

θq

[
A[q] B[q]

]
, (5)

with A[q] ∈ Rn×n and B[q] ∈ Rn×m when the uncertain vector θ := (θ1, . . . , θL) belongs to the unit
simplex ΘL defined by

ΘL := {(θ1, . . . , θL) ∈ [0, 1]L s.t. θ1 + . . .+ θL = 1}. (6)

Throughout this paper, θ is assumed to be time-invariant.
Let {np}p∈N be an increasing sequence of positive integers such that

⋃
p∈N[np, np+1) = [0, +

∞) and for which there exists a strictly positive integer Nmax such that

∀p ∈ N, Np := np+1 − np ∈ I := {1, . . . , Nmax}. (7)

The sequence {np}p∈N represents the instants where the controller receives new data from the
sensors. The control input uk is computed as soon as the information from the sensors arrives and is
implemented until a more recent information coming from the sensor is received (see Figure 1). The
time interval between the current instant time and the last packet receipt, denoted by dk, is given by

dk := k − np ≥ 0, ∀k ∈ [np, np+1). (8)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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4 J.-F. TRÉGOUËT, A. SEURET AND M. DI LORETO

Discrete-time Process

Network

Controller

xkxnp

uk

Figure 1. Network control system of interest

The design of the controller is performed for two classes of controllers (time-invariant and time-
varying state-feedback), namely

∀k ∈ [np, np+1), uk = Kxnp
, (9a)

∀k ∈ [np, np+1), uk = Kkxnp
, (9b)

where both K and Kk belong to Rm×n. Additionally, we assume that the controller gains in (9b)
only depend on the value of the time interval dk, so that Kk = Kdk for any k ∈ [np, np+1). The
closed-loop system (4) and (9b) becomes

xk+1 = A(θ)xk +B(θ)Kkxnp
, ∀k ∈ [np, np+1). (10)

This class of systems can be realized by a time-delay system with time-increasing state delay
on each interval [np, np+1), as illustrated in Figure 2. Indeed, since xnp = xk−k+np = xk−dk and
Kk = Kdk

†, the system (10) takes the form

Σcl(θ) : xk+1 = A(θ)xk +B(θ)Kdkxk−dk ,∀k ∈ [np, np+1). (11)

This manipulation refers to the input delay approach proposed in [3] and has been already
successfully applied in the context of continuous sampled-data systems for the time-invariant
controller (9a). In the context of discrete-time systems, this model transformation has already been
employed in [4].
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Figure 2. Example of chronograph of dk

†In the packet drop scenario illustrated in Figure 2, controller (9b) with Kk = Kdk reads K0 = K4 = K13 = . . . , K1 =
K5 = K8 = K14 = . . . , K2 = K6 = K9 = . . . and so on and so forth.
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A PERIODIC APPROACH FOR INPUT-DELAY PROBLEMS 5

In the following, both analysis and synthesis problems are tackled. That is, we provide conditions
assessing robust asymptotic stability of Σcl(θ) and derive conditions leading to control laws (9a) (or
(9b)) ensuring that Σcl(θ) is robustly stable. As a preliminary step, Section 3 deals with the simpler
case where θ is known. Then, the full uncertain problem is addressed in Section 4.

Remark
The reasons for imposing the constraint Kk = Kdk , and hence focusing our attention on a particular
class of time-varying state-feedback, are twofold. It first originates from the intuition of copying
the intrinsic time-delay dynamics of the discrete-time process together with the network into the
controller so that, in (11), xk+1 is a function of dk solely whereas it depends on both k and dk in
(10). Second, it gives a way to write the controller gains solving the synthesis problem as the solution
of a semi-definite program, as demonstrated afterward. Indeed, Kk = Kdk implies that there exists
a finite number of controller gains Kk since dk is assumed to be bounded (see (7) and (8)).

3. THE NOMINAL PROBLEM WHERE θ IS KNOWN

As a preliminary study, let us first assume that θ is known. Thus, the dependency of A and B with
respect to θ is omitted in this section.

