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Abstract

We present in this paper a multi-shot human re-identification system from video

sequences based on interest points (IPs) matching. Our contribution is to take

advantage of the complementary of person’s appearance and style of its move-

ment that leads to a more robust description with respect to various complexity

factors. The proposed contributions include person’s description and features

matching. For person’s description, we propose to exploit a fusion strategy

of two complementary features provided by appearance and motion descrip-

tion. We describe motion using spatiotemporal IPs, and use spatial IPs for

describing the appearance. For feature matching, we use Sparse Representation

(SR) as a local matching method between IPs. The fusion strategy is based

on the weighted sum of matched IPs votes and then applying the rule of ma-

jority vote. This approach is evaluated on a large public dataset, PRID-2011.

The experimental results show that our approach clearly outperforms current

state-of-the-art.

Keywords: Person re-identification, fusion, motion, appearance, sparse

representation, dynamic dictionary.

1. Introduction

Person re-identification is an important video monitoring task for tracking

people over multiple cameras . If a person crosses the view field of a camera-A,

the goal is to check whether he/she passed through the view field of a second
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camera-B (Figure 1). Typical applications include video surveillance in sensitive

access control facilities, shopping centers or hospitals, where tracking a person

could be cast as a re-identification problem.

Figure 1: Steps of a generic re-identification system

Most state of the art methods have addressed the re-identification problem

at the frame level, and temporal information, despite its successful use in Hu-

man Action Recognition (HAR), is not considered. In HAR context, actions are

typically acquired by a single camera in similar view angle and lighting settings.

In such conditions, motion descriptors can highly discriminate the actions irre-

spective of person identity [1, 2]. Person re-identification is the opposite task

of re-identifying the person irrespective of the action performed. This explains

why temporal information has been overlooked in current systems. In spite of

being less discriminative of person identity, we believe, nonetheless, that tempo-

ral information may be important to detect salient body parts to be exploited

for re-identification.

Our contribution is threefold: first, we exploit the temporal information

available in video sequences, through 3D Interest Points (IPs), for the first

time in the person re-identification task. Second, we propose a new fusion

mechanism leveraging the two feature types: spatial (appearance) and temporal

(motion features), for improved accuracy. Finally, our approach relies on sparse

representation for more robust IP matching as this is shown by our experimental

validation on public datasets acquired under uncontrolled conditions.

Regarding the temporal information, as it discriminates actions and not

people, we propose to harness it not to characterize the person motion, but
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rather to discard static information (object, background, etc.) that usually

hinders silhouette matching, and, therefore, to focus only on moving parts in

the video sequence, for subsequent person identification, the hypothesis being

that the moving parts are mainly associated with body parts.

Second, beside the temporal-based person description, we propose to use a

purely static frame-based description, based on our work in [3]. From the person

representation standpoint, we use spatial (2D) and spatial-temporal (3D) IPs

as local descriptors. Relying on these IPs offers a tradeoff between extracting

only salient points from images or videos on one hand and keeping sufficient and

relevant information to describe a person on the other. As the two descriptions

are produced from two different channels (static and temporal), we combine

them for a robust person representation. The fusion strategy is based on the

weighted sum of matched IPs votes and then applying the majority vote rule.

Third, we propose a novel framework for IPs matching via sparse represen-

tation (SR), where each query IP is expressed as a linear combination vector of

reference IPs. This representation yields a sparse vector whose nonzero entries

correspond to the weights of reference IPs that match the query IP. As the SR

dictionary is usually built from all reference vectors, its size can be huge for

large datasets. For efficiency, we select a dynamic and reduced dictionary from

the reference dataset . The dictionary is dynamic as it changes for each query

IP, and is reduced since it is composed of only its N closest reference IPs. To

accelerate the search of nearest neighbors, we use KD-tree [4, 5] for an efficient

representation of the dictionary. Once the sparse representation of the query IP

is obtained, the query IP is reconstructed each time in turn, using one of the

reference IPs retrieved by SR and discarding the others. The query IP is then

assigned to the reference identity minimizing its reconstruction. After all query

IPs are assigned in this way to their reference identities, the majority vote rule

is applied to classify the query sequence, i.e. to perform person re-identification.

The justification of a local IP matching method, where each IP is matched

independently of the others, is that it is more robust for matching two silhou-

ettes from the same person, corrupted by background or carried objects. Take a
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motivating example where the reference image corresponds to a person pushing

a stroller while the query image corresponds to the same person without the

stroller. The local matching of salient points (features) is more likely to lead to

a good match as the silhouette features are not corrupted by the stroller descrip-

tors. Second, as we are representing a ROI by a set of local features, matching

features locally enables the design of smart filtering post processing with the

aim to keep the best matched features pairs only and disregard other unreliable

pairs (e.g. stroller feature point matched to a silhouette feature point).

The motivation behind SR-based matching is that, considering video se-

quences, any relevant query IP is likely to have several similar IPs in the ref-

erence video. For instance, if an IP is detected on the face of a query frame,

the number of similar reference IPs is proportional to the number of reference

frames and it is important to use all of them to help re-identification. This can

be ensured through SR which dynamically adapts the number of relevant refer-

ence IPs depending on the query IP by finding their sparsest linear combination.

Second, because of the large differences between the two cameras settings, IP

descriptors might get partially transformed due to changes in camera view an-

gle or lighting. The kNN approach is non convenient in this case as these IPs

are significantly different from the corresponding reference points. SR is more

suitable as it does not search for close reference points each taken separately,

but for the sparsest combination of reference IPs that is close to the reference

point even though no reference IP is close by itself to the query IP.

Table 1: List of acronyms

Acronym Description
BoW Bag of visual Words

IP Interest Point
KDTree K-Dimensional Tree

kNN k Nearest Neighbors
ROI Region Of Interest
SR Sparse Representation

SURF Speeded Up Robust Features

The rest of the paper is organized as follows. In section 2, the state of the
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art for people re-identification is presented. Our approach is detailed in section

3. Section 4 gives an overview of extracted features: static, namely SURF and

spatio-temporal, namely Cuboids. Section 5 describes the principle of sparse

representation in the context of interest points matching. The fusion scheme is

presented in section 6. Afterward, results are presented in section 7. Section

8 presents the phase of filtering unreliable IPs or matched IP pairs and finally

a conclusion is drawn and future directions are discussed in section 9. Table 1

shows a list of the most used acronyms in the rest of this paper.

