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: e geometrical structure of an input photograph is analyzed. en, each shape of the resulting hierarchical structure is replaced either (from le to right) by an ellipse, a shape extracted from a full dictionary (Van Gogh painting), or a segmented one (Mondrian). Finally, a brush like e ect can be obtained by "shaking" all the shapes from the input.

INTRODUCTION

In the eld of non-photorealistic image rendering, the term image abstraction refers to the process of generating simple, stylized version of photographs [DeCarlo andSantella, 2002, Orzan et al., 2007].

is task usually requires the omission of small details that are unimportant for our understanding of a scene. While doing so, one might want to keep in mind that the high-level structural properties of images, such as interactions between objects through inclusion or occlusion, play an important role for the artistic representations of scenes. For instance, Cubism or Futurism heavily rely on the structural properties of the image objects.

In this paper, we propose to analyze the geometric structure through a topographic map [START_REF] Caselles | Topographic Maps and Local Contrast Changes in Natural Images[END_REF] of an image. All connected components of level sets, the shapes of the image, are organized in a hierarchical manner to form a tree accounting for inclusion properties.

e resulting representation of the image is both complete (that is, contains all the image information) and morphological (that is, invariant to contrast changes). e input image can then be edited by modifying, ltering, or replacing these shapes in a global-and-local manner. Eventually, a new image is created from the resulting tree. e geometric shapes alterations proposed in this paper include simple random displacements of shapes, creating painting-like e ects, as well as replacement of every shape of the image by shapes from a dictionary, according to some replacement rules, yielding drastic alterations of images.

ese alterations are only some of the many possibility o ered by the proposed generic framework.

Since the image is represented using a collection of shapes, we have a direct control on geometric manipulations. Furthermore, the topographic map accounts for all scales in the image, enabling interplays between textures and macroscopic structures of the image. Lastly, the hierarchical structure of the chosen representation allows inclusions properties between shapes to be partially preserved in the synthesized image, yielding highly structured abstract images. We believe that the generic image representation structure, advocated for in this paper, namingly the topographic map, is a powerful tool. Indeed, by iteratively performing simple local operations on the shapes (such as rotation, scaling, random displacement…), we are able to generate abstract renderings of digital photographs ranging from geometric abstraction, painterly e ect and style transfer using the same framework (see Figure 1). A main singularity of our method is to o er geometric abstractions of digital photographs. In particular, we suggest a way to abstract images by replacing all geometric shapes by one or a few reference shapes. As a result, we obtain images that evoke the abstraction painting schools of the beginning of the 20th century, while giving a faithful account of an example image structure.

RELATED WORK

e origins of non-photorealistic rendering (NPR) take place in interactive painting and drawing systems [Haeberli, 1990, Winkenbach and[START_REF] Winkenbach | Computer-Generated Pen-And-Ink Illustration[END_REF], which describe techniques for creating numerical paintings by sequentially adding brush strokes on an image. Many work have since been dedicated to the automatization and re nement of stroke-based rendering, e.g. [START_REF] Brooks | Mixed media painting and portraiture[END_REF][START_REF] Collomosse | Painterly rendering using image salience[END_REF][START_REF] Gooch | Artistic Vision: painterly rendering using computer vision techniques[END_REF][START_REF] Hertzmann | Painterly Rendering with Curved Brush Strokes of Multiple Sizes[END_REF][START_REF] Hertzmann | Paint By Relaxation[END_REF][START_REF] Litwinowicz | Processing images and video for an impressionist e ect[END_REF]. Most of these works rely on a preliminary image analysis step which encodes the image structure either completely or partially: edge detection [START_REF] Litwinowicz | Processing images and video for an impressionist e ect[END_REF], linear scale-space [START_REF] Hertzmann | Painterly Rendering with Curved Brush Strokes of Multiple Sizes[END_REF], region extraction [START_REF] Gooch | Artistic Vision: painterly rendering using computer vision techniques[END_REF][START_REF] Mould | Region-based abstraction[END_REF], salience map [START_REF] Collomosse | Painterly rendering using image salience[END_REF], multi-scale edge detection [START_REF] Hays | Image and video based painterly animation[END_REF], Laplacian pyramids [START_REF] Brooks | Mixed media painting and portraiture[END_REF], etc. . . ese systems follow the abstraction paradigms proposed by [START_REF] Gomes | Abstraction paradigms for computer graphics[END_REF], o ering general principles on how to model, represent and build abstraction systems in computer graphics.

