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Abstract. Cities currently covering only a very small por-
tion (< 3 %) of the world’s land surface directly release to
the atmosphere about 44 % of global energy-related CO2,
but they are associated with 71–76 % of CO2 emissions from
global final energy use. Although many cities have set vol-
untary climate plans, their CO2 emissions are not evaluated
by the monitoring, reporting, and verification (MRV) proce-
dures that play a key role for market- or policy-based miti-
gation actions. Here we analyze the potential of a monitor-
ing tool that could support the development of such proce-
dures at the city scale. It is based on an atmospheric inver-
sion method that exploits inventory data and continuous at-
mospheric CO2 concentration measurements from a network
of stations within and around cities to estimate city CO2
emissions. This monitoring tool is configured for the quan-
tification of the total and sectoral CO2 emissions in the Paris
metropolitan area (∼ 12 million inhabitants and 11.4 TgC
emitted in 2010) during the month of January 2011. Its per-
formances are evaluated in terms of uncertainty reduction
based on observing system simulation experiments (OSSEs).
They are analyzed as a function of the number of sampling
sites (measuring at 25 m a.g.l.) and as a function of the net-
work design. The instruments presently used to measure CO2
concentrations at research stations are expensive (typically
∼EUR 50 k per sensor), which has limited the few current
pilot city networks to around 10 sites. Larger theoretical net-
works are studied here to assess the potential benefit of hy-
pothetical operational lower-cost sensors. The setup of our
inversion system is based on a number of diagnostics and
assumptions from previous city-scale inversion experiences

with real data. We find that, given our assumptions underly-
ing the configuration of the OSSEs, with 10 stations only the
uncertainty for the total city CO2 emission during 1 month
is significantly reduced by the inversion by ∼ 42 %. It can be
further reduced by extending the network, e.g., from 10 to
70 stations, which is promising for MRV applications in the
Paris metropolitan area. With 70 stations, the uncertainties
in the inverted emissions are reduced significantly over those
obtained using 10 stations: by 32 % for commercial and res-
idential buildings, by 33 % for road transport, by 18 % for
the production of energy by power plants, and by 31 % for
total emissions. These results indicate that such a high num-
ber of stations would be likely required for the monitoring
of sectoral emissions in Paris using this observation–model
framework. They demonstrate some high potential that at-
mospheric inversions can contribute to the monitoring and/or
the verification of city CO2 emissions (baseline) and CO2
emission reductions (commitments) and the advantage that
could be brought by the current developments of lower-cost
medium precision (LCMP) sensors.

1 Introduction

At the 2010 Cancun summit, parties from the United Na-
tions Framework Convention on Climate Change (UNFCCC)
agreed to set up a target of keeping global warming un-
der 2 ◦C compared to pre-industrial levels (UNFCCC, 2011;
Meinshausen et al., 2009; Ciais et al., 2013). Shah et
al. (2013) showed that this 2 ◦C global warming target is eco-
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nomically and technically feasible, albeit demanding a mit-
igation of the greenhouse gas (GHG) emissions across all
sectors of anthropogenic activities. Many developed and de-
veloping countries consequently have made commitments to
reduce their emissions under the UNFCCC. National com-
mitments focus on the land use sector or on economy-wide
activities such as electricity production and industrial pro-
cesses. There is, however, a gap between these commitments
and the requirements on emission reductions (often referred
to as “emission gap”) for achieving the 2 ◦C global warming
target (UNEP, 2013).

Cities occupy less than 3 % of the world’s land surface
(Liu et al., 2014), but directly release about 44 % of the
global energy-related CO2 and are responsible for 71–76 %
of CO2 emissions from global final energy use (Seto et al.,
2014). This urban share of the anthropogenic emissions will
continue to increase in the context of an accelerating urban-
ization process (IEA, 2008). The global urban population has
grown from 746 million in 1950 to 3.9 billion in 2014, and
it is expected to grow by 2.5 billion people by 2050, with
nearly 90 % of them living in Asia and Africa (UN, 2014).

City mitigation options, such as the improvement of pub-
lic transportation infrastructures using mass and rapid tran-
sit systems, of building retrofits, and of energy/waste recy-
cling, and the development of district heating/cooling plants
(Sugar and Kennedy, 2013; Erickson and Tempest, 2014) can
significantly contribute to bridging the emission gap. This
plausible additional city contribution could cover ∼ 15 %
of the total emission reduction required to reach the 2 ◦C
global warming target and represents up to two-thirds of the
level of emission reduction covered by the national com-
mitments (Erickson and Tempest, 2014). Large urban areas
have a strong potential to decrease per capita CO2 emissions
for some important sectors (e.g., transportation and heat-
ing) where clusters of population and economic activities can
share common infrastructures (Bettencourt et al., 2007; Dod-
man, 2009; Glaeser and Kahn, 2010; CDP, 2012).

Thousands of cities declared to be willing to take actions
to report and reduce their CO2 emissions (Rosenzweig et al.,
2010; Reckien et al., 2013). Such efforts can decrease their
climate vulnerability and foster co-benefits in terms of air
quality, energy access, public health, and city livability (Seto
et al., 2014). They may also foster significant local economic
development through advances in green technology. For in-
stance, the London low-carbon environmental goods and ser-
vices sector is estimated to have generated more than USD 25
billion revenue for 2011/12 (BIS, 2013).

To check whether claimed reduction targets are fulfilled,
the present-day city emissions have to be known accurately
to define a baseline upon which reductions are defined, and
these emissions will have to be monitored over time dur-
ing the agreed-upon reduction period. Such quantification
of emissions and emission reduction echoes the concept of
monitoring, reporting, and verification (MRV) that is the cor-
nerstone of most market- or policy-based mechanisms in cli-

mate economy (Bellassen and Stephan, 2015). It ensures that
the mitigation actions are properly monitored and reported
and that the mitigation outcomes can be verified. The MRV
has been widely applied in many contexts such as projects,
organizations, policies, sectors, or activities within territories
(see Bellassen and Stephan, 2015, and references therein).
For diverse applications, MRV can rely upon different stan-
dards but requires transparency, quality, and comparability
of information about emission accounting and the mitigation
action implementations.

The first urban mitigation actions relevant for MRV are
those whose impacts are relatively easy to measure, e.g.,
projects and Programmes of Activities under the Clean De-
velopment Mechanism as well as efforts on emission reduc-
tions for large factories and buildings under the Tokyo Emis-
sion Trading Scheme (ETS) (Clapp et al., 2010; IGES, 2012;
Marr and Wehner, 2012; UNEP, 2014). However, there is
a lack of technical capacity for accurate accounting of dif-
fuse sources, e.g., transportation and residential buildings.
This lack of capacity makes MRV for citywide emissions
challenging (Wang-Helmreich et al., 2012; UNEP, 2014) and
may hinder citywide mitigation implementation in the ab-
sence of strong political will, sufficient institutional gov-
ernance and financial support. Hitherto MRV practices for
urban mitigation actions are still limited and the majority
of sources within the city territory remain uncovered. For
instance, the Tokyo ETS – the most advanced urban ETS
scheme – only regulates less than 20 % of the city total emis-
sions (TMG, 2010). In this context, there is a keen need to
scale up policy instruments and market mechanisms to bet-
ter support citywide mitigation actions (World Bank, 2010;
Wang-Helmreich et al., 2012; The Gold Standard, 2014).
This gap may be reduced by new mechanisms such as the
Nationally Appropriate Mitigation Actions (NAMAs; recent
move to raise pre-2020 emission reduction ambitions by in-
creasing access to climate financing) and the new market-
based mechanism (NMM; currently in negotiation for post-
2020 carbon financing about crediting and trading of mitiga-
tion outcomes). Both mechanisms are designed under UN-
FCCC to increase the flexibility of mitigation actions so
that broader segments of economy or policy-making can be
included in developed and developing countries (Howard,
2014; UNEP, 2014). Based on estimates of emissions from
the major sectors, a conceivable approach would be to set up
overall city mitigation targets and then negotiate specific tar-
gets for individual sectors or groups of sources. Empowered
by city-scale MRV (see UNEP, 2014, for current develop-
ments), city mitigation implementation could be (1) credited
or traded under designed mechanisms and (2) registered for
receiving international aide through climate finance. How-
ever, ultimately, all these provisions for citywide mitigation
actions and their MRV necessitate the availability of accurate
emission accounting methods.

The emission accounting methods that are usually sug-
gested are inventories based on statistical data (World Bank,
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2010; Wang-Helmreich et al., 2012). Developing city-scale
inventories, and updating them over time, involves exten-
sive collection of consistent and comparable emissions data,
which measure the level of activities (e.g., energy use statis-
tics or, in a more sector-specific manner, kilometers driven
by vehicles and volume of waste provided to landfill) and the
activity-to-carbon conversion rates (i.e., emission factor). In
the past, cities have followed diverse guidelines or protocols
for emission inventory compilation, and recently there is a
trend of centralization, e.g., with the newly proposed Global
Protocol for Community-Scale Greenhouse Gas Emission
Inventories (GPC; Fong et al., 2014) and the UNFCCC re-
porting platform NAZCA (climateaction.unfccc.int). Admit-
tedly, inventories of city emissions are known to suffer from
incomplete and uncertain data (see Appendix A for a brief
review of city inventories). For instance, there is usually a
lack of precise statistics regarding the total amount of fossil
fuel that has been consumed within the cities. This limita-
tion impedes the practical use of city inventories in climate
economy.

An improved emission accounting could rely on contin-
uous atmospheric measurements of CO2 concentrations by
networks of stations around and within cities. Indeed, ac-
curate measurement of the atmospheric signals, e.g., the
CO2 concentration gradients, provides information about
the emissions that is independent from the inventories. The
statistical method known as atmospheric inversion, which
has been used for decades for improving the knowledge
of global and continental scale natural CO2 fluxes (Enting,
2002; Bousquet et al., 2000; Gurney et al., 2002; Peters et
al., 2007; Chevallier et al., 2010; Broquet et al., 2013), can
be used to exploit atmospheric measurements for quantify-
ing CO2 emissions at the city scale (McKain et al., 2012;
Kort et al., 2013; Lauvaux et al., 2013; Hutyra et al., 2014;
Bréon et al., 2015). The principle of an inversion is to com-
bine information from inventory data with atmospheric CO2
measurements to deliver improved emission estimates, i.e.,
estimates with a reduced uncertainty, compared to the prior
inventory. An inversion generally uses a 3-D model of at-
mospheric transport to relate emissions to observations. In
just a few years, a number of city atmospheric CO2 measure-
ment networks have been deployed for pilot studies. Exam-
ples of cities where such networks have been deployed are
Toronto (with 3 sites), Paris (with 5 sites), Recife (with 2
sites), Sao-Paulo (with 2 sites), Salt Lake City (∼ 7 sites),
Los Angeles (∼ 10 sites), and Indianapolis (with 12 sites).
This creates a need to better document the theoretical poten-
tial of atmospheric inversions to monitor emissions and their
changes or to independently verify inventories, with a qual-
ity relevant for city MRV applications. Urban emissions are
mainly connected to emissions from fossil fuel combustion,
as other sources of urban emissions such as biofuel uses are
usually very limited. Hence, for simplicity, we assume that
urban emissions are all from fossil fuel combustion in our
study.