2. Related work

We categorize the re-identification approaches into supervised and unsuper-

vised ones. The first category consists of dividing the database into training

and testing parts. The training set consists of pairs of a priori matched images.

It allows to optimize the parameters of the re-identification model. Unlike the

first category, an unsupervised approach consists of re-identifying people with-

out any prior information. We present next a state of the art of re-identification

approaches and on the use of sparse representation in re-identification task.

2.1. Unsupervised approaches

The choice of descriptors and their combination to obtain a robust person

representation is a challenge for unsupervised methods. This representation can

be based on two categories: interest points and on division into regions.

For the former category, in [5], a person model is represented by IPs, namely

SURF, collected over a short video sequence. For matching each query SURF,

a vote is added to the person associated with the nearest reference SURF. The

person with the majority of votes is claimed as the re-identified one. In [6], the

authors propose a three stage system, i.e. person detection, tracking and re-

identification. The person detection and tracking steps are based on the Implicit

Shape Model (ISM), while the re-identification is based on matching of BoW

of descriptors formed by addition of SIFT interest point (for “Scale Invariant

Features Transform”) and a spatial description (the position of IP in the image).

5
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For the latter category, in [7] the ROI is segmented intoK horizontally bands,

and then represented by the concatenation of a color description extracted from

its K-bands. For matching, a query ROI is represented as a sparse combina-

tion of all references ROIs. Then, a reconstruction error is calculated for each

reference identity using only the coefficients corresponding to this identity. The

query ROI is assigned to the reference identity minimizing the reconstruction

error. The authors used the same matching algorithm presented in [8] for face

recognition, as the input to SR was the whole ROI. In [9], the human body

is decomposed via two horizontals axes, into three parts that generally corre-

spond to head, torso and legs. Each part is represented by a combination of

three features related to texture and color. The similarity between two images

is defined as the weighted sum of the three associated distances. In [10], the

authors represent the person by a combination of descriptive and discrimina-

tive descriptors. The matching is carried out in two steps. In the first, the

descriptive model is used to generate the most similar 50 reference images to

the query. In the second step, the discriminative model is applied to refine the

first classification based on the Adaboost algorithm. For feature extraction, the

authors use the covariance image descriptor [11] and the Haar wavelet. In [12],

the re-identification problem is considered as a ranking problem. For person

description, the image is divided into overlapping horizontal strips. From each

strip, Hue-Saturation and RGB histograms are extracted. Moreover, a HOG

(for “Histogram of Oriented Gradient”) descriptor is extracted and concate-

nated with the two previous features to form the final descriptor. For matching,

the authors use an iterative sparse representation to rank the reference people.

2.2. Supervised approaches

Supervised approaches require the existence of a training set composed of a

priori matched pairs of images. Most of these approaches are based on metric

learning algorithms. The latter consist of learning the parameters of the met-

ric defining the similarity between two images. The choice of the metric at i)

minimizing the similarity between images pairs associated with different per-
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sons (negative image pairs) and ii) maximizing similarity between images pairs

associated with the same person (positive image pairs).

Regarding learning metrics, an “Ensemble of Localized Features” (ELF) is

introduced in [13]. The main idea consists of combining a set of features to rep-

resent a person and then estimating a weight for each of them. These weights are

estimated over a training dataset using the Adaboost algorithm. The similarity

function between two images is based on the learned features weights. Prosser

et al. [14] formulated person re-identification as a ranking problem. The Au-

thors used different ranking algorithms such as RankBoost or RankSVM to learn

the pairwise similarity metric. In [15], the authors learn the Mahalanobis dis-

tance and then a query person is matched via the k-nearest-neighbor algorithm.

The proposed solution is called Large Margin Nearest Neighbor with Rejection

(LMNN-R) (“rejection” means the classifier returns no matches if all neighbors

are beyond a certain distance). In [16], the re-identification task is formulated

as a problem of “Probabilistic Relative Distance Comparison” (PRDC). The

distance probabilities are learned by maximizing distances between negative

images pairs and minimizing distance between positive image pairs. In [17], the

similarity between an image pair is measured using the cosine distance between

their projections on the RCCA space (RCCA for “regularized Canonical Corre-

lation Analysis Method” [18]). The latter method constructs a projection space

where correlations between positive images are maximal.

In this paper, we adopt both the unsupervised and supervised schemes. The

first allows us to compare the performance of our system with the state of the

art on video sequences that is mainly based on unsupervised setting. The second

one, i.e. supervised scheme, allows us to design a trainable IP filtering scheme

that optimizes our SR-based matching algorithm.

2.3. Sparse representation in re-identification

Sparse representation (SR) of signals has been studied since two decades [19,

20], but it became popular in computer vision, only recently after its successful

application to face recognition [8]. Since then, it also has been used in other
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classification tasks such as gait recognition, speech recognition and person re-

identification [7, 12]. In the latter two works, SR is used to match silhouettes.

The use of sparse representation in this work is different from [7] from two

standpoints. First, SR in [7] is global (Silhouette representation as a whole),

while ours is local (SR for each IP in the silhouette). Second, in [7], for each

SR, the dictionary consists of all reference samples, while in our approach we

use a reduced and dynamic dictionary of few selected reference IPs. The SR

considered in [12] is also global like the one presented in [7]. Moreover, in [12],

an iterative and weighted sparse representation is applied: at each round, the

coefficients contributing little to the reconstruction are eliminated; SR weights

are then updated and SR is again computed to rank the other identities.

3. The Proposed Approach

Our approach basically consists of four stages: 1) Feature extraction, 2) IPs

Matching via sparse representation, 3) Fusion and 4) Person re-identification

based on majority vote rule. Figure 2 shows the flowchart of our approach.

First, for each input video, two sets of features, spatial and spatiotemporal,

are extracted to model the signature (description) of a person identity: SURF

and Cuboids. SURF analyzes each image from the input video and generates

2D spatial IPs. Then, an appearance descriptor around each IP is computed.

Cuboids, on the other hand, is applied on the whole video to output 3D spa-

tiotemporal IPs. Then, an appearance descriptor is extracted around each IP.

Thus, the spatiotemporal features are pseudo-motion related as their detection

relies on motion while their description is based on appearance.