Several papers focus on image simpli cation or abstraction. ese works tend to simplify a photograph by highlighting important edges and smoothing regions which are considered as perceptually negligible. A natural way to achieve this kind of e ect is also to use image analysis tools. In order to render the geometric structure of images at multiple scales, several methods rely on a linear scale space [START_REF] Decarlo | Stylization and abstraction of photographs[END_REF][START_REF] Orzan | Structurepreserving manipulation of photographs[END_REF][START_REF] Santella | Visual interest and NPR: an evaluation and manifesto[END_REF]. De Carlo and Santella [DeCarlo and[START_REF] Decarlo | Stylization and abstraction of photographs[END_REF][START_REF] Santella | Visual interest and NPR: an evaluation and manifesto[END_REF]] use a hierarchical segmentation and a pruning of the corresponding structure to create an adaptive segmentation of the initial image. e choice of the level of details in each part of the image relies on the local contrast and on a user-driven measure of visual a ention. Alternatively, Orzan et al. [START_REF] Orzan | Structurepreserving manipulation of photographs[END_REF] follow Canny edges through a linear scale space in order to de ne a multi-scale edge-based structure and to create a simpli ed image by solving a Poisson equation. Targeting a di erent application, other methods rely on mean-shi segmentation to put together texture patches and emulate stained glass rendering [Mould, 2003, Setlur and[START_REF] Setlur | Automatic stained glass rendering[END_REF]]. An alternative direction, suggested by [START_REF] Bangham | e art of scale-space[END_REF], is to use non-linear scale spaces to produce artistic e ects, a path further explored by [START_REF] Kang | Shape-simplifying Image Abstraction[END_REF]. [START_REF] Mi | Abstraction of 2D shapes in terms of parts[END_REF], propose a structural image abstraction method, through the segmentation and organization of image shapes into perceptual parts. ese shapes are simpli ed, i.e. removed, using this hierarchical decomposition. [START_REF] Zhao | Sisley the abstract painter[END_REF] use a meaningful image decomposition to generate painterly e ects on photographs using brush superimposition. A segmentation, guiding the abstraction process, is performed and annotated by the user and the resulting shapes are organized by the user in a binary tree. While generating esthetically pleasing results, this methods necessitates heavy user interaction. Most recently, methods were proposed to mimick the styles of speci c artists, such as Picasso [START_REF] Lian | [END_REF] and Pollock [START_REF] Zheng | Layered modeling and generation of Pollock s drip style[END_REF], using artistic layers approaches, and Miro [START_REF] Xiong | Generation of Miro's Surrealism[END_REF], using random generation.

ere are relatively few works concerned with the abstraction of images obtained through radical geometric modi cations of shapes.

e simplest approach to such a geometric abstraction is available in popular plug-ins aiming at the creation of cubist-like images. ese usually superimpose to the original image simple geometric shapes over which the colors are averaged. A more involved approach was long ago suggested in the inspiring work of Haeberli [START_REF] Haeberli | Paint by numbers: Abstract image representations[END_REF], where geometric shapes are superimposed to the image in order to minimize a given energy. Such approaches involve complex optimization procedures, usually relying on heuristics. A more structured approach developed to achieve the same goal is presented by [START_REF] Song | Arty Shapes[END_REF], where a segmentation of the image (in this case a normalized cut) is used to replace shapes by geometric primitives such as disks or rectangles, resulting in complex abstract images.

An alternate trend, for image stylization, is to use style transfer by applying an artistic style from an existing painting or photograph. Patched-based approaches transfer to an image entire patches or pixels extracted from an exemplar image [START_REF] Frigo | Split and match: example-based adaptive patch sampling for unsupervised style transfer[END_REF], Hertzmann et al., 2001[START_REF] Lee | Directional Texture Transfer[END_REF]. ese methods take inspiration from copy-paste methods developed for texture synthesis [START_REF] Efros | Image ilting for Texture Synthesis and Transfer[END_REF][START_REF] Efros | Texture Synthesis by Non-parametric Sampling[END_REF], Hertzmann et al., 2001[START_REF] Wang | E cient examplebased painting and synthesis of 2D directional texture[END_REF].