3.1. An augmented model reformulation

Using the manipulation introduced in [19], the closed-loop model Σcl is treated via the following
state-space formulation where both coefficients and dimensions of the state matrix Ādk are time-
varying:

x̄k+1 = Ādk x̄k, (12)

with

Ādk :=



[
A+BK0

]
, (dk = 0 and Np = 1)[

1n
A+BK0

]
, (dk = 0 and Np > 1)[

1(dk+1)n

BKdk 0n×(dk−1)n A

]
, (0 < dk < Np − 1)

[
BKNp−1 0n×(Np−2)n A

]
, (dk = Np − 1)

(13)

and where the augmented state vector x̄k corresponds to

∀k ∈ [np, np+1), x̄k = (xnp
, · · · , xk) ∈ R(dk+1)n. (14)

Clearly, this reformulation preserves stability, i.e. (11) is stable if and only if (12) is stable. This
is the reason why, in this paper, the stability analysis of Σcl is handled by means of (12) which,
in contrast with (11), does not have any time-delay dynamics. For this purpose, we introduce the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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6 J.-F. TRÉGOUËT, A. SEURET AND M. DI LORETO

state-transition matrix ΨNp between xnp = x̄np and xnp+1 = x̄np+1 by

ΨNp
:=

Np−1∏
k=0

ĀNp−1−k = ANp +

Np−1∑
k=0

ANp−1−kBKk. (15)

3.2. Regularly information receipts

As a preliminary step, it is first assumed that the time-interval between two information receipts has
a constant value denoted by N . This is equivalent to saying that I = {N} where I is defined by (7).
In this case, dk is governed by dk+1 = ddk + 1eN which clearly corresponds to a periodic dynamics
with period N .

For a given controller (9b), consider first the closed-loop stability analysis problem. Relying on
the observation that dk is periodic, the following lemma easily derives from the well-known fact
that stability of periodic system is equivalent to Schur stability of ΨN .‡

Lemma 2 (Nominal analysis, [22])
If I = {N}, the system Σcl is stable if and only if there exists P ∈ Sn+ such that

ΨT
NPΨN − P ≺ 0 (16)

holds.

The matrix ΨN coincides with the state-transition matrix from x̄np
= xnp

to x̄np+1
= xnp+1

, that
is

x̄np+1
= ΨN x̄np

. (17)

We can also note that condition (16) can be regarded as an asymptotic stability condition of (17),
assessed through the strict decrease of the Lyapunov functionnal V (x̄np

) = x̄Tnp
Px̄np

. Thus, when
I = {N}, the model (12) (and hence Σcl) is stable if and only if the application x̄np

→ x̄np+1
=

x̄np+N is a contraction mapping. Although this fact is well-known from periodic systems theory,
this will be of major importance in the sequel when Np will be considered as unknown.

The corresponding stabilization problem, that is finding the gains of the controller (9b) which
stabilizes the closed-loop, is now solved by means of Lemma 2.

Lemma 3 (Nominal synthesis)
If I = {N}, controller (9b) stabilizes the closed-loop model Σcl if and only if there exist W ∈ Sn+
and Yk ∈ Rm×n for all k ∈ {0, . . . , N − 1} such that the following condition holds:[

−W ?

ANW +
∑N−1

k=0 A
N−1−kBYk −W

]
≺ 0. (18)

The gains of the control law (9b) are obtained by

Kk = YkW
−1, (19)

‡In this context, ΨN corresponds to the so-called monodromy matrix (see e.g. [22]).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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for all k ∈ {0, . . . , N − 1}.

Proof
Substituting Yk by KkW in (18) and recognizing the expression of ΨN given by (15) leads to[

−W ?

ΨNW −W

]
≺ 0, (20)

which can be proved to be equivalent to (16) with P = W−1 using a Schur complement. The use of
Lemma 2 completes the proof.

Remark
While the Semi-Definite Program (SDP) defined in Lemma 2 depends on N , it is remarkable that
neither its number of variables nor its number of rows depend on this parameterN . Hence, numerical
complexity associated with this lemma is not affected by the time interval between two information
receipts. SDP of Lemma 3 is slightly different with that respect since its number of variables depends
on N while its number of rows is not affected by this variable.

3.3. Unknown time receipts: a switched system viewpoint

In the case where Ni is unknown, a sufficient stability condition can be derived from [17, Th.6] by
considering the time-varying controller (9b) instead of (9a).

