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We present in this paper a multi-shot human re-identification system from video sequences based on interest points (IPs) matching. Our contribution is to take advantage of the complementary of person's appearance and style of its movement that leads to a more robust description with respect to various complexity factors. The proposed contributions include person's description and features matching. For person's description, we propose to exploit a fusion strategy of two complementary features provided by appearance and motion description. We describe motion using spatiotemporal IPs, and use spatial IPs for describing the appearance. For feature matching, we use Sparse Representation (SR) as a local matching method between IPs. The fusion strategy is based on the weighted sum of matched IPs votes and then applying the rule of majority vote. This approach is evaluated on a large public dataset, PRID-2011.

The experimental results show that our approach clearly outperforms current state-of-the-art.

Introduction

Person re-identification is an important video monitoring task for tracking people over multiple cameras . If a person crosses the view field of a camera-A, the goal is to check whether he/she passed through the view field of a second
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A N U S C R I P T camera-B (Figure 1). Typical applications include video surveillance in sensitive access control facilities, shopping centers or hospitals, where tracking a person could be cast as a re-identification problem. In such conditions, motion descriptors can highly discriminate the actions irrespective of person identity [START_REF] Laptev | Learning realistic human actions from movies[END_REF][START_REF] Dollar | Behavior recognition via sparse spatio-temporal features[END_REF]. Person re-identification is the opposite task of re-identifying the person irrespective of the action performed. This explains why temporal information has been overlooked in current systems. In spite of being less discriminative of person identity, we believe, nonetheless, that temporal information may be important to detect salient body parts to be exploited for re-identification.

Our contribution is threefold: first, we exploit the temporal information available in video sequences, through 3D Interest Points (IPs), for the first time in the person re-identification task. Second, we propose a new fusion mechanism leveraging the two feature types: spatial (appearance) and temporal (motion features), for improved accuracy. Finally, our approach relies on sparse representation for more robust IP matching as this is shown by our experimental validation on public datasets acquired under uncontrolled conditions.

Regarding the temporal information, as it discriminates actions and not people, we propose to harness it not to characterize the person motion, but
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A N U S C R I P T rather to discard static information (object, background, etc.) that usually hinders silhouette matching, and, therefore, to focus only on moving parts in the video sequence, for subsequent person identification, the hypothesis being that the moving parts are mainly associated with body parts.

Second, beside the temporal-based person description, we propose to use a purely static frame-based description, based on our work in [START_REF] Khedher | Multi-shot surf-based person re-identification via sparse representation[END_REF]. From the person representation standpoint, we use spatial (2D) and spatial-temporal (3D) IPs as local descriptors. Relying on these IPs offers a tradeoff between extracting only salient points from images or videos on one hand and keeping sufficient and relevant information to describe a person on the other. As the two descriptions are produced from two different channels (static and temporal), we combine them for a robust person representation. The fusion strategy is based on the weighted sum of matched IPs votes and then applying the majority vote rule.

Third, we propose a novel framework for IPs matching via sparse representation (SR), where each query IP is expressed as a linear combination vector of reference IPs. This representation yields a sparse vector whose nonzero entries correspond to the weights of reference IPs that match the query IP. As the SR dictionary is usually built from all reference vectors, its size can be huge for large datasets. For efficiency, we select a dynamic and reduced dictionary from the reference dataset . The dictionary is dynamic as it changes for each query IP, and is reduced since it is composed of only its N closest reference IPs. To accelerate the search of nearest neighbors, we use KD-tree [START_REF] Friedman | An algorithm for finding best matches in logarithmic expected time[END_REF][START_REF] Hamdoun | Person reidentification in multi-camera system by signature based on interest point descriptors collected on short video sequences[END_REF] for an efficient representation of the dictionary. Once the sparse representation of the query IP is obtained, the query IP is reconstructed each time in turn, using one of the reference IPs retrieved by SR and discarding the others. The query IP is then assigned to the reference identity minimizing its reconstruction. After all query IPs are assigned in this way to their reference identities, the majority vote rule is applied to classify the query sequence, i.e. to perform person re-identification.

The justification of a local IP matching method, where each IP is matched independently of the others, is that it is more robust for matching two silhouettes from the same person, corrupted by background or carried objects. Take a The motivation behind SR-based matching is that, considering video sequences, any relevant query IP is likely to have several similar IPs in the reference video. For instance, if an IP is detected on the face of a query frame, the number of similar reference IPs is proportional to the number of reference frames and it is important to use all of them to help re-identification. This can be ensured through SR which dynamically adapts the number of relevant reference IPs depending on the query IP by finding their sparsest linear combination.

Second, because of the large differences between the two cameras settings, IP descriptors might get partially transformed due to changes in camera view angle or lighting. The kNN approach is non convenient in this case as these IPs are significantly different from the corresponding reference points. SR is more suitable as it does not search for close reference points each taken separately, but for the sparsest combination of reference IPs that is close to the reference point even though no reference IP is close by itself to the query IP. The rest of the paper is organized as follows. In section 2, the state of the

A C C E P T E D M A N U S C R I P T
art for people re-identification is presented. Our approach is detailed in section 3. Section 4 gives an overview of extracted features: static, namely SURF and spatio-temporal, namely Cuboids. Section 5 describes the principle of sparse representation in the context of interest points matching. The fusion scheme is presented in section 6. Afterward, results are presented in section 7. Section 8 presents the phase of filtering unreliable IPs or matched IP pairs and finally a conclusion is drawn and future directions are discussed in section 9. Table 1 shows a list of the most used acronyms in the rest of this paper.

Related work

We categorize the re-identification approaches into supervised and unsupervised ones. The first category consists of dividing the database into training and testing parts. The training set consists of pairs of a priori matched images.

It allows to optimize the parameters of the re-identification model. Unlike the first category, an unsupervised approach consists of re-identifying people without any prior information. We present next a state of the art of re-identification approaches and on the use of sparse representation in re-identification task.

