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Abstract. In the context of content-based multimedia indexing gender identification based on speech signal is

an important task. In this paper a set of acoustic and pitch features along with different classifiers are compared

for the problem of gender identification. We show that the fusion of features and classifiers performs better than

any individual classifier. Based on such conclusions we built a system for gender identification in multimedia

applications. The system uses a set of Neural Networks with acoustic and Pitch related features.

90% of classification accuracy is obtained for 1 second segments and with independence to the language and the

channel of the speech. Practical considerations, such as the continuity of speech and the use of mixture of experts

instead of one single expert are shown to improve the classification accuracy to 93%. When used on a subset of

the Switchboard database, the classification accuracy attains 98.5% for 5 seconds segments.

Keywords: content-based audio indexing, Piecewise Gaussian Modeling, mixture of neural networks

1. Introduction

Automatically detecting the gender of a speaker has several potential applications. In the

context of Automatic Speech Recognition, gender dependent models are more accurate

than gender independent ones. Hence, gender recognition is needed prior to the application

of one gender dependent model (Acero and Huang, 1996; Neti and Roukos, 1997). In the

context of speaker recognition, perfect gender detection can improve the performance by

limiting the search space to speakers from the same gender. In content based multimedia

indexing, the speaker’s gender is a cue used in the annotation. Also, Gender dependent

speech coders are more accurate than gender independent ones (Marston, 1998; Potamitis

et al., 2002). Therefore, automatic gender detection can be an important tool in multimedia

signal analysis systems.

Several acoustic conditions exist in audio-visual data: compressed speech, telephone

quality speech, noisy speech, speech over background music, studio quality speech, different

languages, and so on. Clearly, in this context, a gender identification system must be able

to process this variety of speech conditions with acceptable performance.

In this paper we propose a gender identification system based on a general audio classifier.

The proposed technique doesn’t assume any constraint on the speech quality or segment

lengths, in contrary to the existing techniques.
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2. Related work

Motivated by different applications, several works have focused on voice based gender

detection in the literature. Konig and Morgan (1992) extracted 12 Linear Prediction coding

Coefficients (LPC) and the energy features every 500 ms and used a Multi Layer Perceptron

as a classifier for gender detection. They reported an 84% of frame based accuracy on the

DARPA resource management database (Price et al., 1988). The database is a collection of

clean speech recorded from 160 speakers in American English. Vergin and Farhat (1996)

used the first two formants estimated from vowels to classify gender based on a 7 seconds

sentences reporting 85% of classification accuracy on the Air Travel Information System

(ATIS) corpus (Hemphill Charles et al., 1990) containing specifically recorded clean speech.

Neti and Roukos (1997) used a simple pattern matching approach where the acoustic ob-

servation of a speech utterance is first decoded into phonemes and the Euclidian distance is

calculated between the observation and the recognized male and female phoneme models.

The model with the lowest distance is chosen to detect the gender of the speaker. The results

on the ATIS corpus are 62% of accuracy for sentences from 3 to 8 seconds. However, when

using a general GMM approach to model each gender’s acoustic vectors, Neti et al. report

in the same paper classification results of 95% precision rate on the same sentences of 3 to

8 seconds. In order to deal with the problem of gender normalization of speech (Jung et al.,

2002) used pitch detection based on the simple Average Magnitude Difference Function

(AMDF) in gender identification on the DARPA TIMIT speech corpus. Tzanetakis and

Cook (2002) followed a general audio classifier approach using Mel Frequency Cepstral

Coefficients (MFCC) features and Gaussian Mixture Models (GMM) as a classifier. When

applied to gender identification in a multimedia indexing context, the results are 74% of

classification accuracy with three classes, male, female and sports announcement. Slomka

and Sridharan (1997) used a combination of a pitch-based approach and a general audio clas-

sifier approach using GMM. The reported results of 94% are based on 7 seconds files after

silence removal on the OGI and the Switchboard telephone speech databases (Muthusama

et al., 1992; Godfrey et al., 1992).