Lemma 4
The system Σcl is stable if there exist Pi ∈ Sn+ for all i ∈ I such that

ΨT
i PjΨi − Pi ≺ 0 (21)

holds for all (i, j) ∈ I2.

Proof
See the proof of [17, Th.6] with obvious adaptation.

In view of [23, Th.1], the condition (21) can be interpreted as the constraint for the poly-quadratic
Lyapunov functional

V (x̄np
, p) = x̄Tnp

PNp
x̄np

(22)

to be strictly decreasing along the trajectory of the linear switched system

x̄np+1
= ΨNp

x̄np
, (23)

where Np ∈ I. As suggested by the notation, identity (23) characterizes the dynamics of model (12)
from x̄np

to x̄np+1
, which appears to be a generalization of (17). In this context, dk is governed by

dk+1 = ddk + 1eNp
for all k ∈ [np, np+1). The dynamics of dk is periodic with a period which is

randomly selected within the finite set I. This is the motivation for qualifying such dynamics as
“switched periodic” (and for this model (12) to inherit from this denomination).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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8 J.-F. TRÉGOUËT, A. SEURET AND M. DI LORETO

Remark
In stack contrast with Lemma 2, stability condition of Lemma 4 is merely sufficient since it is false,
in general, that if Σcl is stable then (21) holds. In view of the previous discussion, we conjecture that
the lack of necessity originates from the fact that the existence of the strictly decreasing Lyapunov
functional (22) cannot be ensured for all stable linear switched system of the form (23) (see [24]).

For the sake of completeness, the straightforward generalization of [17, Th.11] for the time-
varying controller (9b) is now provided as a solution to the corresponding stabilization problem.

Lemma 5
The controller (9b) stabilizes the closed-loop model Σcl if there exist (i) Wi ∈ Sn+ for all i ∈ I, (ii)
Yk ∈ Rm×n for all k ∈ {0, . . . , Nmax − 1} and (iii) G ∈ Rn×n such that[

−G−GT +Wi ?

AiG+
∑i−1

k=0A
i−1−kBYk −Wj

]
≺ 0 (24)

holds for all (i, j) ∈ I2. The gains of the control law are obtained by solving (19) with W = G for
all k ∈ {0, . . . , Nmax − 1}.

Proof
Substituting Yi by KiG in (24) followed by pre/post multiplication by

[
Ψi 1n

]
gives ΨiWiΨ

T
i −

Wj ≺ 0. Using Schur complements, this inequality is equivalent to (21) with Pi = W−1i and Pj =

W−1j , which in turn proves stability by Lemma 4. Also note that (24) implies −G−GT +Wi ≺ 0,
so G is invertible since Wi � 0.

Remark
It is worth mentioning that all controllers (9b) which are proved to be stabilizing by Lemma 4 cannot
be parametrized via Lemma 5. This is due to the fact that conservatism has been introduced from
Lemma 4 to Lemma 5. To see it, first note that (21) holds if and only if there exist Gi ∈ Rn×n for
all i ∈ I satisfying [

−Gi −GTi +Wi ?

ΨiGi −Wj

]
≺ 0, ∀(i, j) ∈ I2 (25)

Indeed, (i) pre/post multiplication of (25) by
[
Ψi 1n

]
gives (21) for all Gi and (ii) when Gi = Wi,

(21) is proved to be equivalent to (25) by a Schur complement. Then, remarking that (25) is nothing
but (24) with Gi = G for all i ∈ I, it follows that the conservatism from Lemma 4 to Lemma 5
originates from the constraint that a unique Gi = G is involved in (25).

