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This paper deals with robust stability and stabilization of linear discrete-time systems subject to uncertainties and network constraints. In network control systems, the control loop is closed over a network, which induces additional dynamics to the original control loop such as delays, sampling, quantization among many others. This paper focuses on networked induced delays due to unreliable network for which packet losses may occur. An equivalent periodic-like representation of the resulting system is proposed. This allows first, to revisit existing results in this framework and second, to take model uncertainties into account by analyzing the closed-loop model by means of a recent method based on robust control for discrete-time time-varying systems. Stability analysis and dynamic state-feedback stabilization are characterized via new conditions, whose conservatism is extensively discussed. Effectiveness of the proposed methodology is illustrated by numerical examples.

INTRODUCTION

Due to the emergence of new technologies, it is now reasonable to consider applications where the various components of a control loop are closed through a single or several wireless network links. The benefits of such a distribution of the components are for instance the possibility to avoid closing the loop with wires, to get scalability properties among many others. The network may induce additional dynamics, which may disturb or even destroy the performances and stability properties of the closed-loop system. Among these dynamics, one of the most studied in the context of networked control systems is due to packet losses [START_REF] Zampieri | A survey of recent results in Networked Control Systems[END_REF][START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]. This phenomenon appears when a (wireless) network link is not reliable and data packets are often lost between transmitters and receivers. In some applications such as in underwater communication or multi-hop networks, analyzing the effect dimensions are clear from the context, they are omitted. The set of l × l symmetric matrices (respectively positive-definite symmetric matrices) are denoted by S l (resp. S l + ). For a real square matrix A, we define He {A} = A + A T . For a matrix R, R ⊥ is such that R ⊥ R = 0. The operator 'diag' builds block-diagonal matrix from input arguments. For given integers k and N , we denote by k N the remainder of k divided by N . The symbol is used to complete symmetric matrices.

The following lemma results from standard application of Finsler's Lemma (see e.g. [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF]).

Lemma 1

For any matrix Q and R of appropriate dimensions and such that Q is symmetric, the following matrix inequalities are equivalent:

R T ⊥ QR T ⊥T ≺ 0 ( 1 
)
∃ρ ∈ R : Q + ρR T R ≺ 0 (2) 
∃F : Q + He{FR} ≺ 0 (3) 
2. PROBLEM STATEMENT Consider the linear discrete-time system Σ(θ) :

x k+1 = A(θ)x k + B(θ)u k , (4) 
where x k ∈ R n and u k ∈ R m refer to the state and the input vectors, respectively. This model is subject to polytopic uncertainties such that

A(θ) B(θ) = L q=1 θ q A [q] B [q] , (5) 
with A [q] ∈ R n×n and B [q] ∈ R n×m when the uncertain vector θ := (θ 1 , . . . , θ L ) belongs to the unit simplex Θ L defined by

Θ L := {(θ 1 , . . . , θ L ) ∈ [0, 1] L s.t. θ 1 + . . . + θ L = 1}. (6) 
Throughout this paper, θ is assumed to be time-invariant. Let {n p } p∈N be an increasing sequence of positive integers such that p∈N [n p , n p+1 ) = [0, + ∞) and for which there exists a strictly positive integer N max such that ∀p ∈ N, N p := n p+1 -n p ∈ I := {1, . . . , N max }. [START_REF] Jiang | Stability criteria for linear discrete-time systems with interval-like time-varying delay[END_REF] The sequence {n p } p∈N represents the instants where the controller receives new data from the sensors. The control input u k is computed as soon as the information from the sensors arrives and is implemented until a more recent information coming from the sensor is received (see Figure 1). The time interval between the current instant time and the last packet receipt, denoted by d k , is given by

d k := k -n p ≥ 0, ∀k ∈ [n p , n p+1 ). (8) 
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The design of the controller is performed for two classes of controllers (time-invariant and timevarying state-feedback), namely

∀k ∈ [n p , n p+1 ), u k = Kx np , ( 9a 
) ∀k ∈ [n p , n p+1 ), u k = K k x np , (9b) 
where both K and K k belong to R m×n . Additionally, we assume that the controller gains in (9b) only depend on the value of the time interval d k , so that

