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Abstract

Liouville Quantum Field Theory (LQFT) can be seen as a probabilistic theory of 2d Riemannian metrics
eφ(z)|dz|2, conjecturally describing scaling limits of discrete 2d-random surfaces. The law of the random field φ

in LQFT depends on weights α ∈ R that in classical Riemannian geometry parametrize power law singularities
in the metric. A rigorous construction of LQFT has been carried out in [4] in the case when the weights are
below the so called Seiberg bound: α < Q where Q parametrizes the random surface model in question. These
correspond to studying uniformized surfaces with conical singularities in the classical geometrical setup. An
interesting limiting case in classical geometry are the cusp singularities. In the random setup this corresponds
to the case when the Seiberg bound is saturated. In this paper, we construct LQFT in the case when the
Seiberg bound is saturated which can be seen as the probabilistic version of Riemann surfaces with cusp
singularities. The construction involves methods from Gaussian Multiplicative Chaos theory at criticality.

Key words or phrases: Liouville quantum field theory, Gaussian multiplicative chaos, KPZ formula, Polyakov formula, punctures,

cusp singularity, uniformization theorem.

1 Introduction

Two dimensional statistical physics provides a large class of models of discrete random surfaces (random maps)
which are expected to have interesting continuous surfaces as scaling limits. In physics the study of these objects
goes under the name ”2d gravity” and was pioneered by Polyakov [12] and developed in [10]. That approach
seeks a description of the geometry of the two dimensional manifold Σ in terms of a probability law in a suitable
space of Riemannian metrics defined on Σ. Physics dictates that the law be invariant under the action of the
group of diffeomorphisms acting on Σ. In two dimensions the space of smooth metrics modulo diffeomorphisms is
rather simple: its elements are (equivalence classes of) eσg where σ : Σ → R and g belongs to a finite dimensional
(moduli) space of metrics. Thus, we are basically seeking a law for a random field σ on Σ. The proposal of [10]
is that this law is given by

µL(dg, dX) = e−SL(X,g)µ0(dg, dX) (1.1)

where µ0 is a ”uniform measure” on some space of maps X : Σ → R and moduli g and SL is the Liouville action
functional

SL(X, g) :=
1

4π

∫

Σ

(
|∇gX |2 +QRgX + 4πµeγX

)
dvg. (1.2)

Here we have written σ = γX where γ ∈ (0, 2) is a parameter determined by the random surface model and

Q =
2

γ
+
γ

2
. (1.3)

Furthermore we denoted by ∇g, Rg and vg respectively the gradient, Ricci scalar curvature and volume measure
in the metric g. Finally the parameter µ > 0 is called “ cosmological constant”. In [4] we gave a rigorous definition
of the measure (1.1) for the case Σ = S2 which we recall in Section 2.
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The action functional (1.2) has a very natural geometric interpretation in terms of the classical uniformisation
theory of Riemann surfaces that goes back to Picard and Poincaré. The Euler-Lagrange equation for the extrema
of SL is given by

− 2∆gX +QRg + 4πµγeγX = 0 (1.4)

where ∆g is the Laplace-Beltrami operator in the metric g. If we replace Q by its ”classical value” Qcl =
2
γ and

use the relation Reϕg = e−ϕ(Rg −∆gϕ) this equation becomes the Liouville equation

ReγXg = −2πµγ2 (1.5)

stating that the metric eγXg has constant negative curvature. Such metrics are in correspondence to complex
structures on the surface Σ through the uniformizing map ψ : Σ → H: pullback under ψ of the Poincaré metric
on H has constant negative curvature. Thus LQFT can be seen as a probabilistic extension of this classical
theory.

This correspondence works only if the genus of Σ is at least two. On the sphere S2 there are no smooth metrics
of constant negative curvature since by the Gauss-Bonnet theorem the total curvature is positive. Indeed, the
action functional SL (1.2) is not bounded from below as can be seen by taking X = c, a constant. Then by
Gauss-Bonnet theorem

∫
Rgdvg = 8π and we have

SL(g, c) = 2Qc+ 4πµeγc (1.6)

which is not bounded below as c→ −∞. This divergence is also present in the LQFT: the measure (1.1) is not
finite and can not be normalized to a probability law [4].

In classical geometry it is known how to obtain a metric with constant negative curvature almost everywhere
on the sphere. The idea is to introduce points that are sources of curvature in the Liouville equation. To do this
pick n points z1, . . . , zn and weights α1, . . . αn and consider the equation:

−2∆gX +QclRg + 4πµγeγX = 4π
∑

i

αiδzi (1.7)

This equation is formally the Euler-Lagrange equation of the action functional

SL,cl(X, g)−
∑

i

αiX(zi). (1.8)

For a rigorous treatment one needs to regularize and renormalize this functional, see [15]. Then one finds that
the minimizers give rise to the metric eγX(z)g(z) which has singularities at the points zi. For αi < Qcl i.e. for
γαi < 2 this singularity is conical:

eγX(z)g(z) ∼ |z − zi|−γαi (1.9)

and for αi = Qcl the singularity is a cusp

eγX(z)g(z) ∼ (|z − zi| ln |z − zi|)−2 (1.10)

(see Appendix A for a brief introduction to these concepts). For αi > 2/γ solutions do not exist for integrability
reasons. Furthermore for topological reasons (Gauss-Bonnet theorem) one needs also

∑
i αi > 2Qcl which implies

that one needs to introduce at least three singularities on the sphere to have constant negative curvature in their
complement.

The probabilistic theory has a complete parallel with the classical one with the important difference being
that the parameter Qcl = 2/γ is replaced by the quantum value (1.3). Then it was shown in [4] that the measure
(1.1) with the action (1.8) (suitably renormalized) has finite mass provided

∑
i αi > 2Q and the mass is nonzero

if and only if αi < Q. This measure can be viewed as a probabilistic theory of metrics with ”quantum” conical
singularities on the sphere.

In this paper we will extend this theory to the case of ”quantum” cusp singularities αi = Q thus completing the
parallel with classical geometry in the setup of random surfaces. This extension requires an extra renormalization
of the measure compared to the αi < Q case. It boils down to an analysis of the Gaussian multiplicative chaos
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measure in a background measure with density blowing up as |z − zi|−γQ. This in turn leads to an analysis
reminiscent to the analysis of the Critical gaussian multiplicative chaos [7, 8].

We conclude this introduction by mentioning that LQFT is interesting per se as it is the first full probabilistic
construction of an interacting Conformal Field Theory (CFT for short) and therefore a natural playground to
check the whole formalism of CFTs initiated in the celebrated paper [2]. The modification of the action functional
(1.8) can be viewed as a correlation function of n random fields:

∫ ∏

i

eαiX(zi)dµL (1.11)

These correlation functions of LQFT play a prominent role in understanding models of statistical physics models
on random planar maps. As an example, the reader can find in appendix A.1 a conjecture on the relationship
of these correlation functions of LQFT to random planar maps, in particular a conjecture describing the scaling
limit of the correlation functions of the spin field of the Ising model on random planar maps. The case we treat in
this paper, i.e. Q-insertions, is especially important for understanding how to embed conformally onto the sphere
random planar maps with spherical topology weighted by a c = 1 conformal field theory (like the Gaussian Free
Field). Indeed, in the case c = 1, one can formulate the conjecture developed in [4, subsection 5.3] with γ = 2
and Q = 2: the vertex operators with γ = 2 in [4, conjecture 2] are precisely the quantum cusps constructed
here. Finally we mention that Riemann surfaces with cusp singularities naturally appear when studying the
boundary of the moduli space of higher genus surfaces. Hence the study of Q-insertions plays a prominent role
in establishing convergence of the partition function of 2d-string theory where integrals over the moduli space
arise (see [3]).

2 Background and Main Results

This section contains first a brief summary of the construction and properties of the LQFT carried out in [4]
followed by a presentation of our main results and a sketch of proof.

2.1 GFF and Multiplicative Chaos

We will view the sphere S2 as the Riemann sphere Ĉ = C ∪ {∞}. It can be covered by two copies of C with
coordinates z and z−1. The constant curvature metric is the round metric, ĝ(z)|dz|2 with

ĝ(z) = 4(1 + z̄z)−2.

The area is
∫
C
ĝ(z)dz = 4π and the scalar curvature Rg := −4g−1∂z̄∂z ln g is constant for the round metric:

Rĝ = 2. Smooth conformal metrics on Ĉ are given by g = eϕĝ where ϕ(z) and ϕ(1/z) are smooth and bounded.
For such metrics the Gauss-Bonnet theorem holds:

∫
Rg dvg = 8π.

Given a conformal metric on Ĉ we can define the Sobolev space H1(Ĉ, g) with the norm

‖f‖2g :=
∫
(|∂zf |2 + g(z)|f |2)dz.

These norms are equivalent for all continuous conformal metrics and we denote the space simply by H1(Ĉ).

Finally we define H−1(Ĉ) as the dual space and denote the dual pairing by 〈X, f〉.
The LQFT measure will be defined as a measure on H−1(Ĉ). It will be constructed using the Gaussian Free

Field (GFF) on Ĉ. As is well known the GFF in such a setup is only defined modulo a constant. For LQFT
it is important to include this constant as an integration variable. In general the GFF is a Gaussian random
field whose covariance is the Green function of the Laplace operator. In our setup the Laplace operator is given
by ∆g = 4g(z)−1∂z̄∂z. Some care is needed here since ∆g is not invertible. Indeed, −∆g is a non-negative self-

adjoint operator on L2(Ĉ, g) (whose inner product we denote by (f, h)g =
∫
f̄hgdz). It has a point spectrum
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consisting of eigenvalues λn and orthonormal eigenvectors en which we take so that λn > 0 except for λ0 = 0
with e0 = 1/‖1‖g. We define the GFF Xg as the random distribution

Xg(z) =
√
2π

∑

n>0

xn√
λn
en(z) (2.1)

where xn are i.i.d. N(0, 1). In case of the round metric, we will need later the explicit formula

E[Xĝ(z)Xĝ(z
′)] = Gĝ(z, z

′) = ln
1

|z − z′| −
1

4
(ln ĝ(z) + ln ĝ(z′)) + ln 2− 1

2
. (2.2)

The random field Xg determines probability measure Pg onH
−1(Ĉ) (supported in the set {u ∈ H−1(Ĉ) : 〈u, 1〉 =

0}). The measure (1.1) is intended to contain also the constant fields X = c that are absent from the GFF Xg.