4. THE FULL PROBLEM

From now, the full problem is addressed so that both θ ∈ ΘL and Np ∈ I = {1, . . . , Nmax} are
supposed to be unknown.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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A PERIODIC APPROACH FOR INPUT-DELAY PROBLEMS 9

4.1. Main results

Immediate extension of Lemma 4 in this context reads: If for all i ∈ I and for all θ ∈ ΘL, there
exists Pi(θ) ∈ Sn+ such that

ΨT
i (θ)Pj(θ)Ψi(θ)− Pi(θ) ≺ 0 (26)

holds for all θ ∈ Θ and for all (i, j) ∈ I2, then closed-loop system Σcl(θ) is robustly stable. Those
matrix inequalities need to be satisfied on the continuous set ΘL parametrized by θ. Since Ψi(θ) is
polynomial with respect to θ with degree i (see (5) and (15)), it seems hard to design a tractable
procedure which certifies that (26) is satisfied for all θ ∈ Θ. Although some directions relying
on Sum Of Square (SOS) techniques are suggested in [25], the involved computational burden is
expected to be prohibiting. For this reason, we seek to another procedure which aims exploiting the
structure of Σcl(θ) by making use of the following matrices

Ni :=



A+BK0 −1n 0 · · · · · · 0

BK1 A −1n 0
...

BK2 0
. . . . . . . . .

...
...

...
. . . A −1n 0

BKi−1 0 · · · 0 A −1n


, (27)

N̆i :=



A 0 · · · 0 BKi−1

−1n A
. . .

...
...

0
. . . . . . 0 BK2

...
. . . −1n A BK1

... 0 −1n A+BK0

0 · · · · · · 0 −1n


, (28)

which should be regarded as a particular case of the ones introduced in [26, 19].

Theorem 1 (Robust analysis)
The polytopic model Σcl(θ) is robustly stable if one (at least) of the following conditions is satisfied:

• There exist matrices P [q]
i ∈ Sn+ for all (i, q) ∈ I × {1, · · · , L} such that for all (i, j) ∈ I2

there exist Fi,j ∈ Rin×(i+1)n satisfying

Xi(P [q]
i , P

[q]
j ) + He{FTi,jN

[q]
i } ≺ 0 (29)

for all q ∈ {1, · · · , L}.
• There exist matrices W [q]

i ∈ Sn+ for all (i, q) ∈ I × {1, · · · , L} such that for all (i, j) ∈ I2

there exist Fi,j ∈ Rin×(i+1)n satisfying

Xi(W [q]
j ,W

[q]
i ) + He{N̆ [q]

i Fi,j} ≺ 0 (30)

for all q ∈ {1, · · · , L}.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



10 J.-F. TRÉGOUËT, A. SEURET AND M. DI LORETO

The operator Xi is given by

Xi(P1, P2) :=

−P1 0 0
0 0(i−1)n 0
0 0 P2

 (31)

and matrices N [q]
i and N̆ [q]

i are readily defined from (27) and (28) by simply replacing A and B by
A[q] and B[q] respectively.

Proof
Convex combinations of (29) for every q ∈ {1, · · · , L} lead to

Xi(Pi(θ), Pj(θ)) + He{FTi,jNi(θ)} ≺ 0 (32)

with polytopic positive definite matrices Pi(θ) and Pj(θ) and where Ni(θ) follows from the
definition (27) by substituting A and B by A(θ) and B(θ) respectively. Then remarking that

N T⊥
i =

[
1n ΨT

1 ΨT
2 . . . ΨT

i

]T
, (33)

Lemma 1 ensures that (32) implies (26) as it holds

N T⊥
i Xi(Pi, Pj)N T⊥T

i = ΨT
i PjΨi − Pi. (34)

Since (26) holds for all (i, j) ∈ I2 and for all θ ∈ Θ, then Σcl(θ) is robustly stable. The same
reasoning can be used when considering (30) instead of (29) by remarking that

N̆⊥i =
[
1n A . . . Ai−1 Ψi

]
(35)

holds, and that
N̆⊥i Xi(Pi, Pj) N̆⊥Ti = ΨiWiΨ

T
i −Wj (36)

is negative definite if and only if (21) holds with Pj = W−1j � 0 and Pi = W−1i � 0 by virtue of
Schur complements.

Remark
Note that, in general, the two stability conditions provided by Theorem 1 are not equivalent.
Section 5 provides numerical evidences of this fact.

