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Abstract

Motivation: The high dimensionality of genomic data calls for the development of specific classification
methodologies, especially to prevent over-optimistic predictions. This challenge can be tackled by
compression and variable selection, which combined constitute a powerful framework for classification, as
well as data visualization and interpretation. However, current proposed combinations lead to unstable
and non convergent methods due to inappropriate computational frameworks. We hereby propose a
computationally stable and convergent approach for classification in high dimensional based on sparse
Partial Least Squares (sparse PLS).
Results: We start by proposing a new solution for the sparse PLS problem that is based on proximal
operators for the case of univariate responses. Then we develop an adaptive version of the sparse
PLS for classification, called logit-SPLS, which combines iterative optimization of logistic regression and
sparse PLS to ensure computational convergence and stability. Our results are confirmed on synthetic
and experimental data. In particular we show how crucial convergence and stability can be when cross-
validation is involved for calibration purposes. Using gene expression data we explore the prediction of
breast cancer relapse. We also propose a multicategorial version of our method, used to predict cell-types
based on single-cell expression data.
Availability: Our approach is implemented in the plsgenomics R-package.
Contact: ghislain.durif@inria.fr
Supplementary information: Supplementary materials are available at Bioinformatics online.

1 Introduction
Molecular classification is at the core of many recent studies based on Next-
Generation Sequencing data. For instance, the genomic characterization
of diseases based on genomic signatures has been one Grail for many
studies to predict patient outcome, survival or relapse (Guedj et al., 2012).
Moreover, following the recent advances of sequencing technologies,
it is now possible to isolate and sequence the genetic material from a
single cell (Stegle et al., 2015). Single-cell data give the opportunity
to characterize the genomic diversity between the individual cells of a
specific population. However, in both cases, the specific context of high
dimensionality constitutes a major challenge for the development of new
statistical methodologies (Marimont and Shapiro, 1979; Donoho, 2000).
Indeed, the number of recorded variables p (as gene expression) being

far larger than the sample size n, classical regression or classification
methods are inappropriate (Aggarwal et al., 2001; Hastie et al., 2009), due
to spurious dependencies between variables, that lead to singularities in
the optimization processes, with neither unique nor stable solution.

This challenge calls for the development of specific statistical tools,
such as the following dimension reduction approaches: (i) Compression
methods that search for a representation of the data in lower dimensional
space and (ii) Variable selection methods, based on a parsimony
hypothesis, i.e., among all recorded variables, a lot are supposed to be
uninformative and can be considered as noise to be removed from the
model. For instance, the Partial Least Squares (PLS) regression (Wold,
1975; Wold et al., 1983) is a compression approach appropriate for linear
regression, especially with highly correlated covariates, that constructs
new components, i.e. latent directions, explaining the response. An
example of sparsity-based approach is the Lasso (Tibshirani, 1996) where
coefficients of less relevant variables are shrunk to zero thanks to a `1
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penalty in the optimization procedure. Eventually, sparse PLS (SPLS)
regression (Lê Cao et al., 2008; Chun and Keleş, 2010) combines both
compression and variable selection to reduce dimension. It introduces a
selection step based on the Lasso in the PLS framework, constructing
new components as sparse linear combinations of predictors. It occurs
as well that combining compression and “sparse” approach improves the
efficiency of prediction and the accuracy of selection. Such an association
(compression and selection) is also relevant for data visualization, a
crucial challenge when considering high dimensional data. Existing SPLS
methods are based on resolutions of approximations of the associated
optimization problem. In this work, we first propose a new formulation
of the sparse PLS optimization problem with a simple exact resolution,
derived from proximal operators (Bach et al., 2012). We also introduce an
adaptive sparsity-inducing penalty, inspired from the adaptive Lasso (Zou,
2006), to improve the variable selection accuracy.

SPLS has shown excellent performance for regression with a
continuous response, but its adaptation to classification is not
straightforward. Chung and Keleş (2010) or Lê Cao et al. (2011) proposed
to use sparse PLS as a preliminary dimension reduction step before a
standard classification method, such as discriminant analysis (SPLS-DA)
or logistic regression, following previous approaches using classical PLS
for molecular classification (Nguyen and Rocke, 2002; Boulesteix, 2004).
Their approach gives interesting results in SNPs data analysis (Lê Cao
et al., 2011) or in tumor classification (Chung and Keleş, 2010).

Another method for classification consists in using logistic regression
(binary or multicategorial) (McCullagh and Nelder, 1989), for which
optimization is achieved via the Iteratively Reweighted Least Squares
(IRLS) algorithm (Green, 1984). However its convergence is not
guaranteed especially in the high dimensional case. Computational
convergence is a crucial issue when estimating parameters, as non-
convergent methods may lead to unstable and inconsistent estimations,
impacting analysis interpretation and reproducibility, especially when
tuning hyper-parameters by cross-validation.

The combination of logistic regression and (sparse) PLS could lead
to a classification method processing dimension reduction based on lower
space representation and variable selection. However, the combination
of such iterative algorithms is not necessarily straightforward, due to
convergence issues. Performing compression with SPLS on the categorical
response as a first step before logistic regression remains counter-intuitive,
because SPLS was designed to handle a continuous response within
homoskedastic models. Based on the generalized PLS by Marx (1996)
or Ding and Gentleman (2005), Chung and Keleş (2010) proposed to use
sparse PLS within the IRLS iterations to solve reweighted least squares at
each step, however we will see that convergence issues remain. Fort and
Lambert-Lacroix (2005) proposed to use a Ridge regularization (Eilers
et al., 2001) to ensure the convergence of the IRLS algorithm and to use
the classical PLS to estimate predictor coefficients by using a continuous
pseudo-response generated by the IRLS algorithm. We will develop a
similar approach based on sparse PLS.

Our new SPLS-based approach, called logit-SPLS, combines
compression and variable selection in a GLM framework. We show
the accuracy, the computational stability and convergence of our
method, compared with other state-of-the-art approaches on simulations.
Especially, we show that compression increases variable selection
accuracy, and that our method is more stable regarding the choice of hyper-
parameters by cross-validation, contrary to other methods processing
classification with sparse PLS. Thus, our method is the only one that
correctly performs considering all criteria (prediction, selection, stability),
whereas all the other approaches present a weak spot. Our simulations
illustrate the interest of both selection and compression over selection or
compression only. Our work was implemented in the existing R-package
plsgenomics, available on the CRAN.

We will first introduce our adaptive sparse PLS approach. Then, we
will develop and discuss our classification framework based on Ridge
IRLS and adaptive sparse PLS for logistic regression. We will finish by
a comparative study and eventually two applications of our method: (i)

binary classification to predict breast cancer relapse after 5 years based
on gene expression data, with an illustration of data visualization through
compression, (ii) prediction of cell types with multinomial classification
based on single-cell expression profiles. To do so, we extend our approach
to the multi-group case, based on a “one-class vs a reference” type of
multi-classification. One strength of our approach is to propose a sparse
PLS that admits a closed-form solution in both binary and multi-group
classifications. This leads to computationally efficient procedures in both
cases, contrary to sparse PLS-DA approaches for instance, that are based
on a multivariate response sparse PLS algorithm in the multi-group case,
for which there is no closed-form solution (c.f. Chung and Keleş, 2010;
Lê Cao et al., 2011).

2 Compression and selection in the GLM
framework

We first define the sparse PLS and introduce a new formulation of the
associated optimization problem, based on proximal operator. Contrary
to existing approaches, this formulation provides a simple resolution of
the covariance maximization problem associated to sparse PLS. Then, we
propose an adaptive version of the sparse PLS selection step. Eventually,
we will develop our approach to combine sparse PLS and logistic
regression.

2.1 Proximal sparse PLS

Let (xi, ξi)
n
i=1 be a n-sample, with ξ = (ξ1, . . . , ξn)T ∈ Rn a

continuous response and xi ∈ Rp a set of p covariates, gathered in the
matrix Xn×p = [xT1 , . . . ,x

T
p ]T . The PLS solves a linear regression

problem. We consider centered data ξc and Xc to neglect the intercept
and the model ξc = Xcβ\0 + ε, with the coefficients β\0 ∈ Rp. The
metric in the observation space Rn is weighted by the matrix Vn×n.

In the univariate response case, the PLS (Boulesteix and Strimmer,
2007) consists in constructing K components tk ∈ Rn that explain the
response, and defined as linear combinations of predictors, i.e. tk = Xwk

with weight vectors wk ∈ Rp (k = 1, . . . ,K). These weights wk

are defined to maximize the empirical covariance of the corresponding
components tk with the response ξc. Other PLS algorithms consider
the maximization of the squared covariance, however both definitions are
equivalent in the univariate response case (De Jong, 1993; Boulesteix and
Strimmer, 2007). To exclude the inherent noise induced by non pertinent
covariates in the model, the sparse PLS (Lê Cao et al., 2008; Chun and
Keleş, 2010) introduces a variable selection step into the PLS framework.
It constructs “sparse” weight vectors, whose coordinates are required to
be null for covariates that are irrelevant to explain the response. Following
the Lasso principle (Tibshirani, 1996), the shrinkage to zero is achieved
with a `1 norm penalty in the covariance maximization problem:

ŵ(λs) = argmin
w∈Rp

{
− Ĉov(Xcw, ξc) + λs ‖w‖1

}
, (1)

under the constraints ‖w‖2 = 1 and orthogonality between components,
with the sparsity parameter λs > 0. The empirical covariance between
ξc and t = Xcw is explicitly Ĉov(Xcw, ξc) = wT c, where c =

XT
c Vξc ∈ Rp is the empirical covariance Ĉov(Xc, ξc), depending on

the metric weighted by V (c is a vector because the response is univariate).
Different methodologies (Lê Cao et al., 2008; Chun and Keleş, 2010)

have been proposed to solve the optimization problem (1). However, both
approaches give an approximate solution. We propose a new approach to
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exactly solve this problem in the univariate response case. In the standard
PLS algorithm, w is proven to be the dominant singular vector of the
empirical covariance c. In the univariate response case (PLS1 algorithm),
c is univariate and w ∝ c. Thus, we introduce the following equivalent
formulation of the penalized problem (1):

ŵ(λs) = argmin
w∈Rp

{1

2
‖c−w‖ 2

2 + λs ‖w‖1
}
, (2)

under the constraints ‖w‖2 = 1 and orthogonality between components
(the equivalence between (1) and (2) is shown in the Supp. Mat.). We
consider a range of values for λs so that the problem (2) admits a solution.