Unsupervised approaches

The choice of descriptors and their combination to obtain a robust person representation is a challenge for unsupervised methods. This representation can be based on two categories: interest points and on division into regions.

For the former category, in [START_REF] Hamdoun | Person reidentification in multi-camera system by signature based on interest point descriptors collected on short video sequences[END_REF], a person model is represented by IPs, namely SURF, collected over a short video sequence. For matching each query SURF, a vote is added to the person associated with the nearest reference SURF. The person with the majority of votes is claimed as the re-identified one. In [START_REF] Jungling | View-invariant person re-identification with an implicit shape model[END_REF], the authors propose a three stage system, i.e. person detection, tracking and reidentification. The person detection and tracking steps are based on the Implicit Shape Model (ISM), while the re-identification is based on matching of BoW of descriptors formed by addition of SIFT interest point (for "Scale Invariant Features Transform") and a spatial description (the position of IP in the image).
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For the latter category, in [START_REF] Truong Cong | People re-identification by classification of silhouettes based on sparse representation[END_REF] the ROI is segmented into K horizontally bands, and then represented by the concatenation of a color description extracted from its K-bands. For matching, a query ROI is represented as a sparse combination of all references ROIs. Then, a reconstruction error is calculated for each reference identity using only the coefficients corresponding to this identity. The query ROI is assigned to the reference identity minimizing the reconstruction error. The authors used the same matching algorithm presented in [START_REF] Wright | Robust face recognition via sparse representation[END_REF] for face recognition, as the input to SR was the whole ROI. In [START_REF] Farenzena | Person reidentification by symmetry-driven accumulation of local features[END_REF], the human body is decomposed via two horizontals axes, into three parts that generally correspond to head, torso and legs. Each part is represented by a combination of three features related to texture and color. The similarity between two images is defined as the weighted sum of the three associated distances. In [START_REF] Hirzer | Person re-identification by descriptive and discriminative classification[END_REF], the authors represent the person by a combination of descriptive and discriminative descriptors. The matching is carried out in two steps. In the first, the descriptive model is used to generate the most similar 50 reference images to the query. In the second step, the discriminative model is applied to refine the first classification based on the Adaboost algorithm. For feature extraction, the authors use the covariance image descriptor [START_REF] Tuzel | Region covariance: A fast descriptor for detection and classification[END_REF] and the Haar wavelet. In [START_REF] Lisanti | Person re-identification by iterative re-weighted sparse ranking, Pattern Analysis and Machine Intelligence[END_REF],

the re-identification problem is considered as a ranking problem. For person description, the image is divided into overlapping horizontal strips. From each strip, Hue-Saturation and RGB histograms are extracted. Moreover, a HOG (for "Histogram of Oriented Gradient") descriptor is extracted and concatenated with the two previous features to form the final descriptor. For matching, the authors use an iterative sparse representation to rank the reference people. Regarding learning metrics, an "Ensemble of Localized Features" (ELF) is introduced in [START_REF] Gray | Viewpoint invariant pedestrian recognition with an ensemble of localized features[END_REF]. The main idea consists of combining a set of features to represent a person and then estimating a weight for each of them. These weights are estimated over a training dataset using the Adaboost algorithm. The similarity function between two images is based on the learned features weights. Prosser et al. [START_REF] Prosser | Person re-identification by support vector ranking[END_REF] formulated person re-identification as a ranking problem. The Authors used different ranking algorithms such as RankBoost or RankSVM to learn the pairwise similarity metric. In [START_REF] Dikmen | Pedestrian recognition with a learned metric[END_REF], the authors learn the Mahalanobis distance and then a query person is matched via the k-nearest-neighbor algorithm.

Supervised approaches

The proposed solution is called Large Margin Nearest Neighbor with Rejection (LMNN-R) ("rejection" means the classifier returns no matches if all neighbors are beyond a certain distance). In [START_REF] Zheng | Person re-identification by probabilistic relative distance comparison[END_REF], the re-identification task is formulated as a problem of "Probabilistic Relative Distance Comparison" (PRDC). The distance probabilities are learned by maximizing distances between negative images pairs and minimizing distance between positive image pairs. In [START_REF] An | Reference-based person reidentification[END_REF], the similarity between an image pair is measured using the cosine distance between their projections on the RCCA space (RCCA for "regularized Canonical Correlation Analysis Method" [START_REF] Leurgans | Canonical correlation analysis when the data are curves[END_REF]). The latter method constructs a projection space where correlations between positive images are maximal.

In this paper, we adopt both the unsupervised and supervised schemes. The first allows us to compare the performance of our system with the state of the art on video sequences that is mainly based on unsupervised setting. The second one, i.e. supervised scheme, allows us to design a trainable IP filtering scheme that optimizes our SR-based matching algorithm.

Sparse representation in re-identification

Sparse representation (SR) of signals has been studied since two decades [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF], but it became popular in computer vision, only recently after its successful application to face recognition [START_REF] Wright | Robust face recognition via sparse representation[END_REF]. Since then, it also has been used in other
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classification tasks such as gait recognition, speech recognition and person reidentification [START_REF] Truong Cong | People re-identification by classification of silhouettes based on sparse representation[END_REF][START_REF] Lisanti | Person re-identification by iterative re-weighted sparse ranking, Pattern Analysis and Machine Intelligence[END_REF]. In the latter two works, SR is used to match silhouettes.

The use of sparse representation in this work is different from [START_REF] Truong Cong | People re-identification by classification of silhouettes based on sparse representation[END_REF] from two standpoints. First, SR in [START_REF] Truong Cong | People re-identification by classification of silhouettes based on sparse representation[END_REF] is global (Silhouette representation as a whole), while ours is local (SR for each IP in the silhouette). Second, in [START_REF] Truong Cong | People re-identification by classification of silhouettes based on sparse representation[END_REF], for each SR, the dictionary consists of all reference samples, while in our approach we use a reduced and dynamic dictionary of few selected reference IPs. The SR considered in [START_REF] Lisanti | Person re-identification by iterative re-weighted sparse ranking, Pattern Analysis and Machine Intelligence[END_REF] is also global like the one presented in [START_REF] Truong Cong | People re-identification by classification of silhouettes based on sparse representation[END_REF]. Moreover, in [START_REF] Lisanti | Person re-identification by iterative re-weighted sparse ranking, Pattern Analysis and Machine Intelligence[END_REF],

an iterative and weighted sparse representation is applied: at each round, the coefficients contributing little to the reconstruction are eliminated; SR weights are then updated and SR is again computed to rank the other identities.