More recently, neural networks systems [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF] are used to learn the features of the exemplar images' style to generate a stylized image from a given input photograph. ese methods use the deep Convolutional Neural Networks representation combined with an iterative optimization [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF]. We refer to [Kyprianidis et al., 2013, Rosin and[START_REF] Rosin | Image and Video-Based Artistic Stylisation[END_REF] for a more complete survey of NPR methods.

In this work, we propose to use a hierarchical structure accounting for the inclusion of shapes, allowing to produce a variety of NPR e ects. Indeed, our versatile framework allows to obtain geometric abstractions of images, add a painting-like e ects to the image and transfer style from existing images. is exibility stems from the image decomposition into a topographic map, described in the next section.

Tree of shapes

Tree structure 

TOPOGRAPHIC MAP -TECHNICAL BACKGROUND

e topographic map, introduced by Caselles et al. [START_REF] Caselles | Topographic Maps and Local Contrast Changes in Natural Images[END_REF], is a hierarchical structure composed of shapes obtained from connected components of level sets. It is a powerful way to represent and manipulate the geometric content of a gray level image [START_REF] Cao | Extracting Meaningful Curves from Images[END_REF][START_REF] Caselles | Geometry and Color in Natural Images[END_REF][START_REF] Desolneux | Edge Detection by Helmholtz Principle[END_REF].

In particular, we shall see that this map is a exible and e cient tool to transform or simplify the geometric structure of an image, while preserving the inclusion properties of shapes.

Recall that the upper level sets of an image u : Ω → R are de ned as the sets

χ λ (u) = {x ∈ Ω; u(x) ≥ λ}, (1) 
where λ ∈ R. e connected components of these upper level sets correspond to light objects, i.e., lighter than λ. Lower level sets χ λ (u) of u, corresponding to dark objects, are de ned similarly by inverting the inequality in Equation 1. Observe that the image is completely described by its upper (or lower) level sets, which form a decreasing (increasing) family with respect to inclusion. Hence, the connected components of upper (or lower) level sets are naturally embedded in a tree structure. While being dual in their de nition, these two trees are very di erent. To obtain a unique hierarchical structure containing both light and dark objects, Monasse and Guichard [START_REF] Monasse | Fast Computation of a Contrast Invariant Image Representation[END_REF] introduce shapes, which refer to connected components of upper or lower level sets whose holes1 have been lled. Shapes are thus simply connected sets (i.e. without holes). Monasse and Guichard [START_REF] Monasse | Fast Computation of a Contrast Invariant Image Representation[END_REF] show that the set of all shapes of an image has a tree structure, in which parent-child relationships correspond to set inclusion. In this paper, we refer to this tree structure as the topographic map and we use the Fast Level Set Transform (FLST) [START_REF] Monasse | Fast Computation of a Contrast Invariant Image Representation[END_REF] to compute it e ciently. Alternatively, one might choose contour tree computation methods, widely used in the scienti c visualization community [START_REF] Carr | Computing contour trees in all dimensions[END_REF][START_REF] Gueunet | Contour Forests: Fast Multi-threaded Augmented Contour Trees[END_REF]. A schematic representation of the topographic map is displayed in Figure 2. ree aspects of this map make it particularly suitable for manipulating the geometric content of an image. First, it constitutes a complete representation of the image content, without any loss

A FLEXIBLE IMAGE MANIPULATION FRAMEWORK

We present our general framework in section 4.1 and its details in sections 4.2 and 4.3. is generic procedure is illustrated in Figure 3.

General outline

Decomposition. e image is transformed into a topographic map, that we call Tree of Shapes (ToS), using the luminance channel.

Modi cation. As a second step, the input tree can be modi ed using di erent processes such as:

• shape selection: shapes are kept in the tree using the three following modalities of selection:

according to geometric properties, such as area or elongation, -according to the contrast of shapes, -interactively, where only shapes meeting a user dened region are kept. • shape displacement: a random shi and/or rotation can be added to each shape. • geometric transformation: each shape is replaced by a new shape (simple shapes -disks or ellipses -, hand drawn shapes or shapes extracted from another image, etc.). e new shape can be chosen according to the geometric or color properties of the input shape. • color modi cation: the color of each shape is modi ed by using some color pale e, possibly inherited from another tree.