Resolution. Applying the method of Lagrange multipliers, the problem (2)
becomes (µ > 0):

argmin
w∈Rp
µ>0

{1

2
‖c−w‖ 2

2 + λs ‖w‖1 + µ
(
‖w‖ 2

2 − 1
)}
. (3)

The method of Lagrange multipliers was proposed by Witten et al. (2009)
or Tenenhaus et al. (2014) for different decomposition problems. The
objective is continuous and convex, thus the strong duality holds and the
solutions of primal (2) and dual (3) problems are equivalent. The resolution
of the dual problem is based on proximal (or proximity) operators defined
as the solution of the following problem (Bach et al., 2012):

argmin
w∈Rp

{1

2
‖c−w‖ 2

2 + f(w)
}
, (4)

for any fixed c ∈ Rp, any function f : Rp → R. It is denoted by
proxf (c). When f(·) corresponds to the Elastic Net penalty (combination
of `1 and `2 penalty), i.e. f(w) = µ

2

∑p
j=1 |wj |

2+λ
∑p
j=1 |wj | (with

λ > 0 and µ > 0), the closed-form solution of problem (4) is explicitely
given by the proximal operator proxµ

2
‖·‖ 2

2 +λ ‖·‖1 (c) whose coordinates
are defined by (Yu, 2013, Theo. 4):

proxµ
2
‖·‖ 2

2 +λs ‖·‖1 (c) =
( 1

1 + µ
sgn(cj)

(
|cj | − λ

)
+

)
j=1:p

. (5)

This corresponds to the normalized soft-thresholding operator applied
to the covariance vector c. When choosing µ = µ∗ so that w∗ =

proxµ
2
‖·‖ 2

2 +λ ‖·‖1 (c) has a unitary norm, the pair (w∗, µ∗) given by
the proximal operator (5) with λ = λs is a candidate point and then a
solution (by convexity) for the dual problem (3). Hence, the SPLS weights
used to construct the SPLS components are given by w∗ ∈ Rp. This new
resolution of the sparse PLS problem is a general result, that also applies
in the case of the standard homoskedastic linear model by replacing V

by the n × n identity matrix. This is consistent with the derivation of
the sparse PLS by Chun and Keleş (2010), but provides a more direct
resolution framework. In addition, λs is renormalized to lie in [0, 1] (c.f.
Chun and Keleş, 2010).

The resolution of the problem (2) allows to compute w1 and construct
the first components t1. At step k > 1, wk is computed by solving
Eq. 2, using a “deflated” version of Xc and ξc, i.e. the residuals of the
respective regression of Xc and ξc onto the previous components [t`]

k−1
`=1 ,

guaranteeing the orthogonality between components. The active set of
selected variables up to component K is a subset of {1, . . . , p}, defined
as the variables with a non null weights in [wk]Kk=1, and denoted by

AK = ∪Kk=1{j, wjk 6= 0}. Eventually, the estimation β̂
SPLS
\0 of β\0

in the model ξc = Xcβ\0 + ε is given by the weighted PLS regression
of ξc onto the selected variables in the active set AK . The coefficient
β̂SPLS
j is set to zero if the predictor j ∈ {1, . . . , p} is not inAK . Indeed,

following the definition of the SPLS regression, the sparse structure of the

weight vectors [wk]Kk=1 directly induces the sparse structure of β̂
SPLS
\0 .

The variables selected to construct the new components [tk]Kk=1 are the
ones that contribute the most to the response and correspond to those with
non-null entries in the true vector β\0.

2.2 Adaptive sparse PLS

We also propose to adjust the `1 constraint to further penalize the less
significant variables, which can lead to a more accurate selection process.
Such an approach is inspired by component wise penalization as adaptive
Lasso (Zou, 2006). We use the weights wPLS ∈ Rp from classical
PLS (without sparsity constraint) to adapt the `1 penalty on the weight
vector wSPLS. The `1 penalty in problem (2) becomes Penada(w) =

λs
∑p
j=1 γ

j |wj |, with γj = 1/|wPLS
j | to account for the significance

of the predictor j (higher weights in absolute values correspond to more
important variables). The closed-form solution accounts for the adaptive
penalty and remains the soft-thresholding operator applied to c but with
parameter λs × γj for jth predictor (c.f. Supp. Mat.). We called this
method adaptive sparse PLS.

2.3 Ridge-based logistic regression and logistic regression

We now present our approach based on sparse PLS for logistic regression.

The Logistic Regression model. We now consider a n-sample (xi, yi)
n
i=1

with yi being a label variable in {0, 1}, gathered in y = (y1, . . . , yn)T .
We use the Generalized Linear Models (GLM) framework (McCullagh
and Nelder, 1989) to relate the predictors to the random response variable
Yi, using the logistic link function, such that logit(πi) = β0 +

xTi β\0, with πi = E[Yi], logit(x) = log(x/(1 − x)), and β =

(β0, β1 . . . , βp)T = {β0,β\0}. In the sequel, Z = [(1, . . . , 1)T ,X].
With ηi = zTi β, the log-likelihood of the model is defined by logL(β) =∑n
i=1 [yiηi − log{1 + exp(ηi)}], and the coefficients β ∈ Rp+1 are

estimated by maximum likelihood (MLE).

The Ridge IRLS algorithm. Optimization relies on a Newton-Raphson
iterative procedure (McCullagh and Nelder, 1989) to construct a sequence

(β̂
(t)

)t≥1, whose limit β̂
∞ ∈ Rp+1 (if it exists) is the estimation of β.

The Iteratively Reweighted Least Squares (IRLS) algorithm (Green, 1984)

explicitly defines (β̂
(t)

)t≥1 as the solutions of successive weighted least
squares regressions of a pseudo-response ξ(t) ∈ Rn onto the predictors
at each iteration t. The pseudo-response is linearly generated from the
predictors based on previous iterations, c.f. Eq (6). However, when p > n,
the matrix Z is singular, which leads to optimization issues. Le Cessie
and Van Houwelingen (1992) proposed to optimize a Ridge penalized
log-likelihood, i.e. logL(β) − (λR/2) βT Σ̂β, with Σ̂ the diagonal
empirical variance matrix of Z and λR > 0 the Ridge parameter. A
unique solution of this regularized problem always exists and is computed
by the Ridge IRLS (RIRLS) algorithm (Eilers et al., 2001), where the
weighted regression at each IRLS iteration is replaced by a Ridge weighted
regression, hence:∣∣∣∣∣∣∣

β̂
(t+1)

= (ZTV(t)Z + λR Σ̂)−1ZTV(t)ξ(t),

ξ(t+1) = Zβ̂
(t)

+
(
V(t)

)−1 [
y − π(t)

]
,

(6)

with the estimated probabilities π̂(t) = (π̂
(t)
i )ni=1, i.e. π̂

(t)
i =

logit−1
(
zTi β̂

(t))
for each Yi, and V(t) = diag

(
π̂

(t)
i (1 − π̂

(t)
i )
)n
i=1

is the diagonal empirical variance matrix of (Yi)
n
i=1 at step t.

Following the definition of ξ(t), the (R)IRLS algorithm produces a
pseudo-response ξ∞ as the limit of the sequence (ξ(t))t≥1, verifying
ξ∞ = Zβ̂

∞
+ε, where β̂

∞
is the solution of the likelihood optimization,

and ε is a noise vector of covariance matrix (V∞)−1, with V∞ the limit
of the matrix sequence (V(t))t≥1.
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Sparse PLS regression. The pseudo-responseξ∞ produced by Ridge IRLS
depends on predictors through a linear model. Following the approach
by Fort and Lambert-Lacroix (2005), we propose to use the sparse PLS
regression on ξ∞ to process dimension reduction and estimateβ ∈ Rp+1

in the logistic model E[Yi] = logit−1(β0 + xTi β\0). In this case, the
`2 metric (in the observation space) is weighted by the empirical inverse
covariance matrix V∞, to account for the heteroskedasticity of noise ε.
To neglect the intercept in the SPLS step, we consider the centered version
of X and ξ∞, regarding the metric weighted by V∞, denoted by Xc and
ξ∞c . The intercept β0 will be estimated later.

The estimates β̂
SPLS
\0 ∈ Rp are renormalized to correspond to the

non-centered and non-scaled data, i.e. β̂\0 = Σ̂
−1/2

β̂
SPLS
\0 giving the

estimation β̂\0 in the original logistic model . The interceptβ0 is estimated

by β̂0 = ξ̄∞ − x̄T β̂\0 where ξ̄∞ and x̄ are respectively the sample
average of the pseudo-response and the sample average vector of predictors
regarding the metric weighted by V∞. Our method can be summarized
as follow:

1. (ξ∞,V∞)← RIRLS(X,y, λR)

2. Center X and ξ∞ regarding the scalar product weighted by V∞

3.
(
β̂

SPLS
\0 ,AK , [tk]Kk=1

)
← SPLS(X, ξ∞,K, λs,V∞)

4. Renormalization of β̂ = {β̂0, β̂\0}

The label ŷnew of new observations xnew ∈ Rp (non-centered and non-
scaled) is predicted through the logit function thanks to the estimates β̂ =

{β̂0, β̂\0}. Note that xnew does not need to be centered nor scaled thanks

to the intercept parameter β̂0 and to the renormalization of the coefficient
estimates in the algorithm.

Our method estimates predictor coefficients β in the logistic model by
sparse PLS regression of a pseudo-response, considered as continuous
and therefore in accordance with the conceptual framework of PLS,
while completing compression and variable selection simultaneously. An
additional interest is that the iterative optimization in the RIRLS algorithm
does not depend on the number of components K nor on the sparsity
parameter λs. Consequently, the convergence of our method is robust to
the choice of K and λs by definition, contrary to other approaches for
logistic regression based on sparse PLS (c.f. Supp. Mat. section A.3). Our
approach will be called logit-SPLS in the following while the method by
Fort and Lambert-Lacroix (2005) will be called logit-PLS.

2.4 Tuning sparsity by stability selection

Our logit-SPLS approach depends on three hyper-parameters: the sparsity
parameter λs, the Ridge parameter λR and the number of componentsK.
We first propose to tune all the parameters by 10-fold cross-validation
(to reduce the sampling dependence). Details about the choice of the
grid of candidates values for (λs, λR,K) are given in Supp. Mat. (c.f.
sections A.5.1 and A.6.1).

In addition, we propose to adapt the stability selection method
developed by Meinshausen and Bühlmann (2010), to the sparse PLS
framework. The interest of this approach is to avoid choosing a value
for the sparsity parameter λs to find the degree of the sparsity in the
model, i.e. to select the relevant predictors. In this framework, the grid
of all parameter candidate values for (λs, λR,K) is denoted by Λ. The
principle consists in fitting the model for all points ` ∈ Λ, then estimating
the probability p`j for each covariate j to be selected over 100 resamplings
of sizen/2 depending on`, i.e. the probability for predictor j to be in the set
Ŝ` = {j, β̂j(`) 6= 0}, where β̂(`) ∈ Rp are the corresponding estimated
coefficients. Finally, the procedure retains the predictors that are in the set
Ŝstable of stable selected variables, defined as {j, max`∈Λ{p`j} ≥ πthr},
where πthr is a threshold value. This means that predictors with high

selection probability are kept and predictors with low selection probability
are discarded.