The Proposed Approach

Our approach basically consists of four stages: 1) Feature extraction, 2) IPs

Matching via sparse representation, 3) Fusion and 4) Person re-identification based on majority vote rule. Figure 2 shows the flowchart of our approach.

First, for each input video, two sets of features, spatial and spatiotemporal, are extracted to model the signature (description) of a person identity: SURF and Cuboids. SURF analyzes each image from the input video and generates 2D spatial IPs. Then, an appearance descriptor around each IP is computed.

Cuboids, on the other hand, is applied on the whole video to output 3D spatiotemporal IPs. Then, an appearance descriptor is extracted around each IP.

Thus, the spatiotemporal features are pseudo-motion related as their detection relies on motion while their description is based on appearance.

The IP matching task is performed via sparse representation. Each test IP is matched by expressing it as a linear combination vector of a set of references IPs of the same type (SURF or Cuboids). This set is called a dictionary. The obtained representation corresponds to a sparse vector whose nonzero entries are related to the weights of reference IPs. This representation is harnessed for query matching, by assigning the query to the reference IP minimizing the reconstruction error of this query. In our IP-based SR, the dictionary would To overcome this issue, a dynamic and reduced dictionary is selected for each IP from the reference set.
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Third, for each query SURF, a vote is added to the person associated with the reference identity the query is matched to. In this way, a vote vector of dimension equal to the number of reference identities is generated. Similarly, all query Cuboids are matched and a second vote vector is generated. Then, a fusion of the two vote vectors is performed by a weighed sum the parameters of which are derived based on the density of each type of IP (spatial and spatiotemporal) in the input video sequence. Finally, the reference person obtaining the majority of votes is claimed as the re-identified person.

A pseudo-code of re-identifying one query sequence from a set of reference sequences is presented in Algorithm 1. Given an input video sequence, two IPs-based features, namely, SURF and Cuboids, are extracted over two stages: detection and description (Figure 3). Table 2 summarizes the two features characteristics. In this section, we present an overview of SURF and Cuboids. 
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The detection stage

The SURF detector is based on the approximation of the Hessian matrix determinant and the use of the integral image. It presents a good compromise between robustness to geometric transformations and computation time. Given a pixel p " px, yq of the image intensity I and integrating the scale information, the Hessian matrix H σ ppq at position p and scale σ, is defined by Eq.1.

H σ ppq " » - L xx pp, σq L xy pp, σq L yx pp, σq L yy pp, σq fi fl (1) 
where the Laplacian L xx pp, σq (respectively, L yy pp, σq, L xy pp, σq and L yx pp, σq), refers to the convolution of the second order Gaussian derivative B 2 gσ Bx 2 (respec-
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Bxy q and B 2 gσ Byx q with the intensity image I at position p (Eq.2).

L xx " I ˚B2 g σ Bx 2 , L yy " I ˚B2 g σ By 2 , L xy " I ˚B2 g σ Bxy , L yx " I ˚B2 g σ Byx ( 2 
)
where * is the convolution product and g σ ppq " L yy « D yy " I ˚f ilter yy [START_REF] Khedher | Multi-shot surf-based person re-identification via sparse representation[END_REF] where the convolution between two functions A and B of two discrete variables i and j is defined as follows:

Cpi, jq " `8 ÿ k"´8 `8 ÿ l"´8 rApk, nqBpi ´k, j ´lqs (4) 
The determinant of the Hessian H σ ppq is finally approximated as follows (Eq.5), where w is a constant empirically selected [START_REF] Bay | Surf: Speeded up robust features[END_REF]:

det pH approx q " D xx D yy ´pwD xy q 2 (5)
The SURF detector uses the integral image to accelerate the convolution calculation. Once the determinant at each pixel is estimated, the maxima are searched in small neighborhoods (typically volumes of 3x3x3 pixels). These maxima correspond to SURF IPs. Then, each IP is described as follows.

A In the descriptor extraction step, we consider a square region around the IP, oriented according to the first step. This region is divided into 4x4 grids to form 16 sub-regions. Within each sub-region, Haar wavelet x-responses and y-responses are calculated at 5x5 equally spaced points. For these 25 sample points, we collect four components (Eq.6).

v 1 " ÿ d x , v 2 " ÿ d y , v 3 " ÿ |d x | , v 4 " ÿ |d y | (6) 
The collected components from each of the 16 sub-regions form the 64-dimensional SURF descriptor.

The Haar-like features have shown high discriminative power in computer vision tasks such as face detection [22] and person detection [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. Besides, thanks to the precomputing of the integral image, the features can be computed efficiently in any part of the image.

Overview of the Cuboids method

The Cuboids [START_REF] Dollar | Behavior recognition via sparse spatio-temporal features[END_REF] method is proposed originally to characterize periodical motions in video sequences. It also operates in two stages: detection and description.
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The detection stage

The Cuboids detector is based on Gaussian and Gabor filters. The selection criterion R of Cuboids is the following (Eq.7):

R " pI ˚g ˚hev q 2 `pI ˚g ˚hod q 2

where h ev and h od define the Gabor filter: [START_REF] Wright | Robust face recognition via sparse representation[END_REF] σ being an independent spatial scale value.

h od pt,
For each pixel, a response R is measured. Then the locations of Cuboids correspond to the points giving high responses of R [START_REF] Chakraborty | Selective spatiotemporal interest points[END_REF], i.e., to the local maxima of R with respect to the 3D coordinates (x,y,t).