Therefore we define the measure µGFF on H−1(Ĉ) by

∫
F (X)µGFF (dX) =

∫

R

EF (Xg + c)dc (2.3)

Note that µGFF is not a probability measure:
∫
µGFF (dX) = ∞.

To define the measure (1.1) the exponential eγX needs definition as the GFF Xg is not defined pointwise. To
do this regularize Xg by the circle average regularization

Xg,ǫ(x) =
1

2π

∫ 2π

0

Xg(x+ ǫeiθ) dθ (2.4)

and define the random measure

Mγ,ǫ(dz) := ǫ
γ2

2 eγ(Xg,ǫ(z)+Q/2 ln g(z)) dz. (2.5)

For γ ∈ [0, 2), we have the convergence in probability

Mγ = lim
ǫ→0

Mγ,ǫ (2.6)

in the sense of weak convergence of measures. This limiting measure is non trivial and is an instance of Gaussian
multiplicative chaos [9, 13] of the field Xĝ. In particular for the round metric

Mγ = e
γ2

2 (ln 2− 1
2 ) lim
ǫ→0

eγXĝ,ǫ− γ2

2 E[X2
ĝ,ǫ] dvĝ. (2.7)

and the total mass Mγ(Ĉ) almost surely finite.

2.2 LQFT Measure and Correlations Functions

We may now give the precise definition of the LQFT measure in (1.1). With no loss we work with the round
metric ĝ from now on. Then

1

4π

∫
QRĝX dvĝ =

1

4π

∫
QRĝ(c+Xĝ) dvĝ = 2Qc

where we used the Gauss-Bonnet theorem and (Xg, 1)g = 0. Since Ĉ has no moduli the LQFT measure µL will
be a measure only on the conformal factor X . We define

µL(dX) = e−2Qce−µe
γcMγ(Ĉ)µGFF (dX) (2.8)

i.e. concretely ∫
F (X)µL(dX) =

∫
e−2Qc

E[F (c+Xĝ)e
−µeγcMγ(Ĉ)]dc := 〈F 〉L. (2.9)
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The rigorous definition of the correlation functions (1.11) proceeds also through regularization. We consider
the regularized fields (called vertex operators in the physics literarture)

Vα,ǫ(z) = ǫ
α2

2 eα(c+Xĝ,ǫ(z)+Q/2 ln ĝ(z)) (2.10)

In [4] it was shown that the limit of their correlation functions

lim
ǫ→0

〈
∏

i

Vαi,ǫ(zi)〉L := 〈
∏

i

Vαi(zi)〉L (2.11)

exist if and only if
∑

i αi > 2Q and the limit is non zero if and only if αi < Q for all i. These conditions are
called called the Seiberg bounds [14].

Briefly, the reason of these inequalities is as follows. One can absorb the vertex operators in (2.11) by an
application of the Cameron-Martin transform i.e. by a shift of the Gaussian field Xĝ → Xĝ +H with

H(z) =
∑

i

αiGĝ(z, zi). (2.12)

This leads to

〈
∏

i

Vαi(zi)〉L = K(z)

∫

R

e(
∑

i αi−2Q)c
E

[
e−µe

γc
∫
eγHdMγ

]
dc (2.13)

with K(z) an explicit function of the points (zi)i and of their weights (αi)i. The first inequality
∑
i αi > 2Q

is needed for the convergence of the c-integral as c → −∞. Note the analogy with the classical result (1.6).
For the second inequality αi < Q we note that due to the logarithmic singularity of the Green function Gĝ the
integrand eγH(z) blows up as |z − zi|−αiγ when z → zi. By analyzing the modulus of continuity of the Gaussian
multiplicative chaos measure it was shown in [4] that

∫
eγHdMγ is a.s. finite if and only if αi < Q. It was further

proved in [4] that, provided that the Seiberg bounds hold, the probability measures on H−1(Ĉ)

Pα,z,ǫ := 〈
∏

i

Vαi,ǫ(zi)〉−1
∏

i

Vαi,ǫ(zi)µL(ĝ, dX) (2.14)

converge to a probability measure Pα,z as ǫ→ 0.

The Riemann sphere Ĉ has a nontrivial automorphism group SL(2,C) which acts as Möbius transformations
ψ(z) = az+b

cz+d . By a simple change of variables the classical action functional with Q = Qcl = 2/γ) satisfies

SL(X ◦ ψ−1, ĝ) = SL(X +
Q

2
ϕ, ĝ)

where ϕ = |ψ′|2ĝ ◦ ψ/ĝ. This Möbius covariance is inherited by the Liouville QFT measure: one has

∫
F (X ◦ ψ)dµL =

∫
F (X −Q ln |ψ′|)dµL

for F ∈ L1(µL). One can view this non-compact symmetry group of the measure µL as another indication of the
fact that it is not normalizable.

The Seiberg bounds
∑

i αi > 2Q and αi < Q lead to the conclusion that to have a nontrivial correlation
function of vertex operators one needs at least three of them. This is in complete analogy with classical geometry
as discussed in the Introduction. Note that fixing three points on the sphere removes also the SL2(2,C) symmetry.
In this light it comes as no surprise that the Liouville 2-point correlation functions are not defined: fixing
two points on the sphere leaves us the non compact symmetry group of dilations. In [6] two-point quantum
spheres are constructed in a quotient space of random measures modulo rotations and dilations. The approach
is complementary to ours as it is concerned with a different object, see however [1] for a precise link between the
two approaches.
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2.3 Main results

Now we describe our main results, which extend the analysis of [4] to the case of vertex operators eQX with
weight Q giving rise to quantum cusps. In fact, from now on, we will use a slightly different regularization for
the correlation functions than in (2.11). Namely, we will regularize simultaneously the vertex operators (2.10)
and the measure µL defined by (2.9). Furthermore we will define our objects in the case of a general metric g
conformally equivalent to the round metric. So we set

Πα,z,ǫ :=

∫ ∏

i

Vαi,ǫ(zi)µ
ǫ
L(g, dX) (2.15)

where the vertex operators Vαi,ǫ(zi) are defined by (2.10) (with g in place of ĝ) and the measure µǫL(g, ·) is
defined by

µǫL(g, dX) := e−
Q
4π

∫
QRg(c+Xg) dvg−µeγcMγ(Dǫ)µGFF (dX) (2.16)

where Dǫ is the complement of the union of the ǫ radius balls centered at those i with αi = Q. In the same spirit
as (2.14), we further consider the probability measures

Pα,z,ǫ := Π−1
α,z,ǫ

∏

i

Vαi,ǫ(zi)µ
ǫ
L(g, dX). (2.17)

As explained above, it was proved in [4] that Πα,z = limǫ→0 Πα,z,ǫ = 0 when one of the αi is greater or equal
to Q. However, an extra renormalization term suffices to obtain a nontrivial limit:

Theorem 2.1. Let
∑
i αi > 2Q and αi 6 Q with exactly k of the αi equal to Q. Then the limit

lim
ǫ→0

(− ln ǫ)
k
2 Πα,z,ǫ := Πα,z (2.18)

exists and is strictly positive. Moreover, the limit

lim
ǫ→0

Pα,z,ǫ := Pα,z (2.19)

exists in the sense of weak convergence of measures on H−1(Ĉ).

This theorem means that the vertex operator eQX needs an additional factor (− ln ǫ)
1
2 for its normalization

in addition to the ǫ
α2

2 used for α < Q. An important ingredient in the proof of convergence (2.18) is to show that
the limit agrees (up to a multiplicative constant) with the one constructed with the derivative vertex operator

ṼQ,ǫ(z) = − d

dα
Vα,ǫ(z)|α=Q

= −(Q ln ǫ + c+Xg,ǫ +
Q

2
ln g)VQ,ǫ(z). (2.20)

Let Π̃α,z,ǫ be the correlation function where for αi = Q we use ṼQ,ǫ(z) instead of VQ,ǫ(z). Then

Theorem 2.2.

lim
ǫ→0

Π̃α,z,ǫ = (
π

2
)

k
2 Πα,z. (2.21)

The convergence (2.19) extends to functions of the chaos measure. Let Eα,z,ǫ denote expectation with respect

to Pα,z,ǫ and let F = F (X, ν) be a bounded continuous function on H−1(Ĉ)×M(Ĉ) where M(Ĉ) denotes the

set of Borel measures on Ĉ. Define the Liouville measure

Z := eγcMγ (2.22)

and the Liouville field
φ := c+Xg +

Q

2
ln g. (2.23)

Then
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Theorem 2.3. With the assumptions of Theorem 2.1, Eα,z,ǫF (φ, Z) converges as ǫ→ 0 to a limit Eα,zF (φ, Z)
which is conformally covariant, namely

Eα,zF (φ, Z) = Eα,ψ(z)F (φ ◦ ψ +Q ln |ψ′|, Z ◦ ψ)

for all conformal automorphisms ψ of the sphere, and independent of g in the conformal equivalence class [g].