The average number of selected variables over the entire grid Λ, is
denoted by qΛ, and defined as qΛ = E[#{∪λ∈ΛŜλ}]. Meinshausen and
Bühlmann (2010, Theo. 1) provided a bound on the expected number of
wrongly stable selected variables (equivalent to false positives) in Ŝstable,
depending on the threshold πthr, the expectation qΛ and the number p of
covariates:

E[FP] ≤
1

2πthr − 1

q2
Λ

p
(7)

where FP is the number of false positives i.e. FP = #{Sc0 ∩ Ŝstable} and
S0 the unknown set of true relevant variables. This results is derived under
some reasonable conditions that are discussed in Supp. Mat. (section A.2).
Following the recommendation of Meinshausen and Bühlmann (2010, p.
424), we use Eq. 7 to determine the range of the parameter grid Λ to avoid
too many false positives (corresponding to a weak `1 penalization). Indeed,
since the number of false positives is controlled by qΛ, we automatically
exclude candidate points ` = (λs, λR,K) corresponding to small λs
(near 0) for which there is no selection and for which all variables contribute
to the mode, so that we can control qΛ. Without removing these points,
qΛ and the number of false positives are too high. For instance, when
the threshold probability πthr is set to 0.9, Λ is defined as a subset of the
parameter grid so that qΛ =

√
0.8 p ρerror. In practice, qΛ is unknown but

can be estimated by the empirical average number of selected variables
over all ` ∈ Λ. In this context, the expected number of false positives will
be lower than ρerror (in practice, we set ρerror = 10). Details about the
candidate values for (λs, λR,K) are given in Supp. Mat. (section A.6.2).

A clear interest here is that we do not have to choose a specific value
for the hyper-parameters, instead we retain the variables that are selected
by most of the models when exploring the grid of candidate values for
hyper-parameters (including K).

3 Simulation study
We assess the performance of our approach for prediction, compression
and variable selection compared to state-of-the-art methods that were
previously introduced. We also use a “baseline” method, called GLMNET
(Friedman et al., 2010), that performs variable selection, by solving
the GLM likelihood maximization with `1 norm penalty for selection
and `2 norm penalty for regularization, also known as the Elastic Net
approach (Zou and Hastie, 2005). We compare different approaches based
on (sparse) PLS for classification (c.f. Tab. 1 and Supp. Mat. section A.3
and A.4 for details).

Simulation design. Our simulated data are constructed to assess the interest
of compression and variable selection for prediction performance. The
simulations are inspired from Zou et al. (2006), Shen and Huang (2008) or
Chung and Keleş (2010). The purpose is to control the redundancy within
predictors, and the relevance of each predictor to explain the response.
We consider a predictor matrix X of dimension n × p, with n = 100

fixed, and p = 100, 500, 1000, 2000, so that we examine different high
dimensional models. The true vector coefficients β∗ is generated to be
sparse, the sparsity structure is thus known. Hence, it is possible to assess
whether a method selects the relevant predictors or not. The response
variable Yi for observation i is a Bernoulli variable, with parameter
π∗i = logit−1(xTi β

∗). The pattern of data simulation and the tuning of
hyper-parameters are detailed in Supp. Mat. (section A.5). Regarding other
methods, we use the range of parameters recommended by their respective
authors and the cross-validation procedures supplied in the corresponding
packages.
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Table 1. The different algorithms to process dimension reduction by (sparse) PLS in the framework of the logistic regression.

Method Algorithm Sparse? Reference

GPLS
(S)PLS inside the IRLS algorithm

× Ding and Gentleman (2005)
SGPLS X Chung and Keleş (2010)

PLS-log
(S)PLS before logistic regression

× Wang et al. (1999), Nguyen and Rocke (2002)
SPLS-log X Chung and Keleş (2010)

logit-PLS
(S)PLS on the pseudo-response after the RIRLS algorithm

× Fort and Lambert-Lacroix (2005)
logit-SPLS X Our algorithm

Ridge penalty ensures convergence. Convergence is crucial when
combining PLS and IRLS algorithm as pointed by Fort and Lambert-
Lacroix (2005). With the analysis of high dimensional data and the use
of selection in the estimating process, it becomes even more essential
to ensure the convergence of the optimization algorithms, otherwise the
output estimates may not be relevant. Our simulations show that the
Ridge regularization systematically ensures the convergence of the IRLS
algorithm in our method (logit-SPLS), for any configuration of simulation:
p = n, p > n, high or low sparsity, high or low redundancy (see Tabs. A.3
and A.2 in Supp. Mat.). On the contrary, approaches that use (sparse)
PLS before or within the IRLS algorithm (resp. SPLS-log and (S)GPLS)
encounter severe convergence issues.

Whereas the SPLS-log or (S)GPLS approaches were designed to
overcome convergence issues, it appears that they do not, which questions
the reliability of the results supplied by these methods. Then, it confirms
the interest of the Ridge regularization to ensure the convergence of the
IRLS algorithm. Moreover, this convergence seems to be fast (around 15
iterations even when p = 2000), which depicts an interesting outcome
for computational time. For instance, the tuning of three parameters in the
logit-SPLS approach is less costly thanks to the fast convergence of the
algorithm. Although both SGPLS and SPLS-log methods are based on two
parameters, they iterates further (until the limit set by the user) which is
less computationally efficient, especially with high dimensional data. On
this matter, details regarding computation times are given in Supp. Mat.
(section A.5.2).

Adaptive selection improves cross-validation stability. A cross-validation
procedure would be expected to be stable under multiple runs, i.e. the
chosen values must not be variable when running the procedure many
times on the same sample. Otherwise, selection and prediction become
uncertain and not suitable for experiment reproducibility. We quantified the
standard deviation of the sparse parameter λs chosen by cross-validation
for the three sparse PLS methods (SGPLS, SPLS-log and our logit-SPLS)
when repeating the procedure on the same samples. The standard deviation
(all three methods consider the same range of values for λs) is smaller
for our approach (c.f. Tab. 2) than for other methods. Thus, the cross-
validation procedure in our adaptive method is more stable than other
SPLS approaches. A similar comment can be made regarding the choice
of the number K of components (c.f. Fig. A.1 in Supp. Mat.). This
behavior can be linked to the convergence of the different approaches. The
methods with convergence issues (SGPLS and SPLS-log) present a higher
cross-validation instability, whereas our method (logit-SPLS) converges
efficiently and shows a better cross-validation stability. Similarly, the
variable selection accuracy, defined as the proportion of rightly selected
and rightly non selected variables (Chong and Jun, 2005), is also influenced
by the cross-validation stability and the convergence of the method. Indeed,
the standard deviation of the selection accuracy (computed across multiple
runs) is higher for the less stable and less convergent methods (SGPLS and
SPLS-log) compared to our logit-SPLS approach (c.f. Tab. 2).

Table 2. Comparing computational stability between sparse PLS approaches.
σ̂
(
λ̂s
)

stands for the estimated standard deviation of the tuned hyper-
parameterλs (over repetitions on the same simulated data set), which measures
the stability of the hyper-parameter tuning by cross-validation. σ̂

(
acc.
)

stands
for the estimated standard deviation of the accuracy in variable selection,
which measures the stability of the selection steps. The results are presented
for different model dimensions (p).

Method
p = 100 p = 2000

σ̂
(
λ̂s
)

σ̂
(
acc.
)

σ̂
(
λ̂s
)

σ̂
(
acc.
)

logit-spls 0.09 0.11 0.11 0.09

sgpls 0.17 0.14 0.15 0.12
spls-log 0.23 0.12 0.21 0.17

Compression and selection increase prediction accuracy. We now assess
the importance of compression and variable selection for prediction
performance. We consider the prediction accuracy, evaluated through
the prediction error rate. A first interesting point is that the prediction
performance of compression methods is improved by the addition of a
selection step: logit-SPLS, SGPLS and SPLS-DA perform better than
logit-PLS, GPLS and PLS-DA respectively (c.f. Tab. 3). In addition,
sparse PLS approaches also present a lower classification error rate than
the GLMNET method that performs variable selection only. These two
points support our claim that in any case compression and selection should
be both considered for prediction. Similar results are observed for other
configurations of simulated data (c.f. Supp. Mat. section A.5.2). All
different SPLS-based approaches show similar prediction performance,
even methods that are not converging (SPLS-log or SGPLS) compared
to our adaptive approach logit-SPLS. Thus, checking prediction accuracy
only may not be a sufficient criterion to assess the relevance of a method.
The GPLS method is a good example of non-convergent method (c.f.
Tab. 3 and Tab. A.2 in Supp. Mat.) that presents high variability and poor
performance regarding prediction.

Actually, the combination of Ridge IRLS and sparse PLS in our
method ensures convergence and provides good prediction performance
(prediction error rate at 10% on average) even in the most difficult
configurations n = 100 and p = 2000, which makes it an appropriate
framework for classification.

Compression increases selection accuracy. A sparse model will be useful
if characterized by good prediction performances but also if the selected
covariates are the genuine important predictors that explain the response.
To assess the selection accuracy, we compare the selected predictors
returned by each sparse method to the set of relevant ones used to construct
the response, i.e. with a non zero coefficient β∗j in our simulation model.
We consider sensitivity and specificity (Chong and Jun, 2005), respectively
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Table 3. Prediction error and selection sensitivity/specificity (if relevant) when
p = 2000, for non-sparse or sparse approaches (delimited by the line). Results
for other values of p are joined in Supp. Mat. (section A.5.2).

Method
Prediction Selection Selection Selection

error sensitivity specificity accuracy

gpls 0.49 ± 0.31 / / /
pls-da 0.20 ± 0.07 / / /
logit-pls 0.17 ± 0.07 / / /

glmnet 0.16 ± 0.07 0.27 0.98 0.74
logit-spls 0.11 ± 0.06 0.63 0.86 0.79

sgpls 0.11 ± 0.05 0.80 0.75 0.81

spls-da 0.12 ± 0.06 0.82 0.74 0.81

spls-log 0.12 ± 0.05 0.83 0.75 0.81

the proportion of true positive and true negative regarding the selected
variables.

A first striking point is that, in our simulations (see Tab. 3 and
Tabs. A.4, A.5, A.6 in Supp. Mat.), the baseline GLMNET presents a
very low sensitivity and a very high specificity (low true positive and low
false positive rates), meaning that it selects a small number of predictors
(that are relevant), which leads to a lower accuracy compared to SPLS-
based approaches. Thus, using approaches that combine compression
and variable selection such as sparse PLS has a true impact on selection
accuracy, compared to “selection-only” approach such as GLMNET.

Then, we focus on the comparison of the different sparse PLS
approaches. On the one hand, our method logit-SPLS selects less irrelevant
predictors since the false positive rate is lower (higher specificity),
compared to other SPLS approaches. On the other hand, SGPLS, SPLS-
log and SPLS-DA select more true positives (higher sensitivity). Since all
methods achieve a similar level of accuracy, this result clearly illustrates
a difference of strategy regarding variable selection. The balance between
sensitivity and specificity indicates that our method logit-SPLS selects
predictors which are more likely to be relevant, discarding most of the non-
pertinent predictors, while other approaches tend to select more predictors
with higher false positive rate. With high dimensional data set (large p),
we are generally interested in highly sparse model, thus it is an advantage
to have a sharper control on the false positive rate, as in our method.
In addition, the relative good sensitivity of other sparse PLS approaches
(SGPLS and SPLS-log) is also balanced by a selection process that is less
stable than ours, as the standard deviation of the accuracy is higher over
simulations (as previously mentioned, see Tab. 2).

