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POLYAKOV’S FORMULATION OF 2d BOSONIC STRING THEORY

COLIN GUILLARMOU, RÉMI RHODES, AND VINCENT VARGAS

Abstract. Using probabilistic methods, we first define Liouville quantum field theory on

Riemann surfaces of genus g > 2 and show that it is a conformal field theory. We use the

partition function of Liouville quantum field theory to give a mathematical sense to Polyakov’s

partition function of noncritical bosonic string theory [Po] (also called 2d bosonic string theory)

and to Liouville quantum gravity. More specifically, we show the convergence of Polyakov’s

partition function over the moduli space of Riemann surfaces in genus g > 2 in the case of

D 6 1 boson. This is done by performing a careful analysis of the behaviour of the partition

function at the boundary of moduli space. An essential feature of our approach is that it is

probabilistic and non perturbative. The interest of our result is twofold. First, to the best of our

knowledge, this is the first mathematical result about convergence of string theories. Second,

our construction describes conjecturally the scaling limit of higher genus random planar maps

weighted by Conformal Field Theories: we make precise conjectures about this statement at

the end of the paper.

1. Introduction

In physics, string theory or more generally Euclidean 2d Quantum Gravity (LQG) is an

attempt to quantize the Einstein-Hilbert functional coupled to matter fields (matter is re-

placed by the free bosonic string in the case of string theory). The problematic can be briefly

summarized as follows.

First of all, a quantum field theory on a surface M can be viewed as a way to define a

measure e−Sg(φ)Dφ over an infinite dimensional space E of fields φ living over M (typically φ

are sections of some bundles over M), where Dφ is a “uniform measure” and Sg : E → R is

a functional on E called the action, depending on a background Riemannian metric g on M .

The total mass of the measure

Z(g) :=

∫

E
e−Sg(φ)Dφ (1.1)

is called the partition function. Defining the n-points correlation functions amounts to taking

n points x1, . . . , xn ∈M and weights α1, . . . , αn ∈ R and to defining

Z(g; (x1, α1), . . . , (xn, αn)) :=

∫

E
e
∑n

i=1 αiφ(xi)e−Sg(φ)Dφ,

at least if the fields φ are functions on M .

A conformal field theory (CFT in short) on a surface is a quantum field theory which

possesses certain conformal symmetries. More specifically, the partition function Z(g) of a

CFT satisfies the diffeormorphism invariance Z(ψ∗g) = Z(g) for all smooth diffeomorphism
1
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ψ :M →M and a so-called conformal anomaly of the following form: for all ω ∈ C∞(M)

Z(eωg) = Z(g) exp
( c

96π

∫

M
(|dω|2g + 2Kgω)dvg

)
(1.2)

where c ∈ R is called the central charge of the theory, Kg is the scalar curvature of g and dvg
the volume form. The n-points correlation functions should also satisfy similar types of con-

formal anomalies and diffeormorphism invariance (see (4.2) and (4.4)). Usually, it is difficult

to give a mathematical sense to (1.1) because the measure Dφ, which is formally the Lebesgue

measure on an infinite dimensional space, does not exist mathematically. Hence, CFT’s are

mostly studied using axiomatic and algebraic methods, or perturbative methods (formal sta-

tionary phase type expansions): see for example [FMS, Ga].

Liouville Quantum Field Theory. The first part of our work is to construct Liouville

quantum field theory (LQFT in short) on Riemann surface of genus g > 2 and to show that

this is a CFT. We use probabilistic methods to give a mathematical sense to the path integral

(1.1), when Sg(φ) = SL(g, φ) is the classical Liouville action, a natural convex functional

coming from the theory of uniformisation of Riemann surfaces that we describe now. Given a

two dimensional connected compact Riemannian manifold (M,g) without boundary, we define

the Liouville functional on C1 maps ϕ :M → R by

SL(g, ϕ) :=
1

4π

∫

M

(
|dϕ|2g +QKgϕ+ 4πµeγϕ

)
dvg (1.3)

where Q,µ, γ > 0 are parameters to be discussed later. If Q = 2
γ , finding the minimizer u

of this functional allows one to uniformize (M,g). Indeed, the metric g′ = eγug has constant

scalar curvature Kg′ = −2πµγ2 and it is the unique such metric in the conformal class of g.

The quantization of the Liouville action is precisey LQFT: one wants to make sense of the

following finite measure on some appropriate functional space Σ (to be defined later) made up

of (generalized) functions ϕ :M → R

F 7→ Πγ,µ(g, F ) :=

∫

Σ
F (ϕ)e−SL(g,ϕ)Dϕ (1.4)

where Dϕ stands for the “formal uniform measure” on Σ. Up to renormalizing this measure

by its total mass, this formalism describes the law of some random (generalized) function ϕ on

Σ, which stands for the (log-)conformal factor of a random metric of the form eγϕg on M . In

physics, LQFT is known to be CFT with central charge cL := 1 + 6Q2 continuously ranging

in [25,∞) for the particular values

γ ∈]0, 2], Q =
2

γ
+
γ

2
. (1.5)

Of course, this description is purely formal and giving a mathematical description of this

picture is a longstanding problem, which goes back to the work of Polyakov [Po]. The rigorous

construction of such an object has been carried out recently in [DKRV] in genus 0, [DRV]

in genus 1 (see also [HRV] for the case of the disk). Let us also mention that Duplantier-

Miller-Sheffield have developed in [DMS] a theory that lies at the “boundary” of LQFT: with

the help of the Gaussian Free Field, their approach gives sense in the case of the sphere,

disk or plane to some form of 2-point correlation function of LQFT and the corresponding
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equivalence class of random measures (defined up to a non trivial subgroup of biholomorphic

transformations of the domain). Yet, another approach by Takhtajan-Teo [TaTe] was to develop

a perturbative approach (a semiclassical Liouville theory in the so-called background field

formalism approach): in this non-probabilistic approach, LQFT is expanded as a formal power

series in γ around the minimum of the action (1.3) and the parameter Q in the action is given

by its value in classical Liouville theory Q = 2
γ .

We consider the genus g > 2 case and give a mathematical (and non perturbative) definition

to (1.4). To explain the result, we need to summarize the construction. On a compact surface

M with genus g > 2, we fix a smooth metric g on M and define for s ∈ R the Sobolev space

Hs(M) := (1+∆g)
−s/2(L2(M)) of order s with scalar product defined using the metric g. Using

the theory of Gaussian free field (GFF in short), we show that for each s > 0 there is a measure

P ′ on H−s(M) which is independent of the choice of metric g in the conformal class [g], and

which represents the following Gaussian formal measure defined for each F ∈ L1(H−s(M),P ′)
by ∫

F (ϕ)e−
1
4π

∫
M

|∇ϕ|2gdvgDϕ :=
1√

det′(∆g)

∫
F (ϕ)dP ′(ϕ) (1.6)

where det′(∆g) is the regularized determinant of the Laplacian, defined as in [RaSi]. The

method to do this is to consider a probability space (Ω,F ,P) and a sequence (aj)j of i.i.d. real

Gaussians N (0, 1) and to consider the random variable (called GFF)

Xg =
√
2π

∑

j > 1

aj
ϕj√
λj

(1.7)

with values in H−s(M), if (ϕj)j > 0 is an orthonormal basis of eigenfunctions of ∆g with

eigenvalues (λj)j > 0 (and with λ0 = 0). The covariance of Xg is the Green function of 1
2π∆g

and there is a probability mesure P on H−s
0 (M) := {u ∈ H−s(M); 〈u, 1〉 = 0} so that the law

of Xg is given by P and for each φ ∈ Hs
0(M), 〈Xg, φ〉 is a random variable on Ω with zero mean

and variance 2π〈∆−1
g φ, φ〉. Then H−s(M) = H−s

0 (M)⊕R and we define P ′ as the pushforward
of the measure P⊗dc under the mapping (X, c) ∈ H−s

0 (M)×R 7→ c+X, where dc is the uniform

Lebesgue measure in R. The formal equality (1.6) is an analogy with the finite dimensional

setting. The next tool needed to the construction is Gaussian multiplicative chaos theory

introduced by Kahane [Ka], which allows us to define the random measure Gγg := eγXgdvg on

M for 0 < γ 6 2 when Xg is the GFF. This is done by using a renormalisation procedure. We

can then define the quantity which plays the role of the formal integral (1.4) as follows: for

F : H−s(M) → R (with s > 0) a bounded continuous functional, we set

Πγ,µ(g, F ) :=(det′(∆g)/Volg(M))−1/2 (1.8)

×
∫

R

E

[
F (c+Xg) exp

(
− Q

4π

∫

M
Kg(c+Xg) dvg − µeγcGγg (M)

)]
dc

and call it the functional integral of LQFT (when F = 1 this is the partition function). Our

first result is that this quantity is finite and satisfies diffeomorphism invariance and a certain

conformal anomaly when Q = γ
2 + 2

γ .

Theorem 1.1 (LQFT is a CFT). Let Q = γ
2 +

2
γ with γ 6 2 and g be a smooth metric on M .

For each bounded continuous functional F : H−s(M) → R (with s > 0) and each ω ∈ C∞(M),
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Πγ,µ(e
ωg, F ) is finite and satisfies the following conformal anomaly:

Πγ,µ(e
ωg, F ) = Πγ,µ(g, F (· − Q

2 ω)) exp
(1 + 6Q2

96π

∫

M
(|dω|2g + 2Kgω)dvg

)
.

Let g be any metric on M and ψ :M →M be an orientation preserving diffeomorphism, then

we have for each bounded measurable F : H−s(M) → R with s > 0

Πγ,µ(ψ
∗g, F ) = Πγ,µ(g, F (· ◦ ψ)).

As a quantum field theory, the other objects of importance for LQFT are the correlation

functions. In Section 4.3, we define the n-points correlation functions with vertex operators

eαiXg(xi) where αi are weights and xi ∈M some points, and we show their conformal anomaly

required to be a CFT. This amounts somehow to taking F (ϕ) =
∏n
i=1 e

αiϕ(xi) in (1.8), but it

again requires renormalisation since ϕ lives in H−s(M) with s > 0. At this level, the construc-

tion follows the method initiated by [DKRV] on the sphere. We notice that for the sphere, only

the n-points correlation functions for n > 3 are well defined, while here the partition function

is already well-defined.

Liouville Quantum Gravity and Polyakov partition function. Our next result is the

main part of the paper and consists in giving a sense to the Liouville quantum gravity (LQG in

short) partition function following the work of Polyakov [Po]. We stress that, even though the

objects comes from theoretical physics, our result and proof is purely mathematical and can

be viewed, from the perspective of a mathematician, as a a way to understand the behaviour

of some natural interesting function near the boundary of moduli space, namely the LQFT

partition function.

Given a connected closed surface M with genus g > 2, quantizing the coupling of the

gravitational field with matter fields amounts to making sense of the formal integral (partition

function),

Z =

∫

R
e−SEH(g)

( ∫
e−SM(g,φm)Dgφm

)
Dg (1.9)

where the measure Dg runs over the space of Riemannian structures R on M (the space of

metrics g modulo diffeomorphisms), the functional integral for matter fields
∫
e−SM(g,φm)Dgφm

stands for the quantization of an action φm 7→ SM(g, φm) over an infinite dimensional space of

fields describing matter, and SEH is the Einstein-Hilbert action

SEH(g) =
1

2κ

∫

M
Kg dvg + µ0Volg(M), (1.10)

where κ is the Einstein constant, µ0 ∈ R is the cosmological constant. The measure Dg repre-

sents the formal Riemannian measure associated to the L2 metric on the space of Riemannian

metrics (its reduction to R). There are several possible choices for the matter fields and we

shall focus on the choice described in Polyakov [Po]. Giving a mathematical definition to the

functional integral (1.9) has been a real challenge, and Polyakov [Po] suggested a decompo-

sition of this integral in the case of bosonic string theory with D free bosons. In that case,

ZM (g) :=
∫
e−SM(g,φm)Dgφm is the partition function of a CFT with central charge cM = D,

and is mathematically given by a certain power of the determinant of the Laplacian. The ar-

gument of Polyakov [Po] (see also D’Hoker-Phong [DhPh]) for defining (1.9) was based on the
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observation that each metric g on M can be decomposed as

g = ψ∗(eωgτ ) (1.11)

where ω ∈ C∞(M), ψ is a diffeomorphism and (gτ )τ∈Mg is a family of hyperbolic metrics on

M parameterizing the moduli space Mg of genus-g surfaces. We recall that Mg is the space of

equivalence classes of conformal structures: it is a 6g − 6 dimensional orbifold equipped with

a natural metric, called the Weil-Petersson metric, whose volume form denoted dτ has finite

volume. In this way, the space of Riemannian structuresR is identified to the product of moduli

spaceMg with the Weyl group C∞(M) acting on metrics by (ϕ, g) 7→ eϕg. Applying the change

of variables (1.11) in the formal integral (1.9) produces a Jacobian (called Ghost determinant)

taking into account the quotient of the space of metrics by the space of diffeomorphisms of M .

The Ghost determinant turns out to be the partition function of a CFT with central charge

cghost = −26 and Polyakov noticed that at the specific value D = 26 the conformal anomaly

of ZM cancels out that of the Ghost term, giving rise to a Weyl invariant partition function

Z =

∫

Mg

ZM (gτ )ZGhost(gτ )
√

detJgτdτ. (1.12)

called critical string theory1. Concretely, this was further discussed by D’Hoker-Phong [DhPh]

who wrote

ZGhost(g) =
(det(P ∗

g Pg)

det Jg

)1/2
, ZM(g) = C

(det′(∆g)

Volg(M)

)−D2
(1.13)

for some constant C, where the determinants are defined by zeta regularizations, Pg is a first-

order elliptic operator mapping 1-forms to trace-free symmetric 2-tensors, and Jg is the Gram

matrix of a fixed basis of kerP ∗
g (see Section 5.1 further details). Then Belavin-Knizhnik [BeKn]

and Wolpert [Wo2] proved that the integral (1.12) with D = 26 diverges at the boundary of

(the compactification of) moduli space, a problematic fact in order to establish well-posedness

of the partition function for critical D = 26 (bosonic) strings.

Noncritical string theories are not formulated within the critical dimension D = 26, yet they

are Weyl invariant. The idea, emerging once again from the paper [Po], is that for D 6= 26 the

integral (1.9) possesses one further degree of freedom to be integrated over corresponding to

the Weyl factor eω in (1.11). For D 6 1, hence cM 6 1, Polyakov argued that integrating this

factor requires using Liouville quantum field theory. In other words, applying once again the

change of variables (1.11) to (1.9) yields

Z =

∫

Mg

ZM (gτ )ZGhost(gτ )Πγ,µ(gτ , 1)
√

detJgτ dτ. (1.14)

where Πγ,µ(gτ , 1) is the partition function of LQFT in the background metric gτ . As explained

above, the partition function Πγ,µ(gτ , 1) depends on two parameters γ and µ (some of which are

related in some specific way to cM). Later, Polyakov’s argument was generalized by David and

Distler-Kawai [Da, DiKa] to CFT type matter field theories with central charge cM 6 1 (thus

including the case D = 1). In that CFT context, the integral (1.14) is often called partition

function of Liouville quantum gravity. This approach has an important consequence related to

1The term ”critical” refers in fact to the critical dimension D = 26 needed to get a Weyl invariant theory

without quantizing the Weyl factor e
ω in (1.11).
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string theory as it paves the way to a rigorous construction of noncritical bosonic string theory 2

provided one can make sense of (1.14). This is the main purpose of this paper. The importance

of this theory is discussed in great details in [Polch, section 5.1] or [Kleb] for instance.