Bréon et al. (2015), hereafter referred to as B15, used CO2
measurements from three stations in the Paris area and a
Bayesian inversion methodology to estimate CO2 fossil fuel
emissions in the Paris metropolitan area (the Île-de-France –
IDF – region, which has ∼ 12 million inhabitants) in winter
2010. The most resolved regional bottom-up inventory esti-
mates that this area emitted 11.4 TgC in 2010 (AIRPARIF,
2013), an amount equivalent to∼ 12 % of the CO2 fossil fuel
emissions from the whole of France (Boden et al., 2013).
B15 did not attempt to estimate sectoral emissions separately
due to the very limited size of the measurement network they
used. They focused rather on quantifying total CO2 emis-
sions from the Paris urban area. Staufer et al. (2016) refined
the configuration of the inversion system of B15 and applied
it for a 1-year inversion of the Paris emissions.

In this paper, we assess the performance of atmospheric
inversion for the monitoring of total and sectoral fossil fuel
emissions in the Paris metropolitan area when using denser
networks, based on observing system simulation experiments
(OSSEs). The objective is to analyze the sensitivity of this
performance to the size and design (i.e., the location of the
stations) of such networks and thus to derive requirements
on the configuration of the atmospheric inversion to provide
different levels of accuracy on the estimates of the total and
sectoral city emissions. We base our inversion methodology
and the configuration of the OSSEs – notably the assimilation
of concentration gradients and the practical configuration of
the inversion parameters – on the system, expertise, and di-
agnostics documented in B15 and Staufer et al. (2016). The
use of much larger measurement networks still necessitates
some assumptions regarding the inversion framework and the
characterization of the sources of errors.

The CO2 measurement instruments presently used for at-
mospheric inversion in the scientific community are rather
expensive (typically ∼EUR 50 k per sensor), which ex-
plains the limited size of the existing city networks.
To bridge this data gap, national and European inno-
vation projects (e.g., http://www.climate-kic-centre-hessen.
org/miriade.html, MIRIADE-ANR: ANR-11-ECOT-0004)
have been proposed to test lower-cost (typically ∼EUR 1 k
per unit) sensors (called hereafter low-cost medium preci-
sion – LCMP – sensors) and to develop a corresponding cal-
ibration strategy which would enable the measurement of
CO2 concentrations with a precision and an accuracy that
would be acceptable for city-scale inversions (but maybe not
for other scales, for which more expensive instruments may
still be needed for the foreseeable future). This motivates our
tests, in this study, of networks with up to 70 sensors.

The principle of the inversion performance assessment, the
inversion methodology and the OSSE setup are described in
Sect. 2. The inversion results are analyzed in Sect. 3. Based
on these results, Sect. 4 discusses requirements on the con-
figuration of the observation network for achieving differ-
ent targets of accuracy in the estimates of total and sectoral
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Figure 1. Diagram of the principle of the city CO2 emissions inversion system and of the computation of uncertainties in the inverted
emission budgets. Note that there is no computation of x and y vectors in this OSSE study.

CO2 emissions from the Paris area. Conclusions are drawn
in Sect. 4.

2 Methodology

The principle and the configuration of our atmospheric inver-
sion system are close to those of B15. The general principle
is to estimate the emission budgets for different sectors of
anthropogenic activity, areas, and time windows, which al-
together constitute the total emissions of IDF for the month
of January 2011. It corrects a prior estimate of these emis-
sion budgets given by an inventory to better fit observed con-
centration gradients between pairs of sites along the wind
direction, in and around the Paris area, since such gradients
characterize the enhancement of atmospheric CO2 due to the
Paris emissions. An atmospheric transport model is used to
simulate the gradients corresponding to a given estimate of
the emissions.

The atmospheric inversion theory relies on a statistical
framework which accounts for the uncertainties in the prior
estimate of the emissions, in the transport model and in the
measurements, and which diagnoses the uncertainty in the
estimate of the inverted (“posterior”) emissions as a func-
tion of the observation location and time, of the atmospheric
transport, and of these prior model and measurement uncer-
tainties. This diagnostic is used in this study as a natural indi-
cator of the inversion performance. Since it depends neither
on the actual value of the observations that are assimilated
nor on the actual value of the prior estimate of the emissions
or the actual value of the corrections applied by the inversion
on the prior emission estimates, it allows conducting OSSEs
without generating synthetic gradient observations for the
hypothetical networks that are tested and without conduct-
ing practical emission estimates.

2.1 Theoretical framework of the Bayesian inversion

By Bayesian inversion, the information from an observation
vector y of CO2 concentration gradients is combined with a
prior estimate xb of the CO2 emissions budget for various
sectors, areas, and time windows (i.e., of the vector of pa-
rameters controlled by the inversion x, or “control vector”
hereafter) to provide an updated estimate of the control vec-
tor xa (Enting, 2002):

xa
= xb

+BHT (R+HBHT )−1
(
y − Hxb

)
, (1)

where H is a linear matrix operator linking y with x based
on the modeling of the spatial and temporal distribution of
the emissions at high resolution and the modeling of the at-
mospheric transport at high resolution. The uncertainties in
y,H and xb are assumed to have statistical distributions that
are Gaussian, unbiased, and independent of each other. The
linking of y with x in general suffers from some deficiencies
in the measuring instruments and the atmospheric modeling.
The sum of the measurement and model errors is called the
observation error, the covariance matrix of which is denoted
R. We denote B the error covariance matrix for the prior es-
timate of the control parameters. The uncertainty in the es-
timate xa given by Eq. (1) is Gaussian and unbiased and its
covariance matrix (which is “smaller” than B) is

A= (B−1
+HTR−1H)−1. (2)

The comparison between this posterior error covariance
matrix and the prior one, starting from realistic prior and ob-
servation error statistics, allows us to quantify the inversion
performance. We pay specific attention to the diagnostic of
the relative difference between the posterior and the prior un-
certainties for the total and sectoral budgets of the emissions
during the month of January 2011.

In the following sections, we detail each component of our
inversion system underlying Eq. (2) (see Fig. 1).

Atmos. Chem. Phys., 16, 7743–7771, 2016 www.atmos-chem-phys.net/16/7743/2016/
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2.2 Control vector

Our control vector x does not directly include emission bud-
gets, but rather scaling factors that are to be applied to the
emission budgets which are included in the observation op-
erator H. For the sake of simplicity, Fig. 1 presents the inver-
sion framework as if the emission budgets themselves were
controlled, which is quite equivalent to the strict implemen-
tation of the inversion system. Each scaling factor in x cor-
responds to the emission budget of a given spatial area of the
IDF domain, a given temporal window, and a given sector or
group of sectors of CO2-emitting activity. The correspond-
ing ensemble of areas, temporal windows, and sectors par-
titions the IDF domain, the month of January 2011, and the
full range of emitting activities, respectively. Hereafter, we
will call “control tile” the combination of an area, a temporal
window, and a sector (or group of sectors) associated with a
control parameter.

While it is desirable to solve for the emissions at high spa-
tial, temporal, and sectoral resolution, computational con-
straints, such as the inversion of B and (B−1

+HTR−1H)
in Eq. (2) and the computation of H which requires in prin-
ciple as many transport simulations as control parameters,
limit the size of the control vector x. We group the vari-
ous sectors provided by inventories (detailed in Sect. 2.4.1)
into seven groups of sectors (see Appendix A for de-
tails), namely (1) commercial and residential building heat-
ing/cooling, (2) road transport, (3) energy production (power
plants), (4) combustion and production processes in indus-
tries, (5) combustions from agricultural activities, (6) air-
line traffic, and (7) the remainder of all other sectors with
smaller emission budgets (e.g., railway, navigation, fugitive
emissions, and several minor production processes). These
seven sectors are labeled for short as building, road, energy,
production, agriculture, airline, and remainder, respectively.

In order to save computations, for the less important sec-
tors (isolated energy and production point sources, agricul-
ture, airline, and remainder), we consider that the spatial area
of control for the inversion is the whole IDF area. However,
for building and road emissions, we spatially partition IDF
into five zones for which the fluxes can be optimized: a cen-
tral zone (approximately the administrative definition of the
city of Paris, which is very densely populated) and four sur-
rounding areas (the northwestern, southwestern, northeast-
ern, and southeastern areas of the remaining IDF region, with
borders adapted to the distribution of the building and road
emissions; see Fig. 2).

Regarding the temporal partitioning, for the three sectors
which have the smallest budgets of emissions (agriculture,
airline, and remainder), the temporal resolution of the con-
trol vector is daily. For the four other sectors (building, road,
energy, and production), we refine the temporal resolution to
12 h and control separately the daytime (7–19 h) and night-
time (19–7 h) emissions for each day in order to account for
the large diurnal variations in the emissions.

Figure 2. Sectoral budgets of fossil fuel CO2 emissions from the
IER inventory for the five “control” zones (central Paris in dark blue
and four other surrounding areas in light blue) partitioning the IDF
region and for the month of January in 2011 (see the first seven rows
in Table 1 for sector specifications). The circle area is proportional
to the emission budge. The upper right largest circle shows the total
sectoral budgets for all the five areas of IDF. The red pentagons
shows the two airports CDG and Orly, and the purple triangles show
several large point emissions such as three EDF power plants and
the TOTAL Grandpuits refinery. Note that these five zones in blue
mark out the IDF region, but do not strictly follow the administrative
borders (black lines) within IDF.

Atmospheric CO2 observations are sensitive to
vegetation–atmosphere CO2 fluxes in addition to fossil
fuel CO2 emissions. For cities surrounded by vegetation or
containing green areas, the impact of vegetation–atmosphere
CO2 fluxes on city carbon balance can be significant. For
instance, Nordbo et al. (2012) extrapolated from their
measurements, that an 80 % green-area fraction would
approximately make cities carbon-neutral. In our inversions,
we account for the influence of the natural vegetation and
soil CO2 fluxes (or net ecosystem exchange, NEE) by
including, in the control vector, the scaling factors for the
budgets of NEE in the full modeling domain (see Sect. 2.4)
and for the four different 6 h windows of the day (i.e., 0–6 h,
6–12 h, 12–18 h, and 18–24 h local time) over different 5-day
periods during January 2011. The number of NEE scaling
factors included in the control vector is thus 24, and the total
number of scaling factors is 834 (see Table 1 for details).

2.3 Observations

We use an inversion system similar to that of B15, in which
observations are taken to be CO2 atmospheric concentra-
tion gradients between upwind and downwind stations (see
Sect. 2.4.3 for details). The use of concentration gradients
rather than concentrations cancels out the pervasive large-
scale influence from remote fluxes outside of the city do-
main well and informs about the local emissions between
upwind and downwind stations. B15 also suggested assimi-
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Table 1. Spatiotemporal resolutions of the sectoral control factors for inversions over 30-day periods (see the main text and Table A1 for
more information on aggregate sectors).

Control factors Spatial resolution Time resolution Number of factors

Building Five zone Daily daytime and nighttime 300
Road Five zones Daily daytime and nighttime 300
Energy One zone Daily daytime and nighttime 60
Production One zone Daily daytime and nighttime 60
Agriculture One zone Daily 30
Airline One zone Daily 30
Rest One zone Daily 30
NEE One zone 5-day period with four daily 6 h windows 24
– – – 834 (total)

Figure 3. Locations for the elliptical (E), random-even (R), and uni-
form (U) networks over IDF. The brown area marks out where the
population density is larger than 1250 people per km2. The E net-
work (green dots) consists of three rings surrounding the densely
populated urban area in brown. The U network (red crosses) ex-
tends to the regular grid points of the IDF domain. The site locations
of the R network are randomly selected, respectively, in three con-
centric areas: (1) the city center (the administrative “city of Paris”)
within the peripheral ring (coinciding with the smallest green ring),
(2) the suburban area (in brown) with central Paris clipped out, and
(3) the rest of IDF.

lating only afternoon gradients when the wind speed is above
a given threshold. By selecting afternoon gradients, we avoid
biases in the vertical mixing during nighttime, mornings, and
evenings when mesoscale transport models have difficulties
in representing the planetary boundary layer (Seibert et al.,
2000; Steeneveld et al., 2008). Selecting data for high wind
speed limits the signature in the atmospheric measurements
of local sources that are in the vicinity of the measurement
sites and that cannot be represented correctly by the transport
model.