Remark
An alternative strategy could be used to derive a robust tractable stability condition by relying on
[14]. Indeed, this paper is devoted to stability analysis of systems of the form

xk+1 = A(θ)xk +Ad(θ)xk−dk (37)

which is close to (11) which governs dynamics of Σcl(θ). However, related conditions are expected
to be more conservative since arbitrary dynamics is considered for dk in [14], i.e. dk can take
arbitrary values in I, whereas in this paper it is assumed that dk satisfies (8).
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The corresponding stabilization problem consists in computing the controller gains of (9b) such
that closed-loop robust stability is ensured for all Ni ∈ I and for all θ ∈ Θ. This problem is tackled
by considering those gains as decision variables of the optimization problems defined in Theorem 1.
Yet, this makes the matrix inequalities (29) and (30) bilinear due to the direct multiplication of Fi,j
with Ni and N̆i respectively. To circumvent this issue, we focus on (30) and impose the last n lines
of every matrices Fi,j to be equal to

[
0n×in G

]
so that G ∈ Rn×n is a common matrix shared by

every Fi,j . Indeed, in such a case, it is possible to implement the change of variable Yk = KkG to
recover a linear dependency of (30) with respect to the variables of the new optimization problem.
This manipulation preserves sufficiency since robust stability of the closed-loop model is ensured
by the existence of Fi,j satisfying (30) irrespectively to the structure of this matrix. This gives rise
to the following SDP.

Theorem 2
The controller (9b) stabilizes the polytopic closed-loop system Σcl(θ) if there exist (i) W [q]

i ∈ Sn+
for all (i, q) ∈ I × {1, · · · , L}, (ii) Yk ∈ Rm×n for all k ∈ {0 . . . , Nmax − 1} and (iii) G ∈ Rn×n

such that for all (i, j) ∈ I2 there exists F̄i,j ∈ R(i−1)n×(i+1)n verifying

Xi(W [q]
j ,W

[q]
i )+

He





A[q] 0 · · · 0

−1 A[q] . . .
...

0
. . . . . . 0

...
. . . −1 A[q]

0 · · · 0 −1


[

F̄i,j[
0n×in G

]] +

0(i+1)n×in


B[q]Yi−1

...
B[q]Y0

0n





≺ 0

(38)

for all q ∈ {1, · · · , L}. The gains of the control law are obtained by solving (19) with W = G for
all i ∈ {0, . . . , Nmax − 1}.

Proof

Substituting Yk by KkG in (38) gives (30) with Fi,j =

[
F̄i,j[

0 G
]], which proves robust stability by

Lemma 1. Also note that if (38) is satisfied, then the matrix G is invertible. Indeed, by focusing
on the bottom right-hand side block of size n× n of (38), it comes that W [q]

i −G−GT ≺ 0 which
together with W [q]

i � 0 proves that det(G) 6= 0.

Remark
In order to derive a constant controller of the form (9a), it suffices to substitute in Theorem 2 a single
matrix Y to every Yi. The controller gain can be then recovered by computingK = Y G−1. Although
more conservative (see Section 5), this manipulation might be desirable when implementation
constraints prevent the designer from using the time-varying control law (9b).

4.2. Discussion about the conservatism of the proposed approach

This subsection aims at providing more details about the conservatism associated with Theorems 1
and 2.
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12 J.-F. TRÉGOUËT, A. SEURET AND M. DI LORETO

4.2.1. Conditions associated with Theorems 1 and 2 in the nominal case : The conditions proposed
in Theorems 1 and 2 are merely sufficient. This suggests that they may fail to provide stability
certificates although closed-loop system Σcl(θ) is robustly stable. Nevertheless, it can be proved
that at least in the nominal case, i.e. when θ is known which corresponds to L = 1, if Lemma 4
(Lemma 5) successfully proves stability, then conditions associated with Theorem 1 (Theorem 2)
are satisfied. In other words, when L = 1, Theorems 1 and 2 are equivalent to Lemma 4 and 5
respectively (recall that conditions of Theorems 1 and 2 imply that of Lemma 4 and 5 respectively).
This is a straightforward consequence of the two following propositions.

Proposition 1
For given Pi ∈ Sn+ and Pj ∈ Sn+, the following statements are equivalent to (21):

1. There exists Fi,j ∈ Rin×(i+1)n verifying (29) with P [q]
i = Pi, P

[q]
j = Pj and N [q]

i = Ni.
2. There exists Fi,j ∈ Rin×(i+1)n verifying (30) with W [q]

i = P−1i , W [q]
j = P−1j and N̆ [q]

i = N̆i.

