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Abstract—As elderly care is getting more and more impor-
tant, monitoring of activity of daily living (ADL) has become
an active research topic. Both robotic and pervasive computing
domains, through smart homes, are creating opportunities to
move forward in ADL field. Multiple techniques were proposed
to identify activities, each with their features, advantages and
limits. However, it is a very challenging issue and none of
the existing methods provides robust results, in particular in
real daily living scenarios. This is particularly true for vision-
based approaches used by robots. In this paper, we propose to
refine a robot’s visual activity recognition process by relying on
smart home sensors. We assert that the consideration of further
sensors and the knowledge about the target user together with
the semantic by means of an ontology and a reasoning layer
in the recognition process, has improved the existing works
results. We experimented through multiple activity recognition
scenarios with and without refinement to assess the relevance of
such a combination. Although our tests reveal positive results,
they also point out limits and challenges that we discuss in this
paper.

Keywords- Ontology; Activity recognition; Vision; Robot;
Smart home; Pervasive environment

I. INTRODUCTION

It is a global tendency for population to age, therefore
the need for elder care at home has become a significant
and trending topic. In current years, we observe two main
trends in the attempt to help elderly in their everyday life:
the usage of smart homes and/or the adoption of personal
robots. Smart devices, such as smart fridges, TVs, cameras
but also sensing carpets or motion sensors are becoming
increasingly popular. Such devices are used by many appli-
cations, however healthcare is undoubtedly a core applica-
tion of this domain. Having said that, robots for domestic
applications are not yet common, but multiple companies,
including Asus (zenbo.asus.com) or Blue Frog Robotics
(www.bluefrogrobotics.com), are entering this market.

The purpose of these robots is to keep company, inform,
monitor and perform simple tasks. Understanding what the
user is doing is an essential feature for medical staff, as they
would know what is happening and when to intervene, for
instance, if the user has fallen over. Monitoring activities of
daily living (ADL) of users by a robot within a smart home
is a main issue of this work.

As a matter of fact, monitoring activities is currently
a significant challenge. Many solutions and methods were
proposed to identify users’ activity in various situations.
Some contributions deal with raw data from a specific
sensor while others work on reasoning with heterogeneous
types of sensors data. One of the methods to recognize
activities is vision, which is a quite interesting issue from
a robot perspective. Indeed, robots cameras (2D or 3D)
seem to be the best option to recognize an activity as
they are the main and most common sensors. However,
activity recognition techniques are rarely perfectly accurate
in real life scenarios and can lead to erroneous results
– in particular vision-based approaches, since, depending
on the camera orientation and/or the light intensity, the
exploitation of a video sequence may be simply impossible.
To address this issue, two directions may be followed: the
first one is to improve the existing vison-based algorithms,
while the second is to enhance the vision-based recognition
with further data and analysis. This work focuses on the
latter direction. The main idea is based on a collaboration
between a robot and a smart home in order to improve
the efficiency of the activity recognition. Our contribution
may be summarized as following: we aim to improve
the human activity recognition made by a robot, using
both data coming from the available sensors and the
knowledge about the user. Indeed, instead of working by
itself, the robot communicates with a home’s server that
gathers and processes data provided by smart devices. This
server communicates with various types of sensors and uses
an ontology to carry the knowledge and infer further data.

The combination between a robot and a smart home was
experimented in an equipped room and a Nao robot with sev-
eral individuals. It aims to measure not only the performance
of the activity recognition of the robot by itself, but also the
gain obtained by enhancing its results. These experiments
provided promising results however simultaneously pointed
out limits and challenges to overcome.

The rest of the paper is organized as follows: Firstly, in
order to illustrate our needs and the problematic, we set up
four scenarios that are presented in section II. Our contri-
bution is detailed in section III, followed by an explanation



of our experiments and a discussion of obtained results in
section IV. A short state of the art is then presented in section
V. Finally, a conclusion and some future prospects end the
paper.