For investigating the potential of the inversion as a func-
tion of the observation network, we consider three strategies
to deploy a given number of stations. These strategies de-
fine three corresponding types of networks: the elliptical (E),
uniform (U), and random-even (R) networks (Fig. 3). The E

networks surround emissions in the city center and appear
suitable to the assimilation of city downwind–upwind gra-
dients. The E networks consist in three concentric ellipses
or rings of stations around the main part of the Paris urban
area (the Paris administrative city and its three surrounding
administrative circumscriptions), encompassing almost the
whole urban area of IDF. The U networks position the sta-
tions on a regular grid. The R networks aim to balance the
position of stations near the city center and in the surround-
ing areas. The R networks thus have denser coverage over the
city center and fewer stations in the surrounding zones than
the U networks, but they still cover the whole IDF domain.
Apart from the E networks, the U and R networks have sta-
tions both close to the emissions in the Paris urban area and
in rural areas in its vicinity.

We assess the potential of the inversion when using these
networks of either 10, 30, 50, or 70 stations. For a given net-
work, the station locations are chosen as a subset of a pre-
defined set of 90 candidate locations, depending on the type
of network. For example, 14, 24, and 52 of the 90 candidate
stations for R networks are located in the urban center, the
suburban area, and the rural area, respectively. For a given
number of stations n, 10 networks are selected for the inver-
sion out of an ensemble of 100 networks that are generated
by randomly selecting n stations from the set of 90 candidate
locations. The selection of such sets of 10 networks is based
on ad hoc verifications that the station locations should be
evenly distributed in the urban, suburban, and rural areas as
would have been done for the design of real networks. This
selection limits the range of the random generation of net-
works to a set of sensible networks for which a further dis-
crimination should rely on the type of network performance
assessment that is conducted in this study. Figure 4 shows an
example of an R network of 10 stations resulting from the
above selection procedure. The design of current real city
networks is much influenced by administrative and technical
issues (e.g., agreements with potential hosts of the site and
ability to fix inlets at desired height). Here, as discussed in
more detail in Sect. 2.4.3, we assume that the measurements
are taken at 25 m a.g.l. at all stations. This simplifies these
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Figure 4. Selection of a subset of 10 sites (red triangles) from a
cloud of candidate locations for the R network to form smaller net-
works. The blue circles show the sites that are not selected from
available locations. The open circles/triangles present rural sites,
and the filled circles/triangles present urban sites. This figure also
shows how the wind direction selects candidates of upwind sites
for concentration gradient computations at a downwind station.
The blue arrow indicates the wind direction at that downwind sta-
tion. The two red triangles covered in the shadow area are candi-
date upwind sites according to the selection procedure detailed in
Sect. 2.4.3.

considerations for our practical inversion framework since
25 m a.g.l. is a common height of private and public buildings
in the Paris region. However, for many cities, the number of
buildings higher than 25 m a.g.l. is limited, which could raise
critical logistical issues for the deployment of networks with
a large number of sensors.

The strategy to properly combine stations from the dif-
ferent selected networks for city downwind–upwind gradi-
ent computation (and thus for the precise definition of the
observation vector) is detailed in Sect. 2.4.3 as part of the
description of the observation operator.

2.4 Observation operator

The observation operator H that links the scaling of surface
emission budgets to CO2 concentration gradients in the at-
mosphere can be decomposed into a chain of three operators
(H=H1H2H3; Fig. 1): the spatial and temporal distribution
of the CO2 fluxes within a corresponding control tile H1, the
atmospheric transport of CO2 given these spatial and tempo-
ral distributions of the fluxes H2, and a sampling of the re-
sulting simulated CO2 to be compared with the observations
H3.

H1 maps the scaling factors in the control vector to the
CO2 fluxes on the transport modeling grid. It uses an emis-
sion inventory and an ecosystem model simulation to pre-
scribe the small-scale spatiotemporal distribution of the grid-
ded CO2 fluxes. Applying H1 to a scaling factor uniformly
rescales the prescribed CO2 fluxes within each control tile

and thus adjusts the emission budget of that control tile. H2
is the mesoscale atmospheric transport model that maps the
gridded fluxes generated by H1 to simulations of the CO2
concentration fields on the transport model grid (at 2 to 10 km
horizontal resolution and 1h temporal resolution for a north-
ern France area encompassing the IDF region). H3 is a linear
algorithm that computes Paris downwind–upwind CO2 gra-
dients between measurement stations, extracting the obser-
vations from the CO2 field simulated by H2.

2.4.1 H1

The NEE simulations from C-TESSEL – the land surface
model of the short-range forecasts of the European Centre for
Medium range Weather Forecasts (ECMWF) at a spatiotem-
poral resolution of 15 km and 3 h (Boussetta et al., 2013) –
are interpolated to derive the distribution of NEE at the spa-
tiotemporal resolution of the atmospheric transport model.

We rely on an inventory of the French emissions from the
Institute of Energy Economics and the Rational Use of En-
ergy (IER) at the University of Stuttgart to derive the distri-
bution of sectoral fossil fuel CO2 emissions in IDF at a high
spatial resolution of 1 km× 1 km (Latoska, 2009). It disag-
gregates the annual emissions of France in 2005 (according
to the national inventory submissions 2007 from UNFCCC,
http://www.unfccc.int), making use of extensive data from
diverse databases for point, line, and area emissions and of
proxy information such as population and land cover maps.
As for the temporal distribution of the emissions, we apply
monthly, weekly, and hourly temporal profiles also produced
by IER to derive hourly emission maps. These temporal pro-
files are defined for France as functions of each sector but not
of the spatial location.

There are 51 sectors indexed by NFR code in the IER in-
ventory. We compute the emission budgets for all these 51
NFR sectors and re-aggregate them into the seven groups
of sectors defined in Sect. 2.2 (see Table A1). The emission
budget of the three major sectors (energy, road, and build-
ing) represents ∼ 84.4 % of total fossil fuel CO2 emissions
over IDF according to the IER inventory. Figure 2 shows,
for the seven sectors, the spatial distribution of the emissions
among the five distinct geographic zones of IDF that are used
to define the control tiles. The northwestern and southeast-
ern zones have more emissions than the other three zones,
mainly due to the presence of large point sources, e.g., the
EDF power plants and the TOTAL Grandpuits refinery (see
Figs. 2 and 5c). Building and road emissions, however, are
distributed rather evenly in space over the five zones. The
budgets of the emissions related to production (7.4 % of to-
tal), agriculture (3.7 %), airline (3.3 %), and remainder sec-
tors (1.2 %) are relatively small compared to that of the first
three sectors. Figure 5 shows the spatial distributions of the
emissions from the seven sectors derived for January based
on the IER inventory and on the temporal profiles from IER.
The IER inventory is not fully faithful to the actual emis-
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sions from IDF but, in principle, this has very limited impact
on the theoretical computation in our OSSE framework of
inversion.

2.4.2 H2

Following B15, we use the mesoscale atmospheric
chemistry-transport model CHIMERE (Menut et al.,
2013) to simulate the signature of CO2 fluxes in the atmo-
sphere over the IDF area. This model has successfully served
for air quality applications in megacities (Couvidat et al.,
2013; Zhang et al., 2013). The CHIMERE model domain in
this study, which is the same as that in B15, covers an area
of about 500× 500 km2 in northern France that is centered
on IDF. Its horizontal resolution is 2 km× 2 km over IDF
and its vicinity and 2 km× 10 km to 10 km× 10 km over the
rest of the domain (see Supplement Fig. S1). In total, there
are 118× 118 cells in the model horizontal grid. Vertically
there are 19 sigma-pressure (terrain-following) layers from
the surface up to 500 hPa. The top level of the first layer
is at about 25 m a.g.l., and there are at least six layers
below 250 m a.g.l. The meteorological fields driving the
CHIMERE simulations come from the ECMWF analyses at
15 km resolution. The CHIMERE modeling system prepares
meteorological data on its model grid by diagnosing sub-grid
processes, such as turbulent mixing and convection (Menut
et al., 2013). We use Global Land Cover Facility (GLCF)
land use data at 1 km× 1 km resolution for this diagnosis.
Simple urban parameterization is adopted to correct wind
speed in the surface layer taking into account the increased
roughness in the urban area (Menut et al., 2013), since B15
found no significant differences in the simulation of CO2
mole fractions when advanced urban scheme is used.

The exchange of CO2 between the CHIMERE 3-D re-
gional domain and the surrounding atmosphere depends on
the wind conditions from the ECMWF product and the CO2
concentrations at the domain boundaries. These exchanges
characterize the signature of remote fluxes outside the mod-
eling domain that impact the observed and simulated at-
mospheric CO2 in IDF. We need to account for these CO2
boundary concentrations and for the CO2 concentration field
at the initial date of the simulations (i.e., the CO2 initial
condition) when simulating concentrations, which is not the
case when applying the analytical computation of the uncer-
tainties in the inverted emissions budgets through Eq. (2).
When simulating CO2 concentration fields for the prelimi-
nary illustration of the CO2 variations in IDF in Sect. 2.4.3,
the boundary conditions are derived from the interpolation
of the global inversion product of Chevallier et al. (2010).
This product has a resolution of 3.75◦ (longitude)× 2.5◦ (lat-
itude), which gives about 2–3 cells at each CHIMERE do-
main lateral boundaries, yielding a smooth influence in both
space and time from the CO2 boundary conditions. The CO2
initial condition is built from the interpolation of CO2 given
by that global inversion product. We do not control these CO2

boundary and initial concentrations in our inversion system,
which explains why these components do not appear in the
computation of the posterior uncertainties given by Eq. (2).
However, as detailed in Sect. 2.5.2, uncertainties in these
conditions still impact the accuracy of the inversion and have
to be accounted for in the model uncertainty. Anthropogenic
emissions within the modeling domain but outside IDF are
not estimated in our inversions.

2.4.3 H3

For a given network, the operator H3 consists in a combi-
nation of three operations: the linear interpolation of con-
centrations from the transport model grid to the actual point
at which CO2 measurements are collected, the selection of
afternoon CO2 concentration data (12–17 h) at each station
(upwind or downwind) when the wind speed from the trans-
port model is higher than 3 m s−1 at the downwind sta-
tion, and the CO2 city downwind–upwind gradient computa-
tion. While B15 consider gradients between pairs of stations
downwind and upwind the full Paris urban area, this study
assesses the potential of assimilating gradients between sta-
tions that are located within either urban or rural area. The
gradients are thus representative of local urban emissions and
not necessarily of the citywide emissions as in B15. The as-
similation of all gradients should help better constrain the
spatial and sectoral distribution of the emissions.

In this synthetic study, we assume that the measurements
are taken continuously at the height of 25 m a.g.l. at all sta-
tions during the month of January 2011. This height can cor-
respond to the setup of these stations at the top of existing
buildings for which 25 m a.g.l. is a common height in the
Paris area. The deployment of large networks with up to 70
stations at this height would thus not have to rely on new in-
frastructures as if the targeted sampling height were signifi-
cantly higher (which would be a critical barrier for the practi-
cal implementation of the network). Local sources and trans-
port that are poorly represented with a 2 km resolution model
may have a large impact on the concentration measurements
at such a height. However, all real data assimilated by B15
were sampled at peri-urban stations at less than 25 m a.g.l.
By selecting the data during the afternoon only and for high
wind speeds, B15 limited such a local impact. Furthermore,
their diagnostic of the model error, which is used to setup the
OSSEs in this study (see Sect. 2.5.2), implicitly accounted
for this impact. Still, assimilating 25 m a.g.l. measurement
in the core of the urban area (which corresponds to a sig-
nificant number of the hypothetical sites investigated in this
study) is likely challenging due to the high density of strong
sources and to the complexity of the urban canopy, and this
had not been attempted by B15 even though they derived typ-
ical estimates of the model error for urban measurements (see
Sect. 2.5.2). This will be further discussed in Sect. 4.
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Figure 5. Sectoral and spatial distribution of the IER inventory over IDF for January 2011.