Once having defined the partition function Πγ,µ(g, 1) of LQFT, we introduce the partition

function for LQG

ZLQG :=

∫

Mg

ZM(gτ )ZGhost(gτ )Πγ,µ(gτ , 1)
√

detJgτdτ (1.15)

where we choose for the matter partition function

ZM(g) =
( det′∆g

Volg(M)

)− cM
2
, (1.16)

the ghost determinant ZGhost(gτ ) being defined by (1.13) and dτ the Weil-Petersson measure.

Notice that (1.16) is nothing but the partition function (1.13) for D = cM free bosons extended

to all possible values D 6 1. The parameters in (1.8) are tuned in such a way that the global

conformal anomaly of the product

ZM(gτ )ZGhost(gτ )Πγ,µ(gτ , 1)

vanishes, hence ensuring Weyl invariance of the whole theory (1.15). In view of Theorem 1.1,

this gives the relation

cM − 26 + 1 + 6Q2 = 0,

hence determining the value of γ (encoded by Q) in terms of the central charge of the matter

fields. We refer to Section 5.1 for more explanations.

The main result of this paper is the following:

Theorem 1.2 (Convergence of the partition function). For surfaces of genus g > 2, the integral

defining the partition function ZLQG of (1.15) converges for γ ∈]0, 2], that is for cM 6 1.

The integral defining ZLQG in the case cM = 0 corresponds to the case of pure gravity (i.e.

no matter), cM = −2 to uniform spanning trees and cM = 1 (equivalently D = 1) to noncritical

strings (or D = 2 string theory). As far as we know, this is the first proof of convergence of

string theory on hyperbolic surfaces with fixed genus.

Using this Theorem, we can now see the metric g on M as a random variable with law

ruled by the partition function (1.15). The Riemannian volume and modulus of this random

metric are called the quantum gravity volume form (LQG volume form) and quantum gravity

modulus, see Theorem 5.1. Furthermore we formulate conjectures relating the LQG volume

form to the scaling limit of random planar maps in the case of pure gravity cM = 0, hence

providing the scaling limit of the model studied in [Mi], or to the scaling limit of random planar

maps weighted by the discrete Gaussian free field in the case cM = 1, see Section 5.5. Though

we do not explicitly write a conjecture, we further mention here that the limit of random planar

maps with fixed topology weighted by uniform spanning trees corresponds to cM = −2.

2Noncritical bosonic string theory is sometimes referred to as critical D = 2 string theory, by opposition to

the critical D = 26 string theory. The two dimensions correspond to one dimension for the embedding into R

and one dimension for the Weyl factor: in other words the Weyl factor ω in (1.11) plays the role of a hidden

dimension, see the explanations in [Polch] page 121.
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The main input of our paper is the proof of Theorem 1.2. We need to analyse the integrands

in (1.15) near the boundary of moduli space and show that we can control them. The moduli

space Mg can be viewed as a 6g − 6 dimensional non-compact orbifold of hyperbolic metrics

on M , that can be compactified in such a way that its boundary corresponds to pinching

closed geodesics. Hyperbolic metrics on M corresponding to points in ∂Mg are complete

hyperbolic surfaces with cusps and finite volume. The estimates of Wolpert [Wo2] describe

the parts involving the ghost and matter terms. The heart of our work is to analyse the

behaviour of Gaussian multiplicative chaos under degeneracies of the hyperbolic surfaces: this

is rather involved since there are in general small eigenvalues of Laplacian tending to 0 and

the covariance of the GFF (i.e. the Green function) is thus diverging. There is yet a huge

conceptual gap between the cases cM < 1 and cM = 1. Roughly, the reason is the following:

the product ZM(gτ )ZGhost(gτ ) is at leading order comparable to
∏
j e

− π2

3ℓj
(1−cM

2 )
, where the

product runs over pinched geodesics with lengths ℓj → 0 when approaching the boundary

of the (compactification of) moduli space – see subsection 2.3 for more precise statements–

whereas Πγ,µ(gτ , 1) is comparable to
∏
j e

− π2

3ℓj
(−1

2 )×F (Gγg (M)) where F (Gγg (M)) is an explicit

functional expectation of the Gaussian multiplicative chaos Gγg (M). Hence, for cM < 1, we

prove soft estimates on the functional F (Gγg (M)) that are enough to get an exponential decay

of the product ZM(gτ )ZGhost(gτ )Πγ,µ(gτ , 1) at the boundary of Mg and thus integrability with

respect to the Weil-Petersson measure. In the case cM = 1, the leading exponential behaviors

cancel out exactly so that the analysis must determine the polynomial corrections behind

the leading exponential behavior, rendering the computations more much intricate. In order to

analyse the mass of the Gaussian multiplicative chaos measure in these degenerating regions, we

need to prove very sharp estimates (that, as far as we know, are new) on the Green function and

on the eigenfunctions associated to the small eigenvalues in the pinched necks of the surface, as

functions of the moduli space parameters τ when τ approaches the boundary ∂Mg. Roughly

speaking, the crucial observation is that the GFF behaves like two independent Brownian

motions in the variable transverse to the closed geodesic being pinched, and this allows us

to translate the problem in terms of explicit functionals of Brownian motion. For (and only

for) cM = 1, we show that the pinching produces an extra rate of decay of Πγ,µ(gτ , 1) as we

approach ∂Mg, implying the convergence.

To conclude this introduction, we point out that an interesting different approach to de-

fine path integrals for random Kähler metrics on surfaces was introduced recently by Ferrari-

Klevtsov-Zelditch [FKZ, KlZe], but the link with our work is not established rigorously.

Acknowledgements: C.G. is partially funded by grants ANR-13-BS01-0007-01 and ANR-13-

JS01-0006. R.R. and V.V. are partially funded by grants ANR-JCJC-Liouville. We would like

to thank A. Bilal, I. Klebanov, F. Rochon, L. Takhtajan for useful conversations. We finally

wish to thank B. Bluy.

2. Geometric background and Green functions

2.1. Uniformisation of compact surfaces of genus g > 2. Let M be a compact surface

of genus g > 2 and let g be a smooth Riemannian metric. Recall that Gauss-Bonnet tells us
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that ∫

M
Kgdvg = 4πχ(M) (2.1)

where χ(M) = (2 − 2g) is the Euler characteristic, Kg the scalar curvature of g and dvg the

Riemannian measure. The uniformisation theorem says that in the conformal class

[g] := {eϕg;ϕ ∈ C∞(M)}
of g, there exists a unique metric g0 = eϕ0g of scalar curvatureKg0 = −2. For a metric ĝ = eϕg,

one has the relation

Kĝ = e−ϕ(∆gϕ+Kg)

where ∆g = d∗d is the non-negative Laplacian (here d is exterior derivative and d∗ its adjoint).

Finding ϕ0 is achieved by minimizing the following functional

F : C∞(M) → R
+, F (ϕ) :=

∫

M
(12 |dϕ|2g +Kgϕ+ 2eϕ)dvg

and taking ϕ0 to be the function where F (ϕ) is minimum at ϕ = ϕ0. We will embed this

functional into a more general one, depending on three parameters, called Liouville functional :

let γ,Q, µ > 0 and define

SL(g, ϕ) :=
1

4π

∫

M

(
|dϕ|2g +QKgϕ+ 4πµeγϕ

)
dvg. (2.2)

When Q = 2/γ and πµγ2 = 1, we can write SL(g, ϕ) =
1

2γ2πF (γϕ). In fact, if ĝ = eωg for some

ϕ, the functional SL satisfies the relation

SL

(
ĝ, ϕ− ω

γ

)
= SL(g, ϕ) +

1

4π

∫

M

(( 1

γ2
− Q

γ

)
|dω|2g −

Q

γ
Kgω +

(
Q− 2

γ

)
ϕ∆gω

)
dvg

and in particular if Q = 2/γ it satisfies

SL

(
ĝ, ϕ− ω

γ

)
= SL(g, ϕ) −

1

4πγ2

∫

M
(|dω|2g + 2Kgω)dvg, (2.3)

which is sometimes called conformal anomaly: changing the conformal factor of the metric

entails a variation of the functional proportional to the Liouville functional. Similar properties

will be shared by the quantum version of the Liouville theory, which fall under the scope of

Conformal Field Theory (CFT for short, more later). At this stage let us just mention that we

will show that the value of Q for the quantum Liouville theory to possess a conformal anomaly

has to be adjusted to take into account quantum effects. More precisely we will have in the

quantum theory

Q =
2

γ
+
γ

2
. (2.4)

2.2. Hyperbolic surfaces, Teichmüller space and Moduli space. Let M be a surface of

genus g > 2. The set of smooth metrics on M is a Fréchet manifold denoted by Met(M) and

contained in the Fréchet space of smooth symmetric tensors C∞(M,S2M) of order 2. This

space has a natural L2 metric given by

〈h1, h2〉 :=
∫

M
〈h1, h2〉gdvg (2.5)
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where h1, h2 ∈ TgMet(M) = C∞(M,S2M) and 〈·, ·〉g is the usual scalar product on endo-

morphisms of TM when we identify symmetric 2-tensors with endomorphisms of TM through

the metric g. A metric with Gaussian curvature −1 will be called hyperbolic, we denote by

Met−1(M) the set of such metrics on M . The group D(M) of smooth diffeomorphisms acts

smoothly and properly on Met(M) and on Met−1(M) by pull-back φ.g := φ∗g, moreover it

acts by isometries with respect to the metric (2.5). The subgroup D0(M) ⊂ D(M) of elements

contained in the connected component of the Identity also acts properly and smoothly and

Mod(M) := D(M)/D0(M) is a discrete subgroup called mapping class group or moduli group.

The Fréchet space C∞(M) acts on Met(M) by conformal multiplication (ϕ, g) 7→ eϕg. The or-

bits of this action are called conformal classes and the conformal class of a metric g is denoted

by [g].

The Teichmüller space of M is defined by

T (M) := Met−1(M)/D0(M).

By taking slices transverse to the action of D0(M), we can put a structure of smooth manifold

with real dimension 6g − 6, it is topologically a ball, and its tangent space at a metric g

(representing a class in T (M)) can be identified naturally with the space of divergence-free

trace-free tensors with respect to g by choosing appropriately the slice. Teichmüller space has

a complex structure and is equipped with a natural Kähler metric called the Weil-Petersson

metric, which is defined by

〈h1, h2〉WP :=

∫

M
〈htf1 , htf2 〉gdvg

if h1, h2 ∈ TgT (M) and htfi = hi − 1
2Trg(hi)g denotes the trace-free part. The Weil-Petersson

metric is not the metric induced by (2.5) after quotienting by D0(M) but it is rather induced by

the L2 metric on almost complex structures, when we identify almost complex structures with

metrics of constant curvature. We refer for to the book of Tromba [Tr] for more details about

this approach of Teichmüller theory, the Weil-Petersson metric is discussed in Section 2.6 there.

The group Mod(M) acts properly discontinuously on T (M) by isometries of the Weil-

Petersson metric, but the action is not free and there are elements of finite order. The quotient

M(M) := T (M)/Mod(M) is a Riemannian orbifold called the moduli space of M , its orbifold

singularities corresponding to hyperbolic metrics admitting isometries. Since T (M), Mod(M)

and M(M) actually depend only on the genus g of M , we shall denote them Tg, Modg and

Mg. The manifold Mg is open but can be compactified into Mg, the locus of the compactifi-

cation is a divisor D ⊂ Mg and the Weil-Petersson distance is complete on that space. Since

we will need to understand the behavior of certain quantities on the moduli space, we now

recall its geometry near the divisor D and we shall follow the description given by Wolpert

([Wo1, Wo2, Wo3]) for this compactification. On a surface M of genus g, there is a unique

geodesic in each free homotopy class, and we call a partition of M a collection of 3g − 3 sim-

ple closed curves {γ1, . . . , γ3g−3} which are not null-homotopic and not mutually homotopic.

If g ∈ Met−1(M), there is a unique simple geodesic homotopic to each γj and we obtain a

decomposition of (M,g) into 2g − 2 hyperbolic pants (a pant is a topological sphere with 3

disk removed, equipped with a hyperbolic metric and with totally geodesic boundary). A sub-

partition of M is a collection of np simple curves {γ1, . . . , γnp} which are not null-homotopic



10 COLIN GUILLARMOU, RÉMI RHODES, AND VINCENT VARGAS

and not mutually homotopic, with np 6 3g− 3; they disconnect the surface into surfaces with

boundary. A surface (M0, g0) in ∂Mg is a surface with nodes: M0 is the interior of a compact

surface M with np simple curves γ1, . . . , γnp removed and g0 is a complete hyperbolic metric

with finite volume on M0, the metric in a collar neighborhood [−1, 1]ρ × (R/Z)θ of each γj
(with γj = {ρ = 0}) being

g0 =
dρ2

ρ2
+ ρ2dθ2.

Notice that these corresponds to a pair of hyperbolic cusps, each one isometric to (R+
t ×

(R/Z)θ, dt
2 + e−2tdθ2) by setting x = ±e−t. Now there is a neighborhood Ug0 of g0 in Mg

represented by hyperbolic metrics gs,τ on M0 for some parameter (s, τ) ∈ C
3g−3−m ×C

m near

0, with gs,τ which are smooth metrics on M when τ 6= 0 and complete smooth metrics with

hyperbolic cusps on M0 when τ = 0, and g0,0 = g0. Moreover, the metrics gs,τ are continuous

with respect to (s, τ) on compact sets of M0 for (s, τ) near 0 (in the C∞ topology), they are

given in the fixed collar neighborhood [−1, 1]ρ × (R/Z)θ of γj by

gs,τ = eϕs,τ

( dρ2

ε2j + ρ2
+ (ε2j + ρ2)dθ2

)
(2.6)

with εj := 2π2/| log |τj|| and ϕs,τ ∈ C∞(M) satisfies

eϕs,τ − 1 → 0 as (s, τ) → 0

in C0 norm (and in fact in C∞ on compact sets of M0). Here we notice that the metric
dρ2

ε2j+ρ
2 + (ε2j + ρ2)dθ2 has curvature −1 in the collar and is isometric to

[−tj, tj ]t × (R/Z)θ, dt2 + ε2j cosh(t)
2dθ2 (2.7)

by setting εj sinh(t) = ρ and εj sinh(tj) = 1. The geodesic γj(gs,t) for gs,t homotopic to γj has

length

ℓj(gs,τ ) = εj(1 + o(1)) as |(s, τ)| → 0

and is contained in a neighborhood [−cεj , cεj ] × R/Z of the collar near γj for some c > 0

independent of εj (or equivalently in t ∈ [−c, c]). Using |eϕs,τ −1| < δ for some small δ > 0, the

set Bj = {m ∈M ; dg(γj(gs,τ ),m) > | log ℓj(gs,τ )|} is contained in a compact set of M0 uniform

in (s, τ) where the metrics depend continously on (s, τ). We can then use geodesic normal

coordinates with respect to g around γj(gs,τ ) and the collar Cj(gs,τ ) =M \Bj is isometric to

[− log ℓj(gs,τ ), log ℓj(gs,τ )]t × (R/Z)θ, dt2 + ℓj(gs,τ )
2 cosh(t)2dθ2. (2.8)

To summarize, the geometry is uniformly bounded outside ∪rj=1Cj(g) for metrics g in a small

neighborhood Ug0 of g0 in Mg.