The description stage

Cuboids are originally used for action recognition, for which each action is acquired several times under similar training and test view angles. In this case, standard Cuboids' descriptors can encode motion sufficiently well for action representation. In the re-identification setting where only one reference sequence and one test sequence are available, the two associated view angles might be significantly different, which leads to huge discrepancy in their motion descriptors, entailing, thereby, a strong mismatch between the two sequences. For this reason, we have adapted the Cuboids descriptors to our re-identification context, by investigating the description of Cuboids by SURF and HOG representations. k-means)) and then representing the image (or video) as a histogram of the occurrence of each cluster [START_REF] Cao | Landmark recognition with compact bow histogram and ensemble elm[END_REF]. The latter consists of determining for each query IP the closest IP from the reference set. The closest element (IP) is defined as follows: given a set of elements tx i P R D , i " 1 . . . M u and y P R D , x j is the closest element to y if @i, dpy, x j q ď dpy, x i q, where d is a predefined distance measure. In this paper, we adopt the second scheme and perform IP matching via sparse representation. We first present the principle of sparse representation and we detail how we harness it in the person re-identification context.

IPs Matching via sparse representation

Sparse representation principle

Sparse representation [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Bradley Efron | Least angle regression[END_REF] consists of representing a signal as a linear combination of the smallest number of elements of a preselected dictionary. Given a signal y P R D and a dictionary Φ P R DxK and given that usually D ! K, i.e., the size of the dictionary is larger than the dimension of the input, our linear system is underdetermined [START_REF] Wang | Sparse Coding and its Applications in Computer Vision[END_REF][START_REF] Bruckstein | From sparse solutions of systems of equations to sparse modeling of signals and images[END_REF]. Therefore, there is an infinite number of solutions α corresponding to a linear subspace verifying Eq.9. In some cases, when there are inconsistencies in the linear equations, no solution can be obtained, but these cases rarely appear in practical image processing applications (e.g. face recognition as in [START_REF] Wright | Robust face recognition via sparse representation[END_REF] or in our own experiments).

y " Φα (9) 
From all solutions of the underdetermined linear system above (Eq.9), we are interested in the sparsest solution α s , that can be sought by minimizing the l 0 -norm of α, i.e. the number of its non zero-coefficients. Hence, the original formulation of the sparse representation problem is as follows (Eq.10):

α s " min α }α} 0 subject to y " Φα (10) 
To solve Eq.10, numerous algorithms have been proposed in the state-ofthe-art. In the literature, sparse representation algorithms are categorized differently (as reported, for instance, in the survey in [START_REF] Zhang | A survey of sparse representation: Algorithms and applications[END_REF]). In most cases, sparse
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representation categories include: greedy pursuit approach category and convex relaxation approach category. A greedy pursuit approach iteratively refines the current estimated α s by selecting one or several dictionary atoms sequentially chosen to approximate the signal y. Examples of "greedy pursuit methods" include the Matching Pursuit (MP) [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] and the Orthogonal Matching Pursuit (OMP) [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF]. On the other side, a convex relaxation approaches suggests a convexification of the problem presented in Eq.11 by replacing the l 0 -norm with l 1 -norm. In fact, the l 0 -norm optimization problem in Eq.10 is NP-Hard and recent research showed that finding the solution of l 0 -norm optimization problem is, in most practical cases, equivalent to the l 1 -norm optimization problem (Eq.11) [START_REF] Candès | Stable signal recovery from incomplete and[END_REF] [31]:

α s " min α }α} 1 subject to y " Φα (11) 
Generally, in real cases where data are noisy, the equality constraint in Eq.11 can be relaxed to allow some error tolerance (ε ą 0) as follows (Eq.12):

α s " min α }α} 1 subject to }Φα ´y} 2 2 ă ε (12) 
The elements of Eq.12 can be combined in several ways to obtain equivalent formulations. Eq.12 seeks the sparsest possible solution at a given error (ε ą 0).

We can also seek the minimal possible error given the sparsity level (δ ą 0) as follows (Eq.13) :

α s " min α 1 2 }Φα ´y} 2 2 subject to }α} 1 ă δ (13) 
Usually, a tuning parameter λ is used to adjust the tradeoff between sparsity and error reconstruction (Eq.14):

α s " min α p}Φα ´y} 2 2 `λ}α} 1 q (14) 
The function f : α Þ Ñ }Φα ´y} 2 2 `λ}α} 1 is convex and in order to minimize f , we need specific algorithms such as Coordinate Descent [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and Least Angle Regression (LARS) [START_REF] Bradley Efron | Least angle regression[END_REF].
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Sparse representation for Interest Point Matching

In the context of IP matching, let us consider a query IP y and a set of reference IPs associated with M identities (persons). First, the reference dataset is arranged in a matrix (called dictionary), which is built using reference IPs:

tS i,j u P R D , i " 1 . . . M, j " 1 . . . k i ,
where k i denotes the number of reference IPs for the i-th identity, and K " k 1 `k2 `¨¨¨`k M denotes the number of IPs in the reference dataset. The k i reference IPs of the i-th identity candidate constitutes the columns of the matrix Φ i (Eq.15): Φ i " rS i,1 ; S i,2 ; . . . ; S i,ki s

The matrix Φ of all K reference IPs is obtained by concatenating the Φ i matrices (Eq.16):

Φ " rΦ 1 ; Φ 2 ; . . . ; Φ M s " rS 1,1 ; S 1,2 ; . . . ; S M,kM s

The Sparse Representation scheme represents y as a linear combination of all the reference IPs:

y " Φα s " rΦ 1 , Φ 2 , . . . Φ M s α s (17) 
At this step, Eq.14 is applied to find the sparsest coefficient vector α s . In noiseless conditions and if there is no ambiguity between the samples pertaining to different classes (person identities), the nonzero entries α s are associated with the columns of Φ from a single person identity class i (Eq.18), and the query sample y is assigned to the i-th person identity [START_REF] Wright | Robust face recognition via sparse representation[END_REF].