K k = K d k for any k ∈ [n p , n p+1 ).
The closed-loop system (4) and (9b) becomes

x k+1 = A(θ)x k + B(θ)K k x np , ∀k ∈ [n p , n p+1 ). ( 10 
)
This class of systems can be realized by a time-delay system with time-increasing state delay on each interval [n p , n p+1 ), as illustrated in Figure 2. Indeed, since

x np = x k-k+np = x k-d k and K k = K d k †
, the system (10) takes the form

Σ cl (θ) : x k+1 = A(θ)x k + B(θ)K d k x k-d k , ∀k ∈ [n p , n p+1 ). (11) 
This manipulation refers to the input delay approach proposed in [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF] and has been already successfully applied in the context of continuous sampled-data systems for the time-invariant controller (9a). In the context of discrete-time systems, this model transformation has already been employed in [START_REF] Liu | Discrete-time network-based control under scheduling and actuator constraints[END_REF]. 
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In the following, both analysis and synthesis problems are tackled. That is, we provide conditions assessing robust asymptotic stability of Σ cl (θ) and derive conditions leading to control laws (9a) (or (9b)) ensuring that Σ cl (θ) is robustly stable. As a preliminary step, Section 3 deals with the simpler case where θ is known. Then, the full uncertain problem is addressed in Section 4.

Remark

The reasons for imposing the constraint K k = K d k , and hence focusing our attention on a particular class of time-varying state-feedback, are twofold. It first originates from the intuition of copying the intrinsic time-delay dynamics of the discrete-time process together with the network into the controller so that, in [START_REF] Sun | Delay-dependent stability for discrete systems with large delay sequence based on switching techniques[END_REF], x k+1 is a function of d k solely whereas it depends on both k and d k in [START_REF] Kao | On stability of discrete-time LTI systems with varying time delays. Automatic Control[END_REF]. Second, it gives a way to write the controller gains solving the synthesis problem as the solution of a semi-definite program, as demonstrated afterward. Indeed, K k = K d k implies that there exists a finite number of controller gains K k since d k is assumed to be bounded (see [START_REF] Jiang | Stability criteria for linear discrete-time systems with interval-like time-varying delay[END_REF] and ( 8)).

THE NOMINAL PROBLEM WHERE θ IS KNOWN

As a preliminary study, let us first assume that θ is known. Thus, the dependency of A and B with respect to θ is omitted in this section.

An augmented model reformulation

Using the manipulation introduced in [START_REF] Trégouët | Periodic memory state-feedback controller: New formulation, analysis and design results. Automatic Control[END_REF], the closed-loop model Σ cl is treated via the following state-space formulation where both coefficients and dimensions of the state matrix Ād k are timevarying:

xk+1 = Ād k xk , (12) 
with

Ād k :=                           
A + BK 0 , (d k = 0 and N p = 1)

1 n A + BK 0 , (d k = 0 and N p > 1) 1 (d k +1)n BK d k 0 n×(d k -1)n A , (0 < d k < N p -1) BK Np-1 0 n×(Np-2)n A , (d k = N p -1) (13) 
and where the augmented state vector xk corresponds to

∀k ∈ [n p , n p+1 ), xk = (x np , • • • , x k ) ∈ R (d k +1)n . (14) 
Clearly, this reformulation preserves stability, i.e. [START_REF] Sun | Delay-dependent stability for discrete systems with large delay sequence based on switching techniques[END_REF] is stable if and only if [START_REF] Zhang | Modelling and control of networked control systems with both network-induced delay and packetdropout[END_REF] is stable. This is the reason why, in this paper, the stability analysis of Σ cl is handled by means of [START_REF] Zhang | Modelling and control of networked control systems with both network-induced delay and packetdropout[END_REF] which, in contrast with [START_REF] Sun | Delay-dependent stability for discrete systems with large delay sequence based on switching techniques[END_REF], does not have any time-delay dynamics. For this purpose, we introduce the state-transition matrix Ψ Np between x np = xnp and x np+1 = xnp+1 by

Ψ Np := Np-1 k=0 ĀNp-1-k = A Np + Np-1 k=0 A Np-1-k BK k .
(15)

Regularly information receipts

As a preliminary step, it is first assumed that the time-interval between two information receipts has a constant value denoted by N . This is equivalent to saying that I = {N } where I is defined by [START_REF] Jiang | Stability criteria for linear discrete-time systems with interval-like time-varying delay[END_REF]. In this case, d k is governed by d k+1 = d k + 1 N which clearly corresponds to a periodic dynamics with period N . For a given controller (9b), consider first the closed-loop stability analysis problem. Relying on the observation that d k is periodic, the following lemma easily derives from the well-known fact that stability of periodic system is equivalent to Schur stability of Ψ N . ‡ Lemma 2 (Nominal analysis, [START_REF] Bittanti | Periodic Systems: Filtering and Control[END_REF]) If I = {N }, the system Σ cl is stable if and only if there exists P ∈ S n + such that

Ψ T N P Ψ N -P ≺ 0 (16) holds. 
The matrix Ψ N coincides with the state-transition matrix

from xnp = x np to xnp+1 = x np+1 , that is xnp+1 = Ψ N xnp . ( 17 
)
We can also note that condition [START_REF] Li | Optimal stabilizing gain selection for networked control systems with time delays and packet losses[END_REF] can be regarded as an asymptotic stability condition of [START_REF] Xiong | Stabilization of linear systems over networks with bounded packet loss[END_REF], assessed through the strict decrease of the Lyapunov functionnal V (x np ) = xT np P xnp . Thus, when I = {N }, the model ( 12) (and hence Σ cl ) is stable if and only if the application xnp → xnp+1 = xnp+N is a contraction mapping. Although this fact is well-known from periodic systems theory, this will be of major importance in the sequel when N p will be considered as unknown.