Moreover, the law of Z(Ĉ) under Pα,z is given by the Gamma distribution

Eα,zF (Z(Ĉ)) =
µ

σ
γ

Γ(σγ )

∫ ∞

0

F (y)y
σ
γ −1e−µy dy, σ :=

∑

i

αi − 2Q (2.24)

and the law of the random measure Z(·)/A conditioned on Z(Ĉ) = A does not depend on A.

Remark 2.4. The correlation functions Πα,z have the same properties as in the αi < Q case proven in [4]:
conformal covariance, Weyl covariance and KPZ scaling. Since the statements are identical we refer the
reader to [4] recalling here only the KPZ formula for the µ-dependence:

Πα,z = µ
2Q−∑

i αi
γ Πα,z|µ=1.

Remark 2.5. With some extra work it should be possible to prove that the measures Pα,z with αi < Q for all
i = 1, . . . n converge as αi ↑ Q, i = 1, . . . k to the Pα,z constructed in this paper by proving that

lim
αi↑Q

k∏

i=1

(Q− αi)
−1Πα,z (2.25)

has a limit. We leave that question as an open problem.

Remark 2.6. It is natural to ask about the convergence of the quantum laws Pα,z to the classical solutions of
the Liouville equation i.e. the semiclassical limit γ → 0. For this, let us take, for i = 1, . . . , k αi = Q and for
i > k

αi =
χi
γ

with χi < 2 and µ = µ0

γ2 for some constant µ0 > 0. Then we conjecture that the law of γX under Pα,z converges

towards the minimizer of equation (1.7) which has cusp singularities at zi, i 6 k and conical ones at the remaining

zi. The case of conical singularities was treated in [11] in the setup where Ĉ is replaced by the unit disc.

2.4 Strategy of proof

We will now sketch the main ideas of the proof. We have to control the correlation function (2.15) as ǫ → 0
when at least one αi = Q. We may assume g is the round metric ĝ.

First of all, notice that the condition for the convergence of the c-integral remains the same, namely
∑

i αi >
2Q. Second, as explained above a Cameron-Martin transform reduces the analysis of (2.15) to the quantity

Πα,z,ǫ = Kǫ(z)

∫

R

e(
∑

i αi−2Q)c
E

[
e−µe

γc
∫
Dǫ

eγHǫdMγ

]
dc (2.26)

with
Hǫ(z) =

∑

i

αiGg,ǫ(z, zi). (2.27)

where Gg,ǫ is a regularization of the covariance of the GFF and Kǫ(z) converges as ǫ → 0 to K(z) of (2.13).
Locally around zi,

eγHǫ(z) ≍ 1

(|z − zi| ∨ ǫ)γαi
.

The crucial point is thus to determine whether this singularity is integrable in the limit ǫ → 0 with respect to
the measure Mγ(dz). Multifractal analysis of the chaos measure shows that this is the case if and only if αi < Q
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[4]. Let us see this in more detail to understand how to proceed when αi = Q. Since the problem is local consider
the integral for α 6 Q

Iα,z,ǫ =

∫

R

e(
∑

i αi−2Q)c
E

[
e−µe

γc
∫
Cǫ

1
|z|γα dMγ

]
dc. (2.28)

where Cǫ stands for the annulus {z ∈ C; ǫ 6 |z| 6 1}. We use a well known decomposition of the GFF to a
”radial” and ”angular” part to write the Chaos measure. The radial part of the GFF, defined by

Xĝ,r :=
1

2π

∫
Xĝ(re

iθ)dθ

is a Brownian motion in time t = ln r−1 starting at time zero from Xĝ,1, up to an independent Gaussian random
variable of O(1) variance. Changing to polar coordinated, this leads to the following expression for the chaos
integral ∫

Cǫ

1

|x|γα Mγ(dx) =

∫ − ln ǫ

0

∫ 2π

0

eγBt−γ(Q−α)t µY (dt, dθ)

where µY (dt, dθ) is a chaos measure encoding the angular contribution of the angular part of the GFF and
independent of the process Bt (see Lemma 4.3). The measure µY requires some care but in order to understand
the behavior as ǫ → 0 it suffices here to consider a simplified problem where we replace it by the Lebesgue
measure dt and consider the behaviour of

Iǫ :=

∫

R

e(
∑

i αi−2Q)c
E

[
e−µe

γc
∫ − ln ǫ
0

eγBt−γ(Q−α)t dt
]
dc. (2.29)

as ǫ → 0. Clearly, when α < Q, the drift term in the Brownian motion takes it all making the integral in the
exponential converges, hence Iǫ has a non trivial limit. When α = Q, the drift term vanishes so that the integral∫ − ln ǫ

0
eγBt dt diverges to +∞ and Iǫ goes to 0 as ǫ→ 0. The main idea is that the leading asymptotics for this

integral will come from the Brownian paths such that
∫∞
0
eγBu du < ∞, which is an event of probability 0 for

the Brownian motion. Hence a proper renormalization of this integral will require a conditioning on the event
{
∫∞
0 eγBu du <∞}, which is the same as conditioning on those paths such that {supu > 0Bu <∞}. Having this

picture in mind, it is natural to partition the probability space with the sets

A(n, ǫ) = { sup
u 6 −ln ǫ

Bu ∈]n− 1, n]}

for n > 1. We can then expand Iǫ =
∑

n > 1 I
n
ǫ with

Inǫ :=

∫

R

e(
∑

i αi−2Q)c
E

[
1A(n,ǫ)e

−µeγc
∫ − ln ǫ
0

eγBu du
]
dc.

On A(n, ǫ), the integral
∫ − ln ǫ

0 eγBu du ∼ eγn and we get

Inǫ ∼ P(A(n, ǫ))

∫

R

e(
∑

i αi−2Q)c−µeγ(c+n)

dc 6 CP(A(n, ǫ))e−(
∑

i αi−2Q)n.

An elementary estimate on Brownian motion givesP(A(n, ǫ)) 6
√
2/π n

(− ln ǫ)1/2
so that the series

∑
n(− ln ǫ)1/2Inǫ

is dominated by an absolutely convergent series, uniformly with respect to ǫ ∈]0, 1]. We can thus invert the limits
and get

lim
ǫ→0

(− ln ǫ)1/2Iǫ = lim
n→∞

lim
ǫ→0

Jnǫ (2.30)

with

Jnǫ := (− ln ǫ)1/2
∫

R

e(
∑

i αi−2Q)c
E

[
1B(n,ǫ)e

−µeγc
∫ − ln ǫ
0

eγBu du
]
dc

where we defined
B(n, ǫ) = ∪nk=1A(k, ǫ) = { sup

u 6 −ln ǫ
Bu ∈]0, n]}.
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To determine the limit in the right-hand side of (2.30), the first step is to show that one can find a family hǫ
such that hǫ → ∞, hǫ/(− ln ǫ) → 0 and

lim
ǫ→0

Jnǫ = lim
ǫ→0

(− ln ǫ)1/2
∫

R

e(
∑

i αi−2Q)c
E

[
1B(n,ǫ)e

−µeγc
∫ hǫ
0

eγBu du
]
dc. (2.31)

The reason why one can find such a family hǫ is that conditioning the Brownian motion on not exceeding n
will force it on going to −∞ with a speed making the integral

∫∞
0
eγBu du finite. To compute the integral in

the right-hand side in (2.31), we use the Markov property of the Brownian motion. Let Ft be the sigma algebra
generated by the Brownian motion up to time t. Then this integral can be estimated by

(− ln ǫ)1/2
∫

R

e(
∑

i αi−2Q)c
E

[
1B(n,hǫ)E[1B(n,ǫ)|Fhǫ ]e

−µeγc
∫ hǫ
0

eγBu du
]
dc.

Once again, a standard computation related to the supremum of the Brownian motion shows that

E[1B(n,ǫ)|Fhǫ ] ∼
√
2/π

n− bhǫ

(− ln ǫ− hǫ)1/2
.

Plugging this relation into the expression of Jnǫ , we deduce that

lim
ǫ→0

Jnǫ = lim
ǫ→0

√
2/π

∫

R

e(
∑

i αi−2Q)c
E

[
(n−Bhǫ)1B(n,hǫ)e

−µeγc
∫

hǫ
0

eγBu du
]
dc.

It turns out that, under the probability measure dP̃ = 1
n (n − Bhǫ)1B(n,hǫ) (with expectation Ẽ), the process

βt = n−Bt is a 3d-Bessel process. Rewriting the above integral, we obtain

lim
ǫ→0

Jnǫ = lim
ǫ→0

√
2/π n

∫

R

e(
∑

i αi−2Q)c
Ẽ

[
e−µe

γ(c+n)
∫ hǫ
0

e−γβu du
]
dc

=
√
2/π n

∫

R

e(
∑

i αi−2Q)c
Ẽ

[
e−µe

γ(c+n)
∫

hǫ
0

e−γβu du
]
dc.

As a Bessel process βt goes to ∞ as t → ∞ roughly at speed
√
t, the integral

∫ hǫ

0
e−γβu du converges P̃-almost

surely towards
∫∞
0 e−γβu du. This explains the convergence of (− ln ǫ)1/2Iǫ towards a non trivial limit as ǫ→ 0.

The main lines of our proof follows the thread of this heuristic.

3 Partition of the probability space

The singularity at the Q-insertions will be studied by partitioning the probability space according to the maxi-
mum of the circle average fields around them. As we will see this is a local operation and it will suffice to consider
the case with only one Q-insertion, say α1 = Q, αi < Q, i > 1. We may also assume that the Q-insertion is
located at z1 = 0 and, for notational convenience, we further assume that the other zi are in the complement of
the disc B(0, 1). Also, we will work from now on with the round metric ĝ; the general case g = eφĝ is treated as
in [4].