Hidden Markov Models were also used for gender identification. For each gender, one

HMM speech recognition engine is trained. The gender dependent models are used to

decode a test speech signal. The model with higher likelihood is chosen as a cue for the

gender of the speaker (Huang et al., 1991). Parris and Carey (1996) combined pitch and

HMM for gender identification reporting results of 97.3%. Their experiments have been

carried out on sentences of 5 seconds from the OGI database. Some studies on the behavior

of specific speech units, such as phonemes, for each gender were carried out (Martland

et al., 1996).

This overview of the existing techniques for gender identification shows that the reported

accuracies are generally based on sentences from 3 to 7 seconds obtained manually. More-

over, some papers use sentences from the same speaker. This assumption holds for speech

data where speaker boundaries are known in advance, such as the case of telephone speech.

Although the automatic segmentation of a continuous stream of speech, such as the one

existing in multimedia documents, is feasible, it still constitutes an important problem for

the multimedia indexing community (Viswanathan et al., 2000; Delacourt and Wellekens,
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2000). Generally Equal Error Rates (EER) are of the order of 15% depending on the na-

ture of the documents (broadcast news are “easier” to segment than meeting recordings for

example).

In several studies, some preprocessing of speech is also done, such as silence removal

or phoneme recognition. While silence can be efficiently detected for clean speech, it

becomes problematic for noisy speech. Phoneme recognition on the other hand adds an

additional complexity layer to gender identification systems by the need of training phoneme

recognizers on a specific speech corpus.

3. Gender identification in multimedia applications

In the context of multimedia applications gender identification has specific characteristics

that make it different from the gender identification in other applications.

(1) The speech signal in multimedia data is recorded from a variety of different sources.

For instance, indoor, outdoor, and telephone speech are frequent in multimedia data.

Therefore, a gender identifier for multimedia applications must be robust to channel

and acoustic condition changes. In the systems proposed in Parris and Carey (1996)

and Slomka and Sridharan (1997) it is supposed that the speech is recorded from the

telephone network and hence restricting the use.

(2) Several audio coding and compressing techniques are used and hence implying the

robustness to audio compression techniques.

(3) The speech is Multilanguage implying that a gender identifier in this context must be

language independent. This assumption makes the use of HMM-based gender identifi-

cation systems not effective since they are phoneme-related.

(4) The speech is a continuous stream with no a priori known boundaries at each speaker

turn. That is, it is not guaranteed that relatively long term audio segments contain speech

from the same speaker or gender. On the other hand the time precision in multimedia

applications is crucial, it is considered that 2 seconds is a maximum delay in such

applications.

The system described in this paper makes use of several features and classifiers and

fulfills the above requirements for gender identification.

4. The general audio classifier approach

Gender identification is a classic pattern recognition problem with two classes. In this section

we describe the main features used for gender identification and we propose a new set of

perceptually motivated features arguing that they are a better alternative to the classically

used acoustic features. Moreover, several classifiers are described and a comparison is

carried out.
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Figure 1. Pitch Histogram for 1000 seconds of males (lower values) and 1000 seconds of females’ speech (higher

values). We can see the overlap between two classes.

4.1. The features

4.1.1. Pitch features. The pitch feature is perceptually and biologically proved as a good

discriminator between males’ and females’ voices. However, the estimation of the pitch

from the signal is not an easy task. A good estimate of the pitch can only be obtained for

voiced portions of a clean non-noisy signal (Hess, 1983; Shimamura and Kobayashi, 2001;

Ross et al., 1974). Moreover, an overlap of the pitch values between male’s and female’s

voices naturally exists, hence intrinsically limiting the capacity of the pitch feature in the

case of gender identification, figure 1.

In our experiments we use a standard algorithm for pitch estimation based on the au-

tocorrelation function in the time domain for windows lengths of 100 ms. The algorithm

estimates the pitch for the voiced portions of the signal. Voiced portions are detected using

the Zero Crossing Rate and the accepted pitch values are between 20 and 600 Hz.

In the presented system the gender identification is performed on frames of 1s, called

Integration Time Windows (ITW). Therefore, in each ITW window 10 pitch values can be

extracted, called All Pitch values (AP). Consequently, the mean (Mean Pitch, MP) and the

minimum of the pitch (minP) values are obtained for each ITW.