The corresponding stabilization problem, that is finding the gains of the controller (9b) which stabilizes the closed-loop, is now solved by means of Lemma 2.

Lemma 3 (Nominal synthesis)

If I = {N }, controller (9b) stabilizes the closed-loop model Σ cl if and only if there exist W ∈ S n + and Y k ∈ R m×n for all k ∈ {0, . . . , N -1} such that the following condition holds:

-W A N W + N -1 k=0 A N -1-k BY k -W ≺ 0. ( 18 
)
The gains of the control law (9b) are obtained by

K k = Y k W -1 , (19) 
‡ In this context, Ψ N corresponds to the so-called monodromy matrix (see e.g. [START_REF] Bittanti | Periodic Systems: Filtering and Control[END_REF]).
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Proof

Substituting Y k by K k W in [START_REF] Ebihara | Periodically time-varying memory state-feedback controller synthesis for discrete-time linear systems[END_REF] and recognizing the expression of Ψ N given by ( 15) leads to

-W Ψ N W -W ≺ 0, (20) 
which can be proved to be equivalent to [START_REF] Li | Optimal stabilizing gain selection for networked control systems with time delays and packet losses[END_REF] with P = W -1 using a Schur complement. The use of Lemma 2 completes the proof.

Remark

While the Semi-Definite Program (SDP) defined in Lemma 2 depends on N , it is remarkable that neither its number of variables nor its number of rows depend on this parameter N . Hence, numerical complexity associated with this lemma is not affected by the time interval between two information receipts. SDP of Lemma 3 is slightly different with that respect since its number of variables depends on N while its number of rows is not affected by this variable.

Unknown time receipts: a switched system viewpoint

In the case where N i is unknown, a sufficient stability condition can be derived from [START_REF] Xiong | Stabilization of linear systems over networks with bounded packet loss[END_REF]Th.6] by considering the time-varying controller (9b) instead of (9a).

Lemma 4

The system Σ cl is stable if there exist P i ∈ S n + for all i ∈ I such that

Ψ T i P j Ψ i -P i ≺ 0 (21) 
holds for all (i, j) ∈ I 2 .

Proof

See the proof of [START_REF] Xiong | Stabilization of linear systems over networks with bounded packet loss[END_REF]Th.6] with obvious adaptation.

In view of [23, Th.1], the condition ( 21) can be interpreted as the constraint for the poly-quadratic Lyapunov functional

V (x np , p) = xT np P Np xnp (22) 
to be strictly decreasing along the trajectory of the linear switched system

xnp+1 = Ψ Np xnp , (23) 
where N p ∈ I. As suggested by the notation, identity [START_REF] Mignone | Stability and stabilization of piecewise affine and hybrid systems: An LMI approach[END_REF] characterizes the dynamics of model ( 12) from xnp to xnp+1 , which appears to be a generalization of [START_REF] Xiong | Stabilization of linear systems over networks with bounded packet loss[END_REF]. In this context, d k is governed by

d k+1 = d k + 1 Np for all k ∈ [n p , n p+1
). The dynamics of d k is periodic with a period which is randomly selected within the finite set I. This is the motivation for qualifying such dynamics as "switched periodic" (and for this model [START_REF] Zhang | Modelling and control of networked control systems with both network-induced delay and packetdropout[END_REF] to inherit from this denomination).

Remark

In stack contrast with Lemma 2, stability condition of Lemma 4 is merely sufficient since it is false, in general, that if Σ cl is stable then (21) holds. In view of the previous discussion, we conjecture that the lack of necessity originates from the fact that the existence of the strictly decreasing Lyapunov functional ( 22) cannot be ensured for all stable linear switched system of the form [START_REF] Mignone | Stability and stabilization of piecewise affine and hybrid systems: An LMI approach[END_REF] (see [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results. Automatic control[END_REF]).

For the sake of completeness, the straightforward generalization of [START_REF] Xiong | Stabilization of linear systems over networks with bounded packet loss[END_REF]Th.11] for the timevarying controller (9b) is now provided as a solution to the corresponding stabilization problem.