Recalling the definitions (2.16) and (2.15) we need to study

Πα,z,ǫ(F ) =

∫

R

eσcE
[
F (c+Xĝ)

∏

i

Vzi,αi,ǫ(zi)e
−µeγcMγ(Dǫ)

]
dc (3.1)

where we use throughout the paper the notation

σ :=
∑

i

αi − 2Q (3.2)

as in (2.24) and Dǫ := C \B(z1, ǫ). We have then

Ez,α,ǫF = Πα,z,ǫ(F )/Πα,z,ǫ(1). (3.3)
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It will be convenient to replace the GFF Xĝ with the GFF X0 with vanishing mean on the circle

X0 := Xĝ −mC(Xĝ), with mC(Xĝ) :=
1

2π

∫ 2π

0

Xĝ(e
iθ) dθ,

which is more adapted to the local analysis around 0, as its covariance kernel

G0(x, y) = ln
1

|x− y| + ln |x|1{|x| > 1} + ln |y|1{|y| > 1}, (3.4)

is of exact log type in the ball B(0, 1), hence facilitates the analysis around 0. The replacement can be performed
by making the change of variables c→ c−mC(Xĝ) in the expression (3.1) to get

Πα,z,ǫ(F ) =

∫

R

eσcE
[
e−σmC(Xĝ)F (c+X0)

∏

i

Vzi,αi,ǫ(zi)e
−µeγcM0

γ (Dǫ)
]
dc (3.5)

where

M0
γ (dz) := lim

ǫ→0
ǫ

γ2

2 eγ(X0,ǫ(z)+
Q
2 ln ĝ(z)) dz = eγX0(z)− γ2

2 E[X2
0 (z)](|z| ∨ 1)γ

2

ĝ(z)
γQ
2 dz,

and the vertex operators Vzi,αi,ǫ(zi) are defined as in (2.10) with Xĝ replaced by X0. The Cameron-Martin
argument then gives Πα,z,ǫ(F ) = Kǫ(z)Aǫ(F ) with

Aǫ(F ) =

∫

R

eσcE
[
F (c+X0 +H0

ǫ )e
−µeγc

∫
Dǫ

eγH0
ǫ dM0

γ

]
dc. (3.6)

where

H0
ǫ (z) =

∑

i

αi

∫ 2π

0

G0(zi + ǫeiθ, z)
dθ

2π
− σ(12 ln(1 + |z|2)− ln |z|1{|z| > 1}) + σ 1

2 (ln 2− 1) (3.7)

and Kǫ(z) (the variance of the Cameron-Martin transform) converges to some explicit K as ǫ → 0; we do not
write the explicit expression for K as we do not need it in the following. The sum over i comes from the shift of
the vertex operators Vzi,αi,ǫ(zi) in (3.5) and the remaining part from the shift induced by e−σmC .

Similarly for the derivative vertex operator (2.20) we get

Π̃α,z,ǫ(F ) = −Kǫ(z)

∫

R

eσcE
[
F (c+X0+H

0
ǫ )(Q ln ǫ+H̃0

ǫ +c+X0,ǫ(z1)+
Q

2
ln ĝ(z1))e

−µeγc
∫
Dǫ

eγH0
ǫ dM0

γ

]
dc. (3.8)

where

H̃0
ǫ =

∑

i

αi

∫ 2π

0

∫ 2π

0

G0(z1 + ǫeiθ2 , zi + ǫeiθ2)
dθ1
2π

dθ2
2π
. (3.9)

Using (3.4) we see that the Q ln ǫ singularity in (3.8) is cancelled by the one in the i = 1 term in (3.9) so that

Q ln ǫ+ H̃ǫ+
Q
2 ln g(z1) is bounded uniformly in ǫ. Since Πz,α,ǫ(F ) → 0 as ǫ→ 0 ([4]) we conclude that the limit,

if it exits, of Π̃z,α,ǫ(F ) equals the limit of Kǫ(z)Ãǫ(F ) where

Ãǫ(F ) =

∫

R

eσcE
[
F (c+X0,ǫ +H0

ǫ )(−c−X0,ǫ(z1))e
−µeγc

∫
Dǫ

eγH0
ǫ dM0

γ

]
dc. (3.10)

Hence Theorems 2.1 and 2.2 follow if we prove

Proposition 3.1. Let F be bounded and continuous on H−1(Ĉ). Then the following limits

A(F ) = lim
ǫ→0

(− ln ǫ)
1
2Aǫ(F ) =

√
2/π lim

ǫ→0
Ãǫ(F ) (3.11)

exist and A(1) > 0.
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Now we partition the probability space according to the values of the maximum of the mapping u 7→ X0,u(z1)
over u ∈ [ǫ, 1]. So we set

Mn,ǫ =
{

max
u∈[ǫ,1]

X0,u(z1) ∈ [n− 1, n]
}
, n > 1, (3.12)

M0,ǫ =
{

max
u∈[ǫ,1]

X0,u(z1) 6 0
}
., (3.13)

and we expand the integral Aǫ(F ) along the partition made up of these sets (Mn,ǫ)n:

Aǫ(F ) =
∑

n > 0

∫

R

eσc E
[
1Mn,ǫF (c+X0 +H0

ǫ )e
−µeγc

∫
Dǫ

eγH0
ǫ dM0

γ

]
dc :=

∑

n > 0

Aǫ(F, n). (3.14)

For Ãǫ(F ) we write

Ãǫ(F ) =
∑

n > 0

(Ãǫ(F, n) +Bǫ(F, n))

with

Ãǫ(F, n) =

∫

R

eσc E
[
1Mn,ǫ

(
n−X0,ǫ(z1)

)
F (c+X0 +H0

ǫ )e
−µeγc

∫
Dǫ

eγH0
ǫ dM0

γ

]
dc (3.15)

and

Bǫ(F, n) = −
∫

R

eσcE
[
1Mn,ǫ(n+ c)F (c+X0 +H0

ǫ )e
−µeγc

∫
Dǫ

eγH0
ǫ dM0

γ

]
dc. (3.16)

Note that Ãǫ(F, n) > 0 for F > 0. We prove

Lemma 3.2. Let F be bounded and continuous on H−1(Ĉ). Then for all n > 0 the limits

A(F, n) = lim
ǫ→0

(− ln ǫ)
1
2 Aǫ(F, n) =

√
2/π lim

ǫ→0
Ãǫ(F, n). (3.17)

exist and A(1, n) > 0. Moreover

∑

n > 0

sup
ǫ∈]0,1]

(− ln ǫ)
1
2Aǫ(1, n) <∞ (3.18)

∑

n > 0

sup
ǫ∈]0,1]

Ãǫ(1, n) <∞ (3.19)

∑

n > 0

Bǫ(F, n) → 0, as ǫ→ 0. (3.20)

Proposition 3.1 then follows from Lemma 3.2 since limǫ→0Aǫ(F, ǫ) =
∑
A(F, n) follows from (3.17) and

(3.18) by the dominated convergence theorem, similarly for Ã. The remaining part of this paper is devoted to
proving this lemma.

4 Decomposition of the GFF and Chaos measure

We denote by Fδ (δ > 0) the sigma-algebra generated by the field X0 ”away from the disc B(0, δ)”, namely

Fδ = σ{X0(f); supp f ∈ B(0, δ)c}. (4.1)

F∞ stands for the sigma algebra generated by
⋃
δ>0 Fδ.

First we collect a few old and classical observations (see [4, 6, 13] for more on this)

Lemma 4.1. For all δ > 0, the process

t 7→ X0,δe−t(0)−X0,δ(0)

evolves as a Brownian motion independent of the sigma algebra Fδ.
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The following decomposition of the field X0 will be useful for the analysis (this observation was already made
in [6])

Lemma 4.2. The field X0 may be decomposed (recall that the fields we consider are understood in terms of
distributions in the sense of Schwartz)

X0(z) = X0,|z|(0) + Y (z) (4.2)

where the process r ∈ R∗
+ 7→ X0,r(0) is independent of the field Y (z). The latter has the following covariance

E[Y (z)Y (z′)] = ln
|z| ∨ |z′|
|z − z′|

Proof. From (3.4) we get using rotational invariance E[X0(z)X0,|z′|(0)] = E[X0,|z|(0)X0,|z′|(0)], which in turn
leads to independence:

EX0(z)X0(z
′) = EX0,|z|(0)X0,|z′|(0) + EY (z)Y (z′).

Furthermore we calculate

E[Y (z)Y (z′)] = G0(z, z
′)− 1

4π2

∫ 2π

0

∫ 2π

0

G0(|z|eiu, |z′|′eiv)dudv.

The claim follows from 1
4π2

∫ 2π

0

∫ 2π

0 G0(|z|eiu, |z′|′eiv)dudv = ln 1
|z|∨|z′| + ln |z|1{|z| > 1} + ln |z′|1{|z′| > 1}.

Now, we get the decomposition

M0
γ (dz) = ĝ(z)

γQ
2 |z| γ

2

2 eγX0,|z|(0)M0
γ (dz, Y )

where Mγ(dz, Y ) is the multiplicative chaos measure of the field Y with respect to the Lebesgue measure λ (i.e.
EMγ(dz, Y ) = λ(dz)).

We will now make change of variables z = e−s+iθ, s ∈ R+, θ ∈ [0, 2π) and let µY (ds, dθ) be the multiplicative
chaos measure of the field Y (e−s+iθ) with respect to the measure dsdθ. We will denote by xs the process

s ∈ R+ → xs := X0,e−s(0).