4 Classification of breast tumors using adaptive
sparse PLS for logistic regression

We consider a publicly available data set on breast cancer (Guedj et al.,
2012) containing the level expression of 54613 genes for 294 patients
affected by breast cancer. We focus on the relapse after 5 years, considering
a {0, 1} valued response, if the relapse occurred or not. There were
214 patients without relapse and 80 with a relapse. We reduce the
number of genes by considering the top 5000 most differentially expressed
genes, by using a standard t-test with a Benjamini-Hochberg correction.
Computation details (resamplings, cross-validation, stability selection,
training and test set definition) are joined in Supp. Mat. (c.f. section A.6).

Convergence and stability with Ridge IRLS and adaptive sparse PLS. The
Ridge IRLS algorithm confirms its usual convergence (see Tab. 4). Other
approaches based on SPLS (SGPLS and SPLS-log) again encounter severe

Table 4. Averaged prediction error, convergence percentage over 100
resamplings and standard deviation of cross-validated λs.

Method Prediction error Conv. perc. s.d. λs

glmnet 0.27 ± 0.04 / /
logit-pls 0.26 ± 0.05 100% /
logit-spls 0.23 ± 0.06 100% 0.15

logit-spls-ad 0.19 ± 0.04 100% 0.15

sgpls 0.5 ± 0.21 5% 0.18

spls-log 0.18 ± 0.04 1% 0.19

issues and almost never converge. Following a similar pattern, our adaptive
selection is far more stable under the tuning of the sparsity parameter λs
by cross-validation than any other approach using sparse PLS (Tab.4), as
the precision on this hyper-parameter value is the highest for our method,
illustrating less variability in the tuning over repetitions.

Interest of adaptive selection for prediction and selection. Regarding
prediction performance, the adaptive version of our algorithm logit-
SPLS gives better results (c.f. Tab. 4) which highlights the interest of
adaptive selection. It can also be noted that our approach performs better
on prediction than both logit-PLS (compression only) and GLMNET
(selection only), which again supports the interest of using both
compression and variable selection. The SGPLS method does not confirm
its performance on our simulatiosn with poor and highly variable results,
illustrating the potential lack of stability of non-convergent method. Only
the SPLS-log method achieves a classification that is as good as our
adaptive method. However this point will be counterbalanced by its
assessment over the other criteria in the following.

Regarding variable selection, the stability selection analysis (see Fig. 1)
shows that, when the number of false positives is bounded (on average),
our approach logit-SPLS selects more genes than any other approach
(SGPLS, SPLS-log and GLMNET). Hence, we discover more true
positives (because the number of false positives is bounded), unraveling
more relevant genes than other approaches. This again illustrates the good
performance of our method for selection. More generally, approaches that
use sparse PLS, i.e. performing selection and compression, select more
variables than GLMNET with the same false positive rate, thus retrieving
more true positives than GLMNET which performs only selection. This
again supports our previously developed idea that compression and
selection are both very suitable for high dimensional data analysis. We
recall that the curves in Fig. 1 correspond to the number of variables
that are selected by most models when exploring the grid of candidate
values for hyper-parameters (including K). Additional results regarding
the overlap between the genes selected by the different methods and the list
of selected genes with their score (i.e. the maximum estimated probability
of selection) are given in Supp. Mat. (section A.6.2).

Efficient compression to discriminate the response. To assess the interest
of our approach for data visualization, we represent the score of
the observations on the first two components, i.e. the point cloud
(ti1, ti2)ni=1. The points are colored according to their Y -labels. An
efficient compression technique would separate the Y -classes with fewer
components. We fit the different compression-based approach (when the
number of components is set to K = 2). We use PCA as a reference
for compression and data visualization, based on unsupervised learning
contrary to other compared approaches. Fig. 2 represents the first two
components computed by logit-PLS, logit-SPLS, SGPLS, SPLS-log and
PCA. It appears that the first two components from our logit-SPLS
are sufficient to easily separate the two Y -classes. On the contrary,
other sparse PLS approaches do not achieve a similar efficiency in the
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Fig. 2. Observations scores on the first two components for the different methods.
The points are shaped according to the value of the response: 0 (•) and 1 (N). The
scores are normalized for comparison.

compression process. Thus, our method turns out to be very efficient for
data visualization, especially compared to principal component analysis.

5 Characterization of T lymphocyte types based
on single-cell data

We generalized our approach to the multicategorial case and developed a
new method, called multinomial-SPLS (or MSPLS), that was applied to the
prediction of cell types using single cell expression data (Stegle et al., 2015;
Gawad et al., 2016). Our approach (detailed in Supp. Mat., section A.7) is
based on a direct extension of the logistic model. It is specifically a “one-
class vs a reference” type of multi-classification, in which the membership
probabilities of each class (except the reference) are estimated based on
linear combinations of the predictors. The membership probability of the
reference class is then deduced from the rest. The resolution is derived from
our logit-SPLS method. One interest is that our multi-group classification
approach uses a univariate response sparse PLS algorithm (that admits a
closed-form solution, c.f. section 2), contrary to sparse multigroup PLS-
DA for instance (c.f. Supp. Mat. section A.3).

Understanding the mechanisms of an adaptive immune response is
of great interest for the creation of new vaccines. This response is
made possible thanks to antigen-specific “effector” T cells capable of
recognizing and killing infected cells, and to the long-lasting “memory”
T cells that will constitute a repertoire for later secondary immune
responses. These two types of T cells have then been described as 4 sub-
groups: CM, TSCM (“Memory”), TEMRA, EM, (“Effector Memory”).
Generally speaking, CM and TSCM can be considered as “Memory” cells
and TEMRA and EM can be considered as “Effectors” as CM/TSCM
and EM/TEMRA share significant functional overlap with each other
(Willinger et al., 2005a; Gattinoni et al., 2011). Understanding the
transcriptomic diversity of T cells constitutes a new challenge to better

characterize the short and long-term vaccinal responses, as T cells
are increasingly recognized as being highly heterogeneous populations
(Newell et al., 2012). However, these investigations have been limited by
current practices that consist in defining those 4 cell types based by drawing
non-overlapping gates on the 2D-space defined two surface markers only:
CCR7 and CD45RA (Sallusto et al., 1999). Consequently this rule leads
to the selection of a fraction of cells that only correspond to cells with the
most extreme values of markers, which ignores the complexity of a T cell
population sampled from real blood.

We developed a SPLS-based multi-categorical classification to better
characterize the transcriptomic diversity that supports the 4 different cell
types of T cells. This approach aims at classifying more cells, and at
inferring the type of the non-identified cells. To do so, we considered
the measurements of 11 surface markers (CCR7, CD45RA, CD27, IL7R,
FAS, CD49F, PD1, CD57, CD3E, CD8A), along with the expression of
the corresponding genes. All these measurements were available on the
single-cell basis. We will show that even in this low dimensional case, the
use of variable selection will help to improve the accuracy of the results.
In the following, hyper-paramaters (including K) were tuned by cross-
validation. Details about the candidate values for (λs, λR,K) are given
in Supp. Mat. (section A.8.1).

We developed the following two-step analysis. We started by
considering the measures of the 11 surface markers and the expression
of the 11 associated genes. The multinomial-SPLS was trained on a subset
of cells that were tagged manually, and used to predict the types of the
unknown cells (136 annotated over 943 cells). On this training set of 136
cells, including 44 CM and 28 TSCM cells (i.e. 72 “Memory” cells), 30 EM
and 34 TEMRA cells (i.e. 64 “Effector” cells), a 5-fold cross-validation
procedure (with 50 repetitions) is used to tune the hyper-parameters. The
cross-validation prediction error over the resamplings was∼ 6%.Fig. A.3
in Supp. Mat. shows that the cells in the training set are well discriminated
in this first step. In addition, our SPLS procedure selected the proteins
CCR7 and CD45RA in 100% of the runs, which is coherent with the
manual annotation of the cells based on these two markers.

In a second step we wanted to enrich the set of genes that discriminate
cell types. To proceed we considered the expression of all genes of these
predicted cell types, and performed a differential analysis from which we
retained 61 differentially expressed genes (corresponding to a 5% FDR).
By considering these 61 genes added to the first 22 markers considered for
the first prediction step, we performed the MSPLS-based prediction on the
complete data set annotated by our first prediction. Our method selected 8
new biologically relevant genes (more details in Supp. Mat. section A.8.2)
with a cross-validation prediction error rate over re-samplings (again 5-fold
cross-validation) of∼ 16% (on the whole data set, not only considering the
most extreme phenotypes). The main interests of this two-step procedure
were to be computationally efficient and to narrow the list of potential
genes of interest, which was conclusive since this second prediction greatly
improved the biological relevance of the predicted cell types by accounting
for more information than the one contained in the classical markers like
CCR7 and provided us with new insight to better understand the T cells
immune response.

Fig. 3 illustrates the representation of the cells in the latent
dimensional space computed by the multinomial PLS in the second step
of prediction. The reference class is “CM”. The SPLS computes latent
directions discriminating each other class (“EM”, “TEMRA” and “TSCM”
respectively) versus the reference class (c.f. Supp Mat.). The cells are
represented on the first two components for the three different pairs: “CM
versus EM”, “CM versus TEMRA” and “CM versus TSCM”. The latent
components clearly discriminate the group of cells in the three different
cases, which confirms the result of the second prediction based both on
markers and differentially expressed genes. The different groups are clearly
identified but there is no gap between them, contrary to the representation
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Fig. 3. Cell scores on the first two PLS components in the latent space that
discriminate between the reference class (“CM”) and each other class separately
(“EM”, “TEMRA” and “TSCM” respectively, from left to right). T cells are identified
by their predicted types after the second prediction step.

of the cells in the training set for the the first prediction (c.f. Supp. Mat.).
This indicates that the multinomial-SPLS was able to predict the type of
the lost common cells based on the most extreme phenotypes.

This application highlights the interest of dimension reduction
by compression and variable selection, even when dealing with low
dimensional data. It can also be noted that, even when using sparse
approaches, a step of pre-selection is always useful, especially in the
analysis of single-cell expression data, which are very noisy compared to
standard RNA-seq data, because of the important inter-cellular diversity.

6 Conclusion
We have introduced a new formulation of sparse PLS and proposed an
adaptive version of our algorithm to improve the selection process. Using
proximal operators, we provide an explicit resolution framework with a
closed-form solution based on soft-thresholding operators.

In addition, we developed a method that performs compression and
variable selection suitable for classification. It combines Ridge regularized
Iterative Least Square algorithm and sparse PLS in the logistic regression
context. It is particularly appropriate for the case of high dimensional data,
which appears to be a crucial issue nowadays, for instance in genomics.
Our main consideration was to ensure the convergence of IRLS algorithm,
which is a critical point in logistic regression. Another concern was to
properly incorporate into the GLM framework a dimension reduction
approach such as sparse PLS.