II. MOTIVATING SCENARIOS

In order to illustrate the limit of vision-based activity
recognition and the advantage of the usage of our approach,
we set up a scenario divided in four scenarios to underline
the problem a robot could encounter during its lifetime.
Firstly, let us settle the context of the scenario: Johan is
65-years-old-men. He lives in a smart apartment with his
personal robot, Nono. The house is equipped with motion
sensors, door opening sensors and a central server. Further-
more, Johan’s phone can communicate with the server. Nono
helps Johan in his everyday life and monitors his activities
for medical observation. Nono is able to recognize the
following activities by looking at Johan’s gestures: phoning,
applauding, remote controlling, opening door, walking,
closing door, falling, drinking and sitting. However, in some
cases, the robot has difficulties to identify properly what
its master is doing. Nevertheless it can rely on the smart
environment.

In this context, we present the four scenarios that could
occur.

A. Scenario 1: confusion between ”phoning” and ”drink-
ing”

Johan wants to call his best friend, thus, he takes his
phone and put it to his ear. Nono is watching Johan while
trying to figure out what he is doing. However, Nono is
not sure if Johan raised his arm for ”phoning” or for
”drinking”. It is not able to decide properly on its own.
However, the phone informs the server that it has perceived
a movement. Nono asks the server to correct the robot’s
analysis. With the phone data, Nono confirms the recognition
of the ”phoning” activity.

B. Scenario 2: confusion between ”remote controlling” and
”phoning”

Johan is a social network addict. He checks his no-
tifications on his phone (included in ”phoning” activity).
However, the gesture he does is interpreted as a ”remote
controlling” activity by Nono, as the gestures are similar.
Johan can be located thanks to the motion sensors positioned
in the house. As he is currently in the corridor, and not in
the living room (i.e. there is no TV nearby) the server is
able to invalidate Nono’s interpretation.

C. Scenario 3: confusion between ”opening door” and
”walking”

Johan is opening the kitchen’s door as he wants to go out.
To do so, Johan walks towards the door. This is confusing for
Nono, as it cannot choose between the ”opening door” and

”walking” activities. The door is equipped with an opening
sensor. By asking the server, Nono obtains the proper
interpretation: as the door’s sensors has been triggered,
Johan is ”opening door”. If not, he would be considered
to be ”walking”.

D. Scenario 4: activities enrichment

By reinforcing an activity recognition process with data
from the environment, it is not only possible to correct
the identification, but it is also possible to recognize new
and more precise activities that are not distinguishable
otherwise. The following scenario illustrates this feature:

Johan is sitting and Nono detects this activity. However,
this activity is quite broad, for example, Johan can be sitting
in order to watch TV or having a lunch. The house’s server
carries Johan’s agenda and knows his habits. Nono tells
the server that Johan is ”sitting”. Knowing that, the server
also noticed that Johan is located in the kitchen and that
he usually eat around 8:00pm, the current time. Thus, it
concludes that Johan is ”eating” and it sends this updated
result to Nono.

III. CONTRIBUTIONS

In this section, we describe the core of our solution. Our
approach relies on a server that centralizes data from sensors
and other sources. This server uses an ontology to carry its
acquired knowledge and to refine activity recognition from
the robot.

Our system operates with three main components:
• The robot: it observes the user and notifies him/her

if necessary. It embeds the recognition algorithm pro-
posed by Yacoubi et al.[1].

• The sensors and other data sources: this includes
motion sensors, cellphone, user’s calendar, the time, etc.
Each of these sources provides data about the current
context of the environment.

• The server: it centralizes information from the robot
and data sources in order to refine the robot’s analysis.
It runs on a dedicated computer. To interact with other
components, the server relies on specific interfaces
along with the multiple devices.

The overall system can be described as a seven step
process, as depicted in Figure 1:

1) Observation: The robot looks at the user’s gesture
and captures a short video.