The loops (γj)j define a subpartition. The open strata of D correspond to subpartitions up

to equivalence by elements in Modg. For each β > 0, the set of metrics in Mg such that all

geodesics have length larger than β is a compact subset of Mg called the β-thick part. The

β-thin part of Mg is the complement of the β-thick part. By Lemma 6.1 of [Wo2], there exists

a constant β > 0 so that the β-thin part of Mg is covered by a finite set of neighborhoods

U(SPj), j = 1, . . . , np where SPj denote some subpartitions ofM and U(SPj) denote the set of

surfaces in Teichmüller space (up to Modg equivalence) for which the geodesics in the homotopy
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class of curves of SPj have length less than β and the other ones have length bounded below

by β/2. Each U(SPj) is a neighborhood of a strata of D.

For each pants decomposition of the surface (with genus g), one has associated coordinates

τ = (ℓ1, . . . , ℓ3g−3, θ1, . . . , θ3g−3) where ℓj are the lengths of the simple closed geodesics bound-

ing the pair of pants and θj ∈ [0, 2π) are the twist angles (see [Wo1]). The Weil-Petersson

volume form is given in these coordinates by

dτ := Cg

3g−3∏

j=1

ℓjdθjdℓj (2.9)

for some constant Cg > 0 depending only on the genus.

2.3. Determinant of Laplacians. For a Riemannian metric g on a connected oriented com-

pact surfaceM , the non-negative Laplacian ∆g = d∗d has discrete spectrum Sp(∆g) = (λj)j∈N0

with λ0 = 0 and λj → +∞. We can define the determinant of ∆g by

det′(∆g) = exp(−∂sζ(s)|s=0)

where ζ(s) :=
∑∞

j=1 λ
−s
j is the spectral zeta function of ∆g, which admits a meromorphic

continuation from Re(s) ≫ 1 to s ∈ C and is holomorphic at s = 0. We recall that if ĝ = eϕg

for some ϕ ∈ C∞(M), one has the so-called Polyakov formula (see [OPS, eq. (1.13)])

log
det′(∆ĝ)

Volĝ(M)
= log

det′(∆g)

Volg(M)
− 1

48π

∫

M
(|dϕ|2g + 2Kgϕ)dvg (2.10)

where Kg is the scalar curvature of g as above. It is interesting to compare with the conformal

anomaly (2.3) of the Liouville action SL. To compute det′(∆g), it thus suffices to know it for

an element in the conformal class, and by the uniformisation theorem we can choose a metric

g of scalar curvature −2 (or equivalently Gaussian curvature −1) if M has genus g > 2. Such

hyperbolic surface can be realized as a quotient Γ\H2 of the hyperbolic half-plane

H
2 := {z ∈ C; Im(z) > 0} with metric gH2 =

|dz|2
(Im(z))2

by a discrete co-compact subgroup Γ ⊂ PSL2(R) with no torsion. In each free homotopy class

on M = Γ\H2, there is a unique closed geodesic, and we can form the Selberg zeta function

Zg(s) =
∏

γ∈P

∞∏

k=0

(1− e−(s+k)ℓ(γ)), Re(s) > 1

where P denotes the set of primitive closed geodesics of (M,g) ≃ Γ\H2 and ℓ(γ) are their

lengths (recall that primitive closed geodesics are oriented closed geodesics that are not iterates

of another closed geodesic). By the work of Selberg, The function Zg(s) admits an analytic

continuation to s ∈ C and it is proved by D’Hoker-Phong [DhPh] that

det′∆g = Z ′
g(1)e

(2g−2)C (2.11)

where C is an explicit universal constant (see also Sarnak [Sa]). The behavior of Z ′
g(1) near

the boundary of Mg is studied by Wolpert [Wo2]: there exists Cg > 0 a constant depending
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only on the genus such that for all g ∈ Mg

C−1
g

np∏

j=1

e
− π2

3ℓj (g)

ℓj(g)

∏

λk(g)<1/4

λk(g) 6 Z ′
g(1) 6 Cg

np∏

j=1

e
− π2

3ℓj(g)

ℓj(g)

∏

λk(g)<1/4

λk(g) (2.12)

where λk(g) are the eigenvalues of ∆g and ℓj(g) are the lengths of closed geodesics with length

less than ε > 0 for some small fixed ε > 0.

There is another operator which appears in the work of Polyakov [Po] and whose determinant

is important in 2D quantum gravity. Let Pg be the differential operator mapping differential

1-forms on M to symmetric trace-free 2-tensors, defined by

Pg ω := 2S∇gω − Trg(S∇gω)g.

If ∇g is Levi-Civita connection for g, Trg denotes the trace with respect to g and S denotes

the orthogonal projection on symmetric 2-tensors. The kernel of Pg is the space of conformal

Killing vector fields, which is thus trivial in genus g > 2. Its adjoint P ∗
g is given by P ∗

g u :=

δg(u) = −Trg(∇gu) and called the divergence operator on symmetric trace-free 2-tensors. Its

kernel has real dimension 6g− 6 and is conformally invariant. We denote by (φ1, . . . , φ6g−6) a

fixed basis of kerP ∗
g and by Jg the matrix (Jg)ij = 〈φi, φj〉g The operator P ∗

g Pg is an elliptic

positive self-adjoint second order differential operator acting on 1-forms, and we can define its

determinant by

det(P ∗
g Pg) = exp(−∂sζ1(s)|s=0), ζ1(s) =

∞∑

j=1

µ−sj

where µj > 0 are the non-zero eigenvalues of P ∗
g Pg. The conformal anomaly for this operator

is proved by Alvarez [Al, Eq. 4.27] and reads

log
det(P ∗

ĝ Pĝ)

detJĝ
= log

det(P ∗
g Pg)

det Jg
− 13

24π

∫

M
(|dϕ|2g + 2Kgϕ)dvg (2.13)

if ĝ = eϕg. By [DhPh], one has for (M,g) a hyperbolic surface realized as Γ\H2

det(P ∗
g Pg)

1
2 = Zg(2)e

(2g−2)C′
(2.14)

for some universal constant C ′, and Zg(s) is again the Selberg zeta function. The behavior

of Zg(2) near the boundary of Mg is also studied by Wolpert [Wo2]: there exists Cg > 0 a

constant depending only on the genus such that for all g ∈ Mg

C−1
g

np∏

j=1

e
− π2

3ℓj (g)

ℓ3j(g)
6 Zg(2) 6 Cg

np∏

j=1

e
− π2

3ℓj (g)

ℓ3j (g)
(2.15)

where the ℓj(g) are the lengths of closed geodesics with length less than ε > 0 for some small

fixed ε > 0.
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2.4. Green function and resolvent of Laplacian. Each compact Riemannian surface

(M,g) has a (non-negative) Laplace operator ∆g = d∗d and a Green function Gg defined to be

the integral kernel of the resolvent operator Rg : L
2(M) → L2(M) satisfying ∆gRg = Id−Π0

where Π0 is the orthogonal projection in L2(M,dvg) on ker∆g (the constants). By integral

kernel, we mean that for each f ∈ L2(M)

Rgf(x) =

∫

M
Gg(x, x

′)f(x′)dvg(x
′).

It is well-known (see for example [Pa]) that the hyperbolic space H2 also has a family of Green

functions (here dH2(z, z′) denotes the hyperbolic distance between z, z′)

GH2(λ; z, z′) = Fλ(dH2(z, z′)), λ ∈ D(0, 1/4) ⊂ C (2.16)

so that Fλ(r) is a holomorphic function of λ for r ∈ (0,∞) satisfying

Fλ(r) ∼ − 1

2π
log(r) as r → 0, F0(r) = − 1

2π
log(r) +m(r2) (2.17)

with m being a smooth functions on [0,∞), and GH2(s) satisfies

(∆H2 − λ)GH2(λ; ·, z′) = δz′

where δz′ denotes the Dirac mass at z′; in other words, GH2(λ) is the Schwartz kernel of the

operator (∆H2 − λ)−1 on L2(H2). To obtain the Green function Gg(x, x
′), it suffices to know

it for g hyperbolic (ie. g has constant Gaussian curvature −1) since for any other conformal

metric ĝ = eϕg, we have that

Gĝ(x, x
′) = Gg(x, x

′) + α− u(x)− u(x′),

with α =
1

Volĝ(M)2
〈Gg, 1⊗ 1〉ĝ, u(x) :=

1

Volĝ(M)

∫

M
Gg(x, y)dvĝ(y).

(2.18)

This follows from an easy computation and the identity ∆ĝ = e−ϕ∆g.

Let us then assume that g is hyperbolic. We have

Lemma 2.1. If g is a hyperbolic metric on the surface M , the Green function Gg(x, x
′) for

∆g has the following form near the diagonal

Gg(x, x
′) = − 1

2π
log(dg(x, x

′)) +mg(x, x
′) (2.19)

for some smooth function mg on M × M . Near each point x0 ∈ M , there are isothermal

coordinates z so that g = |dz|2/Im(z)2 and near x0

Gg(z, z
′) = − 1

2π
log |z − z′|+ F (z, z′)

with F smooth. Finally, if ĝ is any metric conformal to g, (2.19) holds with ĝ replacing g but

with mĝ continuous.

Proof. Near each point x0 ∈ M , there is an isometry from a geodesic ball Bg(x0, ε) for g to

the hyperbolic ball BH2(0, ε) in H
2 (0 denotes the center of H2 viewed as the unit disk), which

provides in particular some local complex coordinates z near x0 so that g = eϕ|dz|2 in the ball

Bg(x0, ε) for some function ϕ. In these coordinates,

log dg(x, x
′) = log dH2(z, z′) = log |z − z′|+ L(z, z′) with L smooth (2.20)
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where dg denote the distance for the metric g. Near any given point x′ ∈M , one has

(∆g − λ)Fλ(dg(·, x′))− δx′ ∈ C∞(Bg(x
′, ε)) (2.21)

where Bg(x
′, ε) is a geodesic ball of center x′ and radius ε > 0 small. Denote by Rg(λ) =

(∆g − λ)−1 the resolvent of ∆g for λ /∈ Sp(∆g). By the spectral theorem, at λ = λ0 with

λ0 ∈ Sp(∆g) we have the Laurent expansion

Rg(λ) =
Πλ0
λ− λ0

+Rg(λ0) +O((λ− λ0)), λ→ λ0

for some bounded operator Rg(λ0) and Πλ0 being the orthogonal projector on ker(∆g − λ0).

Thus we obtain

(∆g − λ0)Rg(λ0) = Id−Πλ0

and by elliptic regularity and (2.21), the Schwartz kernel Gg(λ;x, x
′) of Rg(λ) for λ /∈ Sp(∆g)

satisfies for dg(x, x
′) < ε with ε > 0 small enough

Gg(λ;x, x
′) = Fλ(dg(x, x

′)) +Eg(λ;x, x
′) (2.22)

with Eg some smooth function onM×M depending meromorphically of λ. At λ = 0 we deduce

(2.19). The part about ĝ just follows from (2.18) and the fact that dĝ(x, x
′) = eϕ(x)/2dg(x, x

′)+
O(dg(x, x

′)2) as x′ → x. �

The function x 7→ mg(x, x) is often called the Robin constant at x. Notice that if we view

the hyperbolic metric g as an element representing a point of Tg and if ψ ∈ Modg, then we

have the modular invariance

Gψ∗g(λ;x, x
′) = Gg(λ;ψ(x), ψ(x

′)), mψ∗g(x, x
′) = mg(ψ(x), ψ(x

′)). (2.23)

We shall need to describe the Green function Gg when the metric g approaches the boundary

of the compactification of Mg. It turns out that positive small eigenvalues of ∆g appear

sometime when g approaches a point in ∂Mg: Schoen-Wolpert-Yau [SWY] proved that there

exist two positive constants α1, α2 depending only on the genus g so that the n-th positive

eigenvalue λn(g) of ∆g satisfy

α1Ln(M,g) 6 λn(g) 6 α2Ln(M,g) if n 6 2g − 2, and α1 6 λ2g−1 6 α2

where Ln(M,g) is the minimum (over subpartitions) of the sums of lengths of simple geodesics

in subpartitions ofM disconnectingM into n+1 connected components. Each metric g0 ∈ ∂Mg

is in a stratum corresponding to a subpartition SP containing np curves, with ns 6 np of these

simple curves γ1, . . . , γns in the subpartition that disconnect the surfaceM intom+1 connected

components. There is c0 > 0 depending on g0 such that for all δ > 0 small enough, there is a

neighborhood Ug0 ⊂ Mg of g0 such that for all g in the interior Ug0 := Ug0 ∩Mg, there is at

most m positive eigenvalues less than δ and all other eigenvalues are bigger than c0. We call

these eigenvalues the small eigenvalues of g near g0.

Proposition 2.2. Let (M0, g0) ∈ ∂Mg where M0 is a surface with nodes. For δ > 0 arbitrarily

small, take g in a sufficiently small open neighborhood Ug0 of g0 in Mg so that the small
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eigenvalues of g in Ug0 = Ug0 ∩Mg satisfy λ1(g) 6 . . . 6 λm(g) 6 δ. The Green function Gg
restricted to M0 can be written for g ∈ Ug0 as

Gg(x, x
′) =

∑

λj(g) 6 δ

Πλj(g)(x, x
′)

λj(g)
+Ag(x, x

′) (2.24)

where Πλj(g) is the orthogonal projector on the corresponding eigenspace. In each compact set

Ω of M0, the map (g, x, x′) 7→ Ag(x, x
′) is continuous on Ug0×(Ω2

diag) if Ω
2
diag := (Ω×Ω)\diag

and, near the diagonal of Ω× Ω, one has

Ag(x, x
′) = − 1

2π
log(dg(x, x

′)) +Bg(x, x
′)

with (g, x, x′) 7→ Bg(x, x
′) ∈ C0(U g0 ×Ω×Ω). The Schwartz kernel

∑m
j=1Πλj(g)(x, x

′) extends

continuously to (g, x, x′) ∈ Ug0 × Ω × Ω with value at g = g′ ∈ ∂U g0 the orthogonal projector

Π0(g
′;x, x′) onto kerL2 ∆g′.

Proof. After possibly splitting Ω in smaller pieces, we can assume that the radius of injectivity

of all g ∈ Ug0 on Ω is bounded below by some uniform α > 0. Using the residue formula applied

to Rg(λ)/λ in a disk D(0, δ) of radius δ centered at λ = 0, one has

Rg(0)−
∑

λj(g) 6 δ

Πλj(g)

λj(g)
=

1

2πi

∫

∂D(0,δ)

Rg(λ)

λ
dλ. (2.25)

and we denote by Ag(x, x
′) the Schwartz kernel of 1

2πi

∫
∂D(0,δ)

Rg(λ)
λ dλ. Let Ω′ ⊂M0 be a small

neighborhood Ω′ of Ω so that the radius of injectivity of each g ∈ Ug0 is bounded below by

α/2. Let Lg(λ) be the operator on Ω′ with Schwartz kernel

Fλ(dg(x, x
′))

where Fλ is the function of (2.16). Take χ, χ̃ ∈ C∞
c (M0) equal to 1 on Ω but with support

contained in Ω′, and such that χ̃χ = χ. Then on Ω′ and on M0, we have

(∆g − λ)χ̃Lg(λ)χ = χ+ [∆g, χ̃]Lg(λ)χ (2.26)

Then multiplying (2.26) by χRg(λ) on the left, we get

χRg(λ)χ = χLg(λ)χ− χRg(λ)[∆g, χ̃]Lg(λ)χ.