4.1.2. Acoustic features. Short term acoustic features describe the spectral components of

the audio signal and are generally extracted at 10 ms rate. Fast Fourier Transform can be used

to extract the spectral components of the signal. Further filtering based on the perceptually

motivated MEL scale is usually carried out. However, such features which are extracted

at a short term basis (several ms) have a great variability for the male and female speech

and captures phoneme like characteristics which is not required. For the problem of gender

identification, we actually need features that do not capture the linguistic information such

as words or phonemes.

In this work we have made use of long term acoustic features called Piecewise Gaus-

sian Modeling (PGM) features which we initially proposed for speech/music classification
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(Harb and Chen, 2003b). The aim of PGM features for gender identification is twofold: (1)

capturing long term spectral features that are discriminating between male’s and female’s

voices, 2- modeling some aspects of the human perception of the sound, namely the short

term memory aspect.

4.1.2.1. The Piecewise Gaussian Modeling (PGM). The PGM features are inspired by

some aspects of the human perception and classification of sound signal. We propose that

several features are essential for a human subject to classify a stimulus into audio classes,

such as voice, music, applause, etc.

Consider the task of male/female classification by a human subject. For this task, clas-

sifying a short term audio segment, 10 to 20 ms, seems to be hard for human subjects.

However, long term segments, 200 ms for instance, are easier to classify. Hence, we can

state that long term features are essential for the human classification of speech by gender.

On the other hand, the insertion of short time segments of male speech, respectively

female speech, into a long term time segment of female speech, respectively male speech,

cannot be easily detected by human subjects. This supposes that human subjects classify

audio segments by gender in a global manner. We hypothesise therefore that, human subjects

when classifying a stimulus by gender base their decision on their actual auditory memory.

That is, they classify a short term segment based on its correlation with the past auditory

events.

For an offline mode, the model can be seen as a sliding window, the ITW window, on the

signal where the Gaussian parameters are estimated, with a time step�ITW. This is what

we call the Piecewise Gaussian Modelling (PGM) of the signal. The time precision of the

PGM modelling is equal to delta ITW (Typical values for multimedia applications are of

the order of a few seconds). In this study, we use 1 second windows.

Formally, let s(t) be the audio signal and t the time index. The short term spectral vectors,

such as the Mel Frequency Spectral Vectors (MFSC), are: �X t , t = 1 . . . N ∗ T where N and

T are two constants. T refers to the number of short term spectral vectors contained in a

ITW window. For instance if every 10 ms one vector is obtained and the ITW window is 1

second, then T = 100. N refers to the number of ITW windows.

The PGM consists of modeling a set of T consecutive short term spectral vectors by

one Gaussian model. That is, N ∗ T short term spectral vectors will be modeled by N

Figure 2. Piecewise Gaussian Modeling (PGM).
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Gaussians.

{ �X1, �X2, . . . , �X N .T } → {M1(�μ1, �σ1), M2(�μ2, �σ2), . . . , MN (�μN , �σN )}

With Mi (�μi , �σi ) is the i-th Gaussian expressed by its mean vector �μi and its variance vector

�σi

�μi =
1

T

i N
∑

t=(i−1)N+1

�X t

�σi =
1

T

i N
∑

t=(i−1)N+1

( �X t − �μi ) · ( �X t − �μi )
T

The PGM features are the concatenation of the mean and variance normalized by their

respective maximum.

This modeling scheme has several advantages over the use of short term spectral vectors.

The PGM features do capture neither phoneme-like features nor word-like features. They

capture the dynamics of the speech and the distribution of the energy in each frequency

channel contained in a long term window which may better convey gender related attributes.

4.2. Complexity analysis

We studied the complexity of the male/female classification problem for each of the features

presented above. Such a study can provide valuable information about the discrimination

power of each feature for this classification problem.

We studied the short term spectral features and the PGM features. The complexity mea-

sures that we used are the Fisher’s Discriminant Ratio, the Volume of Overlap Region, and

the classification accuracy of a decision tree algorithm.

The data used for the complexity measures is a subset of the train F dataset (see Section 6)

containing 1000 seconds of male speech and 1000 seconds of female speech.