2) Providing activity probability distribution: The
robot analyzes the video and classifies it into activities
using a state of the art vision-based activity recogni-
tion solution [1]. It sends the result, i.e. activities asso-
ciated with probabilities, to the server for refinement.

3) Acquiring context data: As soon as the server re-
ceives the information from the robot, it starts the
refinement process and queries the data sources. These



sources provide context data that are received, format-
ted and stored in the ontology. Note that the sources
are working in pull mode: they do not provide data
when not being asked to, in other words, they are
used only when the robot enters the process of activity
recognition and they can be used for other applications
in the meantime.

4) Storing in the ontology: Context data and activities
provided by the environment and the robot are format-
ted and inserted in an ontology.

5) Reasoning: By using rules, reasoning is applied to en-
hance the context knowledge. This feature is discussed
in Section III-E.

6) Refining activity distribution: By using the context
knowledge carried by the ontology, probabilities are
adjusted and sent back to the robot. This process is
described in a section III-F.

7) Notification: The robot notifies the user or the medical
staff of the activities it believes the user is doing after
the correction using the context information.

Figure 1: The architecture of our
proposition

From a technical
point of view,
communications
are obviously
working as a
client/server
architecture,
where the devices
(including the
robot) are clients.
They use the TCP
protocol to ensure
the reliability of the
communication.
The server relies on
multiple threads to
interface with the

devices. In particular, one thread is specifically dedicated
to the robot to handle communications in both ways.
The server launches one thread for each data source. The
way the context data is provided is described in the next
sections.

The following sections will discuss and describe in detail
each step.

A. Observation

This section describes how the robot analyzes the user’s
activities from his/her gesture. It corresponds the step 1 in
Figure 1.

In this work, we have used the proposition of El-Yacoubi
et al [1], [2] that consists of a vision-based process to
recognize activity from video stream obtained from robots’
2D cameras. It analyzes the gesture of the user and assigns
it to possible activities. It uses a video stream as an input

and provides as a result a list of activities each associated
with a probability. The aforementioned solution is a four step
process that relies on several supervised learning algorithms:

1) DenseTrack is an algorithm that analyses an image
stream to provide pixel trajectories (tracking).

2) K-means algorithm is used to group the trajectories
into a fixed set of prototypes or clusters.

3) Bag of words algorithm is used to compute the
frequency of ’visual word’ thanks to the clusters
generated by K-means.

4) Support Vector Machine (SVM) The bags are clas-
sified using a trained SVM.

This approach gave decent results on benchmarks, but it en-
counters difficulties in more realistic scenarios, as observed
in our experiments (see Section V). As this is not the core
of this work, we won’t describe this approach here, you can
however find out more information in these papers [3], [1],
[2].

It is important to notice that our approach could work
with any other activity recognition solutions providing a
probability distribution of activities.

B. Providing activity probability distribution

The previously presented vision-based algorithm
provides and sends a list of activities to the server. It
is depicted as number 2 in Figure 1. Each activity is
associated with a probability. The list is formatted as
an array of pair activity and probability. For example:
{(eating,0.05),(phoning,0.1),(walking,0.01), ...} .

C. Acquiring context data

This section corresponds to the step 3 in Figure 1.
Once the server receives the robot’s recognition results,

it enters the refining process and it immediately queries all
the sources it is connected to in order to acquire the current
context knowledge. Sources are various and include sensors,
user profile and/or clock.