We have arrived at the following useful decomposition of the chaos measure around z1 = 0:

Lemma 4.3. On the ball B(0, 1) we have the following decomposition of the measure Mγ:

∫

A

1

|x|γQ M0
γ (dx) =

∫ ∞

0

∫ 2π

0

1A(e
−seiθ)eγxs ĝ(e−s)

γQ
2 µY (ds, dθ)

for all A ⊂ B(0, 1) where µY (ds, dθ) is a measure independent of the whole process (xs)s > 0. Furthermore, for
all q ∈]−∞; 4

γ2 [, we have

sup
a>0

E

[(∫ a+1

a

∫ 2π

0

eγ(xs−xa)µY (ds, dθ)
)q]

< +∞. (4.3)

Proof. We have for 0 6 q < 4
γ2

E

[( ∫ a+1

a

∫ 2π

0

eγ(xs−xa)µY (ds, dθ)
)q]

6 (2π)qE
[
eqγ supσ∈[0,1](xa+σ−xa)

]
E

[
µY ([a, a+ 1]× [0, 2π])q

]

= (2π)qE
[
eqγ supσ∈[0,1](xa+σ−xa)

]
E

[
µY ([0, 1]× [0, 2π])q

]
,

by stationarity of (s, θ) ∈ R∗
+ × [0, 2π] 7→ Y (e−seiθ). By Lemma 4.1 the first exponent is Brownian motion and

hence the expectation is bounded uniformly in a. From Gaussian multiplicative chaos theory [13, Theorem 2.11],
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we have finiteness of the quantity E

[
µY ([0, 1]× [0, 2π])q

]
< ∞, hence we get (4.3). For q < 0, this is the same

argument by replacing supσ∈[0,1](xa+σ − xa) by minσ∈[0,1](xa+σ − xa) and using [13, Theorem 2.12].

It will be useful in the proofs to introduce for all a > 1 the stopping times Ta defined by

Ta = inf{s; xs > a− 1}, (4.4)

and we denote by GTa the associated filtration. We have the following analog of (4.3) with stopping times

Lemma 4.4. For all q 6 0, n > 1,

E

[(∫ Tn

Tn−1

∫ 2π

0

eγ(xs−xTn−1
)µY (ds, dθ)

)q]
<∞. (4.5)

Proof. Using the independence of the processes xr and Y , Lemma 4.1 and stationarity of Y (s, θ) in s we see
that (4.5) is equivalent to proving

E

[( ∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

<∞. (4.6)

where β is a Brownian motion independent of Y and τ = inf{s;βs > 1}. We have (recall that q 6 0)

E

[(∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

6 E

[
1τ 6 1

( ∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

+ E

[(∫ 1

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

The second term is bounded by Lemma 4.3. The first one equals

∑

k > 1

E

[
11/2k+1<τ 6 1/2k

(∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

6
∑

k > 1

E

[
11/2k+1<τ 6 1/2k

(∫ 1/2k+1

0

∫ 2π

0

eγβrµY (dr, dθ)
)q]

6
∑

k > 1

P(1/2k+1 < τ 6 1/2k)1/2E
[(∫ 1/2k+1

0

∫ 2π

0

eγβrµY (dr, dθ)
)2q]1/2

6
∑

k > 1

P(1/2k+1 < τ 6 1/2k)1/2E
[
e2qγ sup

σ∈[0,2−k−1]
β(σ)

] 1
2

E

[
µY ([0, 2

−k−1]× [0, 2π])2q
] 1

2

6 C
∑

n > 1

e−c2
n

E

[
µY ([0, 2

−k−1]× [0, 2π])2q
] 1

2

.

6 C
∑

n > 1

e−c2
n

E

[
µY ([0, 2

−k−1]× [0, 2−k−1])2q
] 1

2

.

One can find some constant C > 0 such that the covarianceE[Y (e−seiθ)Y (e−s
′
eiθ

′
)] is bounded by ln 1

|seiθ−s′eiθ′ |+

C hence by Kahane’s convexity inequality [13, Theorem 2.1] one gets the existence of some constant C > 0 such
that

E

[
µY ([0, 2

−n−1]× [0, 2−n−1])q
]
6 C

1

2nξ(−q)
,

with ξ(−q) = −(2 + γ2

2 )q − γ2 q
2

2 . Hence
∑
n > 1 e

−c2n
E

[
µY ([0, 2

−n−1] × [0, 2−n−1])2q]
1
2 < ∞, which concludes

the proof.
Now let us consider the martingale (fnǫ )ǫ∈]0,1] defined by

fnǫ = 1{
minu∈[ǫ,1] n−xln 1

u
> 0

}(n− xln 1
ǫ
). (4.7)
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The martingale property of (fnǫ )ǫ∈]0,1] is classical: it results from Lemma 4.1 as well as the optional stopping
theorem. We can define for each ǫ ∈]0, 1] a probability measure on Fǫ by

Θnǫ =
1

E[fnǫ ]
fnǫ dP,

where one has the following bound E[fnǫ ] = E[fn1 ] 6 n+C for some constant C. Because of Lemma 4.1 and the
martingale property of the family (fnǫ )ǫ∈]0,1], it is plain to check that these probability measures are compatible
in the sense that, for ǫ′ < ǫ

Θnǫ′ |Fǫ = Θnǫ . (4.8)

By Caratheodory’s extension theorem we can find a probability measure Θn on F∞ such that for all ǫ ∈]0, 1]

Θn|Fǫ = Θnǫ . (4.9)

We denote by E
Θn

the corresponding expectation.
Recall the following explicit law of the Brownian motion conditioned to stay positive

Lemma 4.5. Under the probability measure Θn, the process

t 7→ n− xt

evolves as a 3d-Bessel process starting from n− x0 where x0 is distributed like X0,1 (under P) conditioned to be
less or equal to n.

We will sometimes use the following classical representation: under Θn, the process t 7→ n− xt is distributed
like |n − x0 + Bt| where Bt is a standard 3d Brownian motion starting from 0 (here, we identify n − x0 with
(n− x0)(1, 0, 0)).

5 Construction of the derivative Q-vertex

In this section, we prove the claims in Lemma 3.2 concerning Ãǫ. We register here a simple Lemma on Brownian
motion that is used repeatedly and whose proof is elementary and left to the reader:

Lemma 5.1. Let B be a standard real valued Brownian motion. We have for β > 0

P( sup
u 6 t

Bu 6 β) =

√
2

π

∫ β√
t

0

e−
u2

2 du 6

√
2

π

β√
t
.

Proof of (3.20)

From (3.16) we get

|Bǫ(F, n)| 6 C

∫

R

eσcE
[
1Mn,ǫ |n+ c|e−µe

γc
∫
Dǫ

eγH0
ǫ dM0

γ

]
dc. (5.1)

Recall that |zi| > 1 for i > 2. Then, recalling (3.7) and (3.4) we get for ǫ 6 |z| 6 1

eγH
0
ǫ (z) > C|z|−γQ. (5.2)

By Lemma 4.3, we get

|Bǫ(F, n)| 6 C

∫

R

eσc E
[
1Mn,ǫ |n+ c|e−Cµeγc

∫ ln 1
ǫ

0 eγxr µY (dr)
]
dc, (5.3)

where µY (dr) is the measure defined by µY (dr) =
∫ 2π

0
µY (dr, dθ).
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Below, we want to show that the integral in the exponential term above carries a big amount of mass, and
we will look for this mass at some place where the process r 7→ xr takes on values close to its maximum, which
is between n− 1 and n on the set Mn,ǫ. To locate this place, we use the stopping times Tn−1 and Tn defined by
(4.4) which are finite and belong to [0, ln 1

ǫ ] on Mn,ǫ. We deduce

|Bǫ(F, n)| 6 C

∫

R

eσc E
[
1Mn,ǫ |n+ c|e−µeγcCeγ(n−1)In

]
dc

where we have set

In =

∫ Tn

Tn−1

eγ(xr−xTn−1
) µY (dr). (5.4)

By making the change of variables y = eγ(c+n)In, we get

Bǫ(F, n) 6 Ce−nσ
∫ ∞

0

y
σ
γ −1(1 + | ln y|)e−µCe−γy dyE

[
1Mn,ǫ(1 + | ln In|)I

− σ
γ

n

]
.

Then we bound

E

[
1Mn,ǫ(1 + | ln In|)I

− σ
γ

n

]
6 P(Mn,ǫ)

1/2
E

[
1Mn,ǫ(1 + | ln In|)2I

− 2σ
γ

n

] 1
2

.

Hence, by Lemma 4.4 we conclude

B(F ; ǫ, n) 6 Ce−nσP(Mn,ǫ)
1/2.

The claim (3.20) then follows by the dominated convergence theorem since for each fixed n, the probability
P(Mn,ǫ) goes to 0 as ǫ goes to 0 (see Lemma 5.1).

Proof of (3.19).

Proceeding as in the proof of (3.20) we get

Ãǫ(1, n) 6 Ce−nσE
[
1Mn,ǫ(n− xln 1

ǫ
)I

− σ
γ

n

]
,

where In is as in (5.4). Now, we have

E[1Mn,ǫ(n− xln 1
ǫ
)|FTn ∨ σ(Y )] = E[1min

s∈[0,ln 1
ǫ
]
(n−xs) > 0(n− xln 1

ǫ
)|FTn ∨ σ(Y )]1Tn 6 ln 1

ǫ

= 1mins∈[0,Tn](n−xs) > 0(n− xTn)1Tn 6 ln 1
ǫ

= 1mins∈[0,Tn](n−xs) > 01Tn 6 ln 1
ǫ

so that
Ãǫ(1, n) 6 Ce−nσE I

− σ
γ

n 6 Ce−nσ.

from which the estimate (3.19) follows.

Proof of the first part of (3.17), i.e. the existence of limǫ→0 Ãǫ(F, n).

Now, we need to establish the existence and non triviality of the limit of Ãǫ(F, n), i.e. one part of (3.17).