4.2.1. Fisher’s Discriminant ratio. The Fisher’s Discriminant ratio permits the estimation

of the discrimination capability in each feature dimension. It is given by:

f (d) =
(μ1d − μ2d )2

σ 2
1d + σ 2

2d

Where f (d) is the Fisher’s Discriminant ratio for the feature dimension “d”, and μ1d , μ2d

σ 2
1d , σ 2

2d are respectively the means and variances of classes “1”and “2” in the feature

dimension “d”.

As suggested in Ho and Basu (2002) we use the maximum of f (d) over all dimensions.

The higher the fisher discriminate ratio is the better are the features for the given classification

problem.
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Table 1. Fisher’s discriminant ratio for 1000 s of male speech and 1000 s of female speech with PGM-features

and short term spectral features.

Short term spectral features PGM-features

F 15.3 70.9

Clearly, as shown in Table 1, the PGM-features show higher Fisher’s discriminant ratio

than classic short term spectral features for this specific classification problem. These results

suggest that PGM-features are more suitable than the short term spectral features for gender

identification.

4.2.2. Volume of Overlap Region. The Volume of Overlap Region is another measure to

analyze the complexity of a classification problem; it calculates the overlap between the

classes in a selected feature space (Ho and Basu, 2002).

This can be measured by calculating the maximum and the minimum of the feature values

in each feature dimension and then calculating the length of overlap for each dimension.

The volume of overlap will be the product of the overlap lengths for all dimensions.

It is given by the following equation:

VOR =
∏ MIN(max( fi , c1), max( fi , c2)) − MAX(min( fi , c1), min( fi , c2))

MAX(max( fi , c1) max( fi , c2)) − MIN(min( fi , c1), min( fi , c2))

Where max( fi , c1) and min( fi , c1) are respectively the maximum and the minimum values

of the feature fi for the class c1 (resp. c2).i = 1, . . . , d for a d-dimensional feature space.

The VOR is zero (if the overlap is negative then it is set to zero) if there is at least a

feature dimension in which the two classes do not overlap.

With no contradiction to the Fisher’s Discriminant ratio results presented in the previous

section, the PGM-features show less overlap between male and female classes than short

term spectral features as illustrated by Table 2. From this point of view PGM-features

are better discriminator between males’ and females’ voices than the short term spectral

features.

4.2.3. Decision trees. Decision trees are well known techniques in data mining domain.

They can be used as classifiers as they aim at building rules in an IF THEN fashion permitting

the decision about the class of a sample given its different attributes, or features.

We used the SIPINA one, a decision tree algorithm (Zighed, 1992). A decision tree was

built to discriminate between the males and females classes given the short term spectral

attributes and another tree was built given the PGM-features. The decision trees were used

Table 2. Volume of Overlap Region for 1000 s of male speech and 1000 s of female speech with PGM-features

and short term spectral features.

Short term spectral features PGM-features

VOR 7.473 E-3 1.05673 E-17
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Table 3. Error Rate of a Decision Tree trained on 1000 s of male speech and 1000 s of female speech and tested

on the training data for PGM-features and short term spectral features.

Short term spectral features PGM-features

Error rate % 20 15.8

to classify the training data and the classification error rate was used as an evaluation of

each of the features, namely short term spectral features and PGM-features.

As shown in the Table 3, the PGM-features perform clearly better for this classification

problem hence motivating their use as an alternative of the classical short term spectral

features for this problem of gender identification.

The study on the complexity measures suggests that the PGM-features are more discrim-

inating than the short term spectral features. Moreover, the compactness of the features

needed to describe the data using PGM-features motivates their use for gender identifica-

tion. Thus, PGM-features have been retained as acoustic features beside the pitch related

ones.

4.3. The classifier

The choice of a classifier for the gender detection problem in multimedia applications

basically depends on the classification accuracy. Other considerations, such as the time

needed for training and for the classification can also affect the choice since the volume of

the data to be analyzed is huge. We investigated Gaussian Mixture Models (GMM), Multi

Layer Perceptron (MLP), and Decision Tree classifiers. We do not include experiments

about simple K -Nearest Neighbors classifiers since they are limited by low classification

accuracy and high computation complexity.

4.3.1. Gaussian mixture models. Given a set of feature vectors, the GMM suppose that

their probability distribution function is a combination of several Gaussians. Therefore

GMM are a compact representation for a given classification problem since the information

is embedded in the Gaussian parameters. GMM are also fast in both the classification and

the training processes.