Moreover, sensors are also diverse. During our work, we
used cellphone, motion sensors and door opening sensors,
however other types of sensors, such as microphone or
beacons are usable. Such a variety of sensors can gen-
erate a problem of heterogeneity: each sensor have its
own technology and protocol, thus they require a dedicated
integration. In our work, motion and opening sensors use
ZigBee technologies1 and provide data that cannot be used
as is: they only send a ’signal’ (or event) when triggered.
Therefore, we set up a dedicated computer equipped with
a ZigBee antenna with a program interfacing our system
with the sensors. This program interacts with the sensors,
gets the raw events, transforms them and communicates
the values to our system’s server. The cellphone was much

1http://www.zigbee.org/



easier to use as it can communicate through the WiFi. We
designed an application that monitors the phone’s inertial
unit and communicates directly with the server when a
raising movement is detected. As for user profile and clock,
they are actually provided by programs running on the
same computer as the server, but they could be deported, if
necessary, since they communicate through TCP/IP protocol,
similarly as the sensors. The user profile relies on an expert
defined knowledge base.

Sources transmit the observed data to the server by
sending a name and a value. The name allows to identify
the parent sensor and the type of the data. Please note that
we only consider one sensor for each type, thus, in our
case, the name of the sensor is actually equivalent to its
type, for example a sensor name hence also the type is
”motion sensor”. As a consequence, the type of the data
can be found thanks to the name of the sensor which had
sent it. The value, if exists and/or is required, corresponds
to its name. For example, for a inertial unit the value is a
double number, bounded between 0 and 1. Once received,
the server transforms this information as RDF triples (see
Figure 3) and stores them in the ontology. The structure of
the ontology and its role are addressed in the next section.

D. Storing in the ontology

This section discuss the step 4 in Figure 1.

Figure 2: Class hierarchy of
the ontology with data prop-
erties

By the term context we
refer to any information
that can be used to char-
acterize the situation of
an entity, where an entity
can be a person, a place
or a (physical or compu-
tational) object [4]. Con-
sidering that a context is
a specific type of knowl-
edge, it can be modeled
as an ontology. Indeed,
ontology-based models of
context have several fea-

tures: (i) enable representing complex context knowledge,
(ii) provide a formal semantics to context knowledge, which
supports the sharing and/or integration of context informa-
tion and (iii) support reasoning to infer higher level data.
For these reasons, we use an ontology to store the context.

We designed an ontology with Protégé2 software. The
structure of the ontology is depicted in Figure 2.We defined
multiple classes each with their properties. Moreover, the
representation includes activities with their name and prob-
ability, context data (sensor) and user habits.

2http://protege.stanford.edu/

Figure 3: Examples of in-
serted RDF subgraphs

All of these data are pro-
vided at the runtime: at
the beginning of the refine-
ment process the ontology is
empty, i.e. with no instances.
The ontology is filled due
to the data received by the
server from the robot and
sources. The server’s inter-

faces transform the received data into RDF triples (i.e.
subgraphs) and add these new instances in the ontology.
Examples can be found in Figure 3, for the insertion of
both the activity Phoning and the context data Phone linear
acceleration.

E. Reasoning

Reasoning process is represented as step 5 in Figure 1.
Once the ontology is filled, it is possible to reason on it

in order to generate new data. To do so, we apply rules
to check conditions and add content accordingly. In our
work, we mainly use these rules to infer new and more
specific activities that the robot could not identify. By using
more data on top of the initial work of the robot, it is
possible to detect more precise activities. They are actually
derivations of activities, for example, ’sitting’ can be refined
into ’watching TV’ or ’eating’, as depicted in scenario 4.
Rules are used to infer these more precise activities in order
to be inserted in the ontology. Simplified rules written in
Jena3 can be found in the following examples:
• If ”sitting” is the most reliable activity and the user is

located in the living room (through a motion sensor),
then the user is ”watching TV”:
rule1: (?act is-a Activity) (?act a label ”sitting”)
(?act a proba ?prob) (?anyact a proba ?anyprob)
greaterThan(?prob ?anyprob) (?usr located-in ?room)
(?room is-a RoomTV) → (?newAct is-a Activity) (?newAct
a label ”watching TV”)

• If ’sitting’ is the most reliable activity, the user is
located in the kitchen (through a motion sensor)
and the current time matches the user schedule for
dinner/lunch, then the user is ”eating”:
rule2: (?act is-a Activity) (?act a label ”sitting”)
(?act a proba ?prob) (?anyact a proba ?anyprob)
greaterThan(?prob ?anyprob) (?usr located-in ?room)
(?room is-a RoommMeal) (?meal time meal ?time)
equal(”cur time” ?time) → (?newAct is-a Activity)
(?newAct a label ”eating”)

With the data stored and improved, our system can
analyze the context to refine probabilities of the activities.