The IP matching task is performed via sparse representation. Each test IP

is matched by expressing it as a linear combination vector of a set of references

IPs of the same type (SURF or Cuboids). This set is called a dictionary. The

obtained representation corresponds to a sparse vector whose nonzero entries

are related to the weights of reference IPs. This representation is harnessed

for query matching, by assigning the query to the reference IP minimizing the

reconstruction error of this query. In our IP-based SR, the dictionary would
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Figure 2: Our approach’s Flowchart

consist of all reference IPs. For large video datasets, such a dictionary would

include millions of IPs, thus hindering the feasibility of sparse representation.

To overcome this issue, a dynamic and reduced dictionary is selected for each

IP from the reference set.

Third, for each query SURF, a vote is added to the person associated with

the reference identity the query is matched to. In this way, a vote vector of

dimension equal to the number of reference identities is generated. Similarly, all

query Cuboids are matched and a second vote vector is generated. Then, a fusion

of the two vote vectors is performed by a weighed sum the parameters of which

are derived based on the density of each type of IP (spatial and spatiotemporal)

in the input video sequence. Finally, the reference person obtaining the majority

of votes is claimed as the re-identified person.

A pseudo-code of re-identifying one query sequence from a set of reference

sequences is presented in Algorithm 1.
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Algorithm 1 Re-identify a test sequence from a set of reference sequences

Require: - A reference dataset of M identities (persons)
- A query video sequence

Ensure: - Identity of the query video sequence
******************************************************************
// Feature extraction
Extract SURFs and Cuboides from the reference sequences
Extract SURFs and Cuboides from the query sequence
******************************************************************
// SURF Matching via Sparse Representation
for each query SURF do

Find the matched reference identity ref id via Sparse Representation
Increment the number of votes associated with ref id

end for
V Ð each component V piq corresponds to the sum of votes associated with
the reference identity i
******************************************************************
// Cuboides Matching via Sparse Representation
for each query Cuboide do

Find the matched reference identity ref id via Sparse Representation
Increment the number of votes associated with ref id

end for
W Ð each component W piq corresponds to the sum of votes associated with
the reference identity i
******************************************************************
// Fusion
α Ð weight parameter
Z Ð each component Zpiq corresponds to the weighted sum of votes associ-
ated with the reference identity i
Z “ V ` αW
******************************************************************
// Re-identification
The query sequence is re-identified as the reference sequence having the max-
imum of votes in Z
Identity of the query video sequence = arg max

i
pZpiqq

4. Feature extraction

Given an input video sequence, two IPs-based features, namely, SURF and

Cuboids, are extracted over two stages: detection and description (Figure 3).

Table 2 summarizes the two features characteristics. In this section, we

present an overview of SURF and Cuboids.

10
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Figure 3: Diagram of features detection/description based on interest points

Detection stage: Detect a set
of 2D or 3D interest points
based on specific crietria

Description stage: Describe
each detected interest point

by a 2D or 3D descriptor

Table 2: Extracted features descriptions

Features SURF Cuboids
Encoding information Appearance Motion

Detection Hessian Matrix Based Detector Gabor filter
Description Haar-Wavelet (64 components)

4.1. Overview of the SURF method

SURF [21] operates in two main stages: detection and description. The de-

tection stage analyzes an image and returns a list of interest points. Around each

point, a descriptor vector is computed. The detection stage is performed through

the Hessian Matrix, while the description stage is based on Haar wavelets.

The detection stage

The SURF detector is based on the approximation of the Hessian matrix

determinant and the use of the integral image. It presents a good compromise

between robustness to geometric transformations and computation time. Given

a pixel p “ px, yq of the image intensity I and integrating the scale information,

the Hessian matrix Hσ ppq at position p and scale σ, is defined by Eq.1.

Hσ ppq “
»
– Lxx pp, σq Lxy pp, σq

Lyxpp, σq Lyy pp, σq

fi
fl (1)

where the Laplacian Lxxpp, σq (respectively, Lyypp, σq, Lxypp, σq and Lyxpp, σq),
refers to the convolution of the second order Gaussian derivative B2gσ

Bx2 (respec-
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tively, B
2gσ
By2 , B

2gσ
Bxy q and B2gσ

Byx q with the intensity image I at position p (Eq.2).

Lxx “ I ˚ B
2gσ
Bx2

, Lyy “ I ˚ B
2gσ
By2

, Lxy “ I ˚ B
2gσ
Bxy , Lyx “ I ˚ B

2gσ
Byx (2)

where * is the convolution product and gσppq “ 1
2Πσ2 e

´ }p}22
2σ2 . SURF proposes

to estimate the Laplacians by estimating the second order Gaussian derivative

using a set of “box” filters. Figure 4 shows the appropriate filters used to

estimate B2gσ
By2 and B2gσ

Bxy . In the following, the estimation of Lxx, Lyy and Lxy

are respectively named Dxx, Dyy and Dxy (Eq.3).

Figure 4: Left to right: the (discretized and cropped) Gaussian second order partial derivatives
in y-direction and xy-direction, and approximations thereof using box filters: filteryy and
filterxy . The grey regions are equal to zero [21]

Lyy « Dyy “ I ˚ filteryy (3)

where the convolution between two functions A and B of two discrete variables

i and j is defined as follows:

Cpi, jq “
`8ÿ

k“´8

`8ÿ

l“´8
rApk, nqBpi´ k, j ´ lqs (4)

The determinant of the Hessian Hσ ppq is finally approximated as follows

(Eq.5), where w is a constant empirically selected [21]:

det pHapproxq “ DxxDyy ´ pwDxyq2 (5)

The SURF detector uses the integral image to accelerate the convolution

calculation. Once the determinant at each pixel is estimated, the maxima are

searched in small neighborhoods (typically volumes of 3x3x3 pixels). These

maxima correspond to SURF IPs. Then, each IP is described as follows.

12
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The description stage

The description stage consists of two steps: orientation assignment and de-

scriptor extraction. First, a characteristic orientation is estimated to ensure

invariance to image rotation. For each pixel in a circular region around the

IP, Haar wavelet responses are calculated and then weighted with a Gaussian

centered at the IP. Each weighted response is interpreted as a 2D vector (x-

response, y-response). Using the sliding window technique, for each window, all

x-responses (dx) and y-responses (dy) are summed to one vector originating at

the IP. The maximum resulting vector over all sliding windows determines the

orientation assignment.