Proof
The fact that (21) is equivalent to “1.” readily follows from the use of Lemma 1 together with the
identity (34) on (21). To prove equivalence between (21) and “2.”, it suffices to rewrite (21) by
means of Schur complements and then to use (36) together with Lemma 1.

Proposition 2
For givenWi ∈ Sn+,Wj ∈ Sn+,G ∈ Rn×n and Yk ∈ Rm×n for all k ∈ {0, . . . , Nmax − 1}, (24) holds
if and only if there exists F̄i,j ∈ R(i−1)n×(i+1)n verifying (38) with W [q]

i = Wi and W [q]
j = Wj .

Proof
Let us first introduce

Π :=


AT −1 0 · · · · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

0 · · · 0 AT −1 0

 ∈ R(i−1)n×(i+1)n. (39)

Remark that

ΠT⊥ =

[
0 0 . . . 0 1
1 A . . . Ai−1 0

]
. (40)

Then, [
−G−GT +Wi ?

AiG+
∑i−1

j=0A
i−1−jBYj −Wj

]
=

ΠT⊥

Xi(Wj ,Wi) + He



0

BYi−1
...

BY0 +AG

−G




ΠT⊥T (41)
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proves, by Lemma 1, that (24) holds if and only if there exists F̄i,j ∈ R(i−1)n×(i+1)n such that

Xi(Wj ,Wi) + He

ΠT F̄i,j +

0

BYi−1
...

BY0 +AG

−G


 ≺ 0 (42)

which is nothing but (38) with W [q]
i = Wi and W [q]

j = Wj .

4.2.2. Source of conservatism in Theorem 1 : Let us now give more insights about the origin of
the conservatism associated with Theorem 1 and 2. To remain concise, we focus on the condition
associated with (29). Similar conclusions can be easily drawn if (30) and (38) are considered.

On the first hand, it comes from (34) that (26) is verified if and only if there exists Fi,j(θ) such
that

Xi(Pi(θ), Pj(θ)) + He{FTi,j(θ)Ni(θ)} ≺ 0, (43)

by virtue of Lemma 1. At this point, arbitrary dependency with respect to θ should be considered for
both Pi(θ), Pj(θ) and Fi,j(θ). On the other hand, as mentioned in the proof of Theorem 1, convex
combination of (29) leads to (32) with polytopic matrices Pi(θ) and Pj(θ) which is nothing but (43)
with constant Fi,j(θ), that is independent of θ. This suggests that if there exist a polytopic Pi(θ)
and a constant Fi,j(θ) satisfying (43) then the analysis condition related to this inequality can be
cast into the SDP associated with (29) in Theorem 1. At first glance, it seems that the conservatism
associated with (29) originates from those restrictions on the classes in which Pj(θ) and Fi,j(θ)
belong to, namely polytopic for Pi(θ) and constant for Fi,j(θ). However, the next proposition
suggests a different interpretation.

Proposition 3
The two following facts hold:

1. If there exist Pi(θ) � 0 and Pj(θ) � 0 such that (26) holds, then there exists Fi,j(θ) verifying
(43) and which is linear with respect to θ.

2. If (43) holds with constant matrix Fi,j and Pi(θ) � 0 and Pj(θ) � 0 with arbitrary
dependency with respect to θ, then there exist polytopic matrices P̂j(θ) and P̂i(θ) satisfying
(43) with the same Fi,j .

Proof
With (34) and Lemma 1, it follows that if (26) holds then there exists ρ ∈ R such that
Xi(Pi(θ), Pj(θ)) + ρN T

i (θ)Ni(θ) ≺ 0 which is nothing but (43) with Fi,j(θ) = ρ/2 Ni(θ).
Linearity with respect to θ comes from (27). This clearly proves the first fact.