Lemma 5

The controller (9b) stabilizes the closed-loop model

Σ cl if there exist (i) W i ∈ S n + for all i ∈ I, (ii) Y k ∈ R m×n for all k ∈ {0, . . . , N max -1} and (iii) G ∈ R n×n such that -G -G T + W i A i G + i-1 k=0 A i-1-k BY k -W j ≺ 0 ( 24 
)
holds for all (i, j) ∈ I 2 . The gains of the control law are obtained by solving [START_REF] Trégouët | Periodic memory state-feedback controller: New formulation, analysis and design results. Automatic Control[END_REF] with

W = G for all k ∈ {0, . . . , N max -1}.
Proof Substituting Y i by K i G in [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results. Automatic control[END_REF] followed by pre/post multiplication by

Ψ i 1 n gives Ψ i W i Ψ T i - W j ≺ 0.
Using Schur complements, this inequality is equivalent to [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF] with P i = W -1 i and P j = W -1 j , which in turn proves stability by Lemma 4. Also note that [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results. Automatic control[END_REF] 

implies -G -G T + W i ≺ 0, so G is invertible since W i 0.

Remark

It is worth mentioning that all controllers (9b) which are proved to be stabilizing by Lemma 4 cannot be parametrized via Lemma 5. This is due to the fact that conservatism has been introduced from Lemma 4 to Lemma 5. To see it, first note that (21) holds if and only if there exist

G i ∈ R n×n for all i ∈ I satisfying -G i -G T i + W i Ψ i G i -W j ≺ 0, ∀(i, j) ∈ I 2 (25) 
Indeed, (i) pre/post multiplication of ( 25) by Ψ i 1 n gives ( 21) for all G i and (ii) when

G i = W i , (21) 
is proved to be equivalent to (25) by a Schur complement. Then, remarking that ( 25) is nothing but [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results. Automatic control[END_REF] with G i = G for all i ∈ I, it follows that the conservatism from Lemma 4 to Lemma 5 originates from the constraint that a unique G i = G is involved in (25).

THE FULL PROBLEM

From now, the full problem is addressed so that both θ ∈ Θ L and N p ∈ I = {1, . . . , N max } are supposed to be unknown.

Main results

Immediate extension of Lemma 4 in this context reads: If for all i ∈ I and for all θ ∈ Θ L , there exists P i (θ) ∈ S n + such that

Ψ T i (θ)P j (θ)Ψ i (θ) -P i (θ) ≺ 0 (26) 
holds for all θ ∈ Θ and for all (i, j) ∈ I 2 , then closed-loop system Σ cl (θ) is robustly stable. Those matrix inequalities need to be satisfied on the continuous set Θ L parametrized by θ. Since Ψ i (θ) is polynomial with respect to θ with degree i (see ( 5) and ( 15)), it seems hard to design a tractable procedure which certifies that ( 26) is satisfied for all θ ∈ Θ. Although some directions relying on Sum Of Square (SOS) techniques are suggested in [START_REF] Scherer | Relaxations for robust linear matrix inequality problems with verifications for exactness[END_REF], the involved computational burden is expected to be prohibiting. For this reason, we seek to another procedure which aims exploiting the structure of Σ cl (θ) by making use of the following matrices

N i :=           A + BK 0 -1 n 0 • • • • • • 0 BK 1 A -1 n 0 . . . BK 2 0 . . . . . . . . . . . . . . . . . . . . . A -1 n 0 BK i-1 0 • • • 0 A -1 n           , ( 27 
) Ni :=              A 0 • • • 0 BK i-1 -1 n A . . . . . . . . . 0 . . . . . . 0 BK 2 . . . . . . -1 n A BK 1 . . . 0 -1 n A + BK 0 0 • • • • • • 0 -1 n              , ( 28 
)
which should be regarded as a particular case of the ones introduced in [START_REF] Trégouët | Robust stability of periodic systems with memory: New formulations, analysis and design results[END_REF][START_REF] Trégouët | Periodic memory state-feedback controller: New formulation, analysis and design results. Automatic Control[END_REF].