Ridge regularization ensures the convergence of the IRLS algorithm,
which is confirmed in our simulations and tests on experimental data
sets. Applying adaptive sparse PLS as a second step on the pseudo-
response produced by IRLS respects the definition of PLS regression
for continuous response. Moreover, the combination of compression
and variable selection increases the prediction performance and selection
accuracy of our method, which turns out to be more efficient than state-of-
the-art approaches that do not use both dimension reduction techniques.
Such a combination also improves the compression process, illustrated
by the efficiency of our method for data visualization compared to
standard supervised or unsupervised approaches. Furthermore it appears
that previous procedures using sparse PLS with logistic regression
encounter convergence issues linked to a lack of stability inthe cross-
validation parameter tuning process, highlighting the crucial importance
of convergence when dealing with iterative algorithms.

It can be noted that our approach can be used to include additional
covariates in the model. For example, we used a combination of surface
marker levels and gene expression levels in the single cell data analysis. On
this matter, an interesting research direction would be to work on a Least
Square-Partial Least Square (LS-PLS) approach, in which some part of the
predictors are compressed into PLS components and some others are not.
There have been recent advances regarding LS-PLS for logistic regression

(see Bazzoli and Lambert-Lacroix, 2016). However, to our knowledge,
there is no work on a potential LS-SPLS method, even in the regression
case.

In addition, an interesting extension of our work would be to investigate
theoretical properties of the sparse PLS regression (especially regarding its
consistency or any oracle properties). Deriving such properties would be
an opportunity to assess the underlying statistical properties of our method
and remains an open question.
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Supplementary Information

A.1 Optimization in sparse PLS

A.1.1 Reformulation of the sparse PLS problem

As previously introduced, the sparse PLS constructs components as
sparse linear combination of the covariates. When considering the first
components, i.e. t1 = Xw1, the weight vector w1 ∈ Rp is defined
to maximize the empirical covariance between the component and the
response, i.e. Ĉov(Xw, ξ) ∝ wTXT

c ξc (centered X and ξ) with a
penalty on the `1-norm of w1 to enforce sparsity in the weights. Thus, the
weight vector w1 is computed as the solution of the following optimization
problem: 

argmin
w∈Rp

{
−wTXT

c ξc + λs
∑
j

|wj |
}
,

‖w‖2 = 1 (additional constraint) ,

(A.1)

with λs > 0. The problem (A.1) is equivalent to the following, when
denoting the standard scalar product by 〈·, ·〉:

argmin
w∈Rp

{
− 2

〈
w , XT

c ξc
〉

+ ‖w‖ 2
2 + 2λs

∑
j

|wj |
}
,

‖w‖2 = 1 ,

because the term ‖w‖2 is constant thanks to the additional constraint. This
new problem remains equivalent to the following:

argmin
w∈Rp

{
‖XT

c ξc‖ 2
2 − 2

〈
w , XT

c ξc
〉

+ ‖w‖ 2
2 + 2λs

∑
j

|wj |
}
,

‖w‖2 = 1 ,

since the norm of the empirical covariance ‖XT
c ξc‖ 2

2 is constant. Then,
thanks to the Euclidean norm properties, it can be rewritten as:

argmin
w∈Rp

{1

2
‖c−w‖ 2

2 + λs ‖w‖1
}
,

‖w‖2 = 1 ,

(A.2)

with c = XT
c ξc and when setting λ = 2ν > 0. Actually, in the case

of a univariate response, the formulation (A.2) is natural. Indeed, in the
standard (non-sparse) PLS, the optimal weight vector w is the normalized
dominant singular vector of the covariance matrix XT ξ. However, when
the response is univariate, the matrix XT ξ is a vector and the solution
for w is the normalized vector XT ξ (normalized to 1). This corresponds
exactly to the solution of the problem:

argmin
w∈Rp

‖c−w‖ 2
2 ,

‖w‖2 = 1 ,

(without the `1 penalty).
The solution of the penalized problem (A.3) defines the first component

(k = 1) of the sparse PLS. We use deflated predictors and response to
construct the following component (k > 1).

A.1.2 Resolution of the sparse PLS problem

Applying the method of Lagrange multipliers, the problem (A.2) becomes:

argmin
w∈Rp
µ>0

{1

2
‖c−w‖ 2

2 + λs ‖w‖1 + µ
(
‖w‖ 2

2 − 1
)}
, (A.3)

withµ > 0. The objective is continuous and convex, thus the strong duality
holds and the solutions of primal and dual problems are equivalent.

To solve the problem A.3, we use proximity operator (also called
proximal operator) defined as the solution of the following problem (Bach
et al., 2012):

argmin
w∈Rp

{1

2
‖c−w‖ 2

2 + f(w)
}
, (A.4)

for any fixed c ∈ Rp, any function f : Rp → R. It is denoted by
proxf (c). When f(·) corresponds to the Elastic Net penalty (combination
of `1 and `2 penalty), i.e. when considering the problem (with λ > 0 and
µ > 0):

argmin
w∈Rp

{1

2
‖c−w‖ 2

2 +
µ

2

p∑
j=1

(wj)
2 + λ

p∑
j=1

|wj |
}
, (A.5)

the closed-form solution is explicitly given by the proximal operator
proxµ

2
‖·‖ 2

2 +λ ‖·‖1 that is in particular the composition of proxµ
2
‖·‖ 2

2
and proxλ ‖·‖1 (Yu, 2013, Theo. 4), i.e.

proxµ
2
‖·‖ 2

2 +λ ‖·‖1 (c) = proxµ
2
‖·‖ 2

2
◦ proxλ ‖·‖1 (c) .

Both proximal operators proxλ ‖·‖1 and proxµ
2
‖·‖ 2

2
are known (Bach

et al., 2012), respectively being:

proxλ ‖·‖1 (c) =
(

sgn(cj)
(
|cj | − λ

)
+

)
j=1:p

,

proxµ
2
‖·‖ 2

2
(c) =

1

1 + µ
c,

where sgn(·) (| · |−λ)+ is the soft-thresholding operator. Eventually, the
coordinates of the solution are then:

proxµ
2
‖·‖ 2

2 +λ ‖·‖1 (c) =
( 1

1 + µ
sgn(cj)

(
|cj |−λ

)
+

)
j=1:p

, (A.6)

which correspond to the normalized soft-thresholding operator applied to
the vector c = XT

c ξc.
We use the solution (A.6) of the Elastic Net problem (A.5), where

λ = λs and µ is chosen so that the solution has a unitary norm, to
find a candidate point and then the solution (by convexity) of the dual
problem (A.3).

Finally, we have reformulated the problem defining the sparse PLS as a
least squares problem with an Elastic Net penalty and we have shown that
the solution of this problem is the (normalized) soft-thresholding operator.

A.1.3 Adaptive penalty

When considering an adaptive penalty, the optimization problem
associated to the sparse PLS can be similarly rewritten as:

argmin
w∈Rp

{1

2
‖c−w‖ 2

2 +

p∑
j=1

λj |wj |
}
,

‖w‖2 = 1 ,

(A.7)

with the penalty constant λj = λ γj (c.f. main text). By a similar
reasoning (continuity and convexity), it is possible to use Lagrange
multiplier to resolve the problem (A.7).

In order to explicitly derive the solution, we will use the proximal
operator that is solution of the following problem:

argmin
w∈Rp

{1

2
‖c−w‖ 2

2 +
µ

2

p∑
j=1

(wj)
2 +

p∑
j=1

λj |wj |
}
, (A.8)

with µ > 0.
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If f1(w) =
∑
j λj |wj |, it can be shown that the solution of the

problem (A.4) when considering f = f1 is given by:

proxf1 (c) =
(

sgn(cj)
(
|cj | − λj

)
+

)
j=1:p

,

because the subgradient of f1 is given by∇sf1(w) =
(
λj sgn(wj)

)p
j=1

(Eksioglu, 2011).
The link between subgradient and proximal operator is described in

Bach et al. (2012). In particular, w∗ = proxf (c) if and only if c−w∗ ∈
∂f(w∗) for any couple (c,w∗) ∈ Rp × Rp, where ∂f(w∗) is the
subdifferential of f at point w∗, i.e. the set of all subgradients∇sf(w∗)

of f at point w∗. If f is differentiable in w∗, then the only subgradient is
the gradient∇f(w∗).

The proximal operator corresponding to the function f2(w) =
µ
2

∑
j(wj)

2 is known (c.f. previously):

proxf2 (c) =
1

1 + µ
c.

Eventually, thanks to theorem 4 in Yu (2013), the solution of
problem (A.8) is explicitly defined as the combination of proxf1 and
proxf2 :

proxf1+f2
(c) = proxf2 ◦ proxf1 (c) .

for any c ∈ Rp. Thus, the solution of the problem (A.8) is given by:

proxf1+f2
(c) =

( 1

1 + µ
sgn(cj)

(
|cj | − λj

)
+

)
j=1:p

,

with c = XT
c ξc.

We choose µ so that the norm of the solution is unitary to find
a candidate point and thus the solution (by convexity) of the adaptive
problem (A.7).

A.2 Conditions for stability selection
The result by Meinshausen and Bühlmann (2010) regarding the expected
number of wrongly selected variables is derived for Λ ⊂ R+ under
two conditions: (i) assuming that the indicators

(
1{j∈Ŝ`}

)
j∈S c0

are

exchangeable for any ` ∈ Λ. (ii) The original procedure of selection
is not worst than random guessing. The first assumptions assumes that
the considered method does not “prefer” to select some covariates rather
than some other in the set of the non-pertinent predictors. This hypothesis
seems reasonable in our SPLS framework. The second one is verified
according to the results on our simulations (c.f. section 3). Moreover,
in the method we consider, the grid of hyper-parameters lies in (R+)3,
however the parameter that truly influences the sparsity of the estimation
is the parameter λs ∈ R+. Therefore, the sparse PLS appears to be a
reasonable framework to apply the concept of stability selection.

A.3 Comparison with state-of-the-art approaches
In the literature, other methodologies have been proposed to adapt (sparse)
PLS for binary classification. We detail here different approaches based on
(sparse) PLS and GLMs, especially regarding the potential issues raised
by the combination of two optimization frameworks.

PLS and GLMs. To overcome the convergence issue in the IRLS algorithm,
Marx (1996) proposed to solve the weighted least square problem at each

IRLS step with a PLS regression, i.e. β̂
(t+1)

is computed by weighted PLS
regression of the pseudo-response ξ(t) onto the predictors X. However,
such iterative scheme does not correspond to the optimization of an

objective function. Hence, the convergence of the procedure cannot be
guaranteed and the potential solution is not clearly defined.