α s " r0; . . . ; 0; α i,1 ; α i,2 ; . . . ; α i,ki ; 0; . . . ; 0s

T ( 18 
)
In this ideal case, α s has nonzero entries associated only with the i-th reference identity corresponding to actual identity of y [START_REF] Guo | Action Recognition in Video by Sparse Representation on Covariance Manifolds of Silhouette Tunnels[END_REF]. In noisy conditions, however, non null coefficients may be associated with multiple person identities.

After calculating the sparsest solution, the non-zero coefficients of α s can be used to determine the identity of the query IP y.
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Sparse representation for IPs matching

In our approach, each IP is matched independently. To match one IP, three steps are applied: 1) Dictionary construction, 2) Sparse representation and 3)

Identity assignment.

Dictionary construction (Algorithm 2)

The dictionary consists of all references IPs. Thus, for typical re-identification datasets, we would have to consider dictionaries of millions of reference interest points. The computation time for finding a sparse representation for one IP will then be huge. In this work, for each test IP, we select a dynamic and reduced dictionary A, consisting of the N closest reference IPs. As there is no theoretical method to infer the optimal dictionary size N , we set the latter in an empirical way by choosing a value not too small which may lead to missing relevant interest points, but not a too large value, for which a lot of irrelevant IPs will be introduced. The dimension of A is DxN where each column represents an IP descriptor of dimension D. To accelerate the search of nearest neighbors, a KD-tree is used [START_REF] Friedman | An algorithm for finding best matches in logarithmic expected time[END_REF].

The concept of dynamic (adaptive) dictionary has also been proposed in [START_REF] Cao | Extreme learning machine and adaptive sparse representation for image classification[END_REF].

The dictionary construction in [START_REF] Cao | Extreme learning machine and adaptive sparse representation for image classification[END_REF] is different from ours. In [START_REF] Cao | Extreme learning machine and adaptive sparse representation for image classification[END_REF], an "Extreme Learning Machine" (ELM) is applied on the query element and only the first k largest reference elements in the ELM output are taken into consideration. This is due to the fact that the uncorrelated classes to the query element tend to have a small response in an ELM output. Then, all the points in the reference set that share the same classes (identities) as the k-largest entries are added to the dictionary. In our work, the dictionary corresponds directly in a dynamic way to the k-closest points, and we do not look for any additional points in the reference set with the same classes (identities).

Sparse representation (Algorithm 3)

In real-life conditions, re-identification is complex and dictionary IPs are very noisy. Our sparse representation formulation is based on equation Eq.14. To solve the sparse representation task, we use the Coordinate Descent algorithm
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Algorithm 2 Dictionary construction Require: -φ: Matrix containing all reference IPs -N : Dictionary size -q: query IP // Tree construction φ Sorted = Sort-KD-Treeptree, qq // Dictionary construction A " rA i s 1ďiďN = N first (closest) IPs from φ Sorted Ensure: -A: dictionary (CD algorithm) [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] . This algorithm uses a regularized technique that copes with the ill-posed problem [START_REF] Friedman | Regularized Discriminant Analysis[END_REF]. The Coordinate Descent algorithm inherits its numerical stability from the descent property at each iteration update [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF][START_REF] Wu | Coordinate Descent Algorithms for Lasso Penalized Regression[END_REF]. Moreover, the CD algorithm, according to the literature, is efficient if the correlation between the dictionary elements is small [START_REF]Spams: a sparse modeling software[END_REF]. The algorithm takes as input an IP and its corresponding dictionary, and outputs a sparse vector with most coefficients equal to zero.

Algorithm 3 Sparse Representation

Require: -q: query IP -A: dictionary corresponds to q -λ: tuning parameter // Solve the following equation with the Coordinate Descent algorithm α s " min α p 1 2 ||q ´Aα|| 2 2 `λ||α|| 1 q Ensure: -α s : sparse vector (most coefficients set to 0)

Identity assignment (Algorithm 4)

The non-zero coefficients of the sparse representation are used to assign an identity to a query IP. To determine IP identity, a reconstruction residual is calculated for each identity i having at least one non-zero coefficient in the following manner: denote L the number of identities having at least one nonzero coefficient in α s . Let's q be a query IP and A its corresponding dictionary, we compute first x i : 1 ď i ď L as following (Eq.19):

x i " r0, . . . 0, α i,1 , α i,2 , . . . , α i,ki , 0, . . . , 0s (19) 
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x i is a coefficient vector obtained from α s with all elements set to 0 except those associated with identity i. The dominant identity j satisfies the following equality (Eq.20):

j " arg min i }Ax i ´q} 2 2 (20) 
j corresponds to the identity minimizing the reconstruction residual of q. Based on reconstruction error minimization, the identity of query IP is identified as the person j satisfying Eq.20 .

Algorithm 4 Identity assignment

Require: -q: query IP -α s : SR corresponds to query IP q and dictionary A for each identity i having k i non-zero coefficients do // Compute x i x i " r0, . . . , 0, α i,1 , α i,2 , . . . , α i,ki , 0, . . . 0s // Compute the reconstruction residual r i r i " ||Ax i ´q|| 2 2 end for j " arg min i pr i q Ensure: -j: identity of q

Fusion scheme

In the previous sections, we have proposed two independent person reidentification systems based on 2D static and 3D spatio-temporal IPs. Each of the two systems relies on SR for IP matching. As the 2D and 3D IPs emanate from two different sources of information (static and temporal respectively), they actually complement each other. 2D static points are usually detected on regions with rich texture structure and contrast, and can for instance detect textured person clothes that can help identification. They may however also detect texture background parts in the scene. Temporal IPs do not in general detect such regions but focus on those with high spatiotemporal variance associated with moving legs or arms. This complementarity motivates to seek fusion of the two systems for improved accuracy. Fusion can occur at any of the three In our context, features' fusion is not possible because SURFs and Cuboids are detected at different interest points. Decision fusion is not possible either as it is not realistic to combine the decisions of only two classifiers. We use instead a score-level fusion method where the score is the number of votes for each person generated by each classifier (SURF-based and Cuboids-based).