In our experiments the GMM were trained using the Expectation Maximization algorithm

and initialized using the k-means clustering algorithm.

Since we use the highly correlated PGM features as the basic acoustic features we expect

that the GMM performs poorly.

4.3.2. Multi Layer Perceptron. MLP imposes no hypothesis on the distribution of the

feature vectors. It tries to find a decision boundary, almost arbitrary, which is optimal

for the discrimination between the feature vectors. The main drawback for MLPs is that

the training time can be very long. However, we assume that if the features are good

discriminators between the classes and if their values are well normalized the training

process will be fast enough.
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Table 4. Classification accuracy for several classifiers trained on the same training data and tested on the same

test data.

GMM (14 Gaussians) Decision Tree MLP (80 Hidden neurons)

Accuracy % 72.5 73.4 82.2

In all our experiments we use a Multi Layer Perceptron with one hidden layer, 80 hid-

den neurons, and 2 output neurons. The Error Back-Propagation algorithm is used for the

training.

The MLP classifiers are suitable for the PGM features since the MLPs are not strongly

affected by the correlation of the input features as the statistical classifiers are.

4.3.3. Decision Trees. Decision Trees are well known in the data mining literature. They

are special kind of trees where each node is a question on a parameter and the road from

the root to one leaf is a rule permitting the classification of a feature vector, or a set of

parameters.

All the classifiers were trained on 200 seconds of male speech and 200 seconds of female

speech extracted from the train F dataset and tested on the entire train F dataset, that is 2200

seconds, Section 6. The classifiers were trained using the PGM-features. The classification

results are shown in Table 4.

The classification accuracy of the MLP is noticeably higher than that of GMM and

Decision Tree classifiers as shown in Table 4. Notice that, as it is expected the GMM

classifiers perform poorly on highly correlated features while the MLP are more suitable.

The PGM features also suppose a diagonal hypothesis on the covariance matrix which may

contribute to the poor performance of the GMM.

GMM and MLP would probably provide similar performance if a decorrelated version

of the features is used. Nevertheless, it seams that the MLP treats reasonably well the

correlation in the PGM features and hence it was retained as the basic classifier for the

gender identification problem.

4.4. Information fusion

It can be argued that the pitch and the PGM features do not capture the same characteristics

of the signal. The experiments in the Section 6.2 support this assumption. We hypothesize

for instance that the combination of the different features can improve the performance of a

gender classifier. An in depth analysis, which is out of the scope of this paper due to space

limits, of the correlation between PGM and pitch features would be useful in this case to

enable an optimal combination of classifiers and features.

Several ways can be used for the combination of the features. Combining the features

at the feature vector level, figure 3, is one generally used technique especially in speech

recognition (Rabiner, 1993). An alternative of the combination at the feature level is the

combination at the classifiers’ output level (Kirchoff and Bilmes, 1999; Wu et al., 1998),

figure 4. That is, for each feature type one classifier is used and the combination of the

classifiers’ outputs constitutes the features combined output.
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Figure 3. Fusion at the feature vector level.

Figure 4. Fusion at the output level.

In this work we incorporated the combinations at the two levels, the features’ level and

the classifiers’ output level. This combination as described in 7.1.2 showed improvements

in the performance over one single combination technique.

5. Practical issues

Although the evaluation of a gender identifier is generally based on the frame classification

accuracy, real world applications imply some improvements over the frame-based accuracy.

They are mainly motivated by the following two considerations.

5.1. Combining experts

The major drawback of the gradient descent training technique for Multi Layer Perceptron

is the time needed for training when the number of training samples is large.

In the case of gender identification, the more acoustic conditions exist the more training

data to describe such conditions is needed. Therefore, a general gender identification system

with good accuracy must be trained on thousands of training samples making the scalability

of the training process a critical issue.

In this work we investigated the splitting of the training data into manageable subsets of the

training set, say 2000 training samples per subset. The subsets are obtained by sequentially

segmenting the training data. One classifier, or expert, is trained on each subset using the
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standard training algorithm. All experts trained on different subsets are then combined

into one single expert. The combination is made by summing the outputs of the individual

experts in order to obtain a single output layer for the resulting expert. Other functions such

as multiplication or vote can also be used (Kittler and Alkoot 2003). However, in a previous

work, our experimental results have shown that the performance obtained by multiplying

or summing the outputs are similar while being particularly better than that of the majority

vote (Harb et al., 2004). Therefore, the sum function is retained for the combination of the

individual experts.