The CO2 gradient computation demands selecting pairs of
upwind and downwind stations. For each observation at a
given time, the station at which that observation is made is
first considered to be a downwind station. We then select,
for that observation, a matching observation at an upwind
station, based on the wind direction at the downwind sta-
tion (given by the ECMWF meteorological data, also used
to drive the CHIMERE model). We assume that the angle
between the direction from the upwind to the downwind sta-
tions and the wind direction at the downwind station is be-
tween ±11.25◦. The choice of such a range of angles for the
gradient selection is a trade-off between the need to select
enough data to constrain the inversion and the need to en-
sure that we do not depart too much from the objective of as-

similating “downwind–upwind” gradients. It is derived from
the study of Staufer et al. (2016) who analyzed the impact
of such a choice on the results of the inversion when using
real data. Figure 4 illustrates the principle of the gradient se-
lection by showing the wind direction for a downwind ob-
servation and the area that covers its corresponding upwind
stations.

We further assume that the distance between the upwind
and downwind stations should be larger than 5 km (to avoid
assimilating gradients that are mostly representative of local
sources) and as close as possible to 10 km. This 10 km dis-
tance would correspond to the advection of an air parcel dur-
ing 1 h with a wind speed of 3 m s−1 (i.e., our threshold on the
wind speed for the assimilation of gradients). Here, the gra-
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dient computation in the reference inversion ignores the time
lag needed to advect an air parcel from upwind to downwind
stations and it is based on the difference between simultane-
ous hourly mean observations. This explains why the 10 km
distance is seen as a good trade-off between the need for be-
ing representative of large-scale emissions and the need to
limit the impact of ignoring the time required for transporting
air masses from an upwind to a downwind site. We discard
the downwind observations for which no upwind station can
be found based on our selection rules. About 7–16 % of total
observations are retained for gradient computation with this
data selection procedure, depending on the size and type of
the networks.

Figure 6a shows statistics on the afternoon hourly
wind conditions at an example station EVE26 during Jan-
uary 2011, and Fig. 6b shows restriction of this statistics to
the wind conditions at EVE26 when EVE26 is selected as
a downwind site for gradient computation. Winds at station
EVE26 blow prevailingly along the southwest–northeast di-
rection for this period (Fig. 6a). Since EVE26 is located to
the northeast of the urban center (Fig. 6c), the corresponding
upwind stations for gradient computation are mostly selected
in the southwest direction (Fig. 6b–c).

As the observation operator is linear, one can evaluate the
contribution of a flux component to the CO2 mixing ratio
at the measurement stations by applying the observation op-
erator to that specific flux component, canceling all other
flux components. We thus perform eight CHIMERE simu-
lations with, in input, respectively, the simulation of the NEE
in northern France and the inventories for the seven sectors
of the fossil fuel emissions in IDF described in Sect. 2.4.1
to evaluate the contribution of these different types of flux to
the CO2 variations during January 2011 at the hypothetical
station locations considered in this study. This corresponds
to applying H to control vectors with scaling factors corre-
sponding to the NEE or to a specific sector of emission set
to 1 and others to 0 and ignoring CO2 boundary conditions.
Figure 7 plots the time series of CO2 mole fractions corre-
sponding to the different types of flux at 10 stations of an R
network (which are indicated by red triangles in Fig. 4), in-
cluding 2 urban stations (EVE07 and EVE11 in Fig. 6c) and
8 rural stations.

CO2 series from northern France NEE in January have
small daily variations compared to that of CO2 from the
fossil fuel emissions in IDF and show very similar patterns
at all the 10 stations. During nighttime, CO2 emitted by
the ecosystem respiration or by the anthropogenic activities
is trapped within the usually stratified nocturnal planetary
boundary layer, which generates peaks in the CO2 time se-
ries. However, as explained in Sect. 2.3, the representation of
the nighttime variations (in particular of their amplitude) by
the transport model is not reliable. The diurnal variations of
CO2 are driven by the diurnal variations of the NEE (with a
sink of CO2 due to photosynthesis during daytime), the CO2

emissions from major sectors (building, road, and energy),
and the meteorology within the planetary boundary layer.

There are strong positive CO2 concentration gradients be-
tween the urban–urban and urban–rural pairs of stations
when analyzing the signature of the major sectors of an-
thropogenic emissions (Fig. 7). Figure 7i shows histograms
of simulations of the concentration gradients corresponding
to the observation vector when using this 10-station R net-
work for inversion. These simulations are obtained by forc-
ing CHIMERE with the estimates of the total NEE and an-
thropogenic emissions described in Sect. 2.4.1 (i.e., by ap-
plying H to control vectors with all scaling factors set to 1
and accounting for the CO2 boundary conditions described
in Sect. 2.4.2). The three different histograms contain the
gradients between two rural, two urban, or one rural and
one urban station, respectively. All the concentration gradi-
ents between downwind urban and upwind rural stations are
positive, carrying a mean CO2 gradient of ∼ 14 ppm with a
standard derivation of ∼ 4 ppm. In contrast, the concentra-
tion gradients between downwind rural and upwind urban
stations have 20 % negative values, with a mean of ∼ 3 ppm
and a standard deviation of ∼ 7 ppm. The gradients between
rural downwind and rural upwind stations have a mean of
∼ 5 ppm, a standard derivation of∼ 7 ppm, and∼ 13 % nega-
tive values. Most of these rural–rural negative gradients were
found at station pairs where the upwind rural station is much
closer to the city center than the downwind rural station (e.g.,
EVE34 and EVE85 whose distance is∼ 23 km). Ignoring the
time lag that is required for an air parcel to be transported
from the upwind to the downwind stations when computing
the CO2 gradients explains a large portion of these negative
gradients. The emissions vary in time, and, at a given time,
the upwind rural station can bear a signature of a peak dom-
inated by the emissions from the upwind nearby city center
while this signature has not reached the distant downwind
rural station yet. Occasional changes in the wind directions
between the upwind to the downwind stations may also ex-
plain that, sometimes, air masses reaching the downwind sta-
tions have not necessarily been transported over the areas
with high fossil fuel emissions.

2.5 Accounting for uncertainties

2.5.1 Prior uncertainties

Formal statistical methods, such as Monte Carlo approaches,
can be used to estimate errors due to uncertain activity data
and emission factors and thus the overall uncertainties in in-
ventories at the global/national scale (Fauser et al., 2011;
Wang et al., 2013). However, to our knowledge, there are cur-
rently no studies evaluating uncertainty in existing invento-
ries at the city scale. B15 used the AIRPARIF 2008 inventory
as a prior emission estimate for their inversions and assigned
a 20 % 1σ uncertainty in the monthly estimate of the total
emissions from IDF. Following B15, we set a prior 1σ un-
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Figure 6. Results of selections of upwind stations for gradient computations for EVE26 (see Fig. 4; R-type network of 10 stations) for the
month of January 2011: (a) the afternoon wind conditions at EVE26 during the given month; (b) the afternoon wind conditions for the
observations selected for gradient calculation at EVE26; (c) the number of times a site is selected as upwind for gradient computations at
EVE26. The leftmost red cross indicates a site that is never selected for gradient computation for EVE26.

certainty of about 20 % in monthly total emissions from the
Paris metropolitan area. In practice, few cities benefit from
such high-resolution local inventories (Appendix A), and the
setup of the prior uncertainties for other cities may have to
be higher since the quality of the prior knowledge from their
available inventories is not as good.

We assume that there is no correlation between the prior
uncertainties in the emission budgets (and thus in their scal-
ing factors) for different sectors of emissions (see Fig. 8a).
For a given sector, the correlations of the uncertainties in
scaling factors for different areas and time windows are given
by the Kronecker product between spatial correlations (if
there are different control areas for this sector) and temporal
correlations. We set a value of 0.6 for the spatial correlations
between prior uncertainties in scaling factors for building or
road emissions that correspond to two different geographical
areas (Fig. 2). The temporal correlation of the prior uncer-
tainties in scaling factors is modeled using an exponentially

decaying function with a characteristic correlation length of
7 days for each sector (Fig. 8a). Uncertainties in individual
scaling factors for a given control tile are derived based on
this configuration of the correlations and on the two follow-
ing assumptions: (1) the aggregation of uncertainties in all
the individual scaling factors leads to an overall 20 % 1σ un-
certainty in total emissions for January 2011 and (2) the 1σ
uncertainties for the budget for January 2011 of the seven
sectors of emissions are approximately equal to one another.
The latter assumption is supported by a recent census, which
was conducted by National Physical Laboratory (NPL) based
on a group of 26 city inventories reported to the carbon Cli-
mate Registry (cCR) suggesting that the data collected for
different sectors can actually have a similar level of quality
(report available from www.carbonn.org). The sensitivity of
the inversion results to the configuration of B and thus the
robustness of the inversion is discussed in Sect. 4. By con-
struction, the resulting 1σ uncertainties in the budgets for
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Figure 7. (a–d) CO2 mixing ratio series of sectoral CHIMERE simulations at four selected stations of the R network (see Figs. 4 and 6c).
EVE07 and EVE11 are urban sites and EVE26 and EVE43 are rural sites but close to large point emissions. The shadow marks out the
nighttime. (e–h) The time series of the difference in model simulations sampled at several site pairs among the four sites. (i) The histogram
of afternoon concentration gradients following the data selection procedure detailed in Sect. 2.4.3 for all the 10 stations of the R network.
These histograms are grouped according to the type of downwind and upwind stations.

the seven sectors of emissions are larger than that in the to-
tal emission estimate. They are approximately equal to 36 %
(Fig. 9). As B15, we set a prior uncertainty in the NEE scal-
ing factors of about 70 %.

Controlling large control tiles with a single scaling fac-
tor does not mean that the uncertainties in the emissions at
higher resolution are assumed to be entirely correlated within
a control tile. The uncertainties in the distribution of the
emissions at higher resolution given by the observation oper-
ator must actually be accounted for in the computation of the

observation error as indicated in the following section. This
part of observation error is generally called the aggregation
error.

2.5.2 Observation uncertainties

Observation uncertainties arise from both the measurement
errors and the model errors associated with the observation
operator (including the transport model errors). The preci-
sion of the instruments presently used (typically cavity ring
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Figure 8. The correlation structures in (a) the error of prior scaling factor estimates, (b) the posterior error obtained by inversion using a
U network with 10 stations, (c) the posterior error obtained by inversion using an E network with 70 stations, and (d) the posterior error
obtained by inversion using a U network with 70 stations. Each row or column of the pixels corresponds to the correlation between 1 scaling
factor and all the 834 scaling factors (see Sect. 2.2). For clarity, we group these scaling factors into eight sectors and organize them for each
sector according to temporal indices and spatial areas. The tickers show the name of these eight sectors.

down spectrometers) for the climate studies can have a high
precision that is better than 0.1 ppm (1σ ) on hourly mean
data. When properly calibrated, typically every 2 weeks to
2 months, these high precision instruments do not bear any
significant drifts or biases, and the systematic errors borne
by their hourly measurements are smaller than 0.13 ppm.
This level of measurement error is negligible compared to
the current transport model errors that are detailed later in
this section. Even though the deployment of dense networks
with up to 70 sites would rely on LCMP sensors and on
a different calibration strategy, we conduct the main inver-
sion experiments assuming that they would measure CO2
with a precision and accuracy still negligible compared to
the model error. However, some sensitivity tests will be per-

formed to assess the impact of much larger measurement er-
rors (Sect. 3.2).