Since H0
ǫ converges in H−1(Ĉ) towards H0, it suffices to study the convergence and non triviality of the limit

for F = 1 and fixed n. We claim that this will result from the convergence in probability of the quantity∫
Dǫ
eγH

0
ǫ dM0

γ under the probability measure Θn towards a non trivial limit. To see this, make the change of

variables y = eγc
∫
Dǫ
eγH

0
ǫ dM0

γ to get
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∫
eσcE

[
1Mn,ǫ(n− xln 1

ǫ
)e−µe

γc
∫
Dǫ

eγH0
ǫ dM0

γ

]
dc

=γ−1
E[fn1 ]

∫ ∞

0

y
σ
γ −1e−µy dy × E

Θn
[
1Mn,ǫ

(∫

Dǫ

eγH
0
ǫ dM0

γ

)− σ
γ
]
.

Under the probability measure Θn the process t 7→ (n − xt) is a 3d Bessel process hence mins∈[0,ln 1
ǫ ]
(n −

xs) converges almost surely to a finite random variable as ǫ goes to 0 and therefore 1Mn,ǫ converges to
1maxs∈[0,∞](xs)∈[n−1,n].

Take any non empty closed ball B of R2 containing no insertions zi. Then supǫH
0
ǫ is bounded in B and thus

(∫

Dǫ

eγH
0
ǫ dM0

γ

)− σ
γ

6 CM0
γ (B)−

σ
γ .

Let δ > 0 be such that B ⊂ B(0, δ)c. Then

E
Θn

[
M0
γ (B)−

σ
γ

]
6 C(n+ 1)−1

E[fnδM
0
γ (B)−

σ
γ ] 6 C(n+ 1)−1

E[(fnδ )
2]

1
2 E

[
Mγ(B)−

2σ
γ ]

1
2 .

Because GMC admits moments of negative order [13, theorem 2.12], the last expectation is finite. Hence the
dominated convergence theorem entails that to prove our claim it is enough to establish the convergence in
probability of the quantity

∫
Dǫ
eγH

0
ǫ dM0

γ under the probability measure Θn towards a non trivial limit. Because

M0
γ is a positive measure and because of the bound (5.2), this is clearly equivalent to the finiteness under Θn of the

quantity
∫
R2 e

γH0

dM0
γ . Outside of the ball B(0, 1), the finiteness results from the fact that

∫
D1
eγH

0

dM0
γ < ∞

under P (see see [4, proof of Th. 3.2]), and the absolute continuity of Θn with respect to P when restricted to
F1. The main point is thus to analyze the integrability inside the ball B(0, 1). It is clearly enough to show

∫

B(0,1)

1

|x|γQ dM0
γ <∞, a.s. under Θn. (5.5)

This follows from the following Lemma 5.2:

Lemma 5.2. The measure M0
γ satisfies

E
Θn

[ ∫

B(0,1)

1

|x|γQM
0
γ (dx)

]
<∞. (5.6)

Proof. Under the measure Θn, the process t 7→ n− xt is distributed like |n− x0 +Bt| where Bt is a standard 3
dimensional Brownian motion (here, we identify n−x0 with (n−x0)(1, 0, 0)). We suppose the Brownian motion
lives on the same probability space. Then, if N denotes a standard 3d Gaussian variable (under some expectation
we will also denote E), we have

E
Θn

[ ∫

B(0,1)

1

|x|γQM
0
γ (dx)

]
6 CEΘn

[ ∫ ∞

0

∫ 2π

0

eγxr µY (dr, dθ)
]

= CeγnEΘn
[ ∫ ∞

0

∫ 2π

0

e−γ|n−x0+Br | µY (dr, dθ)
]

= CeγnEΘn
[ ∫ ∞

0

e−γ|n−x0+Br | dr
]

6 Ce2γnE [eγ|x0|]EΘn
[ ∫ ∞

0

e−γ|Br| dr
]

= Ce2γnE
[ ∫ ∞

0

e−γ
√
r|N | dr

]
,

= Ce2γn(

∫ ∞

0

e−γ
√
r dr)E

[ 1

|N |2
]
<∞.

16



6 Renormalization of the Q-vertex operators

6.1 Proof of (3.18)

Using (5.2) and proceeding as for (5.3) we get

Aǫ(1, n) 6 C

∫

R

eσc E
[
1Mn,ǫ exp

(
− µeγcC

∫ ln 1
ǫ

0

eγxr µY (dr)
)]
dc

The stopping time Tn = inf{s; xs > n− 1} is finite and belongs to [0, ln 1
ǫ ] on Mn,ǫ. We deduce that

Aǫ(1, n) 6 C

∫

R

eσc E
[
1Mn,ǫ∩{Tn<ln 1

ǫ−1} exp
(
− µeγcCeγ(n−1)I(Tn)

)]
dc (6.1)

+ C

∫

R

eσc E
[
1Mn,ǫ∩{Tn > ln 1

ǫ−1} exp
(
− µeγcCe

γx
ln 1

ǫ
−1I(ln

1

ǫ
− 1)

)]
dc

=: aǫ(n) + bǫ(n) (6.2)

where we have set

I(z) =

∫ z+1

z

eγ(xr−xz) µY (dr).

We will show that there exists a constant C > 0 such that for all n

(ln
1

ǫ
)

1
2 aǫ(n), (ln

1

ǫ
)

1
2 bǫ(n) 6 Cne−σn, (6.3)

which is enough to complete the proof of (3.18).

We begin with aǫ(n). By making the change of variables y = eγ(c+n)I(Tn), we get

aǫ(n) 6 C e−nσ
∫ ∞

0

y
σ
γ −1e−µCe

−γy dyE
[
1Mn,ǫ∩{Tn<ln 1

ǫ−1}I(Tn)
− σ

γ

]
.

It suffices to estimate the last expectation. Obviously, we have

E

[
1Mn,ǫ∩{Tn<ln 1

ǫ−1}I(Tn)
− σ

γ

]
(6.4)

6 E

[
1{minu∈[0,Tn] n−xu > 0}1{min

u∈[Tn+1,ln 1
ǫ
]
(n−xTn+1)−(xu−xTn+1) > 0}

1{Tn+1<ln 1
ǫ }

I(Tn)
σ
γ

]
.

By conditioning on the the sigma algebra HTn generated by {xr, r 6 Tn}, {xr − xTn+1, r > Tn + 1} and
{xTn+1 − n}, we see that we have to estimate the quantity

E[I(a)−
σ
γ |xa+1 − xa].

We claim

Lemma 6.1. There exists a constant C (independent of any relevant quantity) such that for all a > 0

E[I(a)−
σ
γ |xa+1 − xa] 6 C

(
e−σ(xa+1−xa) + 1

)
.

The proof of this lemma is given just below. Admitting it for a while and given the fact that the random
variable xTn+1 − n is a standard Gaussian random variable, the conditioning on HTn of the expectation (6.4)
thus gives

E

[
1Mn,ǫ∩{Tn<ln 1

ǫ −1}
1

I(Tn)
σ
γ

]

6 C

∫

R

E

[
1{minu∈[0,Tn] n−xu > 0}1{min

u∈[Tn+1,ln 1
ǫ
]
−y−(xu−xTn+1) > 0}

](
e−σ(y+1) + 1

)
e−y

2/2 dy.

17



To estimate the expectation in the integral, use the strong Markov property of the Brownian motion to write

E

[
1{minu∈[0,Tn] n−xu > 0}1{min

u∈[Tn+1,ln 1
ǫ
]
−y−(xu−xTn+1) > 0}

]

=E

[
1{minu∈[0,Tn] n−xu > 0}1{min

u∈[Tn,ln 1
ǫ
−1]

−y−(xu−xTn) > 0}
]

6 E

[
1{min

u∈[0,ln 1
ǫ
−1]

n+max(0,−y)−xu > 0}
]
6 (

2

π
)

1
2
n+max(0,−y)
(ln 1

ǫ − 1)
1
2

,

where in the last inequality we have used Lemma 5.1. We deduce

E

[
1Mn,ǫ∩{Tn<ln 1

ǫ −1}
1

I(Tn)
σ
γ

]
6 C(ln

1

ǫ
)−

1
2 ne−nσ.

All in all, we have obtained
sup
ǫ∈]0,1]

(ln
1

ǫ
)

1
2 aǫ(n) 6 Cne−nσ,

which proves the claim. The same argument holds for bǫ(n).

Proof of Lemma 6.1.Notice that the joint law of
(
(xr−xa)r∈[a,a+1], xa+1−xa

)
is that of

(
(Bu−Ba)u∈[a,a+1], Ba+1−

Ba) where B is a standard Brownian motion starting from 0 (independent of Y ). Hence the law of I(a) condi-
tionally on xa+1 − xa = x is given by ∫ 1

0

eγBridge0,xr µY (dr)

where (Bridge0,xr )r 6 1 is a Brownian bridge between 0 et x with lifetime 1. Hence it has the law of r 7→
Br − rB1 + ux. By convexity of the mapping x 7→ x−q for q > 0 and the fact that the covariance kernel of
the Brownian Bridge and the Brownian motion are comparable up to fixed constant, we can apply Kahane’s
inequality [9] to get that

E[I(a)−
σ
γ |xa+1 − xa = x] 6 CE

[( ∫ a+1

a

eγ(Br−Ba)+(r−a)x µY (dr)
)−σ

γ
]
.

From Lemma 4.3 and the fact that e(r−a)x > ex ∧ 1 for r ∈ [a, a+ 1], this quantity is less than

E[I(a)−
σ
γ |xa+1 − xa = x] 6 C

(
e−σx ∨ 1

)
.

This proves the claim.

6.2 Proof of (3.17).

First notice that

N∑

n=0

Aǫ(1, n) =

∫

R

eσc E
[
1BN,ǫ exp

(
− µeγc

∫

Dǫ

eγH
0
ǫ dM0

γ

)]
dc

where
BN,ǫ = { min

u∈[ǫ,1]
N − xu > 0}.