Figure 5 illustrates the principle of majority vote rule. Given a query sequence and a reference dataset, each IP from the query sequence is classified into one identity from the reference dataset via SR as explained in section 5. Then, the found reference identities are submitted to the majority vote decision rule.

For each query IP, a vote is added to the person associated with the reference selected identity. The person obtaining the majority of votes is claimed as the re-identified person. Formally, given a query video sequence, described by n SURFs and m

Cuboids, the goal is to determine the associated identity among M reference persons. Let V and W be the vote vectors corresponding to SURFs and Cuboids respectively. The vote vector Z obtained by fusion is written as equation Eq.21:

Z i " αV i `p1 ´αqW i ( 21 
)
where α is a weighting parameter. As our approach is totally unsupervised, there is no way to learn the optimal value of α, so we derive it based on our a priori knowledge on the extracted 2D and 3D IPs. Assuming that 2D static IPs and 3D spatio-temporal IPs are equally discriminative, and giving that the number of detected 2D points is roughly twice the number of detected 3D points, we have set α to 0.3. With this fusion scheme, the re-identified query person is assigned to the reference Z i with the maximum of votes.

Experiments

We evaluated our approach on two public multishot re-identification datasets:

PRID-2011 and CAVIAR4REID. PRID-2011 [START_REF] Hirzer | Person re-identification by descriptive and discriminative classification[END_REF] consists of hole video sequences and is the only available and large public video database that is adequate for the re-identification task. Although, CAVIAR4REID [START_REF] Cheng | Custom pictorial structures for re-identification[END_REF] does not consists of video sequences but only of a few unordered key frames, we used it as well in order to assess the effectiveness of the sparse representation in an additional experiment setting.

As SR parameters, the dimension of the dictionary A is DxN where each CAVIAR4REID [START_REF] Cheng | Custom pictorial structures for re-identification[END_REF] has been extracted from the CAVIAR database [START_REF] Caviar | [END_REF].

The recorded videos were captured from two different cameras in an indoor shopping center in Lisbon. The pedestrians' images have been cropped using the provided ground truth. From the 72 different individuals identified (with image sizes varying from 17x39 pixels to 72x144 pixels), 50 people are captured by both views and 22 from only one camera. For each pedestrian, 10 images from each camera view are selected, maximizing the variance with respect to resolution changes, light conditions, occlusions, and pose changes (see samples in Fig. 6). These images or key frames are unordered and thus no spatio-temporal IP can be extracted. For CAVIAR4REID, therefore, only SURF-based SR is considered.

The CMC curve obtained by our approach is shown in Fig. 7. Table 3 shows different state-of-the-art methods' performances (identification rate at rank 1).

These methods share with us the same evaluation protocol.
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Approach

Re-identification rate (%) Authors of [START_REF] Bak | Person re-identification using spatial covariance regions of human body parts[END_REF] appear in [START_REF] Bazzani | Symmetry-driven accumulation of local features for human characterization and re-identification[END_REF] 10 [START_REF] Bazzani | Symmetry-driven accumulation of local features for human characterization and re-identification[END_REF] 10 SURF-1NN [42] 16 [START_REF] Cheng | Custom pictorial structures for re-identification[END_REF] 17 [START_REF] Cheng | Person re-identification by articulated appearance matching[END_REF] 19 Our approach (only SURF) 20

The approaches based on appearance features (SDALF) [START_REF] Bazzani | Symmetry-driven accumulation of local features for human characterization and re-identification[END_REF] and MRGC [START_REF] Bak | Person re-identification using spatial covariance regions of human body parts[END_REF] using essentially color descriptors achieve 10% of correct re-identification.

The approach presented in [42], that is based on 1NN-based SURF matching using Euclidian distance and probabilistic filtering, achieves 16% of correct reidentification. Our approach achieves a re-identification rate of 20%, which is slightly higher than the one obtained in [START_REF] Cheng | Person re-identification by articulated appearance matching[END_REF] and based essentially on spatiotemporal color features. CMC curves sources of [START_REF] Cheng | Custom pictorial structures for re-identification[END_REF][START_REF] Bazzani | Symmetry-driven accumulation of local features for human characterization and re-identification[END_REF][START_REF] Cheng | Person re-identification by articulated appearance matching[END_REF] on CAVIAR4REID are not available to reproduce along with ours in the same figure. Overall, these results illustrate the power of SR for IPs matching compared to 1-NN. 

Rank

Re-identification rate

In recent of the art, the dataset CAVIAR4REID was evaluated with a supervised protocol. The dataset is divided into two parts : training and test.
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The partition [START_REF] Wu | Coordinate Descent Algorithms for Lasso Penalized Regression[END_REF][START_REF] Prosser | Person re-identification by support vector ranking[END_REF], 36 people in training and 14 people in test, is widely used in the literature. Among these approaches that adopted this partition, [START_REF] Pedagadi | Local fisher discriminant analysis for pedestrian re-identification[END_REF] achieved a CCR = 36.19%, [START_REF] Liu | Semi-supervised coupled dictionary learning for person re-identification[END_REF] achieved a CCR = 49.1% and a CCR = 32.86% is achieved in [START_REF] Zuo | Iterated support vector machines for distance metric learning[END_REF]. Recently, in other works like [START_REF] Zeng | Efficient person re-identification by hybrid spatiogram and covariance descriptor[END_REF], all the 50 people are used in test, but only half of the available images are used in the test, while the remaining 5 frames are used as reference images. In evaluation, [START_REF] Zeng | Efficient person re-identification by hybrid spatiogram and covariance descriptor[END_REF] achieved a CCR=35.2%. For this diversity of evaluation protocols on CAVIAR4REID, we compared our approach only with those using exactly the same protocol as ours. This comparison is presented in the table 3.