Alternatively, Wang et al. (1999) and Nguyen and Rocke (2002)
proposed to achieve the dimension reduction before the logistic regression.
Their algorithm use the PLS regression as a preliminary compression step.
The components [tk]Kk=1 in the subspace of dimension K are then used
in the logistic regression instead of the predictors. Therefore, the IRLS
algorithm does not deal with high dimensional data (as K < p). In this
context, the PLS algorithm treats the discrete response as continuous.
Such approach seems counter-intuitive as it neglects the definition of
PLS to resolve a linear regression problem and it ignores the inherent
heteroskedastic context. This algorithm is called PLS-log in the following.
It can be noted that Nguyen and Rocke (2002) or Boulesteix (2004)
also proposed to use discriminant analysis as a classifier after the PLS
step. This method, known as PLS-DA, is not directly linked to the GLM
framework but we cite it as an alternative for classification with PLS-based
approaches. It can be noted that Barker and Rayens (2003) proposed a
slightly different implementation of PLS-DA, which is however equivalent
to Boulesteix’s approach in the binary response case, since they both rely on
equivalent univariate response PLS algorithms (De Jong, 1993; Boulesteix
and Strimmer, 2007).

Then, Ding and Gentleman (2005) proposed the GPLS method.
They introduced a modification in Marx’s algorithm based on the Firth
procedure (Firth, 1993), in order to avoid the non-convergence and the
potential infinite parameter estimation in logistic regression. However, this
approach is also characterized by the absence of an explicit optimization
criterion. Eventually, as introduced previously, Fort and Lambert-Lacroix
(2005) proposed to integrate the dimension reduction PLS step after a
Ridge regularized IRLS algorithm. We presented the adaptation of such
methodology in the context of sparse PLS in the previous section.

Sparse PLS and GLMs. More recently, based on the SPLS algorithm
by Chun and Keleş (2010), Chung and Keleş (2010) presented two
different approaches. The first one, called SGPLS, is a direct extension
from the GPLS algorithm by Ding and Gentleman (2005). It solves
the successive weighted least square problems of IRLS using a sparse
PLS regression, with the idea that variable selection reduces the model
complexity and helps to overwhelm numerical singularities. Unfortunately,
our simulations will show that convergence issues remain. Indeed, the use
of SPLS does not resolve the issue link to the absence of an associated
optimization problem. The second approach is a generalization of the
PLS-log algorithm and uses sparse PLS to reduce the dimension before
running the logistic regression on the SPLS components. This method
will be called SPLS-log.In both case, i.e. in SGPLS and SPLS-log , the
iterative optimization in the IRLS algorithm or modified IRLS algorithm
does depend on the numberK of components and on the sparsity parameter
λs. Thus, the convergence of the algorithm is potentially affected by the
choice of the hyper-parameters.

Eventually, we cite the SPLS-DA method developed by (Chung and
Keleş, 2010) or Lê Cao et al. (2011). Generalizing the approach from
Boulesteix (2004), they used sparse PLS as a preliminary dimension
reduction step before a discriminant analysis. In the binary response
case, thanks to the equivalence between Boulesteix (2004) and Barker
and Rayens (2003) works, the sparse extension of Barker and Rayens’
PLS-DA for binary classification corresponds to the work of Chung and
Keleş (2010) or Lê Cao et al. (2011). A disadvantage of sparse PLS-DA
approaches is that, in the multi-group classification case, they both rely on
multivariate response sparse PLS algorithms, which do not admit a closed-
form solution. On the contrary, our approach uses a univariate response
sparse PLS algorithm (which admits a closed-form solution, c.f. main
text) in both binary and multi-group classifications, being computationally
efficient in both cases.
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A.4 Performance evaluation
In order to assess the performance of our method, we compare it to other
state-of-the-art approaches taking into account sparsity and/or performing
compression. We eventually use a “reference” method, called GLMNET
(Friedman et al., 2010), that performs variable selection, by solving the
GLM likelihood maximization penalized by `1 norm penalty for selection
and `2 norm penalty for regularization, also known as the Elastic Net
approach (Zou and Hastie, 2005). Computations were performed using
the software environment for statistics R. The GPLS approach used in
our computation comes from the archive of the former R-package gpls,
the methods logit-PLS and PLS-DA from the package plsgenomics,
SGPLS, SPLS-log and SPLS-DA from the packagespls, GLMNET from
the package glmnet.

A.5 Complements on the simulation study

A.5.1 Simulation design

We consider a predictor matrix X of dimension n × p, with n = 100

fixed, and p = 100, 500, 1000, 2000, so that we examine low and high
dimensional models. To simulate redundancy within predictors, X is
partitioned into k∗ blocks (10 or 50 in practice) denoted by Gk for block
k. Then for each predictor j ∈ Gk ,Xij is generated depending on a latent
variable Hk as Xij = Hik + Fij , with Hik ∼ N (0, σ2

H) and some
noise Fij ∼ N (0, σ2

F ). The correlation between the blocks is regulated
by σ2

H , the higher σ2
H the less dependency. In the following we consider

σH/σF = 2 or 1/3.
The true vector of predictor coefficients β∗ is structured according to

the blocksGk in X. Actually, `∗ blocks inβ∗ are randomly chosen among
the k∗ ones to be associated with non null coefficients (with `∗ = 1

or k∗/2). All coefficients within the `∗ designated blocks are constant
(with value 1/2). In our model, the relevant predictors contributing to the
response will be those with non zero coefficient, and our purpose will be
to retrieve them via selection. The response variable Yi for observation i is
sampled as a Bernoulli variable, with parameter π∗i that follows a logistic
model: π∗i = logit−1(xTi β

∗).
For our method, the parameter values that are tuned by cross-validation

are the following: the number of components K varies from 1 to 10,
candidate values for the Ridge parameter λR in RIRLS are 31 points that
are log10-linearly spaced in the range [10−2; 103], candidate values for
the sparse parameter λs are 10 points that are linearly spaced in the range
[0.05; 0.95]. Other SPLS approaches (SGPLS and SPLS-log) only depend
on hyper-parameters (λs,K) for which candidate values are the same as
for our method. Regarding GLMNET, we let the procedure chooses by
itself the grid of hyper-parameters, as recommended by the authors in the
documentation.

A.5.2 Additional simulation results

Convergence. Tab. A.3 summarized the convergence of the different
methods (logit-SPLS, SGPLS and SPLS-log) during the cross-validation
procedure (including the tuning of K) on the simulations, depending on
the number of predictors p. Our approach logit-SPLS always converges
on contrary to other SPLS approaches for logistic regression.

Tab. A.2 summarized the convergence of the different methods on
the simulations, when fitting the model after tuning the hyper-parameters
(including K) by cross-validation, depending on the number p of
predictors. Again, our approach logit-SPLS always converges on contrary
to other SPLS approaches for logistic regression.

In addition, Tab. A.3 shows the percentage of convergence for the
different SPLS approaches across cross-validation repeated runs. We see a

Table A.1. Averaged percentage of model that converged during cross-
validation tuning of hyper-parameters for different values of p.

Method p = 100 p = 500 p = 1000 p = 2000

sgpls 37 34 33 33

spls-log 44 67 71 74

logit-spls 100 100 100 100

Table A.2. Averaged percentage of model fitting that converged over 75
simulations for different values of p. Hyper-parameters are tuned by cross-
validation.

Method p = 100 p = 500 p = 1000 p = 2000

gpls 66 59 61 56

sgpls 33 23 23 23

spls-log 84 52 39 32

logit-spls 100 100 100 100

Table A.3. Averaged precentage of runs that converged across repeated
cross-validations (tuning of all hyper-parameters, including K).

Method p = 100 p = 500 p = 1000 p = 2000

sgpls 37 34 33 33

spls-log 44 67 71 74

logit-spls 100 100 100 100

similar pattern as in Tab. A.2, only our method logit-SPLS almost certainly
converge.

Cross-validation stability. Fig. A.1 illustrates the stability of the cross-
validation procedure for the different SPLS approaches regarding the
number of components. Our approach logit-SPLS always choosesK = 1,
while other SPLS approaches mostly returnsK = 1. A first comment can
be made on the stability of the cross-validation procedure. Our approach
is also more stable regarding the choice of K compared to other SPLS
methods. A second comment is that, as explained in the manuscript,
the stability of the cross-validation is directly linked to convergence
of the method (c.f. Tab. A.2). Our method always converges on our
simulations and is thus more stable regarding cross-validation than other
SPLS approaches that do not converge most of the time and are less stable
when tuning hyper-parameters. In addition, based on these results, we
decided to set K = 1 and only tune the sparsity parameter λs and the
Ridge parameter λR when evaluating the performance of the different
approaches (Tab. 3 in the manuscript) to save computation time.

Prediction and selection Tabs. A.4, A.5 and A.6 collects the results
regarding performance in prediction and selection (sensitivity, specificity,
accuracy) for the different approaches compared in the simulation study,
and for data respectively simulated with p = 100, 500, 1000. These
results are consistent with the case p = 2000 presented in the manuscript.
In details, approaches that combines compression and variable selection
(sparse PLS) achieve better prediction performance than compression only
(PLS) or selection only (GLMNET) approaches. Regarding selection,
sparse PLS is generally better in term of selection sensitivity (true positive
rate) compared to GLMNET, which is too conservative. However, our
approach logit-SPLS seems to select less false positives compared to other
SPLS approaches, since the specificity is higher for a similar accuracy
level.



Adaptive Sparse PLS for Logistic Regression 13

logit.spls.adapt sgpls spls.log

p
=

1
0

0
p

=
5

0
0

p
=

1
0

0
0

p
=

2
0

0
0

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

K

P
ro

p
o

rt
io

n

Fig. A.1. Values chosen for K by cross-validation over repetitions for the different
SPLS approaches for different values of p (with n = 100) on simulated data.

Table A.4. Prediction error and selection sensitivity/specificity (if relevant)
when p = 100, for non-sparse or sparse approaches (delimited by the line).

Method
Prediction Selection Selection Selection

error sensitivity specificity accuracy

gpls 0.51 ± 0.30 / / /
pls-da 0.22 ± 0.08 / / /
logit-pls 0.20 ± 0.08 / / /

glmnet 0.17 ± 0.08 0.77 0.76 0.71
logit-spls 0.14 ± 0.07 0.78 0.86 0.83

sgpls 0.14 ± 0.07 0.86 0.77 0.83

spls-da 0.15 ± 0.07 0.88 0.75 0.83

spls-log 0.12 ± 0.07 0.87 0.75 0.82

Table A.5. Prediction error and selection sensitivity/specificity (if relevant)
when p = 500, for non-sparse or sparse approaches (delimited by the line).

Method
Prediction Selection Selection Selection

error sensitivity specificity accuracy

gpls 0.47 ± 0.31 / / /
pls-da 0.22 ± 0.08 / / /
logit-pls 0.19 ± 0.07 / / /

glmnet 0.18 ± 0.07 0.49 0.93 0.74
logit-spls 0.13 ± 0.07 0.69 0.85 0.80

sgpls 0.12 ± 0.06 0.81 0.76 0.81

spls-da 0.14 ± 0.07 0.82 0.75 0.81

spls-log 0.13 ± 0.06 0.83 0.77 0.81

Computation time. Tab. A.7 shows the averaged computation time for the
cross-validation runs of the different approaches on simulated data where
n = 100 and p = 100, 500, 1000, 2000. Each run was performed on
the cluster grid of the LBBE, equipped with standard multi-core CPU
with frequency between 2 and 2.5 GHz. For each method, each cross-
validation runs did used a single core of a single CPU for two reason: (i)

we did perform massive simultaneous runs on the cluster). (ii) It was a fare
basis for comparison, because the different packages that we used propose
different degrees of parallelization in their implementation. It is important

Table A.6. Prediction error and selection sensitivity/specificity (if relevant)
when p = 1000, for non-sparse or sparse approaches (delimited by the line).