Theorem 1 (Robust analysis)

The polytopic model Σ cl (θ) is robustly stable if one (at least) of the following conditions is satisfied:

• There exist matrices

P [q] i ∈ S n + for all (i, q) ∈ I × {1, • • • , L} such that for all (i, j) ∈ I 2 there exist F i,j ∈ R in×(i+1)n satisfying X i (P [q] i , P [q] j ) + He{F T i,j N [q] i } ≺ 0 (29) for all q ∈ {1, • • • , L}. • There exist matrices W [q] i ∈ S n + for all (i, q) ∈ I × {1, • • • , L} such that for all (i, j) ∈ I 2 there exist F i,j ∈ R in×(i+1)n satisfying X i (W [q] j , W [q] i ) + He{ N [q] i F i,j } ≺ 0 (30) 
for all q ∈ {1, The operator X i is given by

X i (P 1 , P 2 ) :=    -P 1 0 0 0 0 (i-1)n 0 0 0 P 2    (31) 
and matrices N

[q] i and N [q] i are readily defined from ( 27) and (28) by simply replacing A and B by A [q] and B [q] respectively.

Proof

Convex combinations of (29) for every q ∈ {1, • • • , L} lead to

X i (P i (θ), P j (θ)) + He{F T i,j N i (θ)} ≺ 0 ( 32 
)
with polytopic positive definite matrices P i (θ) and P j (θ) and where N i (θ) follows from the definition (27) by substituting A and B by A(θ) and B(θ) respectively. Then remarking that

N T ⊥ i = 1 n Ψ T 1 Ψ T 2 . . . Ψ T i T , (33) 
Lemma 1 ensures that (32) implies ( 26) as it holds

N T ⊥ i X i (P i , P j ) N T ⊥T i Ψ T i P j Ψ i -P i . (34) 
Since [START_REF] Trégouët | Robust stability of periodic systems with memory: New formulations, analysis and design results[END_REF] holds for all (i, j) ∈ I 2 and for all θ ∈ Θ, then Σ cl (θ) is robustly stable. The same reasoning can be used when considering (30) instead of (29) by remarking that

N ⊥ i = 1 n A . . . A i-1 Ψ i (35)
holds, and that

N ⊥ i X i (P i , P j ) N ⊥T i = Ψ i W i Ψ T i -W j (36) 
is negative definite if and only if [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF] holds with P j = W -1 j 0 and P i = W -1 i 0 by virtue of Schur complements.

Remark

Note that, in general, the two stability conditions provided by Theorem 1 are not equivalent. Section 5 provides numerical evidences of this fact.

Remark

An alternative strategy could be used to derive a robust tractable stability condition by relying on [START_REF] Hetel | Equivalence between the Lyapunov-Krasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems[END_REF]. Indeed, this paper is devoted to stability analysis of systems of the form

x k+1 = A(θ)x k + A d (θ)x k-d k (37) 
which is close to [START_REF] Sun | Delay-dependent stability for discrete systems with large delay sequence based on switching techniques[END_REF] which governs dynamics of Σ cl (θ). However, related conditions are expected to be more conservative since arbitrary dynamics is considered for d k in [START_REF] Hetel | Equivalence between the Lyapunov-Krasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems[END_REF], i.e. d k can take arbitrary values in I, whereas in this paper it is assumed that d k satisfies [START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay. Automatic Control[END_REF].

The corresponding stabilization problem consists in computing the controller gains of (9b) such that closed-loop robust stability is ensured for all N i ∈ I and for all θ ∈ Θ. This problem is tackled by considering those gains as decision variables of the optimization problems defined in Theorem 1. Yet, this makes the matrix inequalities (29) and (30) bilinear due to the direct multiplication of F i,j with N i and Ni respectively. To circumvent this issue, we focus on (30) and impose the last n lines of every matrices F i,j to be equal to 0 n×in G so that G ∈ R n×n is a common matrix shared by every F i,j . Indeed, in such a case, it is possible to implement the change of variable Y k = K k G to recover a linear dependency of (30) with respect to the variables of the new optimization problem. This manipulation preserves sufficiency since robust stability of the closed-loop model is ensured by the existence of F i,j satisfying (30) irrespectively to the structure of this matrix. This gives rise to the following SDP.

Theorem 2

The controller (9b) stabilizes the polytopic closed-loop system Σ cl (θ) if there exist (i)

W [q] i ∈ S n + for all (i, q) ∈ I × {1, • • • , L}, (ii) Y k ∈ R m×n
for all k ∈ {0 . . . , N max -1} and (iii) G ∈ R n×n such that for all (i, j) ∈ I 2 there exists Fi,j ∈ R (i-1)n×(i+1)n verifying

X i (W [q] j , W [q] i )+ He                              A [q] 0 • • • 0 -1 A [q] . . . . . . 0 . . . . . . 0 . . . . . . -1 A [q] 0 • • • 0 -1           Fi,j 0 n×in G +       0 (i+1)n×in       B [q] Y i-1 . . . B [q] Y 0 0 n                                ≺ 0 (38) 
for all q ∈ {1, • • • , L}. The gains of the control law are obtained by solving [START_REF] Trégouët | Periodic memory state-feedback controller: New formulation, analysis and design results. Automatic Control[END_REF] with W = G for all i ∈ {0, . . . , N max -1}.