Let us denote by Zǫ the measure eγH
0
ǫ dM0

γ and define

sǫ := (ln
1

ǫ
)

1
6 , hǫ := e−sǫ .
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Now we prove the upper bound. We have

N∑

n=0

Aǫ(1, n) 6

∫

R

eσc E
[
1BN,ǫ exp

(
− µeγcZǫ(Dhǫ)

)]
dc

=

∫

R

eσc E
[
E
[
1BN,ǫ |Fsǫ

]
exp

(
− µeγcZǫ(Dhǫ)

)]
dc.

Using the standard estimate E
[
1BN,ǫ |Fsǫ

]
6

√
2/π

N−xsǫ√
ln 1

ǫ −sǫ
(see Lemma 5.1) we deduce

lim sup
ǫ→0

N∑

n=0

(ln
1

ǫ
)

1
2Aǫ(1, n) 6

√
2/π

N∑

n=0

Ã(1, n).

which completes the upper bound.

Let us now investigate the lower bound. We denote by C(ǫ) the annulus {x : ǫ 6 |x| 6 hǫ} and by Iǫ the set

Iǫ = { min
u∈[sǫ,− ln ǫ]

(N − xu) > sθǫ}

where θ ∈]0, 1/2[. We have

N∑

n=0

Aǫ(1, n) >

∫

R

eσc E
[
1BN,ǫ1Iǫ exp

(
− µeγcZǫ(Dhǫ)− µeγcZǫ(C(ǫ)

)]
dc.

Using e−u > 1− u
1
2 , we deduce

N∑

n=0

Aǫ(1, n) >

∫

R

eσcE
[
1BN,ǫ1Iǫe

−µeγcZǫ(Dhǫ )
(
1− µ

1
2 e

1
2 γcZǫ(C(ǫ))

1
2

)]
dc

=

∫

R

eσcE
[
1BN,ǫe

−µeγcZǫ(Dhǫ )
]
dc−

∫

R

eσc E
[
1BN,ǫ1Icǫ e

−µeγcZǫ(Dhǫ )
]
dc

− µ
1
2

∫

R

ec
(

1
2 γ+σ

)
E

[
1BN,ǫ1Iǫe

−µeγcZǫ(Dhǫ )Zǫ(C(ǫ))
1
2

]
dc

=:B1(N, ǫ)−B2(N, ǫ)−B3(N, ǫ). (6.5)

We now estimate the above three terms.

We start with B1(N, ǫ). We have

E
[
1BN,ǫ |Fhǫ

]
=1BN,hǫ

(
2

π
)

1
2

∫ N−xsǫ√
ln 1

ǫ −sǫ

0

e−
u2

2 du

> 1BN,hǫ
1{N−xsǫ 6 (ln 1

ǫ −sǫ)
1
4 }(

2

π
)

1
2

∫ N−xsǫ√
ln 1

ǫ −sǫ

0

e−
u2

2 du

> 1BN,hǫ

N − xsǫ√
ln 1

ǫ − sǫ
1{N−xsǫ 6 (ln 1

ǫ −sǫ)
1
4 }(

2

π
)

1
2 e−

1
2 (ln 1

ǫ −sǫ)
− 1

2

.

Plugging this relation into B1(N, ǫ) we deduce

B1(N, ǫ) > (
2

π
)

1
2 e−

1
2 (ln 1

ǫ −sǫ)
− 1

2

(ln
1

ǫ
− sǫ)

− 1
2
( ∫

R

eσcE
[
1BN,ǫ(N − xsǫ) exp

(
− µeγcZǫ(Dhǫ)

)]
dc

−
∫

R

eσc E
[
1{N−xsǫ>(ln 1

ǫ −sǫ)
1
4 }1BN,hǫ

(N − xsǫ)e
−µeγcZǫ(Dhǫ )

]
dc

=: ∆1(ǫ) + ∆2(ǫ).
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It is clear that

lim
ǫ→0

(ln
1

ǫ
)

1
2 ∆1(ǫ) = lim

ǫ→0

N∑

n=0

Ãǫ(1, n) =

N∑

n=0

Ã(1, n).

It remains to treat ∆2(ǫ). By making the change of variables y = eγcZǫ(Dhǫ), we get

(ln
1

ǫ
)

1
2 ∆2(ǫ) 6 CEΘN

[
1
{N−xsǫ>(ln 1

ǫ −sǫ)
1
4 }
Zǫ(Dhǫ)

− σ
γ

]
.

Now we will use the fact that under ΘN the event in the above expectation is very unlikely. Using the elementary
inequality ab 6 a2/2 + b2/2 we get

E
ΘN

[
1
{N−xsǫ>(ln 1

ǫ −sǫ)
1
4 }
Zǫ(Dhǫ)

− σ
γ

]

6 (ln
1

ǫ
)κEΘN

[
1
{N−xsǫ>(ln 1

ǫ −sǫ)
1
4 }

]
+ (ln

1

ǫ
)−κEΘN

[
Zǫ(D1)

−2σ
γ

]
.

Using the fact that a Gaussian Multiplicative Chaos has negative moments of all orders on all open balls, the
expectation in the second term in the above expression is easily seen to be bounded uniformly in ǫ. Hence, the
second term tends to 0 as ǫ→ 0. Concerning the first term, recall Lemma 4.5 and the estimate, for a 3d-Bessel
process βt and u > x

Px(βt > u) = P
x/t

1
2
(β1 > u/t

1
2 ) 6 C

t
1
2

u− x
∧ 1.

Therefore

ΘN
(
N − xsǫ > (ln

1

ǫ
− sǫ)

1
4

)
6 CE[

s
1/2
ǫ

| ln 1
ǫ − sǫ − x0|

∧ 1]

6 2CE[
s
1/2
ǫ

| ln 1
ǫ − sǫ − x0|

] + P(x0 >
1

2
(ln

1

ǫ
− sǫ)

1
4 )

6 2C ln(
1

ǫ
)−

1
6 + C(ln

1

ǫ
)

1
4 e−

1
2 (ln 1

ǫ )
1
2

.

Hence, choosing κ < 1/6 leads to limǫ→0(ln 1
ǫ )

1
2 ∆2(ǫ) = 0. Thus

lim inf
ǫ→0

(ln
1

ǫ
)

1
2B1(N, ǫ) >

N∑

n=0

Ã(1, n). (6.6)

Now we treat B3(N, ǫ). To this purpose, we use first the change of variables y = eγcZǫ(Dhǫ) to get

B3(N, ǫ) 6 CE[1BN,ǫ1IǫZǫ(Dhǫ)
−

1
2 γ+σ

γ Zǫ(C(ǫ))
1
2 ]

=CE
[
1BN,ǫ1IǫE[Zǫ(Dhǫ)

−
1
2 γ+σ

γ Zǫ(C(ǫ))
1
2 |(xs)s<∞]

]

6 CE
[
1BN,ǫ1IǫE[Zǫ(Dhǫ)

− γ+2σ
γ |(xs)s<∞]

1
2 E[Zǫ(C(ǫ))|(xs)s<∞]

1
2

]

=CE
[
1BN,ǫ1IǫE[Zǫ(Dhǫ)

− γ+2σ
γ |(xs)s<∞]

1
2
( ∫ ln 1

ǫ

sǫ

eγxu du
) 1

2

]

6 CE[Zǫ(Dhǫ)
− γ+2σ

γ ]
1
2 E

[
1BN,ǫ1Iǫ

∫ ln 1
ǫ

sǫ

eγxu du
] 1

2

=CE
[
1BN,ǫ1Iǫ

∫ ln 1
ǫ

sǫ

eγxu du
] 1

2

On the set Iǫ, we have the estimate

∫ ln 1
ǫ

sǫ

eγxu du 6 C ln
1

ǫ
e−γs

θ
ǫ = C ln

1

ǫ
e−γ(ln

1
ǫ )

θ/6
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which implies
lim
ǫ→0

(ln
1

ǫ
)

1
2 B3(N, ǫ) = 0. (6.7)

Finally we focus on B2(N, ǫ). We first make the change of variables y = eγcZǫ(Dhǫ) to get

B2(N, ǫ) 6 C E

[
1BN,ǫ1IcǫZǫ(D1)

− σ
γ

]
(6.8)

We claim

Lemma 6.2. Let B be a standard Brownian motion and β > x > 0 and θ ∈]0, 1/2[. Then, for some constant
C > 0 (independent of everything)

Pǫ(x) :=Px

(
min

u∈[sǫ,− ln ǫ]
β −Bu < sθǫ , min

u∈[0,− ln ǫ]
β −Bu > 0

)

6 (β − x)(ln
1

ǫ
)−1/2sθ−1/2

ǫ .

Conditioning (6.8) on the sigma algebra generated by {Xĝ,u(0);u > 1}, we can use Lemma 6.2 to get

(ln
1

ǫ
)

1
2B2(N, ǫ) 6 Csθ−1/2

ǫ E

[
(N −Xĝ,1(0))+Zǫ(D1)

− σ
γ

]
(6.9)

The last expectation is clearly finite and bounded independently of ǫ so that

lim
ǫ→0

(ln
1

ǫ
)

1
2 B2(N, ǫ) = 0. (6.10)

and, gathering (6.5)+(6.6)+(6.7)+(6.10), the proof of (3.18) and hence Lemma 3.2 is complete.

Proof of Lemma 6.2. We condition first on the filtration Fsǫ generated by the Brownian motion up to time sǫ.
From Lemma 5.1, we obtain

P

[
min

u∈[sǫ,− ln ǫ]
β −Bu < (sǫ)

θ, min
u∈[sǫ,− ln ǫ]

β −Bu > 0|Fsǫ
]

6

√
2

π

∫ (β−Bsǫ )+

(ln 1
ǫ
−sǫ)

1/2

(β−Bsǫ−(sǫ)θ)+

(ln 1
ǫ
−sǫ)

1/2

e−
u2

2 du

6 1{β−Bsǫ∈[0,(sǫ)θ ]}

√
2

π

(β −Bsǫ)+

(ln 1
ǫ − sǫ)1/2

+ 1{β−Bsǫ>(sǫ)θ}
(sǫ)

θ

(ln 1
ǫ − sǫ)1/2

.