The operators [∆g, χ̃]Lg(λ)χ have smooth kernel (we use that [∆g, χ̃] = 0 on supp(χ)), and

extends continuously to g ∈ Ug0 since g extends continuously as a smooth metric to Ω and dg
on Ω×Ω as well. Now we use the fact that for λ ∈ ∂D(0, δ), g 7→ Rg(λ) extends continuously to

Ug0 as bounded operators Hk
comp(M0) → Hk

loc(M0) for all k > 0 by a result of Schulze [Sc]: this

implies that χRg(λ)[∆g, χ̃]Lg(λ)χ extend continuously in g ∈ Ug0 as a family of bounded op-

erators H−k(M0) → Hk
comp(M0) for all k > 0, since [∆g, χ̃]Lg(λ)χ maps H−k(M0) → Hk(M0)

uniformly in g ∈ Ug0 . Thus the Schwartz kernels of the operators [∆g, χ̃]Lg(λ)χ extend as a

uniform family of continuous Schwartz kernels (when g ∈ Ug0). We then deduce that

1

2πi

∫

∂D(0,δ)

χRg(λ)χ

λ
dλ =

1

2πi

∫

∂D(0,δ)

χLg(λ)χ

λ
dλ+B′

g
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where B′
g is a family of operators, with Schwartz kernel B′

g(x, x
′) continuous as a function of

(g, x, x′) ∈ Ug0 ×Ω×Ω. Next, since by Cauchy formula 1
2πi

∫
∂D(0,δ)

Fλ(z)
λ dλ = F0(z), we deduce

that ( 1

2πi

∫

∂D(0,δ)

χLg(λ)χ

λ
dλ

)
(x, x′) = χ(x)χ(x′)F0(dg(x, x

′))

and this Schwartz kernel has the desired property by using (2.17). This ends the proof of

(2.24). The proof of the fact that
∑m

j=1Πλj(g)(x, x
′) converge to the projector onto the kernel

of g′ as g → g′ ∈ ∂Ug0 is essentially the same as what we did (and even simpler) by applying

the residue formula to Rg(λ) in D(0, δ) instead of Rg(λ)/λ. The convergence in C0 norm

is clear since convergence in L2 of
∑m

j=1Πλj(g) implies convergence in C∞ on Ω by elliptic

regularity. �

2.5. Small eigenvalues and associated eigenvectors. In this section, we recall the asymp-

totics of the small positive eigenvalues λ1(g) 6 . . . 6 λm(g) as g ∈ Mg approaches an element

g0 ∈ Mg by following Burger [Bu1, Bu2] and we will see that the proof of [Bu2] also gives

an approximation of the projectors Πλj(g). Let (M0, g0) be a surface with nodes, with corre-

sponding subpartition of the closed Riemann surface M given by simple curves γ1, . . . , γnp and

γ1, . . . , γns (with ns 6 np) are disconnectingM into m+1 connected components S1, . . . , Sm+1.

For all δ > 0 small enough, there is a small neighborhood Ug0 ⊂ Mg of g0 in Mg so that for

each g ∈ Ug0 = Ug0 ∩ Mg there are m small eigenvalues 0 < λ1(g) 6 . . . 6 λm(g) 6 δ and

all others are larger than a constant c0 > 0 depending only on g0. Each metric g ∈ Ug0 has a

unique simple closed geodesic homotopic to γj for j 6 r, with length ℓj(g) 6 c1δ, while all other

primitive closed geodesics have length bigger than c2 > 0, where c1, c2 are constants depending

only on g0. Define the length Lij(g) :=
∑

k∈Eij
ℓk(g) where Eij = {1 6 k 6 ns; γk ∈ ∂Si∩∂Sj}.

Let || · ||g be the norm on R
m+1 given by

||a||2g =
m+1∑

j=1

Volg(Sj)a
2
j , with a = (a1, . . . , am+1) (2.27)

and let Qg be the quadratic form on R
m+1 given by

Qg(a) =
∑

1 6 i,j 6 m+1

(ai − aj)
2Lij(g). (2.28)

Notice that Volg(Sj) are positive constants depending only on the topology of Sj (and not on

g) by Gauss-Bonnet theorem. Then Burger [Bu2] showed the following estimate:

Theorem 2.3 (Burger 1990). If ν1(g) 6 . . . 6 νm(g) are the positive eigenvalues of Qg with

respect to the norm || · ||g on R
m+1, then there is C > 0 such that for all g ∈ Ug0 and each

1 6 j 6 m

νj(g)

π
(1− Cδ

1
2 ) 6 λj(g) 6

νj(g)

π
(1 + Cδ| log δ|).

Each simple small geodesic γj(g) of g (homotopic to γj) has a collar neighborhood

Cj(g) = {x ∈M ; sinh(dg(x, γj(g))) 6 1/ sinh(ℓj(g))} (2.29)
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and these collars are disjoints one from the other. The setM \∪j 6 nsCj(g) has m+1 connected

components S′
1, . . . , S

′
m+1 that identify naturally with S1, . . . , Sm+1. One can define a map

a ∈ R
m+1 7→ fa ∈ H1(M) (2.30)

by setting fa(x) = aj if x ∈ S′
j and fa being the unique harmonic function in Cj(g) so that fa

is continuous on M . In [Bu2], Burger proved the following

Lemma 2.4 (Burger 90). There is C > 0 such that for all a ∈ R
m+1 and all g ∈ Ug0

1

π
Qg(a) 6 ||dfa||2L2(M,g) 6

1

π
Qg(a)(1 + Cδ), ||a||2g(1− Cδ| log δ|) 6 ||fa||2L2(M,g) 6 ||a||2g.

An estimate for λj(g) in terms of the pinched geodesics ℓk(g) is given by Schoen-Wolpert-Yau

[SWY]: let D be an n-disconnect, i.e a collection of closed simple geodesics γ1(g), . . . , γns(g)

with respective lenghts ℓ1(g), . . . , ℓns(g) disconnecting M into n connected components, and

define Ln(D, g) :=
∑ns

j=1 ℓj(g). We set

Ln(M,g) := min
D∈Dn

Ln(D, g)

where Dn is the set of all n-disconnects of M . Then, ordering the eigenavlues by increasing

order, it is proved in [SWY] that there is C > 1 depending only on the genus of M such that

for each n 6 2g − 2

C−1Ln(M,g) 6 λn(g) 6 CLn(M,g).

As a consequence, in a neighborhood Ug0 ⊂ Mg of a metric g0 ∈ ∂Mg, we have the rough

estimate for all j 6 m and g ∈ Ug0

λj(g) > C−1ℓj(g) (2.31)

where m+ 1 is the number of connected components of the surface with cusps (M0, g0), ns is

the number of pinched geodesics disconnecting the surface and ℓ1(g) 6 ℓ2(g) 6 . . . 6 ℓns(g)

are the lengths of these separating geodesics ranked by increasing order.

Below, we take the convention that we repeat each eigenvalue according to its multiplicity,

thus λj(g) can be equal to λj+1(g), and similarly for the νj(g).

Lemma 2.5. For each g ∈ Ug0 , let v0 = (4π(g − 1))−1 and v1, . . . , vm ∈ R
m+1 so that

(vi)i=0,...,m is an orthonormal basis of eigenvectors for Qg with vi associated to νi(g). There is

C > 0 and L ∈ N such that for all g ∈ Ug0, there exists an orthonormal basis ϕ1, . . . , ϕm of

⊕m
j=1 ker(∆g − λj(g)) satisfying

||fvj − ϕj ||L2(M,g) 6 Cδ
1
L , and

∑

λj(g) 6 δ

Πλj(g)(x, x
′)

λj(g)
=

m∑

j=1

fvj(x)fvj (x
′)

νj(g)
+O

( δ
1
L

ν1(g)

)

where the error term is in L∞ norm on compact sets disjoints from ∪jCj(g).

Proof. To simplify notation we denote by fj the function fvj . We construct the basis ϕj by an

inductive process. Let (φj)j∈N0 be an orthonormal basis of L2(M,g) of eigenvectors for ∆g, ie.
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∆gφj = λj(g)φj . By Lemma 2.4, we have for k 6 m

||dfk||2L2 =

∞∑

j=1

λj(g)〈fk, φj〉2 = Qg(vk)(1 +O(δ| log δ|)) = νk(g)||fk||2L2(1 +O(δ| log δ|))

and by Theorem 2.3, this gives for each k = 1, . . . ,m

∞∑

j=1

(λj(g)
λk(g)

− 1
)
〈fk, φj〉2 = O(δ

1
2 ||fk||2L2). (2.32)

If |λ2λ1−1| > δ
1
4 , we set ϕ1 := φ1 and i1 = 1. By (2.32) with k = 1, we get

∑∞
j=2〈fk, φj〉2 = O(δ

1
4 )

and thus f1 = ±φ1 + OL2(δ
1
8 ). Since 〈fi, fj〉L2 = O(δ| log δ|) for i 6= j by Lemma 2.4, we get

〈fi, ϕ1〉 = O(δ
1
8 ) for all i > 1. If |λ2λ1 − 1| 6 δ

1
4 , we let i1 > 2 be the smallest integer such that

for each i 6 i1, | λi
λi−1

− 1| 6 δ
1

2i and |λi1+1

λi1
− 1| > δ

1

2i1+1 , clearly i1 6 m since there are m small

eigenvalues. We define

ϕ1 =

∑i1
j=1〈f1, φj〉φj

||∑i1
j=1〈f1, φj〉φj ||

, and ϕ̃i =

∑i1
j=1〈fi, φj〉φj

||∑i1
j=1〈fi, φj〉φj ||

for 1 6 i 6 i1.

Then we construct ϕ2, . . . , ϕi1 by the Gram-Schmidt orthonormalization process from ϕ̃2, . . . , ϕ̃i1 .

Since |λi1+1

λi1
− 1| > δ

1

2i1+1 and |λi1λ1 − 1| = O(δ
1

2i1 ), (2.32) tells us that for each i 6 i1,

fi =

i1∑

j=1

〈fi, φj〉φj +OL2(δ
1

2i1+2 )

and thus ϕ̃i = fi +OL2(δ
1

2i1+2 ) for i = 1, . . . , i1. Since 〈fi, fj〉L2 = δij +O(δ| log δ|) by Lemma

2.4, we deduce that for i = 1, . . . , i1

ϕi = fi +OL2(δ
1

2i1+2 ).

Now we prove the induction process in a way similar to the first step. Suppose we have con-

structed an orthornormal basis ϕ1, . . . , ϕℓ of ⊕ℓ
j=1Rφj so that ϕj = fj + OL2(δ

1
L ) for some

L ∈ N and ℓ < m. Notice that 〈fk, φj〉 = O(δ
1
L ) for all k > ℓ+ 1 and j 6 ℓ by the induction

assumption. Then if |λℓ+1

λℓ
− 1| > δ

1
L , (2.32) with k = ℓ+ 1 gives

∑∞
j=ℓ+2〈fℓ+1, φj〉2 = O(δ

1
L ),

thus if we set iℓ+1 = ℓ+ 1 and

ϕℓ+1 =
φℓ+1 −

∑ℓ
j=1〈φℓ+1, ϕj〉ϕj

||φℓ+1 −
∑ℓ

j=1〈φℓ+1, ϕj〉ϕj ||

we get ϕℓ+1 = fℓ+1+OL2(δ
1
2L ) and we have increased the induction step by 1. If |λℓ+1

λℓ
−1| 6 δ

1
L ,

we let iℓ+1 6 m be the smallest integer such that for all i = ℓ+1, . . . , iℓ+1, | λi
λi−1

−1| 6 δ
1

L2i−ℓ−1

and |λiℓ+1+1

λiℓ+1
− 1| > δ

1

L2
iℓ+1−ℓ , and we will construct ϕℓ+1, . . . , ϕiℓ+1

. Let L′ = L2iℓ+1−ℓ and

define

ϕℓ+1 =

∑iℓ+1

j=ℓ+1〈fℓ+1, φj〉φj
||∑iℓ+1

j=ℓ+1〈fℓ+1, φj〉φj ||
, and ϕ̃i =

∑iℓ+1

j=ℓ+1〈fi, φj〉φj
||∑iℓ+1

j=ℓ+1〈fi, φj〉φj ||
for ℓ+ 1 6 i 6 iℓ+1.
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Then we construct ϕℓ+2, . . . , ϕiℓ+1
by the Gram-Schmidt orthonormalization process from

ϕ̃ℓ+2, . . . , ϕ̃iℓ+1
. By induction assumption and |λiℓ+1+1

λiℓ+1
− 1| > δ

1
L′ , (2.32) tells us that for

each i = ℓ+ 1, . . . , iℓ+1,

fi =

iℓ+1∑

j=ℓ+1

〈fi, φj〉φj +OL2(δ
1

2L′ )

and thus ϕ̃i = fi + OL2(δ
1

2L′ ) for i = ℓ + 1, . . . , iℓ+1. Since 〈fi, fj〉L2 = δij + O(δ| log δ|) by

Lemma 2.4, we deduce that for i = ℓ+ 1, . . . , iℓ+1

ϕi = fi +OL2(δ
1

2L′ )

and we have increased the induction step by iℓ+1 − (ℓ + 1) > 1. This inductive construction

produces a sequence of integers j0 = 1, j1 = i1, j2 = ii1+1, . . . , jN = m and N associated

blocks E1, . . . EN , with Ek = {ϕjk , . . . , ϕjk+1
} where the span of elements in Ek is the span of

{φjk , . . . , φjk+1
}. By construction we have

∑

λj(g) 6 δ

Πλj (x, x
′)

λj(g)
=

N∑

k=0

jk+1∑

j=jk

ϕj(x)ϕj(x
′)

λj(g)
+O(δ1/L)

=
N∑

k=0

jk+1∑

j=jk

ϕj(x)ϕj(x
′)

νj(g)
+O

( δ
1
L

ν1(g)

)

=

m∑

j=1

fj(x)fj(x
′)

νj(g)
+O

( δ
1
L

ν1(g)

)

for some L ∈ N large. Here we notice that the O
(

δ
1
L

ν1(g)

)
can be taken in L∞ norm since L2

norms on eigenfunctions give directly uniform L∞ norms on compact sets outside the collars

Cj(g). �

2.6. Example: the case of genus 2. For pedagogical purposes only, let us discuss more

particularly the case of genus g = 2. In this case there can be only 3 simple curves in a

partition and the maximal number of connected components separated by these curves is 2:

either 1 curve separates M into two surfaces of genus 1 with 1 boundary component (Case

1) or two hyperbolic pants with 3 boundary components (Case 2). Consequently, the number

of eigenvalues approaching 0 when we approach ∂M2 is m ∈ {1, 2} (including the eigenvalue

λ = 0), we call them λ0 = 0 and λ1(g) > 0 when m = 2.