In the descriptor extraction step, we consider a square region around the

IP, oriented according to the first step. This region is divided into 4x4 grids

to form 16 sub-regions. Within each sub-region, Haar wavelet x-responses and

y-responses are calculated at 5x5 equally spaced points. For these 25 sample

points, we collect four components (Eq.6).

v1 “
ÿ
dx, v2 “

ÿ
dy, v3 “

ÿ
|dx| , v4 “

ÿ
|dy| (6)

The collected components from each of the 16 sub-regions form the 64-dimensional

SURF descriptor.

The Haar-like features have shown high discriminative power in computer

vision tasks such as face detection [22] and person detection [23]. Besides,

thanks to the precomputing of the integral image, the features can be computed

efficiently in any part of the image.

4.2. Overview of the Cuboids method

The Cuboids [2] method is proposed originally to characterize periodical

motions in video sequences. It also operates in two stages: detection and de-

scription.

13
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The detection stage

The Cuboids detector is based on Gaussian and Gabor filters. The selection

criterion R of Cuboids is the following (Eq.7):

R “ pI ˚ g ˚ hevq2 ` pI ˚ g ˚ hodq2 (7)

where hev and hod define the Gabor filter:

hodpt, τ, ωq “ ´sinp2πtωqe´ t2

τ2 and hevpt, τ, ωq “ ´cosp2πtωqe´ t2

τ2 , τ is an

independent temporal scale value, w “ 4
τ , and gpx, y, σq is a Gaussian smoothing

function (Eq.8):

gpx, y, σq “ 1

2Πσ2
e
´px2`y2q

2σ2 (8)

σ being an independent spatial scale value.

For each pixel, a response R is measured. Then the locations of Cuboids

correspond to the points giving high responses of R [24], i.e., to the local maxima

of R with respect to the 3D coordinates (x,y,t).

The description stage

Cuboids are originally used for action recognition, for which each action is

acquired several times under similar training and test view angles. In this case,

standard Cuboids’ descriptors can encode motion sufficiently well for action rep-

resentation. In the re-identification setting where only one reference sequence

and one test sequence are available, the two associated view angles might be sig-

nificantly different, which leads to huge discrepancy in their motion descriptors,

entailing, thereby, a strong mismatch between the two sequences. For this rea-

son, we have adapted the Cuboids descriptors to our re-identification context,

by investigating the description of Cuboids by SURF and HOG representations.

5. IPs Matching via sparse representation

IPs matching can be performed in two ways: via a bag of features or directly

for each IP. The former consists of converting the query IPs into a bag of k

14
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clusters (obtained from the reference dataset using a clustering algorithm (e.g.

k-means)) and then representing the image (or video) as a histogram of the

occurrence of each cluster [25]. The latter consists of determining for each query

IP the closest IP from the reference set. The closest element (IP) is defined as

follows: given a set of elements txi P RD, i “ 1 . . .Mu and y P RD, xj is the

closest element to y if @i, dpy, xjq ď dpy, xiq, where d is a predefined distance

measure. In this paper, we adopt the second scheme and perform IP matching

via sparse representation. We first present the principle of sparse representation

and we detail how we harness it in the person re-identification context.

5.1. Sparse representation principle

Sparse representation [19, 26] consists of representing a signal as a linear

combination of the smallest number of elements of a preselected dictionary.

Given a signal y P RD and a dictionary Φ P RDxK and given that usually

D ! K, i.e., the size of the dictionary is larger than the dimension of the input,

our linear system is underdetermined [27, 28]. Therefore, there is an infinite

number of solutions α corresponding to a linear subspace verifying Eq.9. In

some cases, when there are inconsistencies in the linear equations, no solution

can be obtained, but these cases rarely appear in practical image processing

applications (e.g. face recognition as in [8] or in our own experiments).

y “ Φα (9)

From all solutions of the underdetermined linear system above (Eq.9), we

are interested in the sparsest solution αs, that can be sought by minimizing the

l0-norm of α, i.e. the number of its non zero-coefficients. Hence, the original

formulation of the sparse representation problem is as follows (Eq.10):

αs “ min
α
}α}0 subject to y “ Φα (10)

To solve Eq.10, numerous algorithms have been proposed in the state-of-

the-art. In the literature, sparse representation algorithms are categorized dif-

ferently (as reported, for instance, in the survey in [29]). In most cases, sparse
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representation categories include: greedy pursuit approach category and convex

relaxation approach category. A greedy pursuit approach iteratively refines the

current estimated αs by selecting one or several dictionary atoms sequentially

chosen to approximate the signal y. Examples of “greedy pursuit methods”

include the Matching Pursuit (MP) [20] and the Orthogonal Matching Pursuit

(OMP) [20]. On the other side, a convex relaxation approaches suggests a con-

vexification of the problem presented in Eq.11 by replacing the l0-norm with

l1-norm. In fact, the l0-norm optimization problem in Eq.10 is NP-Hard and

recent research showed that finding the solution of l0-norm optimization prob-

lem is, in most practical cases, equivalent to the l1-norm optimization problem

(Eq.11) [30] [31]:

αs “ min
α
}α}1 subject to y “ Φα (11)

Generally, in real cases where data are noisy, the equality constraint in Eq.11

can be relaxed to allow some error tolerance (ε ą 0) as follows (Eq.12):

αs “ min
α
}α}1 subject to }Φα´ y}22 ă ε (12)

The elements of Eq.12 can be combined in several ways to obtain equivalent

formulations. Eq.12 seeks the sparsest possible solution at a given error (ε ą 0).