The output “ j”, male or female in this work, of the Mixture Expert “ME” is given by:

o
( j)

ME =
N

∑

i=1

αi .o
( j)

Ei

where “Ei ” are the individual experts, “N” is the number of individual experts, and αi is a

weight associated to each individual expert. For the sake of simplicity the αi s are equal and

they sum to one.

The obtained general expert is an expert trained on the complete training dataset while

each individual expert is specialized on a subset of the data. Such a model can be trained

on a complex classification problem since the complexity is treated by the mixture of the

experts and each individual expert will be trained on a softer version of the classification

problem. However, if the individual experts are trained on insufficient data, they possibly

will become unstable and biased to the training data (Skurichina 1998).

A similar technique was applied for speech recognition (Mirghafori et al. 1994) applica-

tions with different experts trained on the speech from different speakers are trained.

5.2. Smoothing the classification results

The speech contained in audio-visual programs is continuous. This assumption leads us

to incorporate the results of neighboring frames to smooth the classification results. We

segment the speech signal using a metric-based approach and the KullBack-Leibler distance

as measure of similarity between neighboring windows (Seigler et al., 1997). Each segment

is assumed to contain one acoustic condition, in our case speech from the same gender. The

labels of the frames in each segment are smoothed based on the average classification result

for the entire segment. It is supposed that each segment contains speech from the same

gender. However, we minimize the risk of mixing different genders in the same segment

by decreasing the threshold used to segment the speech signal. Generally the classification

results are slightly improved using such a smoothing technique, and in the worst cases the

results do not change. In our system the threshold is set automatically to obtain a mean

segments length of 3 seconds. That is, the local maxima in a sliding window of 3 seconds

duration are selected as segment boundaries.

The used distance, the KullBack-Leibler (KL) distance, originates from the information

theory (Cover and Thomas, 1991). It is a distance between two random variables. The

original KL distance doesn’t have the properties of a distance, but the symmetric KL is a

distance. In the case of Gaussian distribution of the random variables the symmetric KL
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distance is computed by:

K L2(X, Y ) =
σ 2

X

σ 2
Y

+
σ 2

Y

σ 2
X

+ (μX − μY )2

(

1

σ 2
X

+
1

σ 2
Y

)

With σX , σY , μX , μY are respectively the standard deviation of X and Y and the mean of

X and Y .

In the case of audio segmentation, X and Y are the set of spectral vectors obtained from

the ITW window X at time t , and the ITW window Y at time t + T (T is the duration of

the ITW window).

Notice that the variables used to compute the KL distance are the same features used in

the PGM modeling; hence no new feature extraction is needed for the segmentation.

6. Experiments

Several experiments were carried out to evaluate the classifier for several classification

conditions. We evaluated a “single Expert” and a “two Experts” gender identifiers with

and without smoothing. The database used to evaluate the system consists of recordings

from four French radio stations and one English radio station. Training data, Train F, was

extracted from the recording of a French radio station; it consists of speech from news

programs and meetings. The data from other radio stations was used as the French test

data, Test F. Test F data was also compressed with MPEG layer-3 coder at a 16 Kbps rate

to obtain Test F mp3. Furthermore, 1600s were selected from the English radio station

containing telephone speech, outdoor speech and studio speech constituting the Test E

dataset. A subset of the Switchboard dataset was also used for the evaluation. Table 5 shows

the composition of the datasets used in the experiments. All the data was manually classified

by gender. The amounts of time for male speech and female speech for each dataset were

intentionally made equal.

6.1. System’s architecture

An overview of our system for gender identification is presented in figure 5. It contains

mainly two general modules: the feature extraction module and the classifier module.

Table 5. Evaluative dataset durations.

Dataset duration (s) Male speakers Female speakers

Train F 2200 12 7

Test F 2000 10 7

Test F mp3 2000 10 7

Test E 1600 9 7

Subset switchboard 4000 19 19
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Figure 5. General overview of the gender identification system’s architecture.