Results on PRID-2011

The dataset PRID-2011 (multi-shot version) [START_REF] Hirzer | Person re-identification by descriptive and discriminative classification[END_REF] was created in 2011 by the Austrian Institute of Technology. The video sequences were obtained from two cameras (A and B) located on street (Fig. 6). 385 people were filmed by camera-A and 749 people were filmed by Camera-B, 200 being common to the two cameras. The evaluation consists of searching the common 200 people filmed by Camera-A in the gallery set (Camera-B) of 749 people.

In the fusion stage, we selected a value of α proportional to the average number of IPs per person (Tab.4), roughly α " 0.3 , and compared the fusion result to that where the two systems are considered on equal footing, i.e., α " 0.5. Figure 8 shows the CMC (from rank 1 to rank 10) on PRID-2011 compared to the state-of-the art. Table 5 compares the re-identification rate at rank 1 of different methods. We see that the approach based on SURF matching via SR outperforms SURF matching via 1-NN, and achieves an improvement of 4.5 % in the re-identification rate at rank 1.
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A N U S C R I P T 22.5 Our approach (only SURF-SR) 27 Our approach (only Cuboids-SR) 25.5 Our approach (Fusion): α " 0.5 28.5 Our approach (Fusion): α " 0.3 31 Using only the 200 common people in evaluation Our approach 31 [START_REF] Wang | Person re-identification by video ranking[END_REF] 28.9

Our fusion approach compares favorably with the approach proposed in [START_REF] Hirzer | Person re-identification by descriptive and discriminative classification[END_REF] that combines two appearances models. These results show that our fusion mechanism improves the system performance by 4% w.r.t using SURFs alone and 5.5% w.r.t using Cuboids alone.

Another result on the PRID-2011 database was published using a different protocol [START_REF] Wang | Person re-identification by video ranking[END_REF]: only the 200 common people in camera-A and camera-B are used in evaluation. Using this protocol, our approach outperforms that in [START_REF] Wang | Person re-identification by video ranking[END_REF] by 2.1% at rank 1 (Tab.5). Table 5 shows the comparison of our approach with the state of the art using only the 200 common people in evaluation.
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Discussion

Two important conclusions can be drawn from the previous results: the first concerning the usefulness of SR and the second concerning the effectiveness of the fusion of appearance and motion features.

The approach based on SURF matching via SR outperforms that based on SURF matching via 1-NN. On PRID-2011, SR outperforms 1-NN at all ranks and achieves an improvement of 4.5% in the rate of re-identification at rank 1.

This improvement is significant given the large size of the dataset and proves that the SR can provide richer information for decision making than [42] and other interest point matching methods like [START_REF] Hamdoun | Person reidentification in multi-camera system by signature based on interest point descriptors collected on short video sequences[END_REF]. On CAVIAR4REID, SR is better again, but the improvement is small compared to the one obtained on PRID-2011. This may be explained by the small size of the database and the much fewer images available per person compared to PRID-2011.

The contribution of SR compared with the 1-NN is highlighted in cases where some reference SURFs are close to query SURF of the same person without being the closest though. Considering several neighbors to compute the SR is more effective than 1-NN matching.

Regarding fusion, we demonstrate the complementarity of the static aspect of person's appearance on one hand and the dynamic aspect related to movement on the other hand, for detecting discriminant interest points.

Supervised schemes for optimizing the re-identification task

Overall, the learning phase allows learning parameters to optimize the reidentification task. This optimization would be relevant if it is associated with increasing the re-identification rate or reducing the re-identification running time. The supervised parameters, as shown in current state-of-the-art, can be related to the metric used to compare images.

Recall that an unsupervised approach has been presented in this work under the same experimental protocol of the state-of-the-art, which allowed a fair comparison with the latter. Using this unsupervised protocol, all the dataset
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A N U S C R I P T Function kernel") [START_REF] Vapnik | Statistical Learning Theory[END_REF]. Second, for class prediction, the filtering step consists of assigning a query IP to one of the two classes using the SVM-based filter model.

The Acceptation/Rejection decision is performed as following: each query IP is matched to the closest reference IP. Then, the matched IP pair difference descriptor is input into the SVM model. If SVM's output decision is class +1, the query IP is retained, otherwise it is rejected. This supervised approach is evaluated and compared to the unsupervised protocol (Tab 6). The experiment results proves the power of the proposed learning phase to reduce the re-identification running time. From the accuracy standpoint, the system above significantly outperforms the state of the art. In fact, our filtering scheme is able to maintain accuracy (even slightly outperforming the one obtained by the unsupervised one) while significantly increasing speed since it basically halves the processing time.

Conclusion

This paper proposed a new approach for human re-identification from video sequences, based on interest point matching, which exploits the complementary nature of appearance and temporal features. The proposed system mainly consists of three stages: person feature description, matching and fusion. For person representation, a robust description that takes into account both appearance and motion is proposed. We have described the appearance (respec- 

Figure 1 :

 1 Figure 1: Steps of a generic re-identification system

  S C R I P T motivating example where the reference image corresponds to a person pushing a stroller while the query image corresponds to the same person without the stroller. The local matching of salient points (features) is more likely to lead to a good match as the silhouette features are not corrupted by the stroller descriptors. Second, as we are representing a ROI by a set of local features, matching features locally enables the design of smart filtering post processing with the aim to keep the best matched features pairs only and disregard other unreliable pairs (e.g. stroller feature point matched to a silhouette feature point).

  Supervised approaches require the existence of a training set composed of a priori matched pairs of images. Most of these approaches are based on metric learning algorithms. The latter consist of learning the parameters of the metric defining the similarity between two images. The choice of the metric at i) minimizing the similarity between images pairs associated with different per-A C C E P T E D M A N U S C R I P T sons (negative image pairs) and ii) maximizing similarity between images pairs associated with the same person (positive image pairs).