In Case 1, take any partition SP1 by γ1, γ2, γ3 with γ1 being the only separating curve, and

denote by ℓj(g) the length of the geodesic for g freely homotopic to γj. We have

λ1(g) ∼ c1ℓ1(g), as ℓ1(g) → 0 with g ∈ U(SP1) (2.33)

where c1 > 0 depending only on g = 2.

In Case 2, take SP2 any partition where γ1, γ2, γ3 are separating simple curves and, if ℓj(g)

is the length of the geodesic for g homotopic to γj , then by [Bu1],

λ1(g) ∼ c2(ℓ1(g) + ℓ2(g) + ℓ3(g)), as (ℓ1(g), ℓ2(g), ℓ3(g)) → 0 with g ∈ U(SP2) (2.34)
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Figure 1. On the left: Case 1. On the right: Case 2

for some c2 > 0 depending only on g = 2.

In both cases, if g → g0 with (M0, g0) a surface with nodes, (M0, g0) decomposes into

two finite volume hyperbolic surfaces S1 and S2, with volume 2π (by Gauss-Bonnet), and by

Proposition 2.2

Πλ1(g)(x, x
′) → 1

4π
(1lS1(x)− 1lS2(x))(1lS1(x

′)− 1lS2(x
′)) as g → g0 (2.35)

uniformly in (x, x′) on compact sets of M0 ×M0.

2.7. Green’s function near pinched geodesics. For later purpose, we will need a more

detailed description of the Green’s function Gg than Proposition 2.2, in particular we shall

need to know the behaviour of Gg near the pinched geodesics. A recent work of Albin-Rochon-

Sher [ARS] gives a parametrix for ∆g−λ when λ is outside the spectrum and when there is one

pinched geodesic (or the geodesics are pinched at the same speed). Here we need to know the

behaviour in all possible directions of approach of the boundary of Mg. Our estimates are done

in a way to be applied later for the study of the Gaussian multiplicative chaos measure in the

cusp. The work of Melrose-Zhu [MeZh] gives a parametrix for some different Green function.

Let (M0, g0) be a surface with nodes viewed as a surface with pairs of hyperbolic cusps, and

let Ug0 be a local neighborhood of g0 in Mg made of hyperbolic metrics gs,t as explained in

Section 2.2, and denote Ug0 = Mg ∩ Ug0 . For convenience, we remove the parameters (s, t)

and just write g for gs,t. As in Proposition 2.2, we set

Ag(x, x
′) := Gg(x, x

′)−
m∑

j=1

Πλj (x, x
′)

λj
=

1

2πi

∫

∂D(0,ε)

Rg(λ;x, x
′)

λ
dλ (2.36)

where λj = λj(g) are the small eigenvalues tending to 0 as g approaches the boundary of

moduli space, D(0, ε) is a small disk containing these eigenvalues (and only these ones) and

Rg(λ;x, x
′) is the integral kernel of the resolvent of ∆g.

The hyperbolic surface (M,g) decomposes into M = S(g) ∪np

i=1 Cj(g) where Cj(g) are the

collars isometric to [−1, 1]ρ × (R/Z)θ close to a given curve γj, where the metric g is given (in

geodesic normal coordinates to the geodesic γj(g) homotopic to γj) by

gj =
dρ2

ρ2 + ℓ2j
+ (ρ2 + ℓ2j)dθ

2, (2.37)
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where ℓj = ℓj(g) is the length of the geodesic γj(g) and S(g) is a compact manifold with

boundary contained in a fixed (independent of g) compact set of M0. This is also isometric to

(by the coordinates change ρ = ℓj sinh(t))

[−dj , dj ]t × (R/Z)θ, gj = dt2 + ℓ2j cosh
2(t)dθ2, sinh(dj) = 1/ℓj .

The complete hyperbolic cylinder 〈z 7→ eℓjz〉\H2 is isometric to

Fj :=
(
Rρ × (R/Z)θ, gj =

dρ2

ρ2 + ℓ2j
+ (ρ2 + ℓ2j )dθ

2
)
.

Notice that as ℓj → 0, the Riemannian manifold Fj \ {ρ = 0} converges smoothly to two

disconnected surfaces (0,∞)ρ× (R/Z)θ with metric dρ2/ρ2+ρ2dθ2, which are isometric to two

disjoint elementary quotients H2/〈z 7→ z+1〉. The Laplacian ∆gj is self-adjoint with spectrum

[1/4,∞) (its self-adjoint realisation is through Friedrichs extension on C∞
c (Fj)). It is invertible

on L2(Fj) and we can consider its resolvent Rgj(λ) : L
2(Fj) → L2(Fj) which is holomorphic

for λ /∈ [1/4,∞). This is studied in details for example in [Bo, Prop. 5.2] or [GuZw, Appendix]:

writing λ = s(1− s) for s close to 1, we have

Rgj(λ; ρ, θ, ρ
′, θ′) =

∑

k∈Z
uk(s; ρ, ρ

′)e2πik(θ−θ
′)

for some explicit functions uk analytic in s for s close to 1. We denote by Ggj the Green

function corresponding to λ = 0 (i.e. s = 1). We give a more explicit bound at λ = 0 in the

following

Lemma 2.6. For ℓj 6 min(|ρ|, |ρ′|) 6 max(|ρ|, |ρ′|) 6 1 with ρρ′ > 0, the Green function Ggj
for the cylinder satisfies

Ggj (ρ, θ, ρ
′, θ′) =− 1

2π
log

∣∣∣1− e
− 2π

ℓj
| arctan( ρℓj )−arctan(

ρ′

ℓj
)|+2πi(θ−θ′)∣∣∣

+
1

ℓj
min(F ( |ρ|ℓj ), F (

|ρ′|
ℓj
))− 1

πℓj
F ( |ρ|ℓj )F (

|ρ′|
ℓj
) +O(1)

(2.38)

where F (x) :=
∫∞
x

du
1+u2

and the remainder is uniform. If ℓj 6 min(|ρ|, |ρ′|) 6 max(|ρ|, |ρ′|) 6 1

with ρ′ρ < 0, then

Ggj (ρ, θ, ρ
′, θ′) =

1

πℓj
F ( |ρ|ℓj )F (

|ρ′|
ℓj
) +O(e

− π
2ℓj ). (2.39)

If |ρ| ∈ [1/2, 1], |ρ′| 6 1 and |ρ− ρ′| > δ for some δ > 0, then there is C depending only on δ

so that

|∂ρGgj(ρ, θ, ρ′, θ′)| 6 C. (2.40)

If χ ∈ C∞
c (−1, 1) and λ ∈ [0, 1), then we have the pointwise estimate

∫

R/Z

∫ 1

−1
Ggj(ρ, θ, ρ

′, θ′)χ(ρ′)ρ′−λdρ′dθ′ 6 2||χ||L∞

( ρ−λ

1− λ
+
ρ−λ − 1

λ

)
(2.41)

where by convention ρ−λ−1
λ = | log |ρ|| when λ = 0. Finally, the Robin mass of Ggj satisfies

∣∣∣mgj(ρ, θ)−
1

πℓj

(
π2

4 − arctan( ρℓj )
2
)
− 1

2π
log(

√
ρ2 + ℓ2j)

∣∣∣ 6 C. (2.42)
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Proof. Let L be the operator L = (ρ2 + ℓ2j)∆gj acting on T := Rρ × (R/Z)θ with the measure

(ρ2 + ℓ2j)
−1dρdθ, it is symmetric on C∞

c (T ). Changing coordinates to t = ℓ−1
j arctan(ρ/ℓj), L

becomes the operator

L = −∂2t − ∂2θ on (− π
2ℓj
, π
2ℓj

)t × (R/Z)θ

with the measure dtdθ. It is not self-adjoint but we can we consider the Friedrichs self-adjoint

extension, which amounts to set Dirichlet conditions at t = ±π/2ℓj . It is clearly invertible

for each ℓj > 0 and the inverse can be computed using Fourier decomposition in θ. If L−1 is

written under the form

(L−1f)(t, θ) =

∫ π
2ℓj

− π
2ℓj

∫

R/Z
GL(t, θ, t

′, θ′)f(t′, θ′)dθ′dt′

for some Green kernel GL, then Ggj can be written as

Ggj (ρ, θ, ρ
′, θ′) = GL

(arctan( ρℓj )
ℓj

, θ,
arctan(ρ

′

ℓj
)

ℓj
, θ′

)
.

This is clear since the left-hand side maps C∞
c (Fj) to L2(Fj) and is a right inverse for ∆gj on

C∞
c (Fj). Now, computing GL is quite simple: using the Fourier decomposition

L−1f(t, θ) =
∑

k∈Z
e2πikθ(L−1

k fk)(t)

where f(t, θ) =
∑

k e
2πikθfk(t) and Lk is the operator on Ij := (− π

2ℓj
, π
2ℓj

) given by Lk = −∂2t +
4π2k2 with Dirichlet condition at ∂Ij . For k 6= 0, straightforward Sturm-Liouville argument

gives the expression of the Green function for Lk: with k̄ = 2πk,

GLk
(t, t′) =

1

2k̄(1− e−2k̄π/ℓj )

(
(e−k̄t − ek̄(t−π/ℓj ))(ek̄t

′ − e−k̄(t
′+π/ℓj)) 1lt > t′

+ (e−k̄t
′ − ek̄(t

′−π/ℓj))(ek̄t − e−k̄(t+π/ℓj )) 1lt′ > t

)

=
e−k̄|t−t

′|

2k̄
+
e−2πk̄/ℓj cosh(k̄(t− t′))− e−k̄π/ℓj cosh(k̄(t+ t′))

k̄(1− e−2πk̄/ℓj )
.

If max(|ρ|, |ρ′|) 6 1, we have |t| 6 π
2ℓj

− 1 +O(ℓ2j ) and same for t′ thus for ℓj small,

∣∣∣e
−k̄π/ℓj cosh(k̄(t+ t′))

k̄(1− e−2πk̄/ℓj )

∣∣∣ 6 e−k̄/2

k̄
,

∣∣∣e
−2πk̄/ℓj cosh(k̄(t− t′))

k̄(1− e−2πk̄/ℓj )

∣∣∣ 6 e−πk̄/ℓj

k̄
.

We then get

∑

k 6=0

GLk
(t, t′)eik̄(θ−θ

′) =
∑

k 6=0

e−k̄|t−t
′|+ik̄(θ−θ′)

2k̄
+O(1) = − 1

2π
log

∣∣∣1− e−2π(|t−t′|−i(θ−θ′))
∣∣∣+O(1)

when ℓj is small. Notice also that if |ρ| ∈ [ℓj, 1] and |ρ′| ∈ [ℓj , 1] with ρ and ρ′ having different

sign, then ∣∣∣
∑

k 6=0

GLk
(t(ρ), t′(ρ′))eik̄(θ−θ

′)
∣∣∣ 6 Ce

− π
2ℓj . (2.43)
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if t(ρ) = ℓ−1
j arctan(ρ/ℓj) and similarly for t′(ρ′). Next for k = 0, the Green function is given

by the expression

GL0(t, t
′) = −1

2
|t− t′| − ℓj

π
tt′ +

π

4ℓj
,

thus we get

GL0(t(ρ), t
′(ρ′)) =− 1

2ℓj

∣∣∣ arctan( ρℓj )− arctan(ρ
′

ℓj
)
∣∣∣+ 1

πℓj

(
π2

4 − arctan( ρℓj ) arctan(
ρ′

ℓj
)
)
.

If F (x) :=
∫∞
x

du
1+u2

, this can be rewritten as

GL0(ρ, ρ
′) =− 1

2ℓj

∣∣∣F ( ρℓj )− F (ρ
′

ℓj
)
∣∣∣+ 1

2ℓj
(F ( ρℓj ) + F (ρ

′

ℓj
))− 1

πℓj
F ( ρℓj )F (

ρ′

ℓj
)

=

{
1
ℓj
min(F ( ρℓj ), F (

ρ′

ℓj
))− 1

πℓj
F ( ρℓj )F (

ρ′

ℓj
), if ρ > 0, ρ′ > 0

1
πℓj
F ( ρℓj )F (−

ρ′

ℓj
), if ρ > 0, ρ′ < 0

(2.44)

from which (2.38) and (2.39) follow.

Now, we also see from the expressions of GLk
above that if |ρ| ∈ [1/2, 1] and |ρ− ρ′| > δ for

some fixed constant δ > 0, then

|∂ρGgj(ρ, θ, ρ′, θ′)| 6 C

for some constant C depending only on δ but not on ℓj.

Next we prove (2.41). Let F (x) =
∫∞
x

du
1+u2 and let c := ||χ||L∞ . For ρ > 0, we write

∫
Ggj (ρ, θ, ρ

′, θ′)
χ(ρ′)

ρ′λ
dx′ =

1

ℓjπ
F ( ρℓj )

∫ 0

−1
F (− ρ′

ℓj
)
χ(ρ′)

ρ′λ
dρ′ +

∫ ∞

0
Ggj (ρ, θ, ρ

′, θ′)
χ(ρ′)

ρ′λ
dρ′

6
c

πρ

∫ 0

−1
F (− ρ′

ℓj
)
1

ρ′λ
dρ′ +

c

ρ

∫ ρ

0

dρ′

ρ′λ
+ c

∫ 1

ρ

dρ′

ρ′1+λ

6 2c
ρ−λ

1 − λ
+ 2c

ρ−λ − 1

λ

where we used (2.44) in the second line and
∫ −ρ

−1
F (− ρ′

ℓj
)
dρ′

ρ′λ
6 ℓj

∫ 1

ρ

dρ′

ρ′1+λ
6 ℓj

ρ−λ − 1

λ
,

∫ 0

−ρ
F (− ρ′

ℓj
)
dρ′

ρ′λ
6

π

2(1 − λ)
ρ1−λ

for the third line. The same estimate works in the case ρ < 0.

Using the estimates and expressions above, we also get as |(ρ′, θ′)− (ρ, θ)| is small

GL(t, θ, t
′, θ′) = − 1

2π
log(

√
(t− t′)2 + (θ − θ′)2)− ℓj

π
t2 +

π

4ℓj
+O(1) +O(|t− t′|+ |θ − θ′|)

where O(1) is independent of all variables. We also have

log(dgj (ρ, θ, ρ
′, θ′)) = log(

√
(t− t′)2 + (θ − θ′)2) + log(

√
ρ2 + ℓ2j) +O(|t− t′|+ |θ − θ′|)

thus the Robin mass of Ggj satisfies (2.42). �

Next we express
∫
∂D(0,ε)Rg(λ)dλ/λ in terms of Ggj . Let χj , χ

′
j ∈ C∞(M) which are sup-

ported in Cj(g), depending only on the variable ρ associated to the metric g, are equal to 1 in

|ρ| 6 1/4 and such that χ′
j = 1 on a neighborhood of supp(χj). We will use the diffeomorphisms
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between Cj(g) and the subset |ρ| < 1 of Fj to identify these sets (for notational simplicity we

won’t input these diffeos below). Using that ∆g = ∆gj in Cj(g), we have, with χ :=
∑

j χj

(∆g − λ)
∑

j

χ′
jRgj(λ)χj = χ+

∑

j

[∆g, χ
′
j ]Rgj(λ)χj

and thus ∑

j

χ′
jRgj(λ)χj = Rg(λ)χ+Rg(λ)

∑

j

[∆g, χ
′
j ]Rgj(λ)χj .