Reconstruction

Reconstruction. To reconstruct an image from the modi ed tree of shapes, it is traversed in a given order and each shape is rendered into the nal image with possible additional e ects such as transparency, shadow or blur.

Note that the user can perform these processes iteratively since the output of each operation is a modi ed ToS that can be used as an input. Observe also that these rules are only a subset of the possibility o ered by the approach, which provides a versatile way to stylize images. Indeed, the exibility of our approach potentially allows for a much wider range of tree or shape processes.

Analysis and abstraction

e images are abstracted or stylized using the generic framework presented in the previous section and detailed here.

We de ne here the shape descriptors and the distance functions between shapes that are used to process the tree.

Colored tree. e decomposition of the input image is implemented by the Fast Level Set Transformation [START_REF] Monasse | Fast Computation of a Contrast Invariant Image Representation[END_REF]. First, for a color image I , its luminance channel is computed in HSV color space. en, the topographic map T = (S i ) i=1, ..., N of the luminance image is computed. Eventually, for each shape S i , a color c i ∈ R 3 is obtained by averaging in RGB space the color values of all pixels included in S i . We call the resulting structure (S i , c i ) i=1, ..., N a colored tree (Figure 3 

le ).

Shape description. In practice, a shape S i is made of a set of pixels noted (P j ) j=1, ..., M with M the shape area and (x j , j ) j=1, ..., M their associated positions. We compute its center of mass P whose coordinates are noted ( x, ¯ ).

In order to analyze, compare and discriminate between shapes, we chose to use a descriptor, retaining their main features: the elongation and compactness measure, proposed by Xia et al. [START_REF] Xia | Shape-based invariant texture indexing[END_REF], and inspired by the work of Flusser et al. [START_REF] Flusser | Pa ern recognition by a ne moment invariants[END_REF]. is measure -invariant to scale, translation and rotation -stems from the shape's invariant moments. Note that, the compactness is similar to the ellipticity measure proposed by Rosin et al. [START_REF] Paul L Rosin | Measuring shape: ellipticity, rectangularity, and triangularity[END_REF]. Such moments are used for image registration [START_REF] Monasse | Contrast invariant registration of images[END_REF] and texture recognition [START_REF] Hazem | Texture classi cation through level lines[END_REF]Larson, 2002, Xia et al., 2010]. We extract the invariant moments from the normalized inertia matrix of order 2, de ned as :

A = η 20 η 11 η 11 η 02 ,
with, p and q being two integers,

η pq = µ pq M (p+q+2)/2 ,
and µ pq the central moment given by

µ pq = M j=1 (x j -x) p ( j -¯ ) q .
We compute λ 1 and λ 2 the two eigenvalues of A with λ 1 > λ 2 . Note that, this values correspond to ing an ellipse to the shape with 2 √ λ 1 and 2 √ λ 2 as semi-major/minor axis. Finally, we can compute the elongation e and compactness κ used to describe the shape:

e = λ 2 λ 1 (2) and κ = 1 4π √ λ 1 λ 2 . ( 3 
)
Note that, the compactness measures the shape similarity to an ellipse and that the values of e i and κ i are between 0 and 1 (see [START_REF] Xia | Shape-based invariant texture indexing[END_REF] for details).

Shape comparison. In order to enable the replacement of shapes (either by shapes extracted from a dictionary or by a single shape), the shapes need to be compared and the best match found. To do so, we use a distance d 1 between two shapes S i and S k that e colors can be either transferred from the dictionary image to preserve it texture (le ), or from the dictionary ToS (middle) or kept unchanged (right).

is process can be performed on a segmented version of the dictionary (bottom).

depends only on the shapes' geometry using their area, elongation and compactness:

d 1 (S i , S k ) = (e i -e k ) 2 + (κ i -κ k ) 2 + (1 -min{ M i M k , M k M i }) 2 . (4)
We use a normalized area comparison so that the area term does not shadow the others. is distance is preferred when using monochromatic or single image dictionaries. To transfer shapes from a colored dictionary (for instance for style transfer), we minimize the following distance accounting for the shapes' colors:

d 2 (S i , S k ) = d 1 + d color (c i , c k ).
(5) with d color (c i , c k ) the distance between the shapes' colors de ned as 1

3 channel =RG B (1 -min{ channel i channel k , channel k channel i })
2 . e distances between the color channels are normalized so that a channel does not prevail over the other.