We can also seek the minimal possible error given the sparsity level (δ ą 0) as

follows (Eq.13) :

αs “ min
α

1

2
}Φα´ y}22 subject to }α}1 ă δ (13)

Usually, a tuning parameter λ is used to adjust the tradeoff between sparsity

and error reconstruction (Eq.14):

αs “ min
α
p}Φα´ y}22 ` λ}α}1q (14)

The function f : α ÞÑ }Φα´ y}22 ` λ}α}1 is convex and in order to minimize

f , we need specific algorithms such as Coordinate Descent [32] and Least Angle

Regression (LARS) [26].
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5.2. Sparse representation for Interest Point Matching

In the context of IP matching, let us consider a query IP y and a set of

reference IPs associated with M identities (persons). First, the reference dataset

is arranged in a matrix (called dictionary), which is built using reference IPs:

tSi,ju P RD, i “ 1 . . .M, j “ 1 . . . ki, where ki denotes the number of reference

IPs for the i-th identity, and K “ k1 ` k2 ` ¨ ¨ ¨ ` kM denotes the number of

IPs in the reference dataset. The ki reference IPs of the i-th identity candidate

constitutes the columns of the matrix Φi (Eq.15):

Φi “ rSi,1;Si,2; . . . ;Si,kis (15)

The matrix Φ of all K reference IPs is obtained by concatenating the Φi matrices

(Eq.16):

Φ “ rΦ1; Φ2; . . . ; ΦM s “ rS1,1;S1,2; . . . ;SM,kM s (16)

The Sparse Representation scheme represents y as a linear combination of all

the reference IPs:

y “ Φαs “ rΦ1,Φ2, . . .ΦM sαs (17)

At this step, Eq.14 is applied to find the sparsest coefficient vector αs. In

noiseless conditions and if there is no ambiguity between the samples pertaining

to different classes (person identities), the nonzero entries αs are associated with

the columns of Φ from a single person identity class i (Eq.18), and the query

sample y is assigned to the i-th person identity [8].

αs “ r0; . . . ; 0;αi,1;αi,2; . . . ;αi,ki ; 0; . . . ; 0sT (18)

In this ideal case, αs has nonzero entries associated only with the i-th ref-

erence identity corresponding to actual identity of y [33]. In noisy conditions,

however, non null coefficients may be associated with multiple person identities.

After calculating the sparsest solution, the non-zero coefficients of αs can be

used to determine the identity of the query IP y.
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5.3. Sparse representation for IPs matching

In our approach, each IP is matched independently. To match one IP, three

steps are applied: 1) Dictionary construction, 2) Sparse representation and 3)

Identity assignment.

5.3.1. Dictionary construction (Algorithm 2)

The dictionary consists of all references IPs. Thus, for typical re-identification

datasets, we would have to consider dictionaries of millions of reference interest

points. The computation time for finding a sparse representation for one IP will

then be huge. In this work, for each test IP, we select a dynamic and reduced

dictionary A, consisting of the N closest reference IPs. As there is no theoretical

method to infer the optimal dictionary size N , we set the latter in an empiri-

cal way by choosing a value not too small which may lead to missing relevant

interest points, but not a too large value, for which a lot of irrelevant IPs will

be introduced. The dimension of A is DxN where each column represents an

IP descriptor of dimension D. To accelerate the search of nearest neighbors, a

KD-tree is used [4].

The concept of dynamic (adaptive) dictionary has also been proposed in [34].

The dictionary construction in [34] is different from ours. In [34], an ”Extreme

Learning Machine” (ELM) is applied on the query element and only the first

k largest reference elements in the ELM output are taken into consideration.

This is due to the fact that the uncorrelated classes to the query element tend to

have a small response in an ELM output. Then, all the points in the reference

set that share the same classes (identities) as the k-largest entries are added to

the dictionary. In our work, the dictionary corresponds directly in a dynamic

way to the k-closest points, and we do not look for any additional points in the

reference set with the same classes (identities).

5.3.2. Sparse representation (Algorithm 3)

In real-life conditions, re-identification is complex and dictionary IPs are very

noisy. Our sparse representation formulation is based on equation Eq.14. To

solve the sparse representation task, we use the Coordinate Descent algorithm
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Algorithm 2 Dictionary construction

Require: - φ: Matrix containing all reference IPs
- N : Dictionary size
- q: query IP

// Tree construction
φSorted = Sort-KD-Treeptree, qq
// Dictionary construction
A “ rAis1ďiďN = N first (closest) IPs from φSorted

Ensure: - A: dictionary

(CD algorithm) [32] . This algorithm uses a regularized technique that copes

with the ill-posed problem [35]. The Coordinate Descent algorithm inherits

its numerical stability from the descent property at each iteration update [32,

36]. Moreover, the CD algorithm, according to the literature, is efficient if the

correlation between the dictionary elements is small [37]. The algorithm takes

as input an IP and its corresponding dictionary, and outputs a sparse vector

with most coefficients equal to zero.

Algorithm 3 Sparse Representation

Require: - q: query IP
- A: dictionary corresponds to q
- λ: tuning parameter

// Solve the following equation with the Coordinate Descent algorithm
αs “ min

α
p 1

2 ||q ´Aα||22 ` λ||α||1q
Ensure: - αs: sparse vector (most coefficients set to 0)

5.3.3. Identity assignment (Algorithm 4)

The non-zero coefficients of the sparse representation are used to assign an

identity to a query IP. To determine IP identity, a reconstruction residual is

calculated for each identity i having at least one non-zero coefficient in the

following manner: denote L the number of identities having at least one non-

zero coefficient in αs. Let’s q be a query IP and A its corresponding dictionary,

we compute first xi : 1 ď i ď L as following (Eq.19):

xi “ r0, . . . 0, αi,1, αi,2, . . . , αi,ki , 0, . . . , 0s (19)
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xi is a coefficient vector obtained from αs with all elements set to 0 except

those associated with identity i. The dominant identity j satisfies the following

equality (Eq.20):

j “ arg min
i

}Axi ´ q}22 (20)

j corresponds to the identity minimizing the reconstruction residual of q. Based

on reconstruction error minimization, the identity of query IP is identified as

the person j satisfying Eq.20 .

Algorithm 4 Identity assignment

Require: - q: query IP
- αs: SR corresponds to query IP q and dictionary A

for each identity i having ki non-zero coefficients do
// Compute xi
xi “ r0, . . . , 0, αi,1, αi,2, . . . , αi,ki , 0, . . . 0s
// Compute the reconstruction residual ri
ri “ ||Axi ´ q||22

end for
j “ arg min

i
priq

Ensure: - j: identity of q

6. Fusion scheme

In the previous sections, we have proposed two independent person re-

identification systems based on 2D static and 3D spatio-temporal IPs. Each of

the two systems relies on SR for IP matching. As the 2D and 3D IPs emanate

from two different sources of information (static and temporal respectively),

they actually complement each other. 2D static points are usually detected on

regions with rich texture structure and contrast, and can for instance detect

textured person clothes that can help identification. They may however also

detect texture background parts in the scene. Temporal IPs do not in general

detect such regions but focus on those with high spatiotemporal variance asso-

ciated with moving legs or arms. This complementarity motivates to seek fusion

of the two systems for improved accuracy. Fusion can occur at any of the three
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important biometric stages: 1) Feature extraction, 2) Matching and 3) Decision:

1) at the feature level, features are concatenated and fused into the same feature

vector prior to matching; 2) at the matching level, the scores generated by dif-

ferent classifiers are combined into one score; 3) at the decision level, decisions

of different classifiers are fused into a single decision, e.g. through a majority

vote rule.