Similarly, we also have
∑

j

χjRgj(λ)χ
′
j = χRg(λ) +

∑

j

χjRgj(λ)[χ
′
j ,∆g]Rg(λ)

and therefore (using also χ′
jχ

′
k = 0 if i 6= k)

χRg(λ)χ =
∑

j

χjRgj(λ)χj −
∑

j

χjRgj(λ)χ
′
j [∆g, χ

′
j]Rgj (λ)χj

+
∑

j

χjRgj(λ)[∆g, χ
′
j ]Rg(λ)

∑

i

[χ′
i,∆g]Rgi(λ)χi

=
∑

j

χjRgj(λ)χj −K1(λ) +K2(λ)Rg(λ)K3(λ)

where K1(λ),K2(λ),K3(λ) are defined by the equation. Remark that, in the right hand side,

only the last term has poles (first order) in D(0, ε). Therefore, using Cauchy formula
∫

∂D(0,ε)

χRg(λ)χ

2πiλ
dλ =

∑

j

χjRgj(0)χj −K1(0) +K2(0)AgK3(0)

−K ′
2(0)Π0K3(0)−K2(0)Π0K

′
3(0)

−
m∑

k=1

(K2(λk)−K2(0))

λk
ΠλkK3(λk)−K2(0)Πλk

(K3(λk)−K3(0))

λk

where K ′
i(0) := ∂λKi(λ)|λ=0 and Ag :=

∫
∂D(0,ε)

Rg(λ)
2πiλ dλ. Let us analyse those terms more

carefully.

Proposition 2.7. Let g0 ∈ ∂Mg be a hyperbolic surface with cusps in the boundary of moduli

space. Then there is a neighborhood Ug0 of g0 in Mg and C > 0 such that for all g ∈ Ug0 and

x, x′ ∈ ∪jCj(g)

χ(x)χ(x′)Gg(x, x
′) =

∑

j

χj(x)Ggj (x, x
′)χj(x

′) +Qg(x, x
′)−H0(x)J0(x

′)− J0(x)H0(x
′)

+
m∑

k=1

(Hk(x)− λkJk(x)√
λk

)(Hk(x
′)− λkJk(x

′)√
λk

)

with Qg ∈ C∞(M ×M), Hk = χϕλk , Jk ∈ C∞(M) satisfying

|Qg|L∞ 6 C, |H0|L∞ 6 C, |Hk(ρ, θ)| 6 C|ρ|−(1−sk),

|J0(ρ, θ)| 6 C| log |ρ||, |Jk(ρ, θ)| 6 C
(
|ρ|−(1−sk) +

|ρ|−(1−sk) − 1

(1− sk)

)
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with sk(1− sk) = λk(g) > 0 the small eigenvalues of ∆g converging to 0 as g approaches ∂Mg

and sk = 1− λk(g) +O(λk(g)
2). Here ρ = ℓj sinh(t) in Cj(g) with t the signed distance to the

geodesic γj(g).

Proof. The integral kernel of
∑

j χjRgj(0)χj is χj(x)χj(x
′)Ggj (x, x

′) in Cj(g) with respect to

the measure dvgj . This term has an explicit bound by using Lemma 2.6. The function Qg(x, x
′)

will be chosen to be the integral kernel of −K1(0) +K2(0)AgK3(0), let us show this is smooth

and uniformly bounded. The integral kernel of K1(0) is of the form

K1(0;x, x
′) =

∑

j

χj(x)

∫

C′
j

Ggj (x, y)χ
′
j(y)Pj(y)Ggj (y, x

′)dvgj (y)χj(x
′)

in Cj(g) with respect to the measure dvgj , where Pj is a smooth differential operator of order 1

supported in supp(∇χj) (thus far from the γj(g) = {ρ = 0} curve). Thus by (2.40) and (2.39),

we directly get that for all x, x′ ∈ Cj(g) with |ρ(x)| > ℓj and |ρ(x′)| > ℓj

|K1(0;x, x
′)| 6 C, and if ρ(x)ρ(x′) < 0, |K1(0;x, x

′)| 6 Cℓj.

By Proposition 2.2, the norm ||Ag||L2(W )→L2(W ) is uniformly bounded if W := supp(∇χ′
j),

and by the same argument as for K1(0), K2(0) and K3(0) have smooth integral kernels that

are uniformly bounded with respect to ℓj, thus there is C > 0 uniform so that for all x, x′ ∈M

|(K2(0)AgK3(0))(x, x
′)| 6 C.

We can rewrite K ′
2(0)Π0K3(0) by using that Π0 = c with c = 1/Volg(M):

(K ′
2(0)Π0K3(0))(x, x

′) =c
∑

j

χj(x)(∂λRgj(0)∆gχ
′
j)(x)χ(x

′)

=c
∑

j

χj(x)(Rgj (0)χ
′
j)(x)χ(x

′) = H0(x
′)J0(x)

where we used ∂λRgj (0)∆gj = Rgj(0), J0(x) :=
√
c
∑

j χj(x)
∫
Cj Ggj (x, x

′)χj(x′)dvgj (x
′) and

H0 :=
√
cχ are smooth functions on M . Similarly, we get

(K2(0)Π0K
′
3(0))(x, x

′) = H0(x)J0(x
′).

Now the bound (2.41) gives that |J0(ρ, θ)| 6 C| log |ρ|| and |H0(x)| 6 C for some uniform

C > 0.

Using that (∆g − λk)Πλk = Πλk(∆g − λk) = 0, we get

(K2(λk)−K2(0))

λk
ΠλkK3(λk) =

∑

j

χjRgj(0)χ
′
jΠλk

∑

i

[χ′
i,∆g]Rgi(λk)χi

=
∑

j

χjRgj(0)χ
′
jΠλkχ.

Similarly, we also get

K2(0)Πλk
(K3(λk)−K3(0))

λk
=
∑

j

χjRgj(0)[∆g, χ
′
j ]Πλk

∑

i

χ′
iRgi(0)χi

=χΠλ1
∑

i

χ′
iRg′i(0)χi − λk

∑

j

χjRgj(0)χ
′
jΠλk

∑

i

χ′
iRgi(0)χi.
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Write Πλk(x, x
′) = ϕλk(x)ϕλk(x

′) for some ϕλk ∈ ker(∆g − λk) with L
2 norm 1, then we get

(K2(λk)−K2(0))

λk
ΠλkK3(λk) +K2(0)Πλk

(K3(λk)−K3(0))

λk
=

Hk(x)Jk(x
′) + Jk(x)Hk(x

′)− λkJk(x)Jk(x
′)

where Hk = χϕλk , Jk(x) =
∑

j χj(x)
∫
Cj(g)Ggj (x, x

′)χ′
j(x)ϕλk(x

′)dvgj(x
′). To conclude, we

need some estimates on the eigenfunction ϕλk associated to the small positive eigenvalue λk of

∆g on M

Lemma 2.8. Let g0 ∈ ∂Mg be a surface with node with m + 1 connected components and

denote by λ1, . . . λm the positive small eigenvalues. For each ε > 0, there is a neighborhood Ug0
of g0 and C > 0 such that for each g ∈ Ug0 , the following holds: if ϕλi is an eigenfunction for

λi which satisfies |ϕλi |ρ=±1 − a±ij | < ε for some constants a±ij ∈ R in the collar Cj(g), then it

satisfies

ϕλi(ρ, θ) = (a+ij 1lρ>0+a
−
ij 1lρ<0)|ρ|si−1(1 +O(ε)) +O(ε)

in the region {|ρ| > Cℓj} of the collar Cj(g), where si(1 − si) = λi and si = 1 − λi + O(λ2i )

when λi is small. In the region |ρ| < Cℓj, there is C ′ > 0 such that

|ϕλi(ρ, θ)| 6 C ′|ρ|si−1.

Proof. To simplify notations, we remove the i, j indices from a±ij , λi and si. We decompose ϕλ
in Fourier modes in θ: there are bk ∈ C∞([−1, 1]) so that

ϕλ(ρ, θ) =

∞∑

k=−∞
bk(ρ)e

2πikθ

and the series converges uniformly. Since ϕλ can be supposed real-valued, b0 is real and b−k =
bk. Moreover ak(t) := bk(ℓj sinh(t)) satisfies the ODE

(
− ∂2t − tanh(t)∂t +

4π2k2

ℓ2j cosh(t)
2
− λ

)
ak(t) = 0, ak(±tj) = a±k

if tj is defined by ℓj sinh(tj) = 1. We write a±k := ak|t=±tj = bk|ρ=±1. First we make the

following observation for each k 6= 0 :

|ak(t)| 6 max(|a+k |, |a−k |) < ε. (2.45)

Indeed, assume that ak achieves its maximum at T ∈ (−tj , tj) with ak(T ) > max(a+k , a
−
k ), then

if ak(T ) > 0

−a′′k(T ) =
(
λ− 4π2k2

ℓ2j cosh(T )
2

)
ak(T ) < 0

when ℓj is smaller than a uniform constant. This contradicts that ak(T ) is a local maximum,

thus ak achieves its maximum at ±tj or its maximum is non-positive, in which case a+k 6 0

and a−k 6 0. In both cases, |ak(T )| 6 max(|a+k |, |a−k |). The same argument works with the

minimum and this shows (2.45). Next we analyze u0(t), and it is convenient for that to use

s ∈ (0, 1) so that s(1− s) = λ (then s = 1− λ+O(λ)2). There are 2 independent solutions of
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the ODE with k = 0 (and no bounday condition), the first one v0 is odd in t, the other one u0
is even, they are given by [Bo, Chapter 5.1]

v0(t) =sign(t)
Γ(12 − s)Γ(1+s2 )2

Γ(s − 1
2)Γ(1− s

2)
2
| sinh(t)|−sF

(1 + s

2
,
s

2
,
1

2
+ s;

−1

sinh(t)2

)

+ sign(t)| sinh(t)|s−1F
(2− s

2
,
1− s

2
,
3

2
− s;

−1

sinh(t)2

)
,

u0(t) =
Γ(12 − s)Γ( s2)

2

Γ(s− 1
2)Γ(

1−s
2 )2

| sinh(t)|−sF
(s
2
,
s+ 1

2
,
1

2
+ s;

−1

sinh(t)2

)

+ | sinh(t)|s−1F
(1− s

2
, 1− s

2
,
3

2
− s;

−1

sinh(t)2

)

where F (a, b, c; z) is the hypergeometric function, holomorphic in the variables a, b, c for a, b, c ∈
C in the half-plane C+ := {c ∈ C,Re(c) > 0} if z ∈ (−∞, 0), it is smooth in z and for z < 0

small

F (a, b, c; z) = 1 +O(|z|)

where the remainder is uniform for a, b, c in compact sets of C+. In particular, there is C > 0

uniform in g so that for |t| > C,

v0(t) = sign(t)| sinh(t)|s−1 +O(| sinh t|−s), u0(t) = | sinh(t)|s−1 +O(| sinh t|−s)

where the remainder is uniform with respect to λ for λ > 0 small. We obtain

a0(t) =
(a+0 + a−0 )

2

u0(t)

u0(tj)
+

(a+0 − a−0 )
2

v0(t)

v0(tj)

and we deduce that

a0(t) =(a+0 1lt>0 +a
−
0 1lt<0)|ℓj sinh(t)|s−1 +O(ℓs−1

j | sinh(t)|−s)

We now use ℓj sinh(t) = ρ and ℓs−1
j | sinh(t)|−s = ℓ2s−1

j |ρ|−s 6 ε|ρ|s−1 if |ρ| > Cℓj with C large

enough (depending on ε).

Next, consider the case |ρ| < Cℓj. We can also write u0 and v0 under the form (see [Bo,

Chapter 5.5])

v0(t) =
Γ(1+s2 )2

Γ(32 )Γ(s− 1
2)

sinh(t)F
(1 + s

2
, 1− s

2
,
3

2
;− sinh(t)2

)
,

u0(t) =
Γ( s2 )

2

Γ(12)Γ(
1
2 − s)

F
(s
2
,
1− s

2
,
1

2
;− sinh(t)2

)

and this easily yields the desired estimate. �

The proof is complete by noticing that the estimates on Hk, Jk follow fom this Lemma and

(2.41), together with the fact that each ϕλk is bounded uniformly in M \ ∪jCj(g) for g ∈ Ug0
by Lemma 2.5. �



28 COLIN GUILLARMOU, RÉMI RHODES, AND VINCENT VARGAS

3. Gaussian Free Field and Gaussian Multiplicative Chaos

In this section, we shall explain how to give a mathematical sense to the formal measure

F 7→
∫
F (ϕ)e−SL(g,ϕ)Dϕ. (3.1)

where SL(g, ϕ) is the Liouville functional defined in (2.2), g is a fixed metric on the surface M

and ϕ varies among a certain space of functions so that eγϕg is parametrizing the conformal

class [g] of g. This will allow us to define the partition function of Liouville Quantum Field

Theory, and in fact ϕ will be a field, i.e. a random function or random distribution, that we

will denote by Xg. The first step is to make sense of the part corresponding to the squared

gradient term in SL(g, ϕ), i.e. the formal Gaussian measure

F 7→
∫
F (ϕ)e−

1
4π

||dϕ||2
L2Dϕ. (3.2)

Classically, we interpret the above field ϕ as a Gaussian Free Field (GFF in short): this is a

Gaussian random variable taking values in some space of distributions in the sense of Schwartz.

In particular, the field ϕ is not a fairly defined function and giving sense to the term eγϕ in (2.2)

is thus not straightforward, but it can be done through the theory of Gaussian Multiplicative

Chaos (GMC in short), which goes back to [Ka].

3.1. Gaussian Free Field. We describe the Gaussian Free Field (GFF) on a compact Rie-

mannian surface (M,g) by using our previous description of the Green function. The definition

of the GFF, as well as the definition of its partition function, can be carried out in a direct

way ([Du1, She]). Yet, this path is maybe not as pedagogical as following the threads of ideas

that have led physicists to our current knowledge of this object, which we try to summarize

below in a rather heuristic way to end up with a mathematically sounded definition.

As a warm up, let us quickly recall that the Gaussian measure

(2π)−n/2
√

det(A)e−
1
2 〈Ax,x〉dx

on R
n when A is a positive definite symmetric operator is the law of the random variable

X =
∑n

j=1 αjϕj/
√
λj where (αj)j are independent Gaussian random variables in N (0, 1) (zero

mean and variance 1), and (ϕj)j is an orthonormal basis of eigenvectors for A with eigenvalues

λj > 0.

As the GFF is an infinite dimensional Gaussian, it is natural to expect a construction through

its projections onto finite dimensional subspaces, on which one can apply the construction

described just above. For this, recall that the Laplacian ∆g has an orthonormal basis of real

valued eigenfunctions (ϕj)j∈N0 in L2(M,g) with associated eigenvalues λj > 0. We set λ0 = 0

and ϕ0 to be constant. The Laplacian can thus be seen as a symmetric operator on an infinite

dimensional space. DenoteHn the finite dimensional space spanned by the first n eigenfunctions

(ϕj)1 6 j 6 n of the Laplacian. Notice that for φ =
∑n

j=1 α̃jϕj we have ‖dφ‖2L2 =
∑n

j=1 α̃
2
jλj .
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Therefore the projection to Hn of the formal measure (3.2) is naturally understood as
∫

Hn

F (φ)e−
1
4π

‖dφ‖2
L2Dφ =

∫

Rn

F
( n∑

j=1

α̃jϕj
) n∏

j=1

(
e−

1
4π

(α̃j)
2λjdα̃j

)

= (2π)n/2
( n∏

j=1

λj

)−1/2
∫

Rn

F
(√

2π

n∑

j=1

αj
ϕj√
λj

) n∏

j=1

(
e−

α2
j
2 dαj

)

for appropriate bounded measurable functionals F . The total mass of this measure is easily

computed and equals (2π)n
(∏n

j=1 λj

)−1/2
. Furthermore, when renormalized by its total mass,

this measure becomes thus a probability measure describing the law of the random function

Xn =
√
2π

n∑

j=1

αj
ϕj√
λj

(3.3)

where (αj)j are independent Gaussian random variables with law N (0, 1).