Tree processing

We propose a set of possible modi cations that can be used jointly or separately. Selection. In order to simplify the image content only a subset ( Si ) of the shapes (S i ) are kept. e shape description parameters -elongation, compactness and area -are used to perform the discrimination. Additionally, shapes can be ltered with reference to their contrast, using the automatic topographic map as a sketch of the image. e resulting tree T = ( Si ) is obtained by de ning the parent of Si as the rst ancestor shape of S i in T that has not been removed (Figure 3 shows such a simpli ed tree). e root of the tree is kept unchanged.

Displacement. e structure of the tree T is kept unchanged, and for each i = 1 . . . , N , a random translation and/or rotation is added to (S i ). We call this e ect shaking (Figure 3 bo om) e displacements can depend on the properties of S i .

Transformation and matching. Each shape from the tree can be replaced by a given shape or a shape extracted from a prescribed dictionary (see modi cation box Figure 3, resp. bo om and top). e dictionary can be obtained from an exemplar image decomposed into a colored tree. More precisely, for each shape S i , a shape D i is chosen in the dictionary tree so as to match S i . e shape is chosen as the one minimizing the distance d 1 or d 2 .

e dictionary might be made of a large number of shapes, therefore, performing this process is time consuming since one needs to compute the distance between each shape S i and all the ones from the dictionary color tree (do ed box Figure 3). To reduce the computation time we use a kd-tree [START_REF] Louis | Multidimensional binary search trees used for associative searching[END_REF] to perform an e cient search to match points in a k-dimensional space. Since our distances are not Euclidean, due to the normalizations, we build the tree using six-dimensional points describing the shapes of the dictionary color tree using (e i , κ i ,

M i mean(M ) , r i mean(r ) , i mean( ) , b i mean(b)
) with mean(M) referring to the average value of the shapes areas and mean({r , , b}) to the average values of each color channel. en, we get the l nearest neighbors from the current shape, on which we perform the exact distance calculation and minimization in order to get the best matching shape. In our experiments, a neighborhood of size l = 50 is su cient.

Once a shape D i is selected, an isometry T is computed, in a way that the area and orientation of T (D i ) matches the ones of S i . e corresponding rotation and translation are illustrated in Figure 3.

Note that, when dealing with a single shape, only the isometry needs to be computed. Additionally, when the dictionary is made of few shapes with limited color contrasts, one might want to use d 1 only, accounting for the shape geometry.

Color modi cation. e color c i associated with S i is usually kept unchanged except, when we perform shape transfer between two images, in which case the color may be transfered from the dictionary image to reproduce its texture, or the ones of the dictionary colored tree's shapes as illustrated Figure 4. When dealing with extreme abstraction, one might want to limit the number shapes to extract from the input dictionary. To do so, we use a segmentation e background of the original image, from www.wildlife-photo.org courtesy of Vadim Onishenko (le ), is eliminated using a segmentation procedure [Felzenszwalb and Huttenlocher, 2004], the resulting image's colored tree is ltered using a contrast based automated procedure [START_REF] Desolneux | Edge Detection by Helmholtz Principle[END_REF]. All the shapes from the resulting sketch are replaced with (from le to right) rectangles, ellipses, or disks.

of the dictionary image. In this case, the colored tree is generated from a color image computed by averaging the colors of the dictionary image in each shape from the segmentation image (as illustrated on the le of Figure 4).

Reconstruction.

Eventually, we reconstruct an image from the modi ed ToS. e resulting image is obtained by rendering iteratively the shapes of the nal tree. Additional e ects such as relief, transparency and blur can be easily added at this stage.

Ordering. e shapes are rendered one by one, as illustrated on the right of Figure 3, where the tree traversal order is displayed as a do ed line. Observe that, in a tree resulting from either shape displacements or geometric transformations, the parent-children relationships no longer correspond to the inclusion of shapes, as in the input tree T . erefore, one has to make some choice on how to reconstruct images from the tree of shapes. In order to preserve the inclusion of shapes as much as possible, we choose to compute the resulting image by assigning to each pixel the color of the smallest shape containing it. Otherwise, a breadth-rst rendering of the shapes is performed since the ToS accounts for shape inclusion.