F. Refining activity distribution

The described process matches the step 5 in Figure 1.
In order to correct the probabilities, the context is ana-

lyzed and activities are adjusted accordingly. This is done

3jena.apache.org



by applying rules. In our work, we consider three cases that
match our scenarios:
• If the phone’s inertial unit exceeds a given threshold –

increase ”phoning” probability,
• If a movement was detected through a motion sensor

located in a room with a TV – increase ”remote
controlling” probability,

• If the opening door sensor was triggered – increase
”opening door” probability.

Obviously, further rules can be added. The probabilities
adjustments and the rules are provided by the designer.

G. Notification

Once the probabilities are updated and new tasks are
added (if applicable), the server sends back the result to
the robot, as depicted in step 6 of Figure 1. The results are
formatted as a list of activities associated with a probability,
using the format utilized by the robot during the first recog-
nition phase. With this new distribution the robot selects the
most reliable activity and notifies the operator who is in
charge of monitoring the user.

IV. EXPERIMENTS

In this section we describe how the experiments were
conducted and discuss the results. These tests aim to measure
the performance of the vision-based activity recognition
and to confirm it can be improved by refining activity
identification with sensors. Firstly, we detail our testing
environment. Then, we briefly describe our protocol. Finally,
we present and discuss our results.

We made our experiments using the Hadaptic platform4.
This platform consists of a room equipped with multiple
sensors and devices. Within Hadaptic platform, we used the
following devices for our tests: 3 motion sensors, 1 opening
sensors, Android based phone (multiple phones where used,
but only one at the same time), 2 computers, one for our
system’s server, the other to manage ZigBee-based sensors,
1 ZigBee antenna, to communicate with motion and opening
sensors, WiFi hotspot, for communication between robot,
computers and phones.

Concerning the robot, we used the famous Nao H25 robot
[5]. It embeds the activity recognition software presented
in Section II-B. Concerning the test subjects, we asked
12 volunteers from the laboratory to participate in our
experiments. Volunteers profile are various and each one has
his/her own way to execute the demanded actions.

A. Protocol

Experiments were conducted as follows. The robot was
installed in the room, in most cases it was sitting (as in Fig-
ure 4) and facing the scene where the action was performed.

4http://hadaptic.telecom-sudparis.eu/fr/introduction/

Figure 4: Example of experiments
for a ”remote controlling” scenario

Please note that for
these experiments,
the robot was not
moving (similar
experiments were
conducted with a
legless T14 Nao).
Each volunteer
was asked to come
in front of the robot and to do a gesture matching one
scenario. The participants were asked to make a gesture
for each of these three actions (corresponding to the three
scenario presented in section II) : 1) make a phone call (cf.
Figure 5); 2) activate the remote control (cf. Figure 4) ; 3)
open the door.

One test iteration consists of the following protocol:
1) The Nao opens the process by telling when the process

starts and when the video acquisition starts.
2) Once Nao announced the beginning of the record,

the user does the gesture. A two-second video of
the action is captured by the robot. An example of
a recording can be found in Figure 5.

3) Nao applies its own activity recognition algorithm.
This step can take up to 15 seconds due to the heavy
process of the visual recognition. Once Nao finishes,
it will send its result to the server.

4) The server stores the result and queries the sensors in
order to refine the activity recognition.

5) Once all data are collected, the server computes a new
activity distribution and provides it to Nao.