The model error, which applies to “downwind–upwind”
CO2 gradients in this study, is mainly a combination of the
aggregation error due to uncertainties in the spatial and tem-
poral distribution of the fluxes within a control tile that is not
resolved by the inversion, of the representativeness error (the
difference in terms of spatial representativeness between the
measurements and the CO2 simulated with a 2 to 10 km hor-
izontal resolution model), of the atmospheric transport mod-
eling error, and of the errors in the model CO2 initial and
boundary conditions.

Following B15, we assume that the observation error co-
variance matrix R is diagonal, which means that the model
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Figure 9. Budget of uncertainties in total and sectoral emission estimates by inversions using three types of networks of different sizes. Each
sector has a distinct color. In (a–d), we show the uncertainty budgets in percentage to the corresponding emission budgets computed using
the IER inventory. The points indicate the percentage of prior uncertainty budgets before inversion, and the bars demonstrate the percentage
of posterior uncertainty budgets after inversion. The error bars show the variations of the uncertainty budget using 10 different networks of
same size (10, 30, 50, or 70) constructed as detailed in Sect. 2.3. (a–c) Reduction of uncertainties by inversions using three different types
of networks of increasing sizes. For each sector, the numbers of stations corresponding to the four bars from left to right are 10, 30, 50, and
70, respectively. (d) Reduction of uncertainties by inversions using three different types of networks of 70 stations. The types of network
corresponding to the three bars from left to right are E, R, and U, respectively. (e) Comparison between the inventory budgets and uncertainty
budgets (both in TgC) using the uniform network of increasing sizes. For each sector, the leftmost bar shows the inventory budget, and the
four remaining bars to the right show the budget of uncertainties in posterior emission estimates by inversions using 10, 30, 50, and 70
stations, respectively.
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(a)

(b)

Figure 10. For three types of networks of different sizes, we com-
pute (a) the average DFS, which is total DFS divided by the to-
tal number of observations assimilated, and (b) the relative re-
duction of uncertainties in scaling factor estimates computed by
(
√

1T B1−
√

1T A1)/
√

1T B1, where 1 is an all-one vector. The er-
ror bars show variations due to inversions using 10 different net-
works of same size constructed as detailed in Sect. 2.3.

errors for the CO2 gradients are not correlated in time or in
space. This implies that there is no correlation of the model
errors in the direction orthogonal to the wind (see later in
this paragraph for a discussion about the direction parallel
to the wind). Based on statistics on the model–measurement
misfits, B15 diagnosed the total model error when simulating
CO2 hourly concentrations at individual urban and rural sites
and for hourly city downwind–upwind gradients between ru-
ral stations. They found that this error is of the order of 5
and 10 ppm for hourly CO2 data at rural and urban stations,
respectively, and of 3 ppm for hourly gradients between ru-
ral stations. The high model error at individual stations char-
acterizes the difficulties of atmospheric models to represent
the CO2 transport within and in the vicinity of urban areas,
even when selecting data during the afternoon and for high
wind speed only. B15 explain the smaller model errors for
gradients than for individual CO2 data by the high spatial
correlations between model errors at upwind and downwind
sites. These spatial correlations are due to the large spatial

coherence of the errors from the model boundary conditions
along the wind direction, whose canceling is the main aim
of the gradient computation. In principle, this is not incom-
patible with the assumption mentioned above that there is no
correlation of model errors in the direction orthogonal to the
wind since it bases on the idea that the correlation follows the
advection of air parcels and of the atmospheric signature of
remote sources and sinks. Still, the diffusion of the signature
of remote sources and sinks through their atmospheric trans-
port could correlate the model error between different gra-
dients corresponding to close locations. Characterizing such
spatial correlations is very challenging and falls beyond the
scope of this paper.

The diagnostics of model error by B15 account for the
transport and representativeness errors and of errors in the
CO2 initial and boundary conditions of the same transport
configuration as that used in our study. It also accounts for
aggregation errors since their inverse modeling framework
solves for emissions at a coarser resolution than in this study
(they apply scaling factors for the 6 h mean budget of the
emissions in IDF). Smaller aggregation errors should apply
in our configuration but we conservatively use their diagnos-
tic to assign the model errors in our OSSEs. This setup of the
model errors in our study is also based on a simple derivation
of the spatial correlations of the model error for individual
measurements between upwind and downwind stations based
on their results. This leads us to assign a standard deviation
of 3.5, 5.6, and 7 ppm, respectively, for the observation error
on gradients between rural stations, between rural, and urban
stations and between urban stations.

3 Results

3.1 Results with the reference inversion configuration

We conduct a series of inversions of sectoral and total emis-
sions during the month of January 2011 using E-, R-, and
U-type networks with 10, 30, 50, and 70 stations. The inver-
sion results are analyzed in terms of posterior uncertainties in
the inverted fluxes and in terms of uncertainty reduction by
the inversion (Fig. 9). The uncertainties discussed here are
relative uncertainties, which are defined as the uncertainty
budgets in percentage of the budgets of the corresponding
emissions obtained from the IER inventory (and included in
the observation operator).

With small E, R, or U networks of 10 stations (i.e., the
size of some of the existing networks), inversions are effec-
tive in reducing uncertainties in total emissions as well as in
the emissions from the three major sectors (building, road,
and energy). The inversion on average reduces the 1σ uncer-
tainty in the total emissions estimates from ∼ 19 % a priori
down to ∼ 11 % a posteriori (a 42 % uncertainty reduction).
The 1σ uncertainties in building, road, and energy emission
estimates are reduced on average from ∼ 36 % (prior uncer-
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Figure 11. Reduction of uncertainties by inversions using three dif-
ferent types of networks of 70 stations with inflated observation er-
ror standard derivation (50 % larger).

tainty) down to about 23, 27, and 24 %, respectively (about
35, 23, and 31 % uncertainty reduction, respectively, over
the prior uncertainty). In contrast, the uncertainty reduction
is very limited for emissions from agriculture, airline, pro-
duction, and remainder sectors. However, the contribution of
these four sectors of emissions to the total budget is rather
small and represents only ∼ 16 % of the total emissions in
IDF according to the IER inventory (Fig. 9e).

In order to limit the influence of specific station locations
and to weight the sensitivity to the network design (and thus
the need for network design studies), we performed inver-
sions with 10 random networks of the same type and size.
These random networks differ from one another in their sta-
tion locations but still follow their respective network type
(see Sect. 2.3 on how we generate these random networks).
The variation (error bars in Fig. 9) of the inversion perfor-
mance due to changes in the station locations is in general
small, compared to the variations due to the changes of the
network type and size (see Fig. 9). The influence of the sta-
tion location is large for the agriculture sector, but the emis-
sion budget for this sector is small.

The uncertainty reduction increases with larger networks.
However, this increase generally slows down and is rather
weak once the networks have more than 30 stations (Fig. 9a–
c). While there is not much difference between the uncer-
tainty reduction for energy emission estimates when using
30-station or 70-station E networks (Fig. 9a), the increase
in uncertainty reduction for building emissions when using
70-station compared to 30-station U networks is still signifi-
cant. To further illustrate this slowdown effect, we assess the
number of degrees of freedom for signal (DFSs; Rodgers,
2000) for inversions using different networks (Fig. 10a). The
DFS characterizes the number of independent pieces of in-
formation brought by the observations and therefore the rela-
tive weight of the signal from the observations against the

noise from the observations in the analysis. If the uncer-
tainty in the measurement is very high or if the measurements
bring redundant information, the measurements will provide
a small DFS. In practice, the overall DFS is the trace of ma-
trix (B−A)B−1 and has a value between zero and the num-
ber of observations d (Wu et al., 2011). For our Paris case
study, we find that the DFS per concentration gradient obser-
vation (i.e., the ratio DFS/d) is less than 10 %; that is, only a
small percentage of observations are effectively assimilated
and correspond to the signal but not the noise. Such small
DFS results from the diffuse nature of atmospheric transport
(which weakens the atmospheric signature of the emissions
from specific sources and spreads it throughout the different
concentration gradients) and from the uncertainty in atmo-
spheric modeling (which weakens the constraint given to ob-
servations during the inversion analysis). When using denser
networks, the DFS per observation decreases, and the in-
formation brought by the different gradient observations on
the budgets of sectoral or total emissions over the full IDF
area has more redundancy. This is due to the decrease of the
distances between the upwind and downwind stations and
between the different upwind (or downwind) stations that
are selected for gradient computations. Despite such a den-
sification of the network, many isolated and local sources,
which dominate some sectors of emissions, are still difficult
to catch, in particular with our 5 km threshold on downwind–
upwind site distance (see Sect. 2.4.3). Additionally, the se-
lection of daytime observations for high wind speed dra-
matically reduces the observational constraint on the emis-
sions at other periods of time (see Sect. 2.2 for the temporal
discretization of the control vector), which altogether have
a large weight on the total emission budget. Therefore, the
slowdown of the uncertainty reduction when using larger net-
works is also explained by their convergence to a value which
reflects this lack of constraint.

The 1σ posterior uncertainties obtained with 70-station
networks of type either E, R, or U are on average 32, 33,
18, and 31 % smaller than those obtained with 10 stations for
building, road, energy, and total emission estimates, respec-
tively (Fig. 9a–c). Compared to the prior uncertainties, inver-
sions with 70-station networks achieve an uncertainty reduc-
tion of 60 % on average for the total emissions, which leads
to an 8 % 1σ posterior uncertainty. In contrast, the 1σ pos-
terior uncertainties in building, road, and energy emissions
are 16, 18, and 20 %, respectively, with uncertainty reduc-
tions by 56, 48, and 43 %, respectively, compared to the cor-
responding sectoral prior uncertainties. Large networks are
more promising for the estimation of dispersed surface emis-
sions such as those from the building sector.

Different types of networks show distinct ability for mon-
itoring emissions, which is usually sector specific. For in-
stance, using a U- instead of a E-type 70-station network
leads to 18 % vs. 22 %, 18 % vs. 19 %, 15 % vs. 18 %, and
6 % vs. 9 % differences in the posterior uncertainty in the
estimates of the energy, road, building, and total emissions
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(Fig. 9d). Compared to the U networks, the E networks result
in larger DFS values (Fig. 10a) but worse performances in
uncertainty reduction for total emission estimates (Fig. 10b).
The stations in the E network are around the area of high
emissions (in particular central Paris), and therefore their
concentration gradients would be overall more sensitive to
the nearby emissions (hence with larger DFS values). How-
ever, focusing only on central Paris makes the E network
less efficient for controlling the emissions in the rural area
(see the spatial distribution of the energy, building, and road
emissions in Fig. 5a–c). This is because there are large point
sources (e.g., the EDF Porcheville power plant and the TO-
TAL Grandpuits refinery from the energy sector; Fig. 2) and
considerable building emissions located outside of the largest
ring of the E networks (Figs. 3 and 5).