Relief E ects. Relief e ects on 2D images are usually achieved by using some 3D models, as in bump mapping [START_REF] Blinn | Simulation of wrinkled surfaces[END_REF]. In the framework of this paper, a di erent relief e ect can be achieved by assigning a shadow to each shape. For each shape S i with color c i , a slightly translated version of the same shape is added in the tree as the parent of S i , with a darker color k.c i ( rst rendered shape in Figure 3 right) with k a scalar between 0 and 1. is e ect is used to render the simple geometric shapes of Figures 1, 5 and7.

Blur. Observe also that the shape manipulation of the previous stage could yield aliasing e ects when the new shapes are used for the reconstruction. To overcome this issue, we choose a simple ma ing technique consisting in adding a transparency channel with Gaussian decreasing around the shape. e parameter of the Gaussian is chosen as 0.4 in all the experiments.

RESULTS

We apply our generic decomposition-modi cation-reconstruction framework on a large variety of examples among which photographs from the benchmark image set for evaluating stylization [START_REF] Mould | A benchmark image set for evaluating stylization[END_REF]. We demonstrate the validity of our approach for image abstraction in Figures 5,6, 7 and 8 and stylization in Figure 9.

Image abstraction

e main ideathat we propose is to replace all shapes of a given image by shapes from a dictionary. is way, we produce images that at times can evoke the abstract paintings of the Suprematist school, while retaining the overall composition of a given input image. Observe however that if one were to establish a parallel with art, the proposed framework would evoke the approach of the Cubist school.

oting Picasso," ere is no abstract art. You must always start with something. A erward you can remove all traces of reality, there is no hazard since the idea of the object has le an ine aceable print" [START_REF] Elger | [END_REF].

Single shape rendering. All shapes of the image are replaced with a simple geometric primitive. In Figure 8, as well as Figure 5, we display examples obtained using, from le to right, a single rectangle, ellipse then disk as a dictionary. It is interesting, from a perceptual point of view, to observe how much visual information is gained by switching from disks to ellipses with varying elongation. In the Figure 5, and, last example Figure 8, the background was eliminated using a segmentation procedure [START_REF] Pedro | E cient graph-based image segmentation[END_REF], shapes are rendered using the relief e ect presented at the end of Section 4. For all the abstraction examples, the topographic map has been simpli ed using a contrast based method [START_REF] Desolneux | Edge Detection by Helmholtz Principle[END_REF]. In short, only the scales of shapes and their spatial relationships are kept. From this point of view, these experiments are intriguing perception experiments, in which one may be surprised to perceive the meaning of the depicted scene. 7: Shape transfer from a dictionary. (Le ) Original image, (middle) result of shape transfer along with its dictionary created with a drawing so ware and (right) a second result with a Kandinsky painting as a dictionary. Image credit: image courtesy of Iberico 90.9.

Rendering from a more complex dictionary. Next, we show some examples in which the dictionary is made of more complex shapes. In Figure 6, the dictionary is made of hand-drawn shapes. In Figure 7 the dictionary is made of shapes obtained using a drawing so ware.

is dictionary is also used in Figure 8 along with a segmented one (Mondrian painting). In these examples, the topographic map has again been simpli ed using the sketch [START_REF] Desolneux | Edge Detection by Helmholtz Principle[END_REF]. In Figure 7, a segmentation procedure has been used to get rid of the background. As explained before, shapes from the dictionary are selected so as to minimize elongation and compactness di erences with the replaced shape, following Formula (4), and then rotated and scaled to match the area and orientation of the replaced shape.

e e ects of this simple procedure may be observed in the heads and wings of the birds in Figure 6.

Painting-like e ects

In this section, we illustrate the exibility of the general framework presented above, by showing that it permits to obtain some paintinglike e ects by modifying the shapes of the colored tree of images. Contrarily to some classical rendering approaches [START_REF] Gooch | Interactive Technical Illustration[END_REF][START_REF] Hertzmann | A Survey of Stroke-Based Rendering[END_REF], these e ects are obtained without using any explicit brush model and only involves shape modi cations.