To obtain the description of the GFF, one has to take the limit n → ∞. It can be seen

[Du1] that the sum (3.3) converges almost surely in the Sobolev space H−s(M) for s > 0. The

total mass (2π)n
(∏n

j=1 λj

)−1/2
diverges as n → ∞ but this is not that much troublesome as

it is customary in physics (and mathematics) to remove the diverging terms provided they are

”universal enough” (this procedure is called renormalization). Removing the diverging terms

should give a limiting total mass equal to
(
det′( 1

2π∆g)/Volg(M)
)−1/2

. So far, this is the picture

the reader should have in mind to understand the construction of the GFF. Yet, for readers

who want to have more details, we stress that renormalizing the product
∏n
j=1 λj turns out

to be very troublesome and slight adaptations are necessary to recover the phenomenology

explained above. The reader may consult the paper [BiFe] where these renormalization issues

are discussed in further details.

The above formal discussion thus motivates the forthcoming definitions. The Green function

Gg(x, x
′) (with vanishing mean) is a distribution on M ×M which can be written as the series

(converging in the sense of distributions)

Gg(x, x
′) =

∞∑

j=1

ϕj(x)ϕj(x
′)

λj
.

Let (aj)j be a sequence of i.i.d. real Gaussians N (0, 1), defined on some probability space

(Ω,F ,P), and define the Gaussian Free Field (GFF) with vanishing mean in the metric g by

Xg =
√
2π

∑

j > 1

aj
ϕj√
λj

(3.4)

as a random variable with values in distributions on M , i.e. almost surely Xg ∈ D′(M) (see

[Du1] section 4.2 for instance). Notice that for each φ ∈ C∞(M), almost surely, we have

〈Xg, φ〉 =
√
2π

∑∞
j=1 aj

〈ϕj ,φ〉√
λj

which is a converging series of random variables as E(〈Xg, φ〉2) <
∞. In fact, if H−s

0 (M) is the kernel of the map X 7→ 〈X, 1〉L2(dvg) on the L2-based Sobolev

space H−s(M) of order −s ∈ R
∗
−, it is easy to see (see [Du1] again) that Xg makes sense as a
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random variable with values in L2(Ω;H−s
0 (M)) for all s > 0 by using the asymptotic counting

function on the eigenvalues λj (i.e. Weyl law). If φ1, φ2 ∈ C∞(M), we have the covariance

value

E[〈Xg, φ1〉.〈Xg, φ2〉] = 2π
∞∑

j=1

〈ϕj , φ1〉〈ϕj , φ2〉
λj

= 2π〈Gg, φ1 ⊗ φ2〉.

The covariance is the Green’s function when viewed as a distribution: if φ1 → δx and φ2 → δx′

for x 6= x′ we have E(〈Xg, φ1〉.〈Xg , φ2〉) → 2πGg(x, x
′) and we write the formal equality for

the covariance of the GFF

E[Xg(x).Xg(x
′)] = 2π Gg(x, x

′).

Notice that the extra 2π factor serves to make the field Xg have exact logarithmic correlations

in view of Lemma 2.1. As in [She, Theorem 2.3], there is a probability mesure P on H−s
0 (M)

(for some natural σ-algebra) so that the law of Xg is given by P and for each φ ∈ Hs(M),

〈Xg, φ〉 is a random variable on Ω with zero mean and variance 2π〈Rg(0)φ, φ〉. The mesure

P represents the Gaussian mesure (3.2) (times the
√

det(∆g) term) on the space of functions

orthogonal to constants, thus to define (3.2) on the whole H−s(M) space, we shall consider

the tensor product P ⊗ dc where dc is the Lebesgue mesure on R viewed as the 1-dimensional

vector space of constant functions on M : in other words, we use the isomorphism

H−s
0 (M)× R → H−s(M), (X, c) 7→ X + c.

to define the mesure P ′ on H−s(M) as the image of P ⊗ dc by this map. This mesure gives a

proper sense to the Gaussian mesure (3.2). We have

Lemma 3.1. The mesure P ′ on H−s(M) obtained by tensorizing the GFF mesure P by dc is

conformally invariant in the sense that it does not depend on the conformal representative in

a conformal class [g].

Proof. Let ĝ = eωg for some ω ∈ C∞(M). Notice that H−s
0 (M) depends on g, we thus denote

it H−s
0 (M,g) and we denote 〈·, ·〉g the distribution pairing on M or M ×M induced by the

measure dvg. First we claim that the probability law obtained from X̂g := Xg − cĝ(Xg) is the

same as that of Xĝ, if cĝ(Xg) := 〈Xg, 1〉ĝ/Volĝ(M) = 〈Xg, e
ω〉g/Volĝ(M). The random field

X̂g satisfies 〈X̂g, 1〉ĝ = 0 and is thus in the space H−s
0 (M, ĝ), moreover E[〈X̂g, φ〉ĝ] = 0 for all

φ ∈ C∞(M). The covariance of X̂g is given by

E[〈X̂g, φ1〉ĝ〈X̂g, φ2〉ĝ] =〈Gg, φ1 ⊗ φ2〉ĝ + (Volĝ(M))−2〈Gg, 1⊗ 1〉ĝ〈φ1, 1〉ĝ〈φ2, 1〉ĝ
− (Volĝ(M))−1(〈Gg, 1⊗ φ2〉ĝ〈1, φ1〉ĝ + 〈Gg, φ1 ⊗ 1〉ĝ〈1, φ2〉ĝ)

=〈Gg + α1 ⊗ 1− u⊗ 1− 1⊗ u, φ1 ⊗ φ2〉ĝ
where α = (Volĝ(M))−2〈Gg, 1 ⊗ 1〉ĝ, u(x) =

∫
M Gg(x, y)dvĝ(y)/Volĝ(M). We recognize that

this kernel is just the Green function for ĝ (this is easily checked) against φ1 ⊗ φ2, showing

that the correlation of X̂g is that of Xĝ. Since both random fields are Gaussian, we deduce

that the law of X̂g and Xĝ are the same and thus for F ∈ L1(H−s(M),P ′),
∫

R

E[F (Xĝ + c)]dc =

∫

R

E[F (Xg − cĝ(Xg) + c)]dc =

∫

R

E[F (Xg + c)]dc

by making a change of variables in c. �
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Finally, in view of the discussion above, the measure F 7→ E(F ) on H−s(M) represents the

formal measure √
det′( 1

2π∆g) e
− 1

4π

∫
M |dϕ|2gdvgDϕ (3.5)

and using (2.10), we can write
√

det′( 1
2π∆g) = (2π)

1
2 (1−

χ(M)
6

)
√

det′(∆g).

3.2. Gaussian multiplicative chaos. To define quantities like eγX for some γ ∈ R we will use

a renormalization procedure after regularization of the field Xg. We describe the construction

for g hyperbolic and we shall remark that in fact the construction works as well for any

conformal metric ĝ = eωg by using Lemma 2.1.

First, when ε > 0 is very small, we define a regularization Xg,ε of Xg by averaging on

geodesic circles of radius ε > 0. Let x ∈ M and let C(x, ε) be the geodesic circle of center

x and radius ε > 0, and let (fnx,ε)n∈N ∈ C∞(M) be a sequence with ||fnx,ε||L1 = 1 which is

given by fnx,ε = θn(dg(x, ·)/ε) where θn(r) ∈ C∞
c ((0, 2)) non-negative supported near r = 1

such that fnx,εdvg is converging in D′(M) to the uniform probability measure µx,ε on Cg(x, ε)
as n→ ∞ (for ǫ small enough, the geodesic circles form a 1d-manifold and the trace of g along

this manifold gives rise to a finite measure, which corresponds to the uniform measure after

renormalization so as to have mass 1, it can also be defined in terms of 1-dimensional Hausdorff

measure constructed with the volume form on M and restricted to this geodesic circle). Then

we have the standard

Lemma 3.2. The random variable 〈Xg, f
n
x,ε〉 converges to a random variable as n→ ∞, which

has a modification Xg,ε(x) with continuous sample paths with respect to (x, ε) ∈ M × (0, ε0),

with covariance

E[Xg,ε(x)Xg,ε(x
′)] = 2π

∫
Gg(y, y

′)dµx,ε(y)dµx′,ε(y
′)

and we have as ε→ 0

E[Xg,ε(x)
2] = − log(ε) +Wg(x) + o(1) (3.6)

where Wg is the smooth function on M given by Wg(x) = 2πmg(x, x) +
1
2 log(2) if mg is the

smooth function of Lemma 2.1.

Proof. Let us fix x, ε, then if Yn := 〈Xg, f
n
x,ε〉, it suffices to show that E(YnYn′) has a limit

as (n, n′) → ∞ to prove that Yn is a Cauchy sequence in L2(Ω). Using Lemma 2.1 (and its

notation):

E(YnYn′) =2π

∫

M×M
Gg(y, y

′)fnx,ε(y)f
n′

x,ε(y
′)dvg(y)dvg(y

′)

=

∫

M×M
(− log(dg(y, y

′)) + 2πmg(y, y
′))θnε (dg(x, y))θ

n′

ε (dg(x, y
′))dvg(y)dvg(y

′).

(3.7)

Clearly the term
∫

M×M
mg(y, y

′)θnε (dg(x, y))θ
n′

ε (dg(x, y
′))dvg(y)dvg(y

′)
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is uniformly bounded in (n, n′, ε) and, as (n, n′) → ∞, it converges, to
∫

C(x,ε)

∫

C(x,ε)
mg(y, y

′)dµx,ε(y)dµx,ε(y
′)

which in turn is smooth in x and converges, as ε → 0, to mg(x, x) uniformly in x. For ε > 0

small enough, we can use an isometry ψ between a small geodesic ball Bg(x, 3ε) of radius 3ε

and the ball BH2(0, 3ε) in H
2 viewed as the disk model, so that the integral (3.7) above reduces

to an integral in Bg(x, 3ε) in both y, y′. Using the coordinates z ∈ H
2 induced by ψ and (2.20),

we get
∫

M×M
log(dg(y, y

′))θnε (dg(x, y))θ
n′

ε (dg(x, y
′))dvg(y)dvg(y

′) =

∫

[0,1]2×[0,2π]2

(
log | tanh( r2 )ei(α−α

′) − tanh( r
′

2 )|+ L
)
θn( rε)θ

n′
( r

′

ε )dαdα
′ sinh(r) sinh(r′)drdr′.

where L = L(r, r′, eiα, eiα) is continuous and L(0, 0, ·, ·) = 0. The term involving L is clearly

uniformly bounded in (n, n′) and ε and converges just like for mg above, and its limit as ε→ 0

is 0. The part with the log term is also straightforward to deal with and is also uniformly

bounded in (n, n′) for fixed ε > 0 and we get
∫

[0,1]2×[0,2π]2
log | tanh( r2 )ei(α−α

′) − tanh( r
′

2 )|θn( rε)θn
′
( r

′

ε )dαdα
′ sinh(r) sinh(r′)drdr′

−→
(n,n′)→∞

log | tanh( ε2 )|+
1

4π2

∫

[0,2π]2
log |ei(α−α′) − 1| dαdα′ = log | tanh( ε2 )|.

We then have shown the convergence of 〈Xg, f
n
x,ε〉 towards a random variable X̃g,ε(x) in L

2(Ω).

To show it has a modification Xg,ε(x) that is sample continuous in (x, ε) ∈ M × (0, ε0), it

suffices to apply Kolmogorov multi-parameter continuity theorem exactly like in the proof of

[DuSh, Prop. 3.1], we do not repeat the argument. The variance E(Xg,ε(x)
2) is smooth in x

and behaves like − log(ε) + 1
2 log(2) + 2πmg(x, x) + o(1) as ε→ 0, uniformly in x. �

Next from Lemma 3.2, we will be able to define the Gaussian Multiplicative Chaos (GMC)

first considered by Kahane [Ka] in the eighties. The reader may also consult [DuSh, RhVa1,

RoVa, Sha] on the topic (in particular, we recommend [Be] for the simplicity of the approach).

Proposition 3.3. 1) Let γ > 0, the random measures Gγg,ε := ε
γ2

2 eγXg,ε(x)dvg(x) converge in

probability and weakly in the space of Radon measures towards a random measure Gγg (dx). The
measure Gγg (dx) is non zero if and only if γ ∈ (0, 2).

2) One obtains a non trivial random measure that we will denote G2
g in the case γ = 2 by

considering the limit in probability and in the sens of weak convergence of measures of the

family of random measures Gγg,ε := (− ln ε)1/2ε
γ2

2 eγXg,ε(x)dvg(x).

Proof. The proof is standard for convolution based regularizations of log-correlated Gaussian

fields (first considered in [RoVa], see [Sha] for latest results) in the case γ < 2. The case γ = 2 is

treated in [DRV, section 5] in the case of tori, relying on the result proved in [DRSV1, DRSV2]

for GFF with Dirichlet boundary conditions. The same argument applies for general compact

2d-surfaces up to cosmetic modifications.
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Here we give a simple argument in the case γ <
√
2 for convenience of readers who are

not familiar with GMC. Using the expression (3.6), it suffices to study the convergence of the

measures

eγXg,ε(x)− γ2

2
E[Xg,ε(x)2]e

γ2

2
Wg(x)dvg(x).

Then by Fubini we directly get for each Borel set A ⊂M , with dσ = e
γ2

2
Wg(x)dvg(x)

E[Gγg,ε(A)] =
∫

A
E[eγXg,ε(x)− γ2

2
E[Xg,ε(x)2]]dσ(x) = σ(A).

Using that there is C > 1 such that for all z ∈ C, |z| < 1 and ε > 0 small

1/C + | log(|z|+ ε)| 6
∫ 2π

0

∣∣∣ log |z + εeiα|
∣∣∣dα 6 C + | log(|z|+ ε)|

then the arguments in the proof of Lemma 3.2 and the expression (2.20) imply that there is

C ′ such that

1/C ′ + | log(dg(x′, x) + ε)| 6 E[Xg,ε(x)Xg,ε′(x
′)] 6 C ′ + | log(dg(x′, x) + ε)|. (3.8)

for all ε′ 6 ε, and all x, x′ ∈M . In particular we get by using Fubini and the fact that Xg is a

Gaussian free field

E[Gγg,ε(A)2] =E

[(∫

A
eγXg,ε(x)− γ2

2
E[Xg,ε(x)2]dσ(x)

)2]

=E

[ ∫

A

∫

A
eγ(Xg,ε(x)+Xg,ε(x′))− γ2

2
(E[Xg,ε(x)2]+E[Xg,ε(x′)2])dσ(x)dσ(x′)

]

=

∫

A

∫

A
eγ

2E[Xg,ε(x)Xg,ε(x′)]dσ(x)dσ(x′)

which converges to
∫
A

∫
A e

γ22πGg(x,x′)dσ(x)dσ(x′) < ∞ as ε → 0 by using (3.8) and Lebesgue

theorem - the condition γ2 < 2 appear here due to the log divergence of 2πGg(x, x
′) at x = x′,

see Lemma 2.1. A similar argument and (3.8) also show that E[(Gγg,ε(A) − Gγg,ε′(A))2] → 0 if

(ε, ε′) → 0, thus Gγg,ε(A) is a Cauchy sequence, which therefore converges in L2(Ω) to a random

variable Z(A), of mean σ(A). By standard arguments, Gγg,ε(dx) converges to a random measure

Gγg satisfying E[Gγg (A)] = σ(A). The case γ ∈ [
√
2, 2) is more complicated and several methods

have been proposed in the literature. We refer to [Be] for a simple argument. �

In fact, the whole construction above is not so particular to choosing the hyperbolic metric:

indeed it uses only the fact that the covariance of Xg is the Green function, the fact that near

the diagonal 2πGg(x, x
′) = − log dg(x, x

′) + F (x, x′) with F continuous, and finally the fact

that in local isothermal coordinates z so that g = e2f(z)|dz|2

log dg(z, z
′) = log |z − z′|+O(1).