As far as the second fact is concerned, observe that if (43) holds for all θ ∈ ΘL with constant
matrices Fi,j , then (43) holds in particular for all vertices of the polytope ΘL, i.e. for all θ = eq

where eq corresponds to the q-th unit vector of dimension L. Convex combination on q of the
resulting inequalities leads to (43) with polytopic matrices P̂i(θ) =

∑L
q=1 θqPi(eq) and P̂j(θ)

defined similarly.
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14 J.-F. TRÉGOUËT, A. SEURET AND M. DI LORETO

Thus, we conclude that the only source of conservatism (yet not negligible) from condition
associated to (26) to the first stability condition of Theorem 1 comes from the constraint on Fi,j(θ)
to be independent of θ while, in general, this matrix is linear with respect to θ. Hence, considering
polytopic matrices Pi(θ) is not restrictive in this context.

5. NUMERICAL RESULTS

In this section, several examples are used to illustrate the effectiveness of the proposed results.

Example 1
Consider the following numerical system borrowed from [8, Ex. 2]:

xk+1 = (A0 + αAα)xk +Adxk−dk (44)

with

A0 =

[
0.8 0

0 0.9

]
, Aα =

[
1 0

0 0

]
, Ad =

[
−0.1 0

−0.1 −0.1

]
(45)

and where α is an unknown parameter which has constant value satisfying |α| ≤ αM . It is considered
that dk is governed by (8) and such that 1 ≤ np+1 − np ≤ Nmax = 5 for all p ∈ N. We are interested
in determining the upper value αM such that the above system is robustly stable.

This analysis problem can be recast into the framework considered in this paper by regarding (44)
as the closed-loop model (10) with B(θ) = Ad, Kdk = 12 for all dk and A(θ) = θ1(A0 − αMAα) +

θ2(A0 + αMAα) where θ = (θ1, θ2) ∈ Θ2. Lower bound of αM is computed by means of robust
stability conditions of Theorem 1: Both conditions (29) and (30) ensure that αM ≥ 0.30.

Results presented in [9] and [8] have been derived in a different context as dk is allowed to take
arbitrary value within {3, . . . , 5} and α is time-varying. In such a case, it is proved that αM ≥ 0.16

and αM ≥ 0.24 in [9] and [8] respectively, which is in both cases smaller than αM ≥ 0.30 obtained
via (29). This suggests that Theorem 1 might be preferred whenever α is constant and dk is governed
by (8) as, in this context, its condition can be less conservative than that of [9] and [8].

Example 2
In the previous example, the two conditions of Theorem 1 lead to the same result. However, in
general, they are not equivalent. This fact is highlighted in the following counterexample:

xk+1 = (A0 + αAα)xk +BKdkxk−dk (46)

with

A0 =

0.70 −0.90 −0.20

0 −0.40 −0.50

0.80 0.80 −0.60

 , Aα =

 0.20 −0.10 0.20

0.30 −0.10 −0.40

−0.20 0.20 −0.10

 , B =

 0.10 0

−0.10 0.10

0.10 0

 (47)

K0 =

[
−1.68 0.08 −3.61

−0.20 6.26 1.18

]
, K1 =

[
−3.85 2.09 6.59

1.39 5.67 1.17

]
(48)
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Table I. Computational effort associated with Theorem 2 (Example 3)

Nmax Nb of rows Nb of var.
K Kk

2 48 42 44
3 120 156 160
4 240 446 452
5 420 1036 1044
6 672 2082 2092
7 1008 3772 3784

where dk verifies (8) and is such that 1 ≤ np+1 − np ≤ Nmax = 3 for all p ∈ N and α is an unknown
parameter which has constant value satisfying |α| ≤ αM . In such a case, different bounds of αM are
delivered by Theorem 1: (29) (respectively (30)) guaranties that αM ≥ 1.77 (resp. αM ≥ 1.65).

Example 3
Consider the following uncertain discrete-time system

xk+1 = (A0 + αAα)xk +Buk (49)

with

A0 =

[
0.3 0.6

1.5 1

]
, Aα =

[
0 0

1 1

]
, B =

[
1.3

1.4

]
(50)

and where α is an unknown parameter which has constant value satisfying 0 ≤ α ≤ αM . Assume
that information about the current state xk is delivered through a network subject to packet drop so
that only xnp can be used by the controller for all k ∈ [np, np+1). For different value of Nmax =

max(np+1 − np), our purpose is to compute time-invariant controller (9a) and time-varying control
law (9b) with Kk = Kdk which maximizes the closed-loop stability domain parametrized by αM .