Shape shaking. Camera blur in photographs usually results in many nested level lines along contours [START_REF] Caselles | Topographic Maps and Local Contrast Changes in Natural Images[END_REF]. We suggest to use this redundancy to produce oscillating boundaries, as may be encountered in oil-paintings. is e ect is achieved by adding a random displacement to each shape of the colored tree of the input image, thus mimicking small oscillations produced by the painting tool. e resulting e ects can be seen on the rst column of Figure 9.

Shape smoothing. e second painting-like e ect proposed in the same framework aims at producing images mimicking water-color paintings (Figure 9, second column). A median lter is applied individually to each shape of the color tree of the input image. is results in boundary motion, the motion being more important at points of high curvature. is approach shares some similarity with works suggesting that interesting painting-like e ects can be obtained by applying some operators from mathematical morphology, such as sequential openings and closings [START_REF] Bousseau | Video Watercolorization using Bidirectional Texture Advection[END_REF].

Shape ltering. Removing small shapes allows to abstract the image since these shapes represent the textures of the input image [START_REF] Mould | Texture-preserving abstraction[END_REF]. is simple ltering gives a painting-like feel to the images as illustrated in the third column Figure 9.

Style transfer

By using a painting as an input dictionaryi.e. by replacing the shapes from the input image by the shapes from a painting -we are able to transfer its style to the image. To do so, all the shapes of the colored tree are preserved in order to transfer the texture yielding the features of the painting. In the last two columns of Figure 9, the style from a painting is transfered to the input image. To do so, the distance d 2 , from Formula (5), accounting for the shapes' colors, is used. Note that the color of the actual dictionary image is transfered during the rendering stage, in order to transfer the dictionaries textures. Even though the style transfer results presented here yield more artifacts that the ones produced by CNN methods, our framework produce esthetically pleasing results e ciently and is signi cantly easier to implement.

DISCUSSION

e main characteristic of our approach is to o er an image abstraction method using drastic shape simpli cation. In the same spirit, Song et al. propose a geometric image abstraction method using a normalized-cut segmentation in order to partition the image and replace each region with a given shape [START_REF] Song | Arty Shapes[END_REF]. is process results in a mosaic of shapes of a given size. To overcome this issue, the aforementioned process is performed using two segmentations of the image, each representing a given shape scale i.e. a level of detail -that are later combined. In contrast, the topographic map naturally accounts for all scales in the image and their inclusions. As a result, the synthesis procedure proposed in this paper enables complex interactions between shapes as may be seen in Figure 8.

Our system has some limitations. Indeed, certain abstraction processes are be er suited for certain kinds of images. For instance, the style transfer is more appropriate for very contrasted images with a large number of details. Large uniform color regions in the input image will correspond to a single shape in the tree that will reproduce a large portion of the dictionary. Furthermore, the user has li le control over the automated contrast-based simpli cation method used to produce the sketch of the image.

Our framework could be enriched with additional options such as an adaptive abstraction over the image. Either the user could provide a segmentation depicting regions of interest, or an abstraction eld de ning the intensity of the e ect over the image. An example could be to apply less shaking or blurring around the eyes in the results presented Figure 9. Additionally, the shape's depth in the tree can be used to guide the stylization process. Moreover, instead of blurring the new shapes to overcome aliasing issues, we could generate an output image with a large resolution.

e possible tree and shape modi cations are not limited to the ones presented in this work, for instance, one could perform more drastic shape transformations, for stylization purposes, by adding perturbations or shape changes with reference to the shape's curvature. Finally, our stylization e ects can be combined with existing stroke-based methods or region-based ones.

CONCLUSION

In this work, we have shown that a highly structured representation of images, the topographic map, allows to easily create a variety of NPR of digital photographs. Indeed, all the stylization effects presented in this paper -geometric abstraction, shape shaking and ltering, style transfer -are produced using simple operations (translation, scaling, duplication…) on each shape of the tree. Since the processes are performed iteratively on the colored tree, the user can easily adjust the intensity of the desired abstraction. Furthermore, we provide a single interface that allows for novice users to generate stylized images. 