In our context, features’ fusion is not possible because SURFs and Cuboids

are detected at different interest points. Decision fusion is not possible either

as it is not realistic to combine the decisions of only two classifiers. We use

instead a score-level fusion method where the score is the number of votes for

each person generated by each classifier (SURF-based and Cuboids-based).

Figure 5 illustrates the principle of majority vote rule. Given a query se-

quence and a reference dataset, each IP from the query sequence is classified into

one identity from the reference dataset via SR as explained in section 5. Then,

the found reference identities are submitted to the majority vote decision rule.

For each query IP, a vote is added to the person associated with the reference

selected identity. The person obtaining the majority of votes is claimed as the

re-identified person.

Figure 5: Principle of majority vote rule (In this example, the query person is re-identified as
the person 4).

After all query SURFs and Cuboids are matched, two votes’ vectors are
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generated. The dimension of each vector is the number of reference identities

and each component reflects the number of times the associated reference has

been matched to a query IP in the test sequence. The fusion strategy is based

on a weighted sum of the two vote vectors. It then applies the majority vote

rule: the query person is claimed as the person with the majority of votes.

Formally, given a query video sequence, described by n SURFs and m

Cuboids, the goal is to determine the associated identity among M reference

persons. Let V and W be the vote vectors corresponding to SURFs and Cuboids

respectively. The vote vector Z obtained by fusion is written as equation Eq.21:

Zi “ αVi ` p1´ αqWi (21)

where α is a weighting parameter. As our approach is totally unsupervised,

there is no way to learn the optimal value of α, so we derive it based on our

a priori knowledge on the extracted 2D and 3D IPs. Assuming that 2D static

IPs and 3D spatio-temporal IPs are equally discriminative, and giving that the

number of detected 2D points is roughly twice the number of detected 3D points,

we have set α to 0.3. With this fusion scheme, the re-identified query person is

assigned to the reference Zi with the maximum of votes.

7. Experiments

We evaluated our approach on two public multishot re-identification datasets:

PRID-2011 and CAVIAR4REID. PRID-2011 [10] consists of hole video sequences

and is the only available and large public video database that is adequate for

the re-identification task. Although, CAVIAR4REID [38] does not consists of

video sequences but only of a few unordered key frames, we used it as well in

order to assess the effectiveness of the sparse representation in an additional

experiment setting.

As SR parameters, the dimension of the dictionary A is DxN where each

column represents an IP descriptor of dimension D “ 64, and N is empirically

set to 200. To compute the SR coefficients, the Coordinate Descent algorithm

is used.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Results are shown in terms of the Cumulative Matching Characteristic (CMC)

curve as commonly used in the literature. In the CMC curve, the identification

rate at rank i gives the number of query video sequences where the actual ref-

erence is retrieved among the top i answers over the size of the query set. In

the rest of the paper, by default, the re-identification rate will mean the re-

identification rate at rank 1. It is also called the Correct Classification Rate

(CCR).

Figure 6: Samples from different evaluated datasets: Left: CAVIAR4REID; Right: PRID-
2011

7.1. Results on CAVIAR4REID

CAVIAR4REID [38] has been extracted from the CAVIAR database [39].

The recorded videos were captured from two different cameras in an indoor

shopping center in Lisbon. The pedestrians’ images have been cropped using

the provided ground truth. From the 72 different individuals identified (with

image sizes varying from 17x39 pixels to 72x144 pixels), 50 people are captured

by both views and 22 from only one camera. For each pedestrian, 10 images

from each camera view are selected, maximizing the variance with respect to

resolution changes, light conditions, occlusions, and pose changes (see samples in

Fig.6). These images or key frames are unordered and thus no spatio-temporal

IP can be extracted. For CAVIAR4REID, therefore, only SURF-based SR is

considered.

The CMC curve obtained by our approach is shown in Fig.7. Table 3 shows

different state-of-the-art methods’ performances (identification rate at rank 1).

These methods share with us the same evaluation protocol.
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Table 3: Results comparison on CAVIAR4REID

Approach Re-identification rate (%)
Authors of [40] appear in [41] 10

[41] 10
SURF-1NN [42] 16

[38] 17
[43] 19

Our approach (only SURF) 20

The approaches based on appearance features (SDALF) [41] and MRGC

[40] using essentially color descriptors achieve 10% of correct re-identification.

The approach presented in [42], that is based on 1NN-based SURF matching

using Euclidian distance and probabilistic filtering, achieves 16% of correct re-

identification. Our approach achieves a re-identification rate of 20%, which is

slightly higher than the one obtained in [43] and based essentially on spatiotem-

poral color features. CMC curves sources of [38, 41, 43] on CAVIAR4REID are

not available to reproduce along with ours in the same figure. Overall, these

results illustrate the power of SR for IPs matching compared to 1-NN.

Figure 7: CMC SURFs performance on CAVIAR4REID
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In recent state of the art, the dataset CAVIAR4REID was evaluated with a

supervised protocol. The dataset is divided into two parts : training and test.
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The partition (36, 14), 36 people in training and 14 people in test, is widely

used in the literature. Among these approaches that adopted this partition, [44]

achieved a CCR = 36.19%, [45] achieved a CCR = 49.1% and a CCR = 32.86%

is achieved in [46]. Recently, in other works like [47], all the 50 people are used

in test, but only half of the available images are used in the test, while the

remaining 5 frames are used as reference images. In evaluation, [47] achieved

a CCR=35.2%. For this diversity of evaluation protocols on CAVIAR4REID,

we compared our approach only with those using exactly the same protocol as

ours. This comparison is presented in the table 3.

7.2. Results on PRID-2011

The dataset PRID-2011 (multi-shot version) [10] was created in 2011 by

the Austrian Institute of Technology. The video sequences were obtained from

two cameras (A and B) located on street (Fig.6). 385 people were filmed by

camera-A and 749 people were filmed by Camera-B, 200 being common to the

two cameras. The evaluation consists of searching the common 200 people filmed

by Camera-A in the gallery set (Camera-B) of 749 people.