Integrating, we get that

Pǫ(x) 6

√
2

π
(ln

1

ǫ
− sǫ)

−1/2
E

[
1{minu∈[0,sǫ] β−Bu > 0}(β −Bsǫ)1{β−Bsǫ∈[0,(sǫ)θ ]}

]

+
(sǫ)

θ

(ln 1
ǫ − sǫ)1/2

E

[
1{minu∈[0,sǫ] β−Bu > 0}

]
.

The second expectation is estimated with Lemma 5.1. Concerning the first one, we use the fact under the
probability measure 1

β−x1{minu∈[0,sǫ] β−Bu > 0}(β −Bsǫ), the process (β −Bu)u 6 sǫ is a 3d-Bessel process, call it
Besst. Hence, using the Markov inequality, the scale invariance of a Bessel process and the fact that the mapping

x 7→ E
x
[

1
Bess1

]
is decreasing, we deduce

Pǫ(x) 6

√
2

π
(ln

1

ǫ
− sǫ)

−1/2(β − x)Eβ−x
[
1{Besssǫ 6 (sǫ)θ}

]
+

√
2

π

(sǫ)
θ−1/2

(ln 1
ǫ − sǫ)1/2

(β − x)

6

√
2

π
(ln

1

ǫ
− sǫ)

−1/2(β − x)(sǫ)
θ−1/2

E
0
[ 1

Bess1

]
+

√
2

π

(sǫ)
θ−1/2

(ln 1
ǫ − sǫ)1/2

(β − x).
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A Riemann surfaces with conical singularities and cusps

A metric g on a Riemann surface M has a conical singularity of order α (α real number > −1) at a point x ∈M
if in some neighbourhood of x

g = eu|dz|2

where z is a local complex coordinate defined in the neighbourhood of x with u− 2α ln |z − z(x)| continuous in
the neighbourhood of x.

Recall that an Euclidean cone of angle θ is

Cθ =
{
(r, t); r > 0, t ∈ R/θZ

}
(0,t)∼(0,t′)

equipped with the metric ds2 = dr2 + r2 dt2 and that C equipped with the metric |z|2β|dz|2 is isometric to Cθ
where θ = 2π(β + 1). Therefore, if a surface has at some point a conical singularity of order β, then this surface
admits at this point a ”tangent cone” of angle θ = 2π(β + 1).

The boundary case of conical singularities is the case α = −1 and this is the threshold at which the singularity
ceases to be integrable, in which case the singularity becomes a cusp and has a somewhat different structure. More
precisely, a metric g on a Riemann surface M has a cusp singularity at a point x ∈M if in some neighbourhood
of x

g = eu|dz|2

where z is a local complex coordinate defined in the neighbourhood of x and u(z)+2 ln |z−z(x)| = o(ln |z−z(x)|)
(with the Landau notation) in the neighbourhood of x.

θ

Glue

Figure 1: Cone with angle θ. Glue isometrically the two boundary segments of the left-hand side figure to get
the cone of the right-hand side figure. Such a cone is isometric to the complex plane equipped with the metric
ds2 = |z|2− θ

π dzdz̄.

The prototype of cusp model is
C =

{
(r, t); r > 0, t ∈ R/Z

}

equipped with the hyperbolic metric ds2 = r−2(dr2 + dt2) and the punctured disk equipped with the metric
|dz|2

|z|2(ln |z|)2 is isometric to C.

A.1 Conjecture on the Ising model on random triangulations

By a triangulation of the unit sphere we mean a finite connected graph T s.t. there is an embedding of T to S2

s.t. each connected component of S2 \T (a face) has a boundary consisting of 3 edges (we denote the embedding
of T by T again). We identify two triangulations if there is an orientation preserving homeomorphism of S2

mapping the one to the other. A marked triangulation is a triangulation together with a choice of 3 vertices
v1, v2, v3. We denote by T the set of marked triangulations and by |T | the number of faces in T .

We will consider a two-parameter family of probability measures Pµ0,γ on T defined by

Pµ0,β(T ) =
1

Zµ0,β
e−µ0|T |Z(T, β) (A.1)
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where Zµ0,β is a normalization constant and Z(T, β) is the partition function of the Ising model on T at inverse
temperature β

Z(T, β) =
∑

σ∈{−1,1}#V (T )

e
β
2

∑
i∼j σiσj .,

where V (T ) stands for the set of vertices of T and i ∼ j means that the vertices i, j are neighbors. These
Boltzmann weights depend on some parameter denoted β, which we now tune to its critical point β = βc = ln 2.
It is known that

ZN (βc) :=
∑

T∈T :|T |=N
Z(T, βc) = N−1/6eµ̄N (1 + o(1)) (A.2)

so that Pµ0,βc is defined for µ0 > µ̄ and limµ0↓µ̄ Zµ0,βc = ∞. Hence as µ0 → µ the measure samples large
triangulations.

For each T we may associate a conformal structure on S2 as follows. Assign to each face f a copy ∆f of an
equilateral triangle ∆ of unit area and let MT = ⊔∆f/ ∼ be the disjoint union of the ∆f where we identify
the common edges. MT is a topological manifold homeomorphic to S2. We can even equip it with a complex
structure with the help of the following atlas. It contains the interiors of ∆f , mapped by identity to ∆, the
interiors of ∆f ∪∆f ′ where f and f ′ share an edge, mapped by identity to two copies of ∆ next to each other
in C and neighbourhoods of each vertex v ∈ M mapped to C as follows. List faces sharing v in consecutive
order f0, . . . , fn−1 and parametrize ∆fj ∩U by zj = re2πiθ with θj ∈ [6j/n, 6(j+1)/n]. Then z → zn/6 provides
a complex coordinate for a neigborhood of v. This atlas makes MT a complex manifold homemorphic to S2.
Picking three points z1, z2, z3 ∈ C, there is a unique conformal map ψT :MT → Ĉ s.t. ψ(vi) = zi.

Let λT be the area measure on MT i.e. λT is Lebesque measure in the local coordinates on ∆f . Let νT be its

image under ψT . In the standard coordinate of Ĉ it is given by νT = gT (z)dz where the density gT is singular
at the images of the vertices with n 6= 6.

Consider now a scaling limit as follows. Recalling that as µ0 ↓ µ̄ the typical size of triangulations, we quantify
the gap between µ0, µ̄ by setting (for a > 0 and fixed µ > 0)

µ0 = µ̄+ a2µ. (A.3)

Now we define observables of the spin field. Let Dǫ(x) be the disk with center x and radius ǫ in C. For a
triangulation T ∈ T (uniformized by ψT onto the sphere) together with a spin configuration σ on T we define
the total magnetic field inside the disc Dǫ(x) by

Φ
(ǫ)
T,σ(x) = ǫ−2a5/3

∑

v∈T
1Dǫ(x)(ψ(v))σ(v).

Let (xi)4 6 i 6 n be some arbitrary points on C.

Conjecture 1. Under the relation (A.3), the following convergence holds (for some irrelevant constant C, which
may depend on n)

lim
ǫ→0

lim
a→0

a4/3Eµ0,βc

[ n∏

i=4

Φ
(ǫ)
T,σ(xi)

]
νµ̄ = C〈θ(x4) . . . θ(xn)〉ĝ ×Πα,z

where Πα,z is the correlation function of the Liouville QFT studied in this paper with cosmological constant µ,
parameters γ =

√
3, Q = 7

2
√
3
and n vertex operators at the locations (xi)i=1,...,n with respective weights αi = γ

for i = 1, 2, 3 and αi =
5
6γ for i > 3. Here 〈θ(x4) . . . θ(xn)〉ĝ stands for the correlation functions of the spin field

in the critical Ising model (standard, i.e. not coupled to gravity) on the sphere.

References

[1] Aru, J., Huang Y., Sun X.: Two perspectives of the 2D unit area quantum sphere and their equivalence,
arXiv:1512.06190.

[2] Belavin A.A., Polyakov A.M., Zamolodchikov A.B. : Infinite conformal symmetry in two-dimensional quantum field
theory, Nuclear Physics B 241 (2), 333-380 (1984).

23



[3] Guillarmou C., Rhodes R., Vargas V.: Liouville Quantum Gravity and Polyakov’s formulation of 2d string theory on
hyperbolic surfaces, arXiv:1607.08467.

[4] David F., Kupiainen A., Rhodes R., Vargas V.: Liouville Quantum Gravity on the Riemann sphere, arXiv:1410.7318.

[5] Distler J., Kawai H.: Conformal Field Theory and 2-D Quantum Gravity or Who’s Afraid of Joseph Liouville?, Nucl.

Phys. B321 509-517 (1989).

[6] Duplantier B., Miller J., Sheffield: Liouville quantum gravity as mating of trees, arXiv:1409.7055.

[7] Duplantier B., Rhodes R., Sheffield S., Vargas V.: Critical Gaussian multiplicative chaos: convergence of the derivative
martingale, Annals of Probability vol 42, Number 5 (2014), 1769-1808, arXiv:1206.1671.

[8] Duplantier B., Rhodes R., Sheffield S., Vargas V.: Renormalization of Critical Gaussian Multiplicative Chaos and
KPZ formula, Commun. Math. Phys., 2014, Volume 330, Issue 1, pp 283-330, arXiv:1212.0529.

[9] Kahane, J.-P.: Sur le chaos multiplicatif, Ann. Sci. Math. Québec, 9 no.2 (1985), 105-150.
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