6.1.1. Feature extraction. The feature extraction module estimates pitch features and

acoustic features.

As discussed earlier in Section 4.1., for each Integration Time Window (1 second in the

experiments) the pitch and the PGM features are extracted in this module and constitute the

input for the Classifier module. The PGM features are computed based on the Mel Frequency

Spectral Coefficients (MFSC) which are obtained using Discrete Fourier Transform (DFT)

with Hamming windows of 32 ms with 22 ms overlap and filtered using Mel scaled filter-

bank.

6.1.2. Classifier. The current system’s classifier contains individual experts containing

each 4 MLPs, figure 6. In each individual expert, one MLP uses the PGM features, one

MLP uses the PGM-MinPitch features, one MLP uses the PGM-MeanPitch feature, and

one MLP uses the PGM-AllPitch features.

Each MLP has 80 hidden neurons and 2 output neurons with output values ranging

from 0 to 1 and corresponding to the probability of a feature vector to be female or male.

The outputs of all the MLPs are summed to obtain two outputs for the classifier as it was

presented in Section 5.1.

Each MLP is trained with no relation to the others using the Back Propagation algorithm.

Once the MLPs are trained the individual expert is created and is already trained.

6.2. Classification accuracy for the single expert case

In this experiment the data form Train F was used to train the system, and the data from

Test F was used to evaluate it. The system with one individual expert was used. The amount
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Figure 6. Architecture of the classifier used in the system.

of training data was changed in order to observe the effect of increasing training data on

the classification accuracy. It is expected that by increasing the amount of training data the

classification accuracy would increase.

The experimental results shown in figure 7 prove that indeed the classification accu-

racy increases by augmenting the size of the training data although the function is not

monotonous. The accuracy of the classifier is about 75% when it is trained on 80 seconds

of speech and it attains 90% when the classifier is trained on 2200 seconds of speech.

The overall classification results with a time precision of 1 second are 90.2% as shown in

Table 6. These results are comparable to the reported results in the literature. A comparison
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Figure 7. Classification accuracy rate as a function of the duration of the training data.

with the results reported in Tzanetakis and Cook (2002) (73%) shows the effectiveness

of the proposed system over a straightforward general audio classifier approach based on

MFCC features and Gaussian Mixture Models. Moreover, when the smoothing is performed,

Section 6.2, the classification results are improved (92.7%).

Table 6 shows the results of each MLP contained in the expert and the overall accuracy

of the expert. It is clear, that the expert performs better than its best MLP proving that the

information fusion is motivated. Notice however, that the pitch information when included

in the feature vector did not improve the performance. This may be due to the fact that the

estimated pitch is not very reliable and that the pitch values overlap between male speech

and female speech. Nevertheless, the overall accuracy can be improved, although slightly,

when using pitch and acoustic information over the use of the PGM features alone.

We have carried out another experiment to observe the effectiveness of the proposed

approach for language change and when the test data contains telephone and outdoor speech.

Table 6. Classification accuracy for radio data with and without smoothing.

Male accuracy Female accuracy Total accuracy

Smoothing (3s mean segment length) 95.2 90.1 92.7

PGM 91.3 87.2 89.3

PGM-MinP 87.0 89.0 88.0

PGM-MP 88.6 86.3 87.5

PGM-AP 86.6 89.8 88.2

Average 88.4 88.1 88.3

Expert 90.3 90.1 90.2
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Table 7. Classification accuracy for English data containing telephone and outdoor speech with and without

smoothing.

Male Female Average

Smoothing (3s mean segment length) 93.2 84.2 88.7

PGM 88.9 76.8 82.9

PGM-MinP 89.5 76.0 82.8

PGM-MP 88.5 79.9 84.2

PGM-AP 84.8 74.0 79.4

Average 87.9 76.7 82.3

Expert 91.4 78.6 85.0

The system with one individual expert was trained on 2200s from Train F and tested on

1600s from Test E data. The results shown in Table 7 demonstrate that the proposed approach

is language independent though the performance is slightly degraded. Notice that the system

was faced to language and channel changes.