Proof

Substituting Y k by K k G in (38) gives (30) with F i,j = Fi,j 0 G , which proves robust stability by Lemma 1. Also note that if (38) is satisfied, then the matrix G is invertible. Indeed, by focusing on the bottom right-hand side block of size n × n of (38), it comes that

W [q] i -G -G T ≺ 0 which together with W [q] i 0 proves that det(G) = 0.

Remark

In order to derive a constant controller of the form (9a), it suffices to substitute in Theorem 2 a single matrix Y to every Y i . The controller gain can be then recovered by computing K = Y G -1 . Although more conservative (see Section 5), this manipulation might be desirable when implementation constraints prevent the designer from using the time-varying control law (9b).

Discussion about the conservatism of the proposed approach

This subsection aims at providing more details about the conservatism associated with Theorems 1 and 2.

Conditions associated with Theorems 1 and 2 in the nominal case :

The conditions proposed in Theorems 1 and 2 are merely sufficient. This suggests that they may fail to provide stability certificates although closed-loop system Σ cl (θ) is robustly stable. Nevertheless, it can be proved that at least in the nominal case, i.e. when θ is known which corresponds to L = 1, if Lemma 4 (Lemma 5) successfully proves stability, then conditions associated with Theorem 1 (Theorem 2) are satisfied. In other words, when L = 1, Theorems 1 and 2 are equivalent to Lemma 4 and 5 respectively (recall that conditions of Theorems 1 and 2 imply that of Lemma 4 and 5 respectively). This is a straightforward consequence of the two following propositions.

Proposition 1

For given P i ∈ S n + and P j ∈ S n + , the following statements are equivalent to (21):

1. There exists F i,j ∈ R in×(i+1)n verifying (29) with P

[q] i = P i , P

[q] j = P j and

N [q] i = N i . 2. There exists F i,j ∈ R in×(i+1)n verifying (30) with W [q] i = P -1 i , W [q] j = P -1 j and N [q] i = Ni .

Proof

The fact that ( 21) is equivalent to "1." readily follows from the use of Lemma 1 together with the identity (34) on [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF]. To prove equivalence between (21) and "2.", it suffices to rewrite ( 21) by means of Schur complements and then to use (36) together with Lemma 1.

Proposition 2

For given

W i ∈ S n + , W j ∈ S n + , G ∈ R n×n and Y k ∈ R m×n for all k ∈ {0, . . . , N max -1}, (24) 
holds if and only if there exists Fi,j ∈ R (i-1)n×(i+1)n verifying (38) with

W [q] i = W i and W [q] j = W j .

Proof

Let us first introduce

Π :=        A T -1 0 • • • • • • 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 A T -1 0        ∈ R (i-1)n×(i+1)n . (39) 
Remark that

Π T ⊥ = 0 0 . . . 0 1 1 A . . . A i-1 0 . (40) 
Then,

-G -G T + W i A i G + i-1 j=0 A i-1-j BY j -W j = Π T ⊥       X i (W j , W i ) + He                  0 BY i-1
. . . proves, by Lemma 1, that (24) holds if and only if there exists Fi,j ∈ R (i-1)n×(i+1)n such that

BY 0 + AG -G                        Π T ⊥T (41) 
X i (W j , W i ) + He            Π T Fi,j +       0 BY i-1 . . . BY 0 + AG -G                  ≺ 0 (42) 
which is nothing but (38) with W

[q] i = W i and W

[q] j = W j .

Source of conservatism in Theorem 1 :

Let us now give more insights about the origin of the conservatism associated with Theorem 1 and 2. To remain concise, we focus on the condition associated with (29). Similar conclusions can be easily drawn if (30) and (38) are considered. On the first hand, it comes from (34) that ( 26) is verified if and only if there exists

F i,j (θ) such that X i (P i (θ), P j (θ)) + He{F T i,j (θ)N i (θ)} ≺ 0, (43) 
by virtue of Lemma 1. At this point, arbitrary dependency with respect to θ should be considered for both P i (θ), P j (θ) and F i,j (θ). On the other hand, as mentioned in the proof of Theorem 1, convex combination of (29) leads to (32) with polytopic matrices P i (θ) and P j (θ) which is nothing but (43) with constant F i,j (θ), that is independent of θ. This suggests that if there exist a polytopic P i (θ) and a constant F i,j (θ) satisfying (43) then the analysis condition related to this inequality can be cast into the SDP associated with (29) in Theorem 1. At first glance, it seems that the conservatism associated with (29) originates from those restrictions on the classes in which P j (θ) and F i,j (θ) belong to, namely polytopic for P i (θ) and constant for F i,j (θ). However, the next proposition suggests a different interpretation.