First note that (49) is nothing but (4) and (5) with A[1] = A0, A[2] = A0 + αMAα and B[q] = B

for q ∈ {1, 2}. Consequently, controller gains can be computed using Theorem 2. The related
computational effort is evaluated in terms of number of rows and variables and is recorded in
Table I. The number of rows is independent of the kind of controller that is considered whereas
nm(Nmax − 1) extra variables should be introduced whenever Kk is retained. From Table I, it
appears that the required computational effort is very similar for the two kind of controllers.

Nevertheless, very different results can be observed when computing the guaranteed lower bound
of αM for the resulting closed-loop systems. This value is evaluated by retaining the highest value
obtained via the two conditions in Theorem 1. Results are depicted in Figure 3. It can be seen that
the stability domain is significantly enlarged by considering the time-varying controller Kk. For
instance, when Nmax = 7, the guaranteed lower bound of αM is improved by 926% when using Kk

instead of K.
Let us now consider the controller Kk and the matrices W

[q]
i arising from Theorem 2 for

Nmax = 7 and αM = 0.36, which corresponds to the upper bound of the guaranteed stability
domain. From the matrices W [q]

i , we construct the functional

V (xk, θ, p) = xTkW
−1
i=Np

(θ)xk, (51)
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Figure 3. Guaranteed lower bound of αM for time-invariant and time-varying controllers (Example 3)

where Wi(θ) is the polytopic matrix which vertices are W [1,2]
i and p is such that the inequalities

np ≤ k < np+1 are satisfied. Our purpose is to show how V (xk, θ, p) evolves when xk is the state
vector of the closed-loop (49) with Kk. Indeed, this functional plays a keep role in the proof of
closed-loop stability as Theorem 2 ensures that

V (xnp+1 , θ, p+ 1)− V (xnp , θ, p) < 0, (52)

for all (θ, p) ∈ Θ2 ×N. Let us regularly sample the parametric space Θ2 so that θ1 takes value
in {0, 0.5, 1} which leads to 3 closed-loop models. Each of those systems are simulated for
x0 = (−0.8, 0.6) and the following sequence ni:

(n0, . . . , n9) = (0, 7, 9, 14, 17, 18, 23, 24, 27, 34) (53)

Chronograph of the values of V (xk, θ, p) are depicted in Figure 4 for the above samples of Θ2.
Dash-dot lines with marker “o” are samples of V (xk, θ, p) for instant times k = np. Note that the
lower subplot illustrates the packet-drop sequence so that 1 (resp. 0) indicates success (resp. fail) of
the transmission.

It can be verified that the inequality (52) holds for all considered values of θ and np. This is a direct
consequence of the fact that this functional is a suitable Lyapunov functional for the switched model
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(23). However, V (xk, θ, p) is not necessarily decreasing for all k verifying np ≤ k < np+1. This
can be observed in particular from the time interval [n0, n1] = [0, 7] where none of the functionals
V (xk, θ, p) is always decreasing, even if V (x7, θ, 7) < V (x0, θ, 0) holds for all samples of Θ2.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

V
(x

k
,θ
,p
)

 

 

V (xk, θ, p)
V (xnp

, θ, p)

0 5 10 15 20 25 30 35
0

0.5

1

P
a
ck
et
s
re
ce
ip
t

k

N0 = 7

N1 = 2

N2 = 5

N3 = 3

N4 = 1

N5 = 5

N6 = 1

N7 = 3

N8 = 7

Figure 4. Chronograph of the functional V (xk, θ, p) for samples of Θ2 (Example 3)

6. CONCLUSIONS

This paper presented a novel approach to assess stability and stabilization of discrete-time
linear systems subject to parameters uncertainties and packet losses. The method is based on a
reformulation of the problem into the framework of robust control. We have provided several
stability conditions whose effectiveness is supported by numerical experiments. Future works would
first consist in including some additional analysis to estimate the input/output performances, like in
[27]. The corresponding output feedback stabilization problem will also be considered in the near
future, possibly via a two-step design making use of an observer/predictor block. Another aspect
comes from the fact that the proposed method requires a notable increase of the complexity of the
LMI problem. Thus, further study is driven by the idea of reducing this complexity, but with a
particular attention to the associated conservatism.
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