6) Nao announces the identified activity, with and without
refinement. All results are stored in the server to be
recovered for analysis (see next Section).

You can find video-examples through the link:
http://nara.wp.tem-tsp.eu/vision-activity-recognition/

Figure 5: Example of a video recorded and used for activity
recognition by Nao

The process is repeated 10 times per scenario and per
volunteer. In other words, each volunteer participates in
3∗10 instances. On the overall, 120 records were obtained
for each gesture. In every case, the results (with and without
refinement) were analyzed and are reviewed in the next
Section.

B. Results and discussions
The experiments helped to understand the performance of

the vision-based recognition algorithm and the impact of our
approach.



(a) Phoning (Scenario 1) (b) Remote Cntrl. (Scenario 2)

(c) Opening door (Scenario 3)

Figure 6: Average resulting distribution without refinement
The green column matches the observed action

(a) Phoning (Scenario 1) (b) Remote Cntrl. (Scenario 2)

(c) Opening door (Scenario 3)

Figure 7: Average resulting distribution after refinement
The green column matches the observed action

Firstly, let us look at the result of the activity recognition
without refinement. Figure 6 depicts the average activity
distribution, provided by the robot without refinement for
one given scenario. The charts show the ordered probability
for each activity. The activity to recognize (i.e. the one
matching the user action) is associated with the green col-
umn. Firstly, it is noticeable that the distribution is very tight:
provided probabilities are close to each other. This result
points out the difficulty for the vision-based algorithm to
have a clear and strong classification by itself. Nevertheless,
differences are observable to a certain scale and they provide
an order between activities. Having said that, it is important
to note that it may not be enough – Figure 8 shows the
successful recognition rates: with 6.40% for the ”remote
controlling” scenario, 53.97% for the ”opening door” and
6.35% for the ”phoning” one. The results are quite poor,
but have to be put in the perspective. Results are varying

according to the scenario. The ”opening door” scenario
provides the best results. As we can see in Figure 6c, in
most cases the robot identifies properly the activity, but
still makes confusion in one out of two cases. With only
6.40% successful recognition rates, the robot seems to have
difficulty to recognize the ”remote controlling” activity.
However, in Figure 6b, in average, the proper activity is
recognized in third place, behind the ”opening door” and
”applauding” activities. This is clearly due to a gesture
confusion: all top three activities are illustrated by the rise of
an arm and thus the difference can be tricky to distinguish.
The phone scenario has very poor results. As we can see
in Figure 6a, it is almost the last activity in the distribution
while being the one to be observed. This result underlines
the unreliability of the vision-based recognition in some
cases. We suppose that the robot was not trained enough for
this scenario and thus we emphasize the importance and
the difficulty of learning of a proper vision-based activity
recognition algorithm. Compared to previous works, it is
important to notice that the experiments are not based on a
given data set: gestures are varied, unpredictable and close
to real case scenarios. Through these results, we can clearly
see the weaknesses of this approach. We will now study the
results obtained after applying the refinement process.

Figure 8: Successful activity
recognition rate per scenario
Blue: without refinement
Red: with refinement

Figure 7 shows the
activity distribution pro-
vided by the server af-
ter refinement with fur-
ther context data. As we
can see, for each sce-
nario, after adjustment
the observed activity is
on average the most prob-
able one, but with a
much higher probability.
This difference can be
explained in two ways.

Firstly, as expressed in the previous paragraph, raw activity
distribution is very tight: every adjustment on a different
scale can lead to such differences. In a more complete
scenario, we can imagine a more disparate distribution due
to the impact of multiple sensors at the same time, but in
such a case, the role of the vision-based recognition seems
weak. The second explanation is the ”semantic” carried by
the sensors. In fact, sensors themselves can give strong hint
about what is going on. For example, the opening door
sensors imply themselves almost certainly that the door is
open. Thus, it greatly impacts the probability (Figure 7c).
The same goes for the ”phoning” activity, as we can notice
in Figure 7a. The correlation between sensors and activities
explains the gap of probability. Moreover, in the ”remote
controlling” scenario (Figure 7b), the motion sensor has
less impact as it is not specifically linked to this activity.
Concerning the ”opening door” and the ”remote controlling”