Proposition 3

The two following facts hold:

1. If there exist P i (θ) 0 and P j (θ) 0 such that (26) holds, then there exists F i,j (θ) verifying (43) and which is linear with respect to θ. 2. If (43) holds with constant matrix F i,j and P i (θ) 0 and P j (θ) 0 with arbitrary dependency with respect to θ, then there exist polytopic matrices Pj (θ) and Pi (θ) satisfying (43) with the same F i,j .

Proof With (34) and Lemma 1, it follows that if [START_REF] Trégouët | Robust stability of periodic systems with memory: New formulations, analysis and design results[END_REF] holds then there exists ρ ∈ R such that X i (P i (θ), P j (θ)) + ρN T i (θ)N i (θ) ≺ 0 which is nothing but (43) with F i,j (θ) = ρ/2 N i (θ). Linearity with respect to θ comes from (27). This clearly proves the first fact.

As far as the second fact is concerned, observe that if (43) holds for all θ ∈ Θ L with constant matrices F i,j , then (43) holds in particular for all vertices of the polytope Θ L , i.e. for all θ = e q where e q corresponds to the q-th unit vector of dimension L. Convex combination on q of the resulting inequalities leads to (43) with polytopic matrices Pi (θ) = L q=1 θ q P i (e q ) and Pj (θ) defined similarly. Thus, we conclude that the only source of conservatism (yet not negligible) from condition associated to [START_REF] Trégouët | Robust stability of periodic systems with memory: New formulations, analysis and design results[END_REF] to the first stability condition of Theorem 1 comes from the constraint on F i,j (θ) to be independent of θ while, in general, this matrix is linear with respect to θ. Hence, considering polytopic matrices P i (θ) is not restrictive in this context.

NUMERICAL RESULTS

In this section, several examples are used to illustrate the effectiveness of the proposed results.

Example 1

Consider the following numerical system borrowed from [8, Ex. 2]:

x k+1 = (A 0 + αA α )x k + A d x k-d k (44) 
with

A 0 = 0.8 0 0 0.9 , A α = 1 0 0 0 , A d = -0.1 0 -0.1 -0.1 (45) 
and where α is an unknown parameter which has constant value satisfying |α| ≤ α M . It is considered that d k is by [START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay. Automatic Control[END_REF] and such that 1 ≤ n p+1 -n p ≤ N max = 5 for all p ∈ N. We are interested in determining the upper value α M such that the above system is robustly stable. This analysis problem can be recast into the framework considered in this paper by regarding (44) as the closed-loop model [START_REF] Kao | On stability of discrete-time LTI systems with varying time delays. Automatic Control[END_REF] with

B(θ) = A d , K d k = 1 2 for all d k and A(θ) = θ 1 (A 0 -α M A α ) + θ 2 (A 0 + α M A α )
where θ = (θ 1 , θ 2 ) ∈ Θ 2 . Lower bound of α M is computed by means of robust stability conditions of Theorem 1: Both conditions (29) and (30) ensure that α M ≥ 0.30.

Results presented in [START_REF] Gao | Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay[END_REF] and [START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay. Automatic Control[END_REF] have been derived in a different context as d k is allowed to take arbitrary value within {3, . . . , 5} and α is time-varying. In such a case, it is proved that α M ≥ 0.16 and α M ≥ 0.24 in [START_REF] Gao | Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay[END_REF] and [START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay. Automatic Control[END_REF] respectively, which is in both cases smaller than α M ≥ 0.30 obtained via (29). This suggests that Theorem 1 might be preferred whenever α is constant and d k is governed by [START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay. Automatic Control[END_REF] as, in this context, its condition can be less conservative than that of [START_REF] Gao | Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay[END_REF] and [START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay. Automatic Control[END_REF].

Example 2

In the previous example, the two conditions of Theorem 1 lead to the same result. However, in general, they are not equivalent. This fact is highlighted in the following counterexample: 

x k+1 = (A 0 + αA α )x k + BK d k x k-d k (46) 

Example 3

Consider the following uncertain discrete-time system

x k+1 = (A 0 + αA α )x k + Bu k (49) 
with

A 0 = 0.3 0.6 1.5 1 , A α = 0 0 1 1 , B = 1.3 1.4 (50) 
and where α is an unknown parameter which has constant value satisfying 0 ≤ α ≤ α M . Assume that information about the current state x k is delivered through a network subject to packet drop so that only x np can be used by the controller for all k ∈ [n p , n p+1 ). For different value of N max = max(n p+1 -n p ), our purpose is to compute time-invariant controller (9a) and time-varying control law (9b) with K k = K d k which maximizes the closed-loop stability domain parametrized by α M . First note that (49) is nothing but (4) and (5) with A [1] = A 0 , A [2] = A 0 + α M A α and B [q] = B for q ∈ {1, 2}. Consequently, controller gains can be computed using Theorem 2. The related computational effort is evaluated in terms of number of rows and variables and is recorded in Table I. The number of rows is independent of the kind of controller that is considered whereas nm(N max -1) extra variables should be introduced whenever K k is retained. From Table I, it appears that the required computational effort is very similar for the two kind of controllers.