Figure 2 :

 2 Figure 2: From le to right: a ower image, its topographic map and the structure of the corresponding tree.

  Figure3: e proposed framework for image abstraction. Decomposition: we rst decompose the input image into a colored tree (le ). Modi cation: the tree is then modi ed: the small shapes, which have an area lower than a given threshold, are removed (shape selection). e remaining shapes are then replaced either by shapes extracted from a dictionary (top) or by a single similar shape (bottom). Shapes can be further modi ed by adding a random displacement (shaking). Reconstruction: the shapes are rendered one by one with additional stylization e ect -relief in the example -into the result image with, either the color of the input shape (top), or the color of the new shape (bottom).

Figure 4 :

 4 Figure 4: Color modi cation.e colors can be either transferred from the dictionary image to preserve it texture (le ), or from the dictionary ToS (middle) or kept unchanged (right).is process can be performed on a segmented version of the dictionary (bottom).

  4.3.1 Modification. e proposed shape modi cations are illustrated Figure 3 (Shape selection, displacement and transfer).

Figure 5 :

 5 Figure 5: Shape selection and single shape rendering.e background of the original image, from www.wildlife-photo.org courtesy of Vadim Onishenko (le ), is eliminated using a segmentation procedure[Felzenszwalb and Huttenlocher, 2004], the resulting image's colored tree is ltered using a contrast based automated procedure[START_REF] Desolneux | Edge Detection by Helmholtz Principle[END_REF]. All the shapes from the resulting sketch are replaced with (from le to right) rectangles, ellipses, or disks.

Figure 6 :

 6 Figure 6: Shape transfer from a dictionary. (le ) Original image with a hand drawn dictionary, (right) the resulting shape transfer. Image courtesy of Lynn Ewing.

Figure

  Figure7: Shape transfer from a dictionary. (Le ) Original image, (middle) result of shape transfer along with its dictionary created with a drawing so ware and (right) a second result with a Kandinsky painting as a dictionary. Image credit: image courtesy of Iberico 90.9.

Figure 8 :

 8 Figure 8: Image abstraction. (Le column) Input photographs from the benchmark image set for evaluating stylization [Mould and Rosin, 2016]. We compute the sketch of the input images (contrast ltering of shapes) and replace the remaining shapes by (from le to right): rectangles, ellipses, disks and shapes extracted from segmented dictionaries.

Figure 9 :

 9 Figure 9: Painting-like and style transfer. (First column) Stylization using shape shaking, (second column) a water color e ect is produced by adding a median lter and blur. ( ird column) We retain shapes larger than a given threshold, hence, removing small texture details resulting in smoother regions. e two last columns depict style transfer from two di erent paintings.

A hole of a set in an image is de ned as a connected component of the complementary of this set that does not intersect the border of the image. of information, contrarily to edge-based descriptions. is map is therefore well adapted for ne image modi cations, even at very small scales. Second, this representation is multi-scale and provides ways to edit simultaneously all scales of an image in di erent ways. Finally, since the topographic map is a hierarchical structure of shapes, which are simply connected, it is especially well adapted to render the inclusion properties of objects in images. For instance, if an image represents a small white disk over a large black disk, the black disk will appear only once in the topographic map, as the parent of the white one. In comparison, a hierarchical segmentation of the image would code the large disk twice, both at a large scale (as a disk), and at a small scale (as a ring around the small disk), making the interpretation of the image as a stack of di erent object layers more di cult. is particularity of the topographic map will appear essential in Section 4.Several approaches were proposed to compute the topographic map of color images.Caselles et. al. show that most of the geometric content of color images is contained in the topographic map of its gray level channel, and therefore advise to use the shapes of this map, associated with their average saturation and hue, to describe color images[Caselles et 

al., 2002].Coll et. al. propose to de ne a total order in the HSV space with a good correspondence to the human perception of geometry. e topographic map of a color image is then computed on this channel[START_REF] Coll | Topographic Maps of Color Images[END_REF]. Finally, Goui ès et al.[START_REF] Goui | A color topographic map based on the dichromatic re ectance model[END_REF] propose a color topographic map representation relying on a dichromatic re ectance model. Since these last two methods are time consuming and show minor improvement in most images, we chose to use the simplest approach[START_REF] Caselles | Geometry and Color in Natural Images[END_REF]. For more precision and results on the topographic map, we refer to the monograph[START_REF] Caselles | Geometric Description of Topographic Maps and Applications to Image Processing[END_REF].
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