We can also notice that in these two experiments, the feature vector which performs

better is not the same. While MLP-PGM performs the best in Table 6, it is MLP-PGM-MP

that performs the best in Table 7. However, in both cases the individual expert performs

better than its best MLP. This is important since for different test conditions the best MLP

is surpassed automatically by the individual expert.

The overall accuracy obtained by one single expert from the two datasets is thus 87%.

This accuracy attains 90.7% when the smoothing is performed.

The last experiment for the individual expert case that we have carried out was to test the

effectiveness of the gender identifier when the speech is compressed at low compression

rates. The Test F mp3 was used as test set and Train F was used for training. The clas-

sification accuracy for the individual expert did not degrade as compared to the accuracy

obtained for the non-compressed data. This experiment tends to prove that the proposed

system is robust to severe compression techniques as shown in Table 8

6.3. Classification accuracy for two experts case

In this experiment the system includes two individual experts each trained on half the

training data, which is 1100 seconds of speech from Train F dataset. The two experts are

combined as described in Section 5.1. The system was tested on Test F and Test E datasets.

The classification results are presented in Table 9.

Table 8. Classification accuracy of the individual expert when applied to compressed audio data.

Male Female Total Smoothing (3 s mean segment length)

Test F mp3 89.1 88.7 88.9 90.0
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Table 9. Classification accuracy when two individual experts are used.

Male Female Average Average with Smoothing (3s mean segment length)

Test F 88.5 89.6 89.1 91.2

Test E 90.4 88.7 89.6 94.6

Total 89.5 89.2 89.4 92.9

As we can see, the classification results for the two datasets are improved from 87% for

the single expert case to 89.4% when two individual experts are used instead. Moreover,

in contrast to the case of one single expert, there is no bias toward any dataset or any

gender when two individual experts are used. This is of extreme importance in multimedia

applications since no information about the statistics of the data is given in advance. For

instance one radio station may include English female speech only.

However, when the smoothing is performed the classification results attain an accuracy

rate up to 93% on both datasets.

6.4. Classification accuracy for telephone speech

The speech material used in the previous experiments originates from noisy radio recordings,

making the classification results look poor. The figure 8 shows a segment of speech from

the Test F database and one segment from the Switchboard database; we can see the nature

of the data used in the previous experiments. It is important to evaluate the performance

of the gender classifier using experimental conditions that are close to those used in the

literature. Generally gender identification systems in the literature are evaluated on speech

material obtained from the telephone data with a time precision larger than 5 seconds.

Therefore, we used a subset of the switchboard database (Godfrey et al., 1992). 19 telephone

conversations were used, 9 conversations for training the gender classifier and the remaining

10 conversations were used for testing the classifier. In average, the training data consists

of 1000 seconds of male speech and 1000 seconds of female speech from 18 speakers,

Figure 8. Example of the spectrogram of one speech segment from the Test F database (on the left), and one

speech segment from the Switchboard database (on the right).
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Table 10. Classification accuracy for one individual expert on a subset of the Switchboard database.

Male Accuracy Female Accuracy Average

1 s 88.2 98.9 93.5

5 s 97.0 100 98.5

9 male speakers and 9 female speakers. The test data corresponds to 1000 seconds of male

speech and 1000 seconds of female speech from 10 male speakers and 10 female speakers

different than those used for the training. One expert was used for this experiment and the

results for 1 second and 5 seconds time precisions are presented in Table 10. As it is clearly

shown in the table, the performance is particularly better than the performance for the case

of the database used in the previous experiments. Gender identification for speech data

obtained from multimedia sources seems to be harder than on speech data obtained from

the telephone network. This is may be due to the existence of outdoor and noisy speech

in the multimedia context. Moreover, as it is expected, by decreasing the time precision to

5 seconds, the classification accuracy increases significantly.

7. Conclusion

This paper presented a voice-based gender identification system using a general audio clas-

sifier. Several classifiers and features were studied. A combination of Piecewise Gaussian

Modeling features and pitch-related features with a set of Neural Networks was shown to

perform better than any individual classifier. The system was tested on adverse conditions

of compression, channel mismatch and language change. It was shown how smoothing

the classification results can improve the accuracy. When applied to telephone speech, the

classification accuracy of the gender classifier was shown to be considerably better than

when applied to speech from unrestricted radio sources.
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20