Method
Prediction Selection Selection Selection

error sensitivity specificity accuracy

gpls 0.48 ± 0.31 / / /
pls-da 0.21 ± 0.07 / / /
logit-pls 0.18 ± 0.07 / / /

glmnet 0.17 ± 0.06 0.37 0.96 0.74
logit-spls 0.13 ± 0.06 0.66 0.85 0.80

sgpls 0.12 ± 0.06 0.80 0.77 0.81

spls-da 0.13 ± 0.06 0.82 0.75 0.81

spls-log 0.13 ± 0.06 0.83 0.75 0.81

Table A.7. Averaged computation time (in seconds) of cross-validation runs
on a single-core of a standard CPU, when considering simulated data where
n = 100 and p = 100, 500, 1000, 2000.

Method p = 100 p = 500 p = 1000 p = 2000

glmnet 4.69 4.85 5.39 6.59
logit-spls 72.98 223.13 452.21 706.86

sgpls 79.41 284.62 541.86 1103.32
spls-log 3.63 11.17 20.74 37.30

to note that our approach logit-SPLS can run on multi-core architecture,
which improves the results presented below.

GLMNET is the most efficient method because its implementation
relies on fortran and C codes, interfaced with R. SPLS-log is also quite
efficient (less than a minute in all cases). Indeed, it uses the glm function
from R that is encoded in C. However, as mentioned earlier and in the
paper, this function did encounter convergence issues in many cases. Our
method logit-SPLS is slower since the cross-validation takes between∼ 1

min. (when p = 100) and ∼ 11 min. (when p = 2000) in average.
We can make two comments here: (i) our approach needs to calibrate an
additional hyper-parameter λR, however this additional cost is reasonable
(a few minutes). (ii) The fast convergence of our approach ensures a lower
computation time compared to the SGPLS approach, despite the additional
hyper-parameter.

In addition, it can be noted that we are currently working on a C++
implementation of our algorithm, which is expected to speed up the
computations compared to the R implementation.

Eventually, Tab. A.8 presents the averaged computation time to fit a
single model for the different approaches on simulated data wheren = 100

and p = 100, 500, 1000, 2000. Each run was performed on the cluster
grid of the LBBE, equipped with standard multi-core CPU with frequency
between 2 and 2.5 GHz. For each method, each model fitting runs did used
a single core of a single CPU.

All methods are computationally efficient to fit a single model, except
for SGPLS. The non-convergence of this approach requires that the
algorithm iterates further, until the limit set by the users. It can be noted
that the cost of additional iterations in the case of SPLS-log is counter-
balanced by the efficient use of the glm function. However, it does not
guarantee its convergence (c.f. previously).
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Table A.8. Averaged computation time (in seconds) of a single fit run on
a single-core of a standard CPU, when considering simulated data where
n = 100 and p = 100, 500, 1000, 2000.

Method p = 100 p = 500 p = 1000 p = 2000

glmnet 0.01 0.03 0.06 0.11
logit-spls 0.05 0.17 0.35 0.60

sgpls 0.89 3.70 7.86 17.92
spls-log 0.03 0.09 0.19 0.40

A.6 Complements on the breast cancer data
analysis

A.6.1 Computation details

We applied the methods GLMNET, logit-PLS, logit-SPLS (adaptive or
not), SGPLS and SPLS-log to our data set. We fit each model over a
hundred resamplings, where observations are randomly split into training
and test sets with a 70%/30% ratio. For the prediction task, on each
resampling, the parameter values of each method are tuned by 10-fold
cross-validation on the training set, respecting the following grid (for our
method logit-SPLS) K ∈ {1, . . . , 8}, candidate values for the Ridge
parameter λR in RIRLS are 31 points that are log10-linearly spaced in
the range [10−2; 103], candidate values for the sparse parameter λs are
10 points that are linearly spaced in the range [0.05; 0.95]. Other SPLS
approaches (SGPLS and SPLS-log) only depend on hyper-parameters
(λs,K) for which candidate values are the same as for our method.
Regarding GLMNET, we let the procedure chooses by itself the grid of
hyper-parameters, as recommended by the authors in the documentation.

A.6.2 Stability selection

Hyper-parameter grid. In the study of the stability selection on the breast
cancer data set, regarding our approach logit-SPLS, as a basis, we use
the same grid Λ of candidates values for (λs, λR,K) as in the cross-
validation case (c.f. section A.6.1). As stated in the manuscript, the grid is
then reduced to control the false positive expected number. For other SPLS
approaches, we apply the same procedure, based on the grid (λs,K).
Regarding GLMNET, the grid of candidate values for the penalty parameter
is chosen by the procedure itself, but then we apply the same framework
to extract the set of stable selected variables (as detailed in the manuscript,
section 2.4).

Selected genes. The overlap between the genes selected by the different
approaches based on the stability selection procedure (for a threshold
πthr = 0.75) are given in Fig. A.2. We can make two comments: (i)

The 28 genes selected by GLMNET are all retrieved by our approach
logit-SPLS (over 133 selected genes). In addition, genes with higher
selection score (i.e. maximum estimated probability to be selected) are
the same between the two methods (c.f. Tabs. A.9 and A.10). Thus, the
selection procedure based on our logit-SPLS method is consistent with our
baseline GLMNET. (ii) Genes selected by other SPLS-based approaches
(SPLS-log and SGPLS) are not consistent with the ones selected by
GLMNET nor by logit-SPLS. On the contrary, they select 50 common
genes over respectively 58 and 70 selected genes for SPLS-log and SGPLS.
However, the reliability of these results is questioned because of the non-
convergence of these two methods (c.f. Tab. 4 in the manuscript). It can
be noted that similar observations (consistency between logit-SPLS and
GLMNET, SPLS-log and SGPLS are different) can be made for other level
of probability threshold πthr.

Tabs. A.9 and A.10 give the list of genes that were selected respectively
by GLMNET and logit-SPLS thanks to the stability selection procedure

logit.spls glmnet

4867

0105 28

sgpls glmnet

4910

2062 8

sgpls logit.spls

4809

12158 12

spls.log glmnet

4917

2555 3

spls.log logit.spls

4813

12954 4

spls.log sgpls

4922

208 50

Fig. A.2. Overlap between the genes selected by the different methods thanks to the
stability selection procedure, when taking a threshold πthr = 0.75.

applied to the breast cancer data set (in particular to the 5000 most
differentially expressed genes between the two conditions relapse or
not). Genes are identified by their ProbeID on Affymetrix U133-
Plus2.0 chip (c.f. Guedj et al., 2012). Gene identification (Symbool,
Entrezid and Name) is recovered thanks to the annotate and
hgu133plus2.db R-package, that are available on Bioconductor
(https://www.bioconductor.org). Some ProbeID were not
identified and correspond to blank line. On contrary, other ProbeID seem
to correspond to two genes and are present twice.

A.7 Sparse PLS for multi-group classification
We generalize our approach to a multi-categorical response. This problem
is known as multinomial logistic regression or polytomous regression
(McCullagh and Nelder, 1989) and will be called multinomial sparse PLS
in the sequel.

A.7.1 Multinomial logistic regression

The response yi takes its values in a discrete set {0, . . . , G} corresponding
to G + 1 groups or classes of observations. The associated variable Yi
(i = 1, . . . , n) follows a multi-categorical distribution where P(Yij =

g |xi) = πig for any class g. Based on a direct generalization of the
logistic model, a class of reference is set (generally the class 0) and for
each class g 6= 0, the probability πig that Yi = g depends on a linear
combination of predictor such as:

log

(
πig

πi0

)
= zTi βg , (A.9)

with a specific vector of coefficient βg ∈ Rp+1 for each class g =

1, . . . , G. Indeed, the probabilities (πig)g=1:G determine the probability
πi0 since

∑G
g=0 πig = 1. A column of 1s is added in the matrix Z
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Table A.9. List of the 28 genes selected by GLMNET thanks to the stability selection procedure (at threshold πthr = 0.75) on the breast
cancer data set. Genes are sorted by selection score (maximum estimated probability to be selected). Genes are identified by their ProbeID
on Affymetrix U133-Plus2.0 chip.

PROBEID SYMBOL ENTREZID GENE NAME Selection score

217048_at 0.99
1553561_at TAS2R50 259296 taste 2 receptor member 50 0.97
233227_at KIAA1109 84162 KIAA1109 0.97
218307_at RSAD1 55316 radical S-adenosyl methionine domain containing 1 0.97
241034_at GLS 2744 glutaminase 0.97
211870_s_at PCDHA3 56145 protocadherin alpha 3 0.95
211870_s_at PCDHA2 56146 protocadherin alpha 2 0.95
1561665_at LOC100421171 100421171 thyroid hormone receptor interactor 11 pseudogene 0.95
216738_at 0.92
236899_at 0.91
227240_at NGEF 25791 neuronal guanine nucleotide exchange factor 0.91
234739_at 0.91
1560522_at DLGAP1-AS3 201477 DLGAP1 antisense RNA 3 0.89
1554988_at SLC9C2 284525 solute carrier family 9 member C2 (putative) 0.86
217360_x_at IGHA1 3493 immunoglobulin heavy constant alpha 1 0.85
217360_x_at IGHG1 3500 immunoglobulin heavy constant gamma 1 (G1m marker) 0.85
217360_x_at IGHG3 3502 immunoglobulin heavy constant gamma 3 (G3m marker) 0.85
217360_x_at IGHM 3507 immunoglobulin heavy constant mu 0.85
217360_x_at IGHV4-31 28396 immunoglobulin heavy variable 4-31 0.85
229485_x_at SHISA3 152573 shisa family member 3 0.85
239052_at 0.85
242870_at 0.84
228776_at GJC1 10052 gap junction protein gamma 1 0.83
244849_at SEMA3A 10371 semaphorin 3A 0.83
217391_x_at 0.82
229215_at ASCL2 430 achaete-scute family bHLH transcription factor 2 0.82
235945_at 0.82
1554708_s_at SPATA6L 55064 spermatogenesis associated 6 like 0.79
208777_s_at PSMD11 5717 proteasome 26S subunit, non-ATPase 11 0.79
213651_at INPP5J 27124 inositol polyphosphate-5-phosphatase J 0.78
225792_at HOOK1 51361 hook microtubule tethering protein 1 0.78
1570136_at 0.76
1560692_at VSTM2A-OT1 285878 VSTM2A overlapping transcript 1 0.75
1560692_at VSTM2A 222008 V-set and transmembrane domain containing 2A 0.75

to incorporate the intercept in the linear combination zTi βg . The log-
likelihood can be be explicitly formulated:

logL
(
β
)

=

n∑
i=1


G∑
g=1

yig zTi βg − log
(

1 +
∑G
g=1 exp(zTi βg)

) ,

(A.10)
where the binary variable yig = 1{yi=g} indicates the class of the
observation i (1{A} is the indicator function valued in {0, 1}, indicating
if the statementA is true (1) or false (0).)