Nevertheless, very different results can be observed when computing the guaranteed lower bound of α M for the resulting closed-loop systems. This value is evaluated by retaining the highest value obtained via the two conditions in Theorem 1. Results are depicted in Figure 3. It can be seen that the stability domain is significantly enlarged by considering the time-varying controller K k . For instance, when N max = 7, the guaranteed lower bound of α M is improved by 926% when using K k instead of K.

Let us now consider the controller K k and the matrices W

[q] i arising from Theorem 2 for N max = 7 and α M = 0.36, which corresponds to the upper bound of the guaranteed stability domain. From the matrices W [q] i , we construct the functional [START_REF] Mignone | Stability and stabilization of piecewise affine and hybrid systems: An LMI approach[END_REF]. However, V (x k , θ, p) is not necessarily decreasing for all k verifying n p ≤ k < n p+1 . This can be observed in particular from the time interval [n 0 , n 1 ] = [0, 7] where none of the functionals V (x k , θ, p) is always decreasing, even if V (x 7 , θ, 7) < V (x 0 , θ, 0) holds for all samples of Θ 2 . 

V (x k , θ, p) = x T k W -1 i=Np (θ)x k , (51) 

CONCLUSIONS

This paper presented a novel approach to assess stability and stabilization of discrete-time linear systems subject to parameters uncertainties and packet losses. The method is based on a reformulation of the problem into the framework of robust control. We have provided several stability conditions whose effectiveness is supported by numerical experiments. Future works would first consist in including some additional analysis to estimate the input/output performances, like in [27]. The corresponding output feedback stabilization problem will also be considered in the near future, possibly via a two-step design making use of an observer/predictor block. Another aspect comes from the fact that the proposed method requires a notable increase of the complexity of the LMI problem. Thus, further study is driven by the idea of reducing this complexity, but with a particular attention to the associated conservatism.
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Table I .

 I Computational effort associated with Theorem 2 (Example 3) verifies[START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay. Automatic Control[END_REF] and is such that 1 ≤ n p+1 -n p ≤ N max = 3 for all p ∈ N and α is an unknown parameter which has constant value satisfying |α| ≤ α M . In such a case, different bounds of α M are delivered by Theorem 1: (29) (respectively (30)) guaranties that α M ≥ 1.77 (resp. α M ≥ 1.65).

	Nmax Nb of rows	Nb of var. K K k
	2	48	42	44
	3	120	156	160
	4	240	446	452
	5	420	1036 1044
	6	672	2082 2092
	7	1008	3772 3784
	where d k			

† In the packet drop scenario illustrated in Figure2, controller (9b) withK k = K d k reads K 0 = K 4 = K 13 = . . . , K 1 = K 5 = K 8 = K 14 = .. . , K 2 = K 6 = K 9 = . . . and so on and so forth.
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where W i (θ) is the polytopic matrix which vertices are

and p is such that the inequalities n p ≤ k < n p+1 are satisfied. Our purpose is to show how V (x k , θ, p) evolves when x k is the state vector of the closed-loop (49) with K k . Indeed, this functional plays a keep role in the proof of closed-loop stability as Theorem 2 ensures that

for all (θ, p) ∈ Θ 2 × N. Let us regularly sample the parametric space Θ 2 so that θ 1 takes value in {0, 0.5, 1} which leads to 3 closed-loop models. Each of those systems are simulated for x 0 = (-0.8, 0.6) and the following sequence n i :

(n 0 , . . . , n 9 ) = (0, 7, 9, 14, 17, 18, 23, 24, 27, 34)

Chronograph of the values of V (x k , θ, p) are depicted in Figure 4 for the above samples of Θ 2 . Dash-dot lines with marker "o" are samples of V (x k , θ, p) for instant times k = n p . Note that the lower subplot illustrates the packet-drop sequence so that 1 (resp. 0) indicates success (resp. fail) of the transmission. It can be verified that the inequality (52) holds for all considered values of θ and n p . This is a direct consequence of the fact that this functional is a suitable Lyapunov functional for the switched model