scenario, the refinement allows to confirm the detected
activity and/or to remove an ambiguity. However, as for
the ”phoning” scenario, while the vision provided a bad
distribution, the refined result is actually correct. Thus in
this case, we can assert that the activity recognition can be
actually performed without the vision process. This finding
raises the question of the relevance of using vision-based
algorithm when other solutions are available. Putting aside
the gap between refined and non-refined probabilities, the
results show that refinement allows a proper recognition.

Figure 8 shows the activity recognition success rate for
both cases – with and without refinement. As previously ex-
plained, raw vision-based activity recognition had mediocre
results while The refined ”remote controlling” scenario has
71% successful recognition rate. The two others were almost
reaching 100% of recognition (when correction was ap-
plied). This is again explained by the impact of the sensors.
These results have also to be put into perspective – in a real
complete scenario, these rates would not be equally good. In
this experiment, we aimed to test the refinement facing one
single action with a few sensors. In a real application with
much more context data that can be conflicting, confusion
would be more present. Nevertheless, it shows the gain we
can have by combining and/or relying on smart sensors.

Figure 9 presents the noise, silence, recall and precision of
the refinement process. These notions are defined as follows:
• Noise: Number of incorrect results provided, divided by

the total number of results. Opposite of the precision.
• Silence: Number of correct results not provided, di-

vided by the total number of existing correct results. In
our case, it is the proportion of distribution that were
not refined due to missing data.

• Recall: Number of correct results provided, divided
by the total number of existing correct results. It can
be seen as the success rate considering the case the
correction was not applied.

• Precision: Number of correct results provided, divided
by the total number of results. It is almost similar to
the success rate depicted in Figure 8.

Although correction is efficient, there were some instances
where it has not been applied properly, in particular for the
”remote controlling” and ”phoning” scenarios, which have
respectively a recall of only 67% and 77%. In fact, we
observed that the sensors sometimes do not detect the action:
even if they are reliable for activity recognition, they are not
flawless. This points out an issue that was not addressed in
this paper, namely sensors uncertainty.

To summarize these experiments, we can assert that
combining vision and sensors from the environment allows
to provide more reliable results. But, our main conclusion
is that using both approaches at the same time is not always
the best solution. In some cases, the vision process could
be avoided, preventing huge costs in time and resources.
In fact, we believe that selecting a method to recognize

activities instead of combining them in any case would be
a better solution. Typically in this case, the robot could
select either the vision, the smart environment, or both of
them, depending on the current case. This is obviously a
challenging, yet promising, issue to tackle.

Figure 9: Noise, Silence, Re-
call and Precision per scenario

Nevertheless, vision-
based recognition is
essential for robots that
operate autonomously
and where sensors
are not always available.
However, as we have seen
through the experiments,
they require a strong
training that has to
be adapted to the
environment the robot evolves in: learning from a dataset
may not be enough and having a learning process at runtime
in the robot’s house seems essential. Using sensors can
allow an unsupervised learning at runtime. In fact, as some
sensors, for example a phone, are highly correlated to one
particular activity, such as ”phoning”, they could indicate to
the robot what activity is occurring, allowing the robot to
adjust its knowledge with the new labeled video samples.
In other words, using the smart environment to enhance
the robot vision learning process is an interesting issue.

Lastly, as we pointed out, both the vision-based and the
sensor-based approaches are not perfect and sometimes are
prone to mistakes. In pervasive environments, uncertainty is
a key issue. Hence, we need to reinforce our work towards
this direction. The state of the art provides multiple solutions
we could use to enhance our combination.