It is possible to rearrange the data in order to formulate a vectorized
version of the loss (A.10), and express the multinomial logistic regression
as a logistic regression of a binary response Y ∈ {0, 1}nG against a
matrix of rearranged covariatesZ ∈ RnG×(p+1)G. The response vector
Y of length nG is defined as follows:

Y =
(

(y1g)g=1:G, . . . , (yig)g=1:G, . . . , (yng)g=1:G

)T
,

where yig = 1{yi=g} as previously mentioned. The new covariate matrix
Z of dimension nG× (p+ 1)G is defined by blocks as:

Z =
[
ZT1 , . . . ,ZTi , . . . ,ZTn

]T
,

where each block i is constructed byG diagonal repetitions of the row x̃i
from the original covariate matrix Z, i.e.

Zi =


1 xi1 . . . xip 0

. . .
0 1 xi1 . . . xip


G repeats of row zTi .

The coefficient vectors βg ∈ Rp+1 (for g = 1, . . . , G) are also
reorganized in the vector B ∈ R(p+1)G as:

B =
(

(β0g)g=1:G, . . . , (βjg)g=1:G, . . . , (βpg)g=1:G

)T
,

where (βjg)j=0:p are the coordinates of βg , so that the response Y
depends on the linear combination ZB.

Thanks to this reformulation, it is possible to adapt the Ridge IRLS
algorithm to estimate the coefficients B and infer the probabilities πig that
observations yi belongs to the class g. The algorithm that we call MRIRLS
is detailed in Fort et al. (2005).

A.7.2 Multinomial SPLS

The vectorized formulation of the MIRLS algorithm allows to use our
SPLS-based dimension reduction approach. As in the binary case, the
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Table A.10. List of the top 50 genes (over 133) selected by logit-SPLS thanks to the stability selection procedure (at threshold πthr = 0.75) on
the breast cancer data set. Genes sorted by selection score (maximum estimated probability to be selected). Genes are identified by their ProbeID
on Affymetrix U133-Plus2.0 chip.

PROBEID SYMBOL ENTREZID GENE NAME Selection score

1553561_at TAS2R50 259296 taste 2 receptor member 50 1.00
218307_at RSAD1 55316 radical S-adenosyl methionine domain containing 1 1.00
1560522_at DLGAP1-AS3 201477 DLGAP1 antisense RNA 3 0.99
217048_at 0.99
211870_s_at PCDHA3 56145 protocadherin alpha 3 0.99
211870_s_at PCDHA2 56146 protocadherin alpha 2 0.99
233227_at KIAA1109 84162 KIAA1109 0.99
220098_at HYDIN 54768 HYDIN, axonemal central pair apparatus protein 0.98
220098_at HYDIN2 100288805 HYDIN2, axonemal central pair apparatus protein (pseudogene) 0.98
234739_at 0.98
1561665_at LOC100421171 100421171 thyroid hormone receptor interactor 11 pseudogene 0.97
216738_at 0.97
241034_at GLS 2744 glutaminase 0.97
227240_at NGEF 25791 neuronal guanine nucleotide exchange factor 0.97
1554988_at SLC9C2 284525 solute carrier family 9 member C2 (putative) 0.95
1560692_at VSTM2A-OT1 285878 VSTM2A overlapping transcript 1 0.95
1560692_at VSTM2A 222008 V-set and transmembrane domain containing 2A 0.95
217360_x_at IGHA1 3493 immunoglobulin heavy constant alpha 1 0.95
217360_x_at IGHG1 3500 immunoglobulin heavy constant gamma 1 (G1m marker) 0.95
217360_x_at IGHG3 3502 immunoglobulin heavy constant gamma 3 (G3m marker) 0.95
217360_x_at IGHM 3507 immunoglobulin heavy constant mu 0.95
217360_x_at IGHV4-31 28396 immunoglobulin heavy variable 4-31 0.95
236899_at 0.95
239052_at 0.95
242870_at 0.95
228507_at PDE3A 5139 phosphodiesterase 3A 0.95
229081_at SLC25A13 10165 solute carrier family 25 member 13 0.95
1562030_at LOC284898 284898 uncharacterized LOC284898 0.94
227379_at MBOAT1 154141 membrane bound O-acyltransferase domain containing 1 0.94
225792_at HOOK1 51361 hook microtubule tethering protein 1 0.93
234792_x_at IGHA1 3493 immunoglobulin heavy constant alpha 1 0.93
234792_x_at IGHV4-31 28396 immunoglobulin heavy variable 4-31 0.93
244849_at SEMA3A 10371 semaphorin 3A 0.93
217697_at 0.93
1556937_at 0.92
1569126_at CCNC 892 cyclin C 0.92
228776_at GJC1 10052 gap junction protein gamma 1 0.92
229485_x_at SHISA3 152573 shisa family member 3 0.92
232920_at KIAA1656 85371 KIAA1656 protein 0.92
232920_at CCDC157 550631 coiled-coil domain containing 157 0.92
1563057_at 0.91
1568666_at PLIN5 440503 perilipin 5 0.91
1570116_at 0.91
238824_at RPS29 6235 ribosomal protein S29 0.91
243583_at 0.91
206349_at LGI1 9211 leucine rich glioma inactivated 1 0.91
211064_at ZNF493 284443 zinc finger protein 493 0.91
231913_s_at BRCC3 79184 BRCA1/BRCA2-containing complex subunit 3 0.91
1570136_at 0.89
206202_at MEOX2 4223 mesenchyme homeobox 2 0.89

MIRLS algorithm (penalized by Ridge) produces a continuous pseudo-
response (at the convergence) that is suitable for the sparse PLS regression.
Thus, our approach, called multinomial-SPLS, directly extends our
algorithm logit-SPLS to the multinomial logistic regression. It estimates
the linear coefficients B by sparse PLS, processing compression and
variable selection simultaneously. Then, these estimated coefficients are
used to get an estimation of the probabilities πig . Our procedure is directly

inspired from the approach by Fort et al. (2005) that extended the algorithm
logit-PLS (Fort and Lambert-Lacroix, 2005) to the multi-categorical cases.

In this context, the SPLS step considers: i) the pseudo-response
ξ ∈ RnG constructed from the reformulated response Y , ii) the centered
version Xc of the modified covariate matrix X defined by:

X =
[
XT1 , . . . ,XTi , . . . ,XTn

]T
,
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where each block i is constructed byG diagonal repetitions of the row x̃i
from the original covariate matrix X, i.e.

Xi =


xi1 . . . xip 0

. . .
0 xi1 . . . xip


G repeats of row xTi .

It corresponds to the matrix Z where the terms 1 corresponding to the
intercept have been removed. Thus, the coefficients (β0g)g=1:G are
estimated afterward. These coefficients are ultimately used to compute
the class membership probabilities for each observation, following the
model (A.9). In prediction task, an observation is assigned to the class
with the highest predicted probability.

At this point, we mention that the error rate that we consider in this
case (especially for tuning of hyper-parameters byV -fold cross-validation,
with V = 5 or 10) is the standard error rate, i.e. the proportion of overall
mismatches, that previously used in the plsgenomics R-package for
multi-class PLS classification.

A.7.3 SPLS components

Since the sparse PLS is applied on the modified covariate matrix X ∈
RnG×pG, the constructed SPLS components represent the matrix X in
a lower dimensional subspace, and not the original matrix X. However,
it is possible to obtain a low dimensional representation of the original
covariates. Indeed, thanks to the construction of the matrix X , the SPLS
weight vectors wk ∈ RpG are partitioned as follows:

wk =
(

(wkj1)j=1:p, . . . , (w
k
jg)j=1:p, . . . , (w

k
jG)j=1:p

)T
,

for k = 1, . . . ,K. Thus when multiplying the original predictor matrix
X by the weights matrix

[
(wkjg)j=1:p

]
k=1:K

∈ Rp×K , we obtain
a representation of the observations in a lower dimensional space of
dimension K, as a matrix Tg ∈ Rn×K . The matrix Tg represents the
directions that discriminate the class g versus the class reference 0.

A.7.4 State-of-the-art

It can be noted that Ding and Gentleman (2005) presented a version of the
GPLS method suitable for multinomial logistic regression, i.e. the linear
regression inside the iteration of the MIRLS algorithm are processed by
weighted PLS regression. Chung and Keleş (2010) introduced a similar
algorithm based on sparse PLS (extension of the SGPLS algorithm).
However, we used exclusively our multinomial SPLS algorithm in the

data analysis. Indeed, based on the conclusions from the binary case, our
approach showed better results regarding prediction performance on an
experimental data set. Moreover, the dimension of the data is drastically
increased because of the rearrangement since the number of observations
becomes nG and the number of covariates becomes pG. It is therefore
necessary to account for the computational cost and to give priority to
computationally efficient methods. In particular, thanks to the Ridge
penalty, we showed that our approach converges quickly, hence reducing
the time of computation.

A.8 Complements on the single T cell data
analysis

A.8.1 Computation details

On each resampling, the parameter values of each method are tuned by
10-fold cross-validation on the training set, respecting the following grid
K ∈ {1, . . . , 4}, candidate values for the Ridge parameter λR in RIRLS
are 10 points that are log10-linearly spaced in the range [10−2; 103],
candidate values for the sparse parameter λs are 10 points that are linearly
spaced in the range [0.05; 0.95].

A.8.2 Additional results single cell data analysis

Training in the first step of prediction. The manual identification of cells is
mainly based on the level of the CCR7 markers. The identified cells mostly
correspond to the most extreme values of CCR7 level. The set of manually
identified cells constitutes the training set for the first step of prediction
based on multinomial sparse PLS. Fig. A.3 illustrates the representation
of the cells in the training set according to the first two PLS components.
The distinction between the reference class (“CM”) and both classes from
the group of “Effector” cells (“EM” and “TEMRA”) is clearly apparent in
the latent subspace, since there is an important gap between the different
groups of cells. It confirms that the cells in the training set correspond to
the most extreme phenotypes that appear clearly different.

Genes selection by sparse PLS. The genes that are selected by the
multinomial-SPLS during the second round of prediction (as explained in
the manuscript) are the following: “CCL4”, “CCR7”, “CST7”, “GNLY”,
“GZMB”, “KLRD1”, “LTB”, “S100A4”. These genes have been identified
as genes involved in the phenotype (“Effector” or “Memory”) of T-cells
(Wherry et al., 2007; Willinger et al., 2005b). In particular, “CCR7”
and “LTB” are associated to “Memory” cells, while “CCL4”, “CST7”,
“GNLY”, “GZMB” and “KLRD1” characterized “Effector” cells.
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Fig. A.3. Cell scores on the first two PLS components in the latent space that discriminate between the reference class (“CM”) and each other class separately (“EM”, “TEMRA”
and “TSCM” respectively, from left to right). Restriction to the T cells in the training set before the first prediction step.