Figure 2 :

 2 Figure 2: Our approach's Flowchart

Algorithm 1

 1 Re-identify a test sequence from a set of reference sequences Require: -A reference dataset of M identities (persons) -A query video sequence Ensure: -Identity of the query video sequence ****************************************************************** // Feature extraction Extract SURFs and Cuboides from the reference sequences Extract SURFs and Cuboides from the query sequence ****************************************************************** // SURF Matching via Sparse Representation for each query SURF do Find the matched reference identity ref id via Sparse Representation Increment the number of votes associated with ref id end for V Ð each component V piq corresponds to the sum of votes associated with the reference identity i ****************************************************************** // Cuboides Matching via Sparse Representation for each query Cuboide do Find the matched reference identity ref id via Sparse Representation Increment the number of votes associated with ref id end for W Ð each component W piq corresponds to the sum of votes associated with the reference identity i ****************************************************************** // Fusion α Ð weight parameter Z Ð each component Zpiq corresponds to the weighted sum of votes associated with the reference identity i Z " V `αW ****************************************************************** // Re-identification The query sequence is re-identified as the reference sequence having the maximum of votes in Z Identity of the query video sequence = arg max i pZpiqq 4. Feature extraction

Figure 3 :

 3 Figure 3: Diagram of features detection/description based on interest points Detection stage: Detect a set of 2D or 3D interest points based on specific crietria

Figure 4 :

 4 Figure4: Left to right: the (discretized and cropped) Gaussian second order partial derivatives in y-direction and xy-direction, and approximations thereof using box filters: f ilteryy and f ilterxy. The grey regions are equal to zero[START_REF] Bay | Surf: Speeded up robust features[END_REF] 

  C C E P T E D M A N U S C R I P T The description stage The description stage consists of two steps: orientation assignment and descriptor extraction. First, a characteristic orientation is estimated to ensure invariance to image rotation. For each pixel in a circular region around the IP, Haar wavelet responses are calculated and then weighted with a Gaussian centered at the IP. Each weighted response is interpreted as a 2D vector (xresponse, y-response). Using the sliding window technique, for each window, all x-responses (d x ) and y-responses (d y ) are summed to one vector originating at the IP. The maximum resulting vector over all sliding windows determines the orientation assignment.

  IPs matching can be performed in two ways: via a bag of features or directly for each IP. The former consists of converting the query IPs into a bag of kA C C E P T E D MA N U S C R I P T clusters (obtained from the reference dataset using a clustering algorithm (e.g.

  S C R I P T important biometric stages: 1) Feature extraction, 2) Matching and 3) Decision: 1) at the feature level, features are concatenated and fused into the same feature vector prior to matching; 2) at the matching level, the scores generated by different classifiers are combined into one score; 3) at the decision level, decisions of different classifiers are fused into a single decision, e.g. through a majority vote rule.

Figure 5 :

 5 Figure 5: Principle of majority vote rule (In this example, the query person is re-identified as the person 4).

  column represents an IP descriptor of dimension D " 64, and N is empirically set to 200. To compute the SR coefficients, the Coordinate Descent algorithm is used. A C C E P T E D M A N U S C R I P T Results are shown in terms of the Cumulative Matching Characteristic (CMC) curve as commonly used in the literature. In the CMC curve, the identification rate at rank i gives the number of query video sequences where the actual reference is retrieved among the top i answers over the size of the query set. In the rest of the paper, by default, the re-identification rate will mean the reidentification rate rank 1. It is also called the Correct Classification Rate (CCR).

Figure 6 :

 6 Figure 6: Samples from different evaluated datasets: Left: CAVIAR4REID; Right: PRID-2011

Figure 7 :

 7 Figure 7: CMC SURFs performance on CAVIAR4REID

Figure 8 :

 8 Figure 8: Comparison of CMC performances on PRID-2011
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Table 1 :

 1 List of acronyms

	Acronym	Description
	BoW	Bag of visual Words
	IP	Interest Point
	KDTree	K-Dimensional Tree
	kNN	k Nearest Neighbors
	ROI	Region Of Interest
	SR	Sparse Representation
	SURF	Speeded Up Robust Features

Table 2 :

 2 Extracted features descriptions

	Features	SURF	Cuboids
	Encoding information	Appearance	Motion
	Detection	Hessian Matrix Based Detector Gabor filter
	Description	Haar-Wavelet (64 components)

4.1. Overview of the SURF method

SURF

[START_REF] Bay | Surf: Speeded up robust features[END_REF] 

operates in two main stages: detection and description. The detection stage analyzes an image and returns a list of interest points. Around each point, a descriptor vector is computed. The detection stage is performed through the Hessian Matrix, while the description stage is based on Haar wavelets.

  Laplacians by estimating the second order Gaussian derivative using a set of "box" filters. Figure4shows the appropriate filters used to estimate B 2 gσ By 2 and B 2 gσ Bxy . In the following, the estimation of L xx , L yy and L xy are respectively named D xx , D yy and D xy (Eq.3).

	1 2Πσ 2 e	´}p} 2 2 2σ 2 . SURF proposes
	to estimate the	

Table 3 :

 3 Results comparison on CAVIAR4REID

Table 4 :

 4 Average number of IPs per person

	IPs	Average number of IPs per person
	SURFs	1733
	Cuboids	1030

Table 5 :

 5 Results comparison on PRID-2011

	Approach	Re-identification rate (%)
	Using all test dataset
	[10]	19.2
	SURF-1NN [42]	

Table 6 :

 6 Contribution of supervised schemes on PRID-2011

	Approach	Re-	Running
		identification	time
		rate (%)	(s/image)
	Our Approach (SURF only)	36	1.8
	evaluated on test set		
	+		
	No filtering is applied		
	Our Approach (SURF only)	37	0.9
	evaluated on test set		
	+		
	SURFs filtering		
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PRID-2011 is considered as test dataset. In this section, we go beyond this experimental setting in order to show the usefulness of a learning phase: our approach (SURF only) is evaluated on the PRID-2011 using a supervised pro-