V. RELATED WORK

In the literature, Ye et al.[6] provided a large and complete
review of activity/situation recognition techniques. They
divided the techniques into two categories: learning based
approaches and specification based approaches. The first
relies on the learning algorithm, supervised or unsupervised,
in order to determine how to classify activities. These
techniques mostly rely on low level or raw data, thus, they
can also be seen as ’data driven’ techniques. They include
the following: Bayesian Models, Markov Models, Decision
Tree, Artificial Neural Networks, Support Vector Machine
and others. The solution proposed by El-Yacoubi et al.[1]
enters in this category. On the other hand, specification
based techniques use a knowledge provided by an expert.
In most cases, the semantic of the data is high and rea-
soning friendly. They can be seen as ’knowledge-oriented’
techniques. Among these methods, you can find ontology-
based approaches, Logic or evidence theory. Ye et al.[6]
analyzed and discussed all these techniques. One of their
main conclusion was the need for hybrid approaches. In
fact, each category of the techniques has its advantages



and limits. Proposing combination, i.e. a hybrid approach,
would be beneficial by using the advantages of both methods
while overcoming their limits. Yet, such methods are not
commonly addressed. Our work is exactly positioned as a
hybrid approach: it combines a learning based technique,
using vision-based algorithm, with reasoning and rules (i.e.
a specification based method). We will now review some
other hybrid approaches.

COSAR [7], [8] is a context aware mobile application that
combines a statistical learning-based technique with reason-
ing through an ontology. To identify the current activity,
COSAR first uses its trained statistical model to have a first
result, then calls its ontology to refine this recognition. Their
core application is based on worn sensors. In our case, we
consider having a robot and a smart environment, that are
separated. The robot could work on its own, but can also
improve its results by asking the sensors if available, while
COSAR is a single process.

FallRisk [9] is another combination of learning and spec-
ification based techniques. The main objective of this work
is to detect falls of elderly in smart homes. It relies on
a platform that uses multiple learning-based fall detection
systems. The results of these systems are filtered and put
into an ontology that carries the context knowledge. The
knowledge, including contextual information about the user,
is then used to refine the fall detection. The strength of this
approach, besides the combination of both techniques, is the
compatibility with any fall detection technique. However, it
solely deals with fall detection.

FABER [10] is a pervasive system designed to detect ab-
normal behaviors for medical applications. It first computes
events and actions from the available context data by using
simple reasoning on an ontology. They are then injected into
a Markov Logic Network (MLN). This trained MLN is used
to determine the start and/or end time of activities based on
the received data. Computed boundaries, actions and events
are sent to the knowledge-based inference engine. This last
module is in charge of identifying abnormal behaviors by
applying rules extracted from a medical knowledge base.
FABER actually offers a three-techniques combination and it
is noticeable that the learning-based technique uses inferred
data, unlike most learning based techniques that use raw
or low level data. FABER also takes the temporal features
into account which is an interesting issue. Our work is a bit
different: we aim to detect normal activities that a robot is
used to see in order to integrate them properly in an everyday
life routine.

VI. CONCLUSION

In this paper, we presented a refinement of an activity
recognition solution for domestic robots, a vision-based
algorithm in our work, by using the sensors and data sources
available in the environment. Our system relies on a server
that communicates with the robot, gathers the context data

and proposes an enhancement to recognized activities. Our
proposition was tested with a Nao robot in a smart room
on 12 different persons. Our results showed a significant
gain by combining the two techniques, however they mainly
pointed out that it is not always pertinent. Furthermore, they
underline the dependence of the vision algorithm on a strong
learning phase and the necessity to tackle uncertainty issues.
In future work, we aim to tackle challenges underlined
in the experiments, in particular the problem of selecting
what activity recognition method to use depending on the
situation. Moreover, experiments using real case scenarios
and comparing our approach to existing human activity
recognition approach should be performed. We plan to use
the Evident5 and Hadaptic6 platforms with a mobile robot
in real life configurations.
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