In all experiments, the prior and posterior relative uncer-
tainties in sectoral budgets are higher than that in the total
emissions due to the fact that the sectoral budgets from in-
ventories or atmospheric inversions are based on a mix of
independent information and the split of the information on
the total emissions (which is characterized by null or negative
correlations between the uncertainties in the different sec-
tors). The analysis of the negative correlations between pos-
terior uncertainties in different emission budgets is indica-
tive of the capability of the inversion system to well spread
the attribution of an overall concentration increase between
them (Fig. 8). Large negative correlations associated with
high posterior uncertainties indicate that the posterior uncer-
tainties in the individual budget for the different correspond-
ing emission components arise from improper attributions of
budget among these emission components, while the sum of
the emissions budget of all components may be well con-
strained by the inversion. The skill of the larger U networks
for separating the sectoral emissions budgets is higher than
that of the smaller U networks and than that of the equal-
sized E networks (see Fig. 8b–d for cross correlations be-
tween building, road, and energy sectors).

However, the E networks perform better than the U net-
works for estimating emissions from the airline sector. This
is due to the fact that airport emissions (see Figs. 2 and 5f)
are located between the two outer rings of the E networks.
Moreover, the E networks perform well to reduce uncertainty
in road emission estimates, although a significant portion of
the road emissions occur in rural areas that are not covered
by the E networks. This is probably because (1) the smallest
inner ring coincides with the heavy-loaded Paris peripheral
boulevard (25 % of the traffic in Paris); (2) the Paris road
network (Fig. 5b) sprawls mainly in the urban and suburban
area, which are comprised within the largest outer ring; and
(3) the configuration of the E networks (as well as that of the
R networks; Fig. 3) is better adapted than that of the U net-
works to distinguish between the signature of the road emis-
sions and that of the other emission sectors.

3.2 Sensitivity to the measurement and model errors
and to the amplitude of the uncertainty in NEE

The results analyzed above are based on the reference inver-
sion configuration detailed in Sect. 2. However, as introduced
in Sect. 2.5.2, observation errors could be in practice larger
than assumed, either because we would need to use LCMP
sensors with smaller accuracy than the present high precision
instruments in order to deploy dense networks or because our
assumptions regarding the model errors (derived from the di-
agnostics of B15 over a small number of sites) would not be
adapted to dense measurement locations.

We have thus repeated the inversion tests with values for
the observation error standard deviations inflated by 50 %
compared to those described in Sect. 2.5.2 for the reference
configuration (which would corresponds to a dramatic in-
crease of the measurement error or decrease of the modeling
skills; see the discussion in Sect. 4). The 1σ posterior uncer-
tainties resulting from inversions with inflated (Fig. 11) and
reference (Fig. 9d) observation errors when using 70 sites
and the type of network providing the best performances (de-
pending on the sector) are (1) 7 and 6 %, respectively, for
total emission estimates with U networks; (2) 16 and 15 %,
respectively, for building emissions with U networks; (3) 19
and 18 %, respectively, for road emissions with R networks;
and (4) 20 and 18 %, respectively, for energy emissions with
U networks. The increase of the posterior uncertainty in to-
tal emission estimates resulting from this inflation of obser-
vation error standard deviation is significant (typically 1 %
of the budget of prior total emissions). However, these in-
creases are relatively modest compared to the typical vari-
ations of posterior uncertainties, depending on the different
networks that are tested. This is likely due to the fact that,
at the monthly scale, the projection of the uncertainty in
the prior emissions into the concentration space is very high
compared to the observation errors and the fact that the obser-
vation limitation is primarily related to their spatiotemporal
coverage rather than to the precision of the hourly measure-
ments and of their simulation by the observation operator.

Our reference experiments apply to a month in winter
when the CO2 signal from the NEE is low and the heating
emissions are high, which decreases the difficulty to separate
it from that of the anthropogenic emissions in the concen-
tration gradients. This could favor the monitoring of the an-
thropogenic emissions during this season. In order to assess
whether the results obtained in this study can be indicative of
the performance of the inversion during summer, when the
NEE is higher (we ignore here the impact of the decrease in
the heating emissions), we run inversions where the prior er-
ror standard derivation for the NEE fluxes is inflated/shrunk
by 100 % or where the NEE fluxes within the observation
operator H1 (see Sect. 2.4.1) are multiplied by 3 or 5 (which
typically corresponds to the ratio between the NEE in July
vs. January according to the C-TESSEL simulations). The
differences between the uncertainty reductions for the total
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emission estimates obtained with the reference configuration
and when applying these changes are found to be less than
1 %. Actually, the correlation between the posterior uncer-
tainties in the NEE fluxes and in the total and sectoral fos-
sil fuel CO2 emissions (except the building emissions) are
nearly zero (Fig. 8b–d), which implies that the different net-
works are sufficiently dense to provide a clear separation be-
tween natural and anthropogenic fluxes within our inversion
framework. This explains the weak influence of the prior un-
certainty in the NEE for the estimate of the fossil fuel CO2
emissions.

These sensitivity analyses strengthen the confidence in the
robustness of our inversion results that are based on the ex-
periments with real data of B15 and Staufer et al. (2016).

4 Discussions and conclusions

4.1 Summary with complementary analysis

We have developed an atmospheric inversion method to
quantify city total and sectoral CO2 emissions using net-
works of measurement sites within and around a city. This
method combines a prior emission estimate from an inven-
tory with the information from concentration gradient mea-
surements (independent of the inventory) to provide updated
emission estimates with reduced uncertainty. Such an inven-
tory can be obtained, for instance, directly from local agen-
cies or interpolated from regional inventories developed by
public research establishments (see Appendix A). We exam-
ine the ability of this inversion system to reduce uncertainty
in emission estimates for diverse emitting sectors of the Paris
metropolitan area (∼ 12 % of France CO2 fossil fuel emis-
sions) as a function of the size and design (i.e., location of
the stations) of the observation networks.

We perform inversions over a 1-month winter period (Jan-
uary 2011) under a framework of OSSEs, in which we test
several types of theoretical networks of stations sampling
CO2 atmospheric concentrations at 25 m a.g.l. When using
10 stations, which is the typical size of the few current net-
works, the inversion considerably reduces the uncertainties in
total emission estimates for January 2011 (by ∼ 42 %) from
a ∼ 20 % 1σ prior uncertainty down to ∼ 11 % 1σ posterior
uncertainty. The uncertainty reduction for sectoral budgets is
also high but the 1σ posterior uncertainties for these budgets
is∼ 25 %, i.e., more than twice as high as for total emissions.
In the prior inventories as in our inversion experiments, the
total emissions are better constrained (in relative terms) than
the sectoral budgets. The inversion is more efficient in de-
creasing uncertainties in the budget of dispersed emissions
from residential and commercial heating than those in other
sectoral budgets. We observe significantly larger uncertainty
reduction in sectoral emission budget estimates when using
more stations. The decrease of the uncertainties in the in-
verted emissions when using 70 stations vs. 10 stations is of

32 % for commercial and residential buildings, 33 % for road
transport, 18 % for the production of energy by power plants,
and 31 % for the total emissions. The three major sectors
(building, road, and energy) cover most of the emission bud-
get according to the IER inventory used in this study. There-
fore, while the extension of the networks does not seem to be
critical for the verification of the city emission total budgets,
it likely provides advantages for the monitoring of sectoral
emissions. When using 70 sites, the 1σ monthly posterior
uncertainty in the building emission estimates can be brought
down to 15 % while that for transport and energy emissions
estimates is reduced to 18 %.

4.2 Discussion on the levels of posterior uncertainties
and on the relevance of the corresponding estimates

We can hardly determine whether the levels of precision
in emission accounting obtained by atmospheric inversions
would be enough for a MRV framework since the MRV ex-
periences for citywide CO2 emissions are still very limited
(Appendix A). We still attempt at evaluating the usefulness
of estimates with these different levels of uncertainties. In
MRV practice, mitigation actions and climate plans are usu-
ally based on targets for the reduction of annual budgets of
the emissions and should thus be evaluated based on the mon-
itoring of annual budgets and/or their trends. In this study,
the accuracy of the inversion is analyzed for a single winter
month; inversion experiments over longer time periods are
out of the scope of the paper (for reasons of computational
cost). However, results from Sect. 3.2 indicated that its accu-
racy in spring, summer, and fall should be similar. In order
to get an indication on the accuracy of the inversion at the
annual scale, we thus assume that the scores obtained here
apply to all months during the year and use two opposed
and extreme hypotheses regarding the correlations between
posterior uncertainties from month to month. The first one
is that these uncertainties are fully independent, which can
be supported by the independence of the measurements used
to constrain the estimates from month to month. The sec-
ond one is that these uncertainties are fully correlated, which
can be supported by the fact that part of the posterior uncer-
tainty is related to residual prior uncertainties that have not
been decreased by the inversion and that the prior uncertain-
ties can be highly correlated from month to month. Actual
correlations should lie between these two extreme cases. By
doing so, we obtain a simple, conservative, and indicative
assessment of a typical range of 2σ annual uncertainties in
the total and sectoral emission estimates from the inversion.
With such a conversion, the prior uncertainty in total emis-
sions would range between 12 and 40 %, while that in the
sectoral budgets of the emissions would range between 21
and 72 % depending on the sectors. The 2σ annual posterior
uncertainty in total emissions would range between 4 and
23 % when using 10 to 70 sites. The 2σ annual uncertainty
in the budgets for the three main emitting sectors (building,
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road, energy) would range between 13 and 59 % when using
10 sites and between 9 and 44 % when using 70 sites, while
it would systematically exceed 14 % for the production sec-
tor even when using 70 sites. Such annual uncertainty ranges
vary a lot for the secondary sectors of emissions (airline, agri-
culture, remainder), e.g., between 7 and 41 % for agriculture
to systematically higher than 20 % for the remainder emis-
sions when using 70 sites.

We compare these numbers to the diagnostic (based on
expert judgments as well as error propagation calculations
with the IPCC Tier 1 method) of the typical uncertainty in
the national inventories in developed countries, which could
apply to theoretical city-scale inventories under MRV frame-
works. The uncertainty in national inventories is country spe-
cific but, for the seven Annex I countries surveyed by Pacala
et al. (2010), the uncertainty in CO2 fossil fuel emissions
is consistently lower than 10 % (2σ ). For France, the uncer-
tainty of the CITEPA national inventory (annually reported to
UNFCCC) is estimated to be 5 % (2σ ) for year 2012 accord-
ing to CITEPA (2014). The uncertainty levels for estimates
of emissions from different sectors can vary significantly at
the national scale (Pacala et al., 2010; CITEPA, 2014). For
instance, uncertainties for some activities such as mineral,
metal, and chemical productions are considerably larger than
the 5 % value for total emissions, but the share of these emis-
sions in the total fossil fuel emissions is usually small. Un-
certainties for other sectors are closer to 5 % according to
CITEPA (2014).

Furthermore, succeeding in delivering a 5 or 10 % 2σ an-
nual uncertainty for the total emissions of a city would trans-
late into an ability to assess a 25 % reduction of total emis-
sions on a 15-year horizon at a 95 % confidence level (detec-
tion interval [18, 32 %] or [11, 39 %], respectively, p = 0.05
for linear trends of emissions; see Appendix C for numerical
details). The Paris climate plan, for example, aims at reduc-
ing the GHG emissions by 25 % by 2020 and by 75 % by
2050 relative to the 2004 baseline (Mairie de Paris, 2012).
This means that a 10 % annual uncertainty would be enough
to monitor the trend of Paris emissions over time.