In the fusion stage, we selected a value of α proportional to the average

number of IPs per person (Tab.4), roughly α “ 0.3 , and compared the fusion

result to that where the two systems are considered on equal footing, i.e., α “
0.5.

Table 4: Average number of IPs per person

IPs Average number of IPs per person
SURFs 1733
Cuboids 1030

Figure 8 shows the CMC (from rank 1 to rank 10) on PRID-2011 compared

to the state-of-the art. Table 5 compares the re-identification rate at rank 1 of

different methods. We see that the approach based on SURF matching via SR

outperforms SURF matching via 1-NN, and achieves an improvement of 4.5 %

in the re-identification rate at rank 1.
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Figure 8: Comparison of CMC performances on PRID-2011
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(Hirzer et al., 2011)

Table 5: Results comparison on PRID-2011

Approach Re-identification rate (%)
Using all test dataset

[10] 19.2
SURF-1NN [42] 22.5

Our approach (only SURF-SR) 27
Our approach (only Cuboids-SR) 25.5
Our approach (Fusion): α “ 0.5 28.5
Our approach (Fusion): α “ 0.3 31

Using only the 200 common people in evaluation
Our approach 31

[48] 28.9

Our fusion approach compares favorably with the approach proposed in [10]

that combines two appearances models. These results show that our fusion

mechanism improves the system performance by 4% w.r.t using SURFs alone

and 5.5% w.r.t using Cuboids alone.

Another result on the PRID-2011 database was published using a different

protocol [48]: only the 200 common people in camera-A and camera-B are used

in evaluation. Using this protocol, our approach outperforms that in [48] by

2.1% at rank 1 (Tab.5). Table 5 shows the comparison of our approach with the

state of the art using only the 200 common people in evaluation.
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7.3. Discussion

Two important conclusions can be drawn from the previous results: the first

concerning the usefulness of SR and the second concerning the effectiveness of

the fusion of appearance and motion features.

The approach based on SURF matching via SR outperforms that based on

SURF matching via 1-NN. On PRID-2011, SR outperforms 1-NN at all ranks

and achieves an improvement of 4.5% in the rate of re-identification at rank 1.

This improvement is significant given the large size of the dataset and proves

that the SR can provide richer information for decision making than [42] and

other interest point matching methods like [5]. On CAVIAR4REID, SR is better

again, but the improvement is small compared to the one obtained on PRID-

2011. This may be explained by the small size of the database and the much

fewer images available per person compared to PRID-2011.

The contribution of SR compared with the 1-NN is highlighted in cases where

some reference SURFs are close to query SURF of the same person without being

the closest though. Considering several neighbors to compute the SR is more

effective than 1-NN matching.

Regarding fusion, we demonstrate the complementarity of the static aspect

of person’s appearance on one hand and the dynamic aspect related to movement

on the other hand, for detecting discriminant interest points.

8. Supervised schemes for optimizing the re-identification task

Overall, the learning phase allows learning parameters to optimize the re-

identification task. This optimization would be relevant if it is associated with

increasing the re-identification rate or reducing the re-identification running

time. The supervised parameters, as shown in current state-of-the-art, can be

related to the metric used to compare images.

Recall that an unsupervised approach has been presented in this work un-

der the same experimental protocol of the state-of-the-art, which allowed a fair

comparison with the latter. Using this unsupervised protocol, all the dataset
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PRID-2011 is considered as test dataset. In this section, we go beyond this

experimental setting in order to show the usefulness of a learning phase: our

approach (SURF only) is evaluated on the PRID-2011 using a supervised pro-

tocol. We divide the dataset PRID-2011 into two parts: training and test. The

training set contains videos of the first 100 people shared by Camera-A and

Camera-B. Each person has one video sequence per camera (A and B). The

test set contains the remaining 649 people from Camera-B as reference and the

remaining 100 common people in Camera-A as query. The training dataset is

used to estimate a filtering model, added to our unsupervised approach, that

aims at rejecting unreliable matched IPs pairs. Such matched pairs may result,

for instance, from: 1) matching a background’s IP to a foreground’s IP (silhou-

ette), 2) matching IPs associated with different parts of the silhouette and 3)

matching IPs associated with different people.

The core of the filtering stage is based on the use of a Support Vector Ma-

chine (SVM) learned on the training dataset [49]. The SVM takes as input

positive IP pairs (each pair {query IP, closest reference IP} is associated with

the same person) and negative IP pairs (each pair {query IP, closest reference

IP} is associated with different persons. For a query IP pair , SVM decide if

it is associated with the same person or different persons. Then, only IP pairs

associated each with a same person are used for re-identification.

In other words, to use SVM, two steps are needed: 1) model estimation and

2) class prediction. First, for model construction, SVM takes as input two vector

sets: SSame (positive vectors associated with class `1) and SDiff (negative

vectors associated with class ´1). SSame and SDiff model respectively reliable

and unreliable IPs. To construct SDiff and SSame from the training dataset,

IPs corresponding to camera A are matched to those corresponding to camera

B to form IP pairs; if the matched pair is associated with the same person, the

difference vector between the pair descriptors is added to SSame, else it is added

to SDiff . After sets SSame and SDiff are generated in this way, the associated

SVM model is estimated by computing the hyperplane separating SSame and

SDiff in the non-linear space defined by the RBF kernel (for “Radial Basis
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Function kernel”) [50]. Second, for class prediction, the filtering step consists of

assigning a query IP to one of the two classes using the SVM-based filter model.

The Acceptation/Rejection decision is performed as following: each query IP

is matched to the closest reference IP. Then, the matched IP pair difference

descriptor is input into the SVM model. If SVM’s output decision is class +1,

the query IP is retained, otherwise it is rejected. This supervised approach is

evaluated and compared to the unsupervised protocol (Tab 6).

Table 6: Contribution of supervised schemes on PRID-2011

Approach Re-
identification

rate (%)

Running
time

(s/image)
Our Approach (SURF only)

evaluated on test set
+

No filtering is applied

36 1.8

Our Approach (SURF only)
evaluated on test set

+
SURFs filtering

37 0.9

The experiment results proves the power of the proposed learning phase

to reduce the re-identification running time. From the accuracy standpoint,

the system above significantly outperforms the state of the art. In fact, our

filtering scheme is able to maintain accuracy (even slightly outperforming the

one obtained by the unsupervised one) while significantly increasing speed since

it basically halves the processing time.