Comparing our indicative estimate of the typical range of
posterior uncertainties in annual total and sectoral emissions
to these 5 and 10 % 2σ uncertainties confirms the need for
dense observation networks if willing to build a valuable
MRV framework. A significant part of the range of posterior
uncertainties derived for the annual total emissions when us-
ing 10 sites is below the 10 % 2σ uncertainty. However, it
does not reach the 5 % 2σ uncertainty and most of this range
is lying above the 10 % 2σ uncertainty. When using more
than 30 sites and U networks, the 5 % 2σ uncertainty can be
reached by the most optimistic estimates of posterior uncer-
tainties in annual total emissions and most of their range lies
below the 10 % 2σ uncertainty. Furthermore, as far as the
most optimistic derivation of annual results is concerned, in-
versions with more than 30 sites would be required to expect
that the posterior uncertainties in annual emissions for the

three major sectors can be close to 10 % 2σ uncertainty. This
level can be reached with U or R networks of more than 50
stations for building emissions, but it cannot be reached for
the road and energy sectors. Seventy sites are required to ex-
pect posterior uncertainties of less than 10 % 2σ uncertainty
for all these three sectors at the annual scale. For the other
types of sectors, the inversion with U, E, or R networks is
likely not adapted to reach the 10 % 2σ uncertainty level at
the annual scale.

With 70 sites, a significant part of the ranges of 2σ poste-
rior uncertainties in annual emissions for the three major sec-
tors is below ∼ 15 % (for any type of networks). Such a 2σ
uncertainty at the annual scale still corresponds to an abil-
ity to detect the 25 % reduction of emissions on a 15-year
horizon at a 95 % confidence (detection interval [3, 46 %],
p = 0.05 for linear trends of emissions; see Appendix C).
The 5 and 10 % 2σ uncertainties can thus be viewed as strin-
gent for the monitoring of sectoral emissions but the com-
parisons to these levels of uncertainty indicate that dense
networks would be necessary to ensure that the inversion
has a high potential to verify sector-wide mitigation poli-
cies/actions or to check whether sectoral mitigation targets
are fulfilled.

4.3 Robustness of the inversion configuration and
requirements on the model, methods, and
instruments supporting such a configuration

The results obtained in this study should not be over-
interpreted since (1) we worked under synthetic settings for
large city networks and (2) the configuration of our inver-
sion system may fail to be fully faithful to reality (e.g., the
idealized parameterization of the prior uncertainties in scal-
ing factors defined for different sectors and spatial zones and
the assumed independent errors in concentration gradient ob-
servations). Nevertheless, our inversions were based on the
experience from B15 and Staufer et al. (2016) in which real
data from a few number of stations around Paris were used. In
addition, we performed sensitivity analyses by significantly
inflating the observation error to account for a potential in-
crease of the measurement and modeling errors when deploy-
ing dense networks with many sites in the core of the urban
area, and this analysis gave confidence in the robustness of
the results obtained with our reference inversion configura-
tion.

Our tests ignored potential temporal correlations in the
model and measurement errors. Increasing the standard de-
viation of the observation error for hourly data should have
a similar impact on results at the monthly scale as account-
ing for short temporal autocorrelations (over timescales typ-
ically smaller than few days). Increasing the standard devia-
tion of the observation errors instead of modeling their auto-
correlations is a common technique in atmospheric inversion
(Chevallier, 2007).
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The results from B15 and Staufer et al. (2016) support the
idea that the model has no major biases or errors with large
temporal correlations. However, even though B15 diagnosed
model errors for measurements in the core of the urban area,
they and Staufer et al. (2016) did not attempt at assimilating
such measurements. We thus implicitly make the assumption
that there is no major model errors with long temporal corre-
lations associated with high local sources for 25 m a.g.l. loca-
tions in the urban environment. This assumption is supported
by the idea that relevant investigations (mobile measurement
campaigns, high-resolution transport modeling) can be led to
avoid setting up sites close to such sources. In our study, the
hypothetical stations are all located without a precise defi-
nition of their specific position within the 2 km× 2 km grid
cells of CHIMERE, which are sufficiently large to assume
that they encompass areas less prone to local sources. High-
resolution transport modeling can also be used to develop
techniques for filtering the signal from the large-scale emis-
sions against that of local sources in the measurements.

The theoretical use of LCMP sensors to allow the deploy-
ment of networks of up to 70 sites could be viewed as a
source of systematic measurement errors with long temporal
scales of autocorrelation. Our results from Sect. 3.2 suggest
that if the measurement errors are significant and increase
the observation errors by 50 %, they can have a significant
impact on the accuracy of the inversion. Such an inflation of
the observation error would result from 1 ppm systematic er-
rors with 7-day temporal correlations in the hourly measure-
ments (since it would result in ∼ 1.5 ppm systematic error
in weekly mean gradients or, if converting the temporal cor-
relations into an inflation of the hourly standard deviations,
in an 8 ppm measurement error for hourly gradients). There-
fore, our sensitivity tests indicate that the LCMP accuracy
and calibration strategy should ensure that the systematic er-
rors do not exceed 1 ppm and, if they are close to this value,
that they are not auto-correlated over more than 1 week. This
recommendation adds to the recommendation that the cost of
LCMP sensors should not exceed EUR 1–5 k (see the discus-
sion in Appendix B).

The choice to rescale the budgets of emissions over large
areas and sectors rather than at high resolution could make
our results quite optimistic. However, the aggregation errors
associated with such a coarse scale rescaling are accounted
for in the inversion. Furthermore, the configuration of the
networks tested in this study is adapted to that of the “control
tiles” which helps avoiding aggregation artifacts. With such
configurations, the results show that having as many sites as
possible around the most prominent sources of a tile will give
a better control on the average budget of that tile. As would
have been expected with a high-resolution inverse modeling
system, our coarse inversion system identifies the networks
that can provide a strong constraint on most of the largest
sources within the tiles, and it demonstrates some sensitivity
to the network types and station locations.

The assumptions underlying our setup of the sectoral un-
certainties (in particular for the prior error covariance matrix
B) can definitely impact the results of the uncertainty reduc-
tion. It could raise some concerns regarding the analysis of
the absolute values of uncertainty reduction for a given net-
work. However, the comparative analysis of the uncertainty
reductions when using different networks but the same in-
version setup (i.e., the network design analysis) should bring
more robust conclusions.

4.4 Perspectives

While the deployment of dense city networks of more than
30 sites seems presently excessively expensive, the present
development and testing of LCMP sensors whose cost would
not exceed EUR 1–5 k give first hopes that it could become
realistic in the near future (see Appendix B).

The potential for monitoring sectoral budgets could be fur-
ther increased by the use of isotopic measurements such as
13C and 14C (Pataki et al., 2003; Lopez et al., 2013; Vogel et
al., 2013) and of co-emitted pollutants such as NOx and CO
(Ammoura et al., 2014), whose ratios to CO2 depend on the
sectors of activity.

Our inversions are shown to be highly sensitive to the types
of networks that we have defined and sometimes (e.g., for the
agriculture sector) to the specific station location for given
type of network. While the results could be improved if the
stations location would follow some empirical rules (e.g.,
redistributing more stations along road networks or around
power plants to better distinguish emissions from road trans-
port and energy production), this motivates optimal network
design studies, based on atmospheric inversion OSSEs such
as in this study, potentially coupled to optimization algo-
rithms (Wu and Bocquet, 2011).

One may consider further improving the current city-scale
inventories as a natural choice for emission accounting in
the context of MRV, in a way similar to what is experienced
by the applications of national inventories under UNFCCC
and the Kyoto Protocol. However, such refinement requires
tedious efforts in order to continuously collect detailed and
high-quality local data. In this paper we highlight the poten-
tial of the alternative approach of atmospheric inversion to
provide accurate estimates of the total and sectorial budgets
of the emissions.

Atmospheric inversion distinguishes itself in a number of
ways for the quantification of city CO2 emissions. It would
provide an estimate method other than inventories based on
IPCC guidelines. Estimating the same source of emissions
with two different approaches remains the best way to de-
tect biases, even when the approaches may not be fully in-
dependent. In addition to the verification of inventories, at-
mospheric inversion can also incorporate, whenever avail-
able, inventories into its modeling framework to improve
their emission estimates. The inverse modeling system as-
similating a cohort of measurements can provide a unique
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platform to investigate the urban carbon cycle (e.g., the an-
thropogenic/biogenic land–atmosphere carbon exchange of
the urban ecosystem and the carbon flows into and out of the
urban area) and its implications for policy-making. Finally,
atmospheric inversion would bring a continuous monitoring
of emissions changes (e.g., larger heating emissions during
cold spells and larger than usual traffic emissions during spe-

cific events), which offers important possibilities for infras-
tructure operators to take appropriate measures with a fast
response time. This is in particular helpful to verify city cli-
mate mitigation actions, when their impacts could be seen
objectively in measured atmospheric signals. With these fea-
tures, atmospheric inversion appears to be a promising MRV
tool to mitigate city CO2 emissions.

www.atmos-chem-phys.net/16/7743/2016/ Atmos. Chem. Phys., 16, 7743–7771, 2016



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Wu, L., Broquet, G., Ciais, P., Bellassen, V., Vogel, F., Chevallier, F., Xueref-Remy, I.,

Wang, Y. (2016). What would dense atmospheric observation networks bring to the quantification of
city CO2 emissions?. Atmospheric Chemistry and Physics, 16 (12), 7743-7771.  DOI : 10.5194/acp-16-7743-2016

7764 L. Wu et al.: Quantifying city CO2 emissions with dense networks

Appendix A: Brief review of existing city emission
inventories and discussion on the accuracy of MRV city
frameworks

Inventories of CO2 emissions are mostly based on a calcu-
lation methodology that multiplies activity data by emission
factors and sums the resulting multiplications over various
sectors of sources. The level of source disaggregation ranges
from very small (e.g., using an average emission factor for all
vehicles and a single traffic index for transport emissions) to
very detailed (e.g., using different emission factors for differ-
ent vehicle types, age, driving habits, traffic types, and road
states). Very detailed inventories are more costly than simple
ones because they imply collections of larger data sets, often
including specific field or laboratory measurements of emis-
sion factors. This is especially true for city inventories which
are driven by complex socioeconomic and technical factors
and can strongly vary in time and space. Such complexity
may question the underlying assumption of linear emission
models and certainly leads to high uncertainties in both ac-
tivity data and emission factors, with a typical case being in-
sufficient representation of source- or context-specific activi-
ties using proxy data or default/generalized emission factors.
This would raise an issue of inventory verification.

The existing city inventories, in our opinion, can be
roughly catalogued into three types depending on the
methodology used to derive them, their availability, and their
uncertainty. The type 1 inventories are based on existing low-
cost frameworks. They only report at the annual and commu-
nity resolution (Bertoldi et al., 2010; Cochran, 2015). Many
of them adopt the 2006 IPCC Guidelines with adjustments
to specific city context (City of Rio de Janeiro, 2011; Di-
enst et al., 2013) but without uncertainty quantification (Bel-
lassen and Stephan, 2015); others follow the guidelines or
methodologies developed by national/regional/local govern-
ments or non-profit local organizations/institutes (e.g., the
Bilan Carbone methods in France; ADEME, 2010), as well
as by international organizations – such as the newly pro-
posed GPC standard designed by C40, Local Governments
for Sustainability (ICLEI), and World Resources Institute
(WRI) in the support of the World Bank, UN-HABITAT,
and UNEP. This type of inventories can cover not only di-
rect city emissions (i.e., the Scope 1 emissions) but also in-
direct or embodied emissions that are linked with cities ac-
tivities but occur outside the considered territories (e.g., the
Scope 2 emissions related to the consumption of purchased
electricity, heat, or stream; the Scope 3 emissions related to
the consumption of other products and services not covered
in Scope 2; see WRI/WBCSD, 2011). In practice, the com-
pilation of type 1 inventories can be performed with a lim-
ited cost that scales with the size of cities (e.g., ∼EUR 18 k
per year for ∼ 1 million inhabitants excluding Scope 3 emis-
sions; Cochran, 2015). To date, the type 1 inventories bear
high and more importantly undocumented uncertainties.

The type 2 inventories are those that can be derived
from global or regional gridded maps of emissions esti-
mates. They have been mainly used by the scientific com-
munity to model the atmospheric transport of CO2. Exam-
ples are the Emissions Database for Global Atmospheric
Research (EDGAR) from the European Commission Joint
Research Centre (JRC) and the Netherlands Environmen-
tal Assessment Agency (http://edgar.jrc.ec.europa.eu), the
global/regional inventory developed by the Institute of En-
ergy Economics and the Rational Use of Energy (IER) at the
University of Stuttgart (Pregger et al., 2007), and the global
fossil fuel CO2 emission map from the Peking University
(PKU-CO2; Wang et al., 2013). The activity data and emis-
sion factors for the compilation of type 2 inventories are usu-
ally defined from scales coarser than the city scale, which
leads to large and, again, undocumented uncertainty locally.

The type 3 inventories are compiled based upon local data
down to the building/street scale at the urban landscape. They
are arguably more realistic than the two previous ones but
available for only a small number of cities to our knowl-
edge. Examples of this type are the AIRPARIF inventory for
IDF (AIRPARIF, 2013), the London Atmospheric Emissions
Inventory (LAEI; GLA, 2012), and the inventory from the
HESTIA project for Indianapolis (Gurney et al., 2012). De-
veloping a type 3 inventory is time consuming: it usually de-
mands institutional efforts and requires a high level of ex-
pertise. Type 3 inventories can only be established in cities
where good activity and/or fuel consumption data are acces-
sible. The inventory quality would be better if some central
authority were responsible for ensuring that adequate data are
consistently, transparently, and timely reported by public and
private players responsible for emissions. Uncertainty quan-
tification for a type 3 inventory, being a difficult issue due
to their complexity, nevertheless can be performed in an ap-
proximate way according to the expert judgment of the in-
ventory compilers. As an example, the monthly uncertainty
in the Paris type 3 inventory is estimated to be of the order of
20 % by the AIRPARIF engineers (see Bréon et al., 2015).

Both type 2 and 3 inventories mainly account for direct
emissions generated within the considered territories. What-
ever their type (1, 2, or 3), the inventories at city scale are not
frequently updated because the necessary data are usually
disclosed and processed long after emissions actually hap-
pened. In case of revisions in calculation methods, such as
the correction of emission factors or the addition of emitting
activities that were ignored in the previous versions, the en-
tire emission inventory has to be recomputed, which imposes
a traceability framework for comparing different versions. In
the case of the Paris type 3 inventory, there is only a new
update every 2 years, with a 2-year lag between the date of
release and the corresponding year of emissions.

The IER inventory used for the practical implementation
of the OSSEs in this study incorporates local data to provide
a gridded inventory at 1 km and 1 h resolution. We detail this
inventory in the main text of the paper (Sect. 2.4.1). Here
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Table A1. Specification of the 40 sectors in the IER inventory employed in this study. These sectors are grouped into seven aggregate larger
sectors listed in Table 1.

Sector NFR code Budget (TgC year−1) Comments

Energy 1A1a 3.7205 Public electricity and heat production
1A1b 0.31007 Petroleum refining
1A1c 0.097906 Manufacture of solid fuels and other energy industries

Road 1A3bi 3.0287 Passenger cars
1A3biii 0.78072 Heavy duty vehicles
1A3bii 0.66808 Light duty vehicles

Building 1A4bi 2.5757 Residential plants
1A4ai 1.0185 Commercial/institutional
1A4bii 0.90577 Household and gardening (mobile)
1A4aii 0.4489 Commercial/institutional

Production 1A2fi 1.0724 Fuel combustion activities: manufacturing industries and construction
1A2c 0.37312 Chemicals
2A1 0.11867 Mineral Products
1A2e 0.11245 Food processing, beverages, and tobacco
1A2a 0.09999 Iron and steel
1A2d 0.088409 Pulp, paper, and print

Agriculture 1A4ci 0.32116 Plants in agriculture, forestry, and aquaculture
1A4cii 0.14497 Off-road vehicles and other machinery

Airline 1A3ai(i) 0.58194 International aviation
1A3aii(i) 0.34983 Civil aviation (domestic)

Rest 2B1 0.075718 Ammonia production
6Cb 0.042929 Waste incineration
3A2 0.038744 Paint application
1A3biv 0.037411 Automobile tire and brake wear
1A3e 0.031093 Other transportation
2C1 0.020038 Metal production
1A3c 0.019035 Railways
2A7d 0.011561 Mineral products
2A4 0.0082194 Mineral products
2B5a 0.0075701 Chemical industry
3C 0.0056263 Chemical products, manufacture, and processing
2A3 0.0054513 Mineral products
1A2b 0.00506 Non-ferrous metals
2A2 0.0049208 Mineral products
2C3 0.0044444 Metal production
1A3dii 0.0039965 Navigation
2C2 0.0024742 Metal production
3B1 0.0017747 Degreasing and dry cleaning
1B1b 0.00018562 Fugitive emissions from fuels
2B3 0.00013253 Chemical industry

we group the 40 sectors from this IER inventory into seven
aggregate larger sectors and list their annual budgets in Ta-
ble A1.

The uncertainty in city emissions estimates is in general
considered as larger than that in national estimates (Duren
and Miller, 2012). However, the development of city-scale
MRV frameworks could foster the development of city-scale
inventories with an accuracy which is close to that presently

diagnosed for national inventories in OECD countries, re-
ported under UNFCCC and the Kyoto protocol (Chang and
Bellassen, 2015). The underlying rationale is that MRV at
national and city scales would have similar objectives. Both
would support determination of baselines and/or reduction of
emissions from various sources (e.g., transportation, build-
ing, and industries) for a given geographical area. As miti-
gation actions against CO2 emissions are many and various,
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their MRV differs from one another accordingly. Ninomiya
(2012) classified different existing MRV and suggested that
the MRV of emission reductions by actions/policies would
be less accurate than the MRV of national emissions using
inventories. If this reasoning is also valid at the city scale,
the uncertainty level for total city emissions would be strin-
gent for the MRV of emission reductions by citywide ac-
tions/policies.

Appendix B: Requirements on the cost of the
infrastructure and of the LCMP sensors underlying the
deployment and operation of dense networks

The typical cost of existing inventories give ideas on the or-
der of magnitude which could be acceptable for the cost of
the overall inversion framework. Since there is presently no
MRV framework at the city scale, we investigate the typi-
cal cost of national inventories in the MRV framework of
UNFCCC. In order to have the same accuracy within the
frame of MRV systems, city-scale inventories based on sim-
ilar methodologies would have to rely on data with the same
level of quality. The cost of an inventory involves the collec-
tion of large data sets and the design and implementation of
the inventory model. The data (e.g., statistics on energy fuel
consumption, transport, and industrial activities) required for
the development of a national inventory are in general avail-
able from national agencies. For the compilation of a city in-
ventory, tracking fuel use statistics from different origins and
types, and different sectors might actually prove more com-
plicated than for a state where national statistics are already
firmly established by governmental agencies. The CITEPA is
the agency responsible for preparing the French national in-
ventory following the IPCC guidelines. The budget of the ac-
tivities at CITEPA related to this national inventory is about
EUR 1.5 M per year (République Française, 2015). This cov-
ers not only the compilation of the fossil fuel CO2 emis-
sions inventory but also (1) the compilation of the inventory
for other GHG gases, (2) the compilation of the inventory
for GHG emissions due to land use, land use change, and
forestry (LULUCF), and (3) activities other than monitoring
such as the reporting, archiving, and annual communication
to UNFCCC reviews that are imposed by the IPCC guide-
lines. It is therefore complicated to assess the budget of the
CO2 fossil fuel emissions inventory at CITEPA. However, it
indicates that a reasonable cost for a city inversion frame-
work should not exceed EUR 1–2 M on average per year.

Current atmospheric GHG monitoring programs have
significant investment and operational costs; for example,
the KIC Climate CarboCountCity program (http://www.
climate-kic.org/projects/carbon-emissions-from-cities/) in-
curred costs of∼EUR 4 M for a 3-year project period, which
included installation of a few monitoring stations in Paris and
Rotterdam (less than 10 sites overall), as well as salaries and
mobile campaigns. The typical cost of infrastructure instal-

lation for 10-site networks, excluding the cost of the sensors,
is presently of the order of EUR 200 k when deploying the
network when it does not require the building of dedicated
towers (as assumed in our study where stations are located
at 25 m a.g.l.), ∼EUR 180 k euros per year for labor charges
(data QA/QC, processing, and modeling), and ∼EUR 5–
10 k per year per site for maintenance and calibration. From
these previous experiments one would estimate the cost of
a 70-site monitoring network of the current make to about
EUR 10 M for a 5-year period. A strategy is required to de-
crease this cost if we are hoping to benefit from the demon-
strated advantages of this study of operating a 30- to 70-
site networks instead of a sparse 10-site network. Data host-
ing, processing, and QA/QC costs seem fairly incompress-
ible and even with more advanced data processing routines,
the need to hire at least one expert modeler and field techni-
cians to maintain the network seems unavoidable. With tech-
nological development, however, one can hope that the sig-
nificant contribution of sensor cost could be reduced. Ideally,
this cost of the sensors should not be significant to ensure
that the budgets remains of the order of EUR 1–2 M on av-
erage per year (accounting for the depreciation of the initial
settings and purchases over ∼ 10 years). Today, the sensors
used by the atmospheric monitoring community need to be
replaced or a major repair every 5–10 years, which presents
a cost of more than EUR 500 k per year for a 70-site net-
work (accounting for the depreciation of their purchase over
∼ 7 years). Lower-cost sensors would likely be less robust
(shorter life-time), which would imply that their cost need to
be at least 1 order of magnitude smaller to be beneficial, i.e.,
EUR 1–5 k.

Current LCMP prototypes tested at LSCE in the frame-
work of on-going European innovation projects have promis-
ing results regarding their fundamental measurement preci-
sion and temporal bias structure and could cost less than
EUR 2 k. Still, the most critical challenge will be to ensure
that atmospheric monitoring networks based on such sensors
can provide accurate data with a relatively (compared to the
present protocols) cheap infrastructure and calibration strat-
egy, which needs to be demonstrated in a future study.

Appendix C: Trend detection under different levels of
uncertainties in annual emission estimates

Supposing that the annual fossil fuel emissions from the Paris
metropolitan area have a linear trend with a 25 % reduction
in 15 years and that the annual emission estimates have an
5 or 10 % uncertainty, we perform Monte Carlo simulations
to check to what extent that the linear trend can be detected
from perturbed annual emission estimates (within the given
annual uncertainty) along years. The detection results are
shown in Fig. C1. With 5 % annual emission uncertainty, the
25 % reduction of emissions in a 15-year horizon can be de-
tected within [18, 32 %] at 95 % confidence level. In con-
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Figure C1. Detection of linear trends using the Monte Carlo method with ensembles of 10 000 simulations. We hypothesize that the emissions
decrease linearly from a value of 100 in any appropriate unit to 75 (i.e., a 25 % reduction) in a 15-years time horizon. (a), (b), and (c) show the
linear trends detected by linear regressions (red lines) using series of emissions, which are obtained by perturbing the hypothesized emission
values (blue lines) under 5, 10, and 15 % 2σ annual emission uncertainties, respectively (in percentage to the emission value in the initial
year). (d), (e), and (f) show the increasing 2σ accuracy of the trend detections with increasingly available emission data along years. The
detection accuracy is calculated from statistics of regression results for 10 000 simulations.

trast, with 10 and 15 % annual emission uncertainty, the cor-
responding detection intervals are [11, 39 %] and [3, 46 %],
respectively, at 95 % confidence level.
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