9. Conclusion

This paper proposed a new approach for human re-identification from video

sequences, based on interest point matching, which exploits the complemen-

tary nature of appearance and temporal features. The proposed system mainly

consists of three stages: person feature description, matching and fusion. For

person representation, a robust description that takes into account both ap-

pearance and motion is proposed. We have described the appearance (respec-
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tively movement) by spatial interest point (respectively spatiotemporal interest

point). For matching, we proposed a new method of interest point matching

via sparse representation that consists of representing each query interest point

as the sparsest linear combination of reference interest points. For efficiency,

a dynamic dictionary is selected based on a preset number of closest reference

interest point obtained by KD-Tree neighborhood search. The experiments,

performed on the large database of PRID-2011, showed that the fusion of the

two descriptions allowed the re-identification system to achieve a Correct Classi-

fication Rate of 31% which outperforms the state of the art. On the other hand,

the results obtained with only SURF matching via SR showed an improvement

of 4% on CAVIAR4REID and 4.5% on PRID-2011 compared to 1-NN. These

results demonstrate the relative power of sparse representation to match IPs in

noisy and ambiguous conditions that are inherent to real video sequences.

Other future extensions of this work include the proposal of other filtering

schemes for rejecting unreliable IPs, the study of other methods of dictionary

construction by estimating for example the size of the dynamic dictionary (fixed

in our experiences). Finally, for IPs matching, we propose to exploit the sparse

representation in other ways than minimizing the reconstruction error.

References

[1] I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, I. Rennes, I. I. Grenoble,

L. Ljk, Learning realistic human actions from movies, in: IEEE Conference

on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[2] P. Dollar, V. Rabaud, G. Cottrell, S. Belongie, Behavior recognition via

sparse spatio-temporal features, in: 2nd Joint IEEE International Work-

shop on Visual Surveillance and Performance Evaluation of Tracking and

Surveillance, 2005, pp. 65–72.

[3] M. I. Khedher, M. A. El-Yacoubi, B. Dorizzi, Multi-shot surf-based person

re-identification via sparse representation, in: International Conference on

Advanced Video and Signal-Based Surveillance, 2013.

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[4] J. H. Friedman, J. L. Bentley, R. A. Finkel, An algorithm for finding best

matches in logarithmic expected time, ACM Transactions on Mathematical

Software 3 (1977) 209–226.

[5] O. Hamdoun, F. Moutarde, B. Stanciulescu, B. Steux, Person re-

identification in multi-camera system by signature based on interest point

descriptors collected on short video sequences, in: ACM/IEEE Interna-

tional Conference on Distributed Smart Cameras (ICDSC), 2008, pp. 1–6.

[6] K. Jungling, M. Arens, View-invariant person re-identification with an im-

plicit shape model, in: Proceedings of the 8th IEEE International Confer-

ence on Advanced Video and Signal-Based Surveillance, 2011, pp. 197–202.

[7] N. Truong Cong, C. Achard, L. Khoudour, People re-identification by clas-

sification of silhouettes based on sparse representation, in: Proceedings of

the International Confernce on Image Processing Theory, Tools and Appli-

cations, 2010, pp. 60–65.

[8] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma, Robust face recog-

nition via sparse representation, IEEE Transactions on Pattern Analysis

and Machine Intelligence 31 (2009) 210–227.

[9] M. Farenzena, L. Bazzani, A. Perina, V. Murino, M. Cristani, Person re-

identification by symmetry-driven accumulation of local features, in: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2010, pp. 2360–2367.

[10] M. Hirzer, C. Beleznai, P. M. Roth, H. Bischof, Person re-identification by

descriptive and discriminative classification, in: Proceedings of the 17th

Scandinavian conference on Image analysis, 2011, pp. 91–102.

[11] O. Tuzel, F. Porikli, P. Meer, Region covariance: A fast descriptor for de-

tection and classification, in: Proceedings of the 9th European Conference

on Computer Vision, volume Part II, 2006, pp. 589–600.

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[12] G. Lisanti, I. Masi, A. Bagdanov, A. Del Bimbo, Person re-identification

by iterative re-weighted sparse ranking, Pattern Analysis and Machine

Intelligence, IEEE Transactions on 37 (2015) 1629–1642.

[13] D. Gray, H. Tao, Viewpoint invariant pedestrian recognition with an ensem-

ble of localized features, in: Proceedings of the 10th European Conference

on Computer Vision, volume Part I, 2008, pp. 262–275.

[14] B. Prosser, W.-S. Zheng, S. Gong, T. Xiang, Person re-identification by

support vector ranking, in: Proceedings of the British Machine Vision

Conference, 2010, pp. 21.1–21.11.

[15] M. Dikmen, E. Akbas, T. Huang, N. Ahuja, Pedestrian recognition with a

learned metric, in: Proceedings of the 10th Asian Conference on Computer

Vision, volume Part IV, 2010, pp. 501–512.

[16] W.-S. Zheng, S. Gong, T. Xiang, Person re-identification by probabilistic

relative distance comparison, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2011, pp. 649–656.

[17] L. An, M. Kafai, S. Yang, B. Bhanu, Reference-based person re-

identification, in: Proceedings of the 10th IEEE International Conference

on Advanced Video and Signal Based Surveillance, 2013, pp. 244–249.

[18] S. Leurgans, R. Moyeed, B. Silverman, Canonical correlation analysis when

the data are curves, J Roy Statistical Soc, Ser B 55 (1993) 725 – 740.

[19] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of

the Royal Statistical Society (Series B) 58 (1996) 267–288.

[20] S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries,

IEEE Transactions on Signal Processing 41 (1993) 3397–3415.

[21] H. Bay, T. Tuytelaars, L. V. Gool, Surf: Speeded up robust features, in:

Proceedings of 9th European Conference on Computer Vision, 2006, pp.

404–417.

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[22] P. Viola, M. Jones, Rapid object detection using a boosted cascade of

simple features, in: Proceedings of the 2001 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, volume 1, 2001, pp.

511–518.

[23] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,

in: Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, volume 1, 2005, pp. 886–893.

[24] B. Chakraborty, M. B. Holte, T. B. Moeslund, J. Gonźılez, Selective spatio-
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