This allows to define a random measure Gγĝ just as above for any other metric ĝ = eωg conformal

to the hyperbolic metric g. For later purpose we will need to make the following observation.

If ĝ = eωg, define

X̂g,ε(x) := lim
ε→0

〈Xg, f̂
n
x,ε〉ĝ (3.9)

for each x ∈ M where f̂nx,ε := θn(dĝ(x, ·)/ε) with θn like above, so that f̂nx,εdvĝ converge as

n→ ∞ to the uniform probability measure µ̂x,ε on the geodesic circle Cĝ(x, ε) of center x and
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radius ε with respect to ĝ. In isothermal coordinates at x so that z = 0 correspond to the point

x and the metric is g = |dz|2/Im(z)2, the circle Cĝ(x, ε) is parametrized by

εe−
1
2ω(z)+εhε(α)eiα, α ∈ [0, 2π]

for some continuous function hε(α) uniformly bounded in ε. Then one has

E(X̂g,ε(x)X̂g,ε(x
′)) = 2π

∫
Gg(y, y

′)dµ̂x,ε(y)dµ̂x′,ε(y
′)

and by the arguments in the proof of Lemma 3.2, we have as ε→ 0

E(X̂g,ε(x)
2) = − log(ε) +Wg(x) +

1
2ω(x) + o(1). (3.10)

Then by the arguments of Proposition 3.3, the random measure (add an extra push (− ln ε)1/2

when γ = 2)

Ĝγg,ε := ε
γ2

2 eγX̂g,ε(x)dvĝ(x) (3.11)

converges weakly as ε→ 0 to some measure Ĝγg which satisfies

dĜγg (x) = e(1+
γ2

4
)ω(x)dGγg (x). (3.12)

4. Liouville Quantum field theory with fixed modulus

In this section we define Liouville Quantum Field Theory (LQFT) with fixed conformal

class (also called modulus) and describe its main properties. It follows the approach of [DKRV]

in the case of the Riemann sphere. Liouville Quantum Gravity (LQG) with fixed genus is

a sum (“partition function”) over all possible metrics on a surface with fixed genus. The

space of metrics splits into conformal classes and we want to decompose the partition function

accordingly. Each conformal class has a unique hyperbolic metric, which plays the role of a

background metric.

4.1. Axiomatic of CFT. Here we give a brief account of the axiomatic of Conformal Field

Theories in order to motivate the forthcoming results. Our purpose will then be to construct

the quantum Liouville theory and show that it satisfies this axiomatic. The reader is referred

to [Ga] for more details related to this formalism.

A CFT (on the surface (M,g)) is described by its partition function Z(g) as well as the

correlation functions of the (spinless) primary fields (θi)i∈I denoted by

Z(g, θi1(x1), . . . , θin(xn))

where n > 1, {i1, . . . , in} ∈ I and x1, . . . , xn are arbitrary points on M . Let us just roughly

say that a CFT is supposed to give sense to ”random fields” defined on M , here the primary

fields (θi)i, and the correlation functions can be thought of as the cumulants of these random

fields. These correlation functions are supposed to satisfy the following conditions:

• Diffeomorphism covariance: for any orientation preserving diffeomorphism ψ

Z(g) = Z(ψ∗g) (4.1)

Z(g, θi1(ψ(x1)), . . . , θin(ψ(xn))) = Z(ψ∗g, θi1(x1), . . . , θin(xn)) (4.2)
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• Conformal anomaly: for any smooth function ϕ on M

ln
Z(eϕg)

Z(g)
=

c

96π

∫

M
(|dgϕ|2g + 2Kgϕ)dvolg (4.3)

ln
Z(eϕg, θi1(x1), . . . , θin(xn))

Z(g, θi1(x1), . . . , θin(xn))
= −

n∑

k=1

∆ikϕ(xk) +
c

96π

∫

M
(|dgϕ|2g + 2Kgϕ)dvolg (4.4)

where the constant c is the so-called central charge of the CFT and the scalars (∆i)i∈I are

called the conformal weights of the primary fields.

One of the interesting feature of CFTs is their strong algebraic structure, which make them

fall under the scope of techniques for integrable systems, leading to the possibility of obtaining

exact expressions for the correlation functions, which is the main goal of a Quantum Field

Theory.

4.2. The partition function of LQFT. The first step is to describe LQFT with fixed mod-

ulus. LQFT will describe the probability law of some random conformal factor, that is we

consider the random metrics eγXg if g is a fixed metric and X is a random function. The law

ofX will be mathematically described by the Feynmann type measure (3.1). So, let g ∈ Met(M)

be a fixed metric on M . The mathematical definition of the measure of LQFT (i.e. (3.1)) is

the following. For F : H−s(M) → R (with s > 0) a bounded continuous functional, set for

γ ∈ (0, 2]

Πγ,µ(g, F ) :=(det′(∆g)/Volg(M))−1/2 (4.5)

×
∫

R

E

[
F (c+Xg) exp

(
− Q

4π

∫

M
Kg(c+Xg) dvg − µeγcGγg (M)

)]
dc.

This quantity, if it is finite, gives a mathematical sense to the formal integral
∫
F (ϕ)e−SL(g,ϕ)Dϕ

where SL(g, ϕ) is the Liouville action (2.2). The partition function is the total mass of this

measure, i.e Πγ,µ(ĝ, 1).

Proposition 4.1. For g ∈ Met(M) and γ ∈ (0, 2], we have 0 < Πγ,µ(g, 1) < +∞ and the

mapping

F ∈ Cb(H
−s(M),R) 7→ Πγ,µ(g, F )

defines a positive finite measure. When renormalized by its total mass, it describes the law

of a random variable living in H−s(M) called the Liouville field. When g ∈ Met−1(M) is

hyperbolic, we further have

Πγ,µ(g, 1) =
(det′(∆g)

Volg(M)

)−1/2
γ−1µ

Qχ(M)
γ Γ(−Qχ(M)

γ )E
[
Gγg (M)

Qχ(M)
γ

]
(4.6)

where Γ(z) is the standard Euler Gamma function.

Proof. The proof of this proposition follows the same lines as in [DKRV, section 3.1]. We

consider the case of a metric g ∈ Met−1(M), since the general case follows from that case, as
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is explained below in Proposition 4.4 for the correlations functions. In constant curvature, the

Gauss-Bonnet theorem entails

Q

4π

∫

M
Kg(c+Xg) dvg = Qcχ(M)

where χ(M) is the Euler characteristic of M and we get

Πγ,µ(g, F ) =
(det′(∆g)

Volg(M)

)−1/2
∫

R

e−Qcχ(M)
E

[
exp

(
− µeγcGγg (M)

)]
dc.

After inverting expectation and integration, and using the change of variables y = µeγcGγĝ (M),

we get (4.6). Finiteness of this quantity is ensured by the fact that GMC has finite moments of

negative orders as χ(M) < 0 - finiteness of negative moments is proved for example in [RoVa,

Proposition 3.6] for γ < 2 and in [DRSV2, ] in the case γ = 2. �

4.2.1. Conformal anomaly and diffeomorphism invariance. Here we investigate the symme-

tries of the measure (4.5) and in particular how the partition function reacts to changes of

background metrics. The following proposition is the quantum counterpart of (2.3).

Proposition 4.2. (Conformal anomaly) Let Q = γ
2 +

2
γ with γ ∈ (0, 2] and g ∈ Met−1(M)

be a hyperbolic metric on M . The partition function satisfies the following conformal anomaly:

if ĝ = eωg for some ω ∈ C∞(M), we have

Πγ,µ(ĝ, F ) = Πγ,µ(g, F (· − Q
2 ω)) exp

(1 + 6Q2

96π

∫

M
(|dω|2g + 2Kgω)dvg

)
.

Proof. We focus on the integral part in (4.5) (and hence let the determinant of Laplacian apart

as its contribution is clear from (2.10)). First, by Lemma 3.1, we can replace Xĝ by Xg in the

expression defining Πγ,µ(ĝ, F ) and are thus left with considering the following quantity (with

Ĝγg is the measure defined by (3.11))

Aε :=

∫

R

E

[
F (c+Xg) exp

(
− Q

4π

∫

M
Kĝ(c+Xg) dvĝ − µeγcĜγg (M)

)]
dc.

By (2.1), the term −Qc
4π

∫
M Kĝ dvĝ can be written as −Qcχ(M) where χ(M) is the Euler

characteristic. Define the Gaussian random variable

Y := − Q

4π

∫

M
KĝXg dvĝ = − Q

4π
〈Xg,Kĝe

ω〉g.

Let Rg(0) be the resolvent operator whose Schwartz kernel is Gg with respect to dvg. Since

Kĝe
ω = ∆gω +Kg, we compute, using that Rg(0)Kg = 0 (as Kg = −2),

E[〈Xg,Kĝe
ω〉2g] =2π〈Gg, (∆gω +Kg)⊗ (∆gω +Kg)〉g

=2π〈ω − 〈ω,1〉g
Volg(M) ,∆gω − 2〉g = 2π

∫

M
|dω|2gdvg

and similarly we have

E[Y Xg] = −Q
2
Rg(0)(Kĝe

ω) = −Q
2
(ω − cg(ω)).
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if cg(ω) :=
〈ω,1〉g

Volg(M) . Thus we get

1
2E[Y

2] =
Q2

16π

∫

M
|dω|2gdvg, E[Y Xg] = −Q

2
(ω − cg(ω)). (4.7)

Therefore by applying Girsanov transform to the random variable Y , we can rewrite

A =

∫

R

e
1
2E[Y

2]−Qcχ(M)
E

[
F (c+Xg + E(Y Xg)) exp

(
− µeγ(c+

Q
2
cg(ω))

∫

M
e−

γQ
2
ω dĜγg

)]
dc.

With the help of the relation (3.12) and Q = γ
2 +

2
γ , we see that

∫
M e−

γQ
2
ω dĜγg = Gγg (M). Using

(4.7), A can be written as

A =

∫

R

e
Q2

16π
||dω||2

L2
g
−Qcχ(M)

E

[
F (c+Xg − Q

2 ω + Q
2 cg(ω))) exp

(
− µeγ(c+

Q
2 cg(ω))Gγg (M)

)]
dc.

It remains to make the change of variable c→ c− Q
2 cg(ω) and we deduce that

A =

∫

R

e
Q2

16π
||dω||2

L2
g
−Qcχ(M)+

1
2Q

2χ(M)cg(ω)
E

[
F (c+Xg −

Q

2
ω) exp

(
− µeγcGγg (M)

)]
dc.

Since Kg = −2 and Volg(M) = −2πχ(M) we have

− Q

4π

∫

M
Kg(c+Xg) dvg = −Qcχ(M), cg(ω)χ(M) =

1

4π

∫

M
Kgω dvg

which shows that A = Πγ,µ(g, F (· − Q
2 ω))

√
det′(∆g)/Volg(M)e

6Q2

96π

∫
M (|dω|2g+2Kgω)dvg . Combin-

ing with (2.10), the proof is complete. �

The constant cL := 1+6Q2 describing the conformal anomaly is called the central charge of

the Liouville Theory. Since all the objects in the construction of the Gaussian Free Field and

the Gaussian multiplicative chaos are geometric (defined in a natural way from the metric), it

is direct to get the following Diffeomorphism invariance:

Proposition 4.3. (Diffeomorphism invariance) Let g ∈ Met(M) be a metric on M and

let ψ : M → M be an orientation preserving diffeomorphism. Then we have for each bounded

measurable F : H−s(M) → R with s > 0

Πγ,µ(ψ
∗g, F ) = Πγ,µ(g, F (· ◦ ψ)).

Proof. This follows directly from the fact that all the object considered in the construction

of the measure are natural with respect to the metric g, thus invariant by isometries: more

precisely, it follows from the identities

Gψ∗g(x, y) = Gg(ψ(x), ψ(y)), Kψ∗g(x) = Kg(ψ(x)), Xψ∗g
law
= Xg ◦ ψ.

which are obvious. �

The two above results show that the axioms (4.1)+(4.3) are satisfied with central charge

cL = 1 + 6Q2. Yet we still have to define the primary fields and their correlation functions.

This is the purpose of the next subsection.
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4.3. The correlation functions. The correlation functions of LQFT can be thought of as

the exponential moments eαϕ(x) of the random function ϕ, the law of which is ruled by the

path integral (3.1), evaluated at some location x ∈ M with weight α. Yet, the field ϕ is not a

fairly defined function (it belongs to H−s(M)) so that the construction requires some care.

As before let g ∈ Met(M). We fix n points x1, . . . , xn (n > 0) on M with respective

associated weights α1, . . . , αn ∈ R. We denote x = (x1, . . . , xn) and α = (α1, . . . , αn). The

rigorous definition of the primary fields will require a regularization scheme. We introduce the

following ε-regularized functional

Πx,α
γ,µ (g, F, ε) :=

(
det′(∆g)/Volg(M)

)−1/2
(4.8)

∫

R

E

[
F (c+Xg)

(∏

i

V αi
g,ε(xi)

)
exp

(
− Q

4π

∫

M
Kg(c+Xg) dvg − µeγcGγg,ε(M)

)]
dc

where we have set, for fixed α ∈ R and x ∈M ,

V α
g,ε(x) = εα

2/2eα(c+Xg,ǫ(x)).

Here the regularization is the one described in Lemma 3.2. Such quantities are called vertex

operators. Notice that V α
g,ǫ also depends on the variable c but we have dropped this dependence

in the notations.

Then, the point is to determine whether the limit

Πx,α
γ,µ (g, F ) := lim

ε→0
Πx,α
γ,µ (g, F, ε)

exists and defines a non trivial functional on those mappings F : H−s(M) → R. If it does, the

quantity Πx,α
γ,µ (g) := Πx,α

γ,µ (g, 1) stands for the n-point correlation function of the primary fields

(eαiϕ)1 6 i 6 n respectively evaluated at (xi)1 6 i 6 n. Furthermore, another quantity of interest

is the probability law on H−s(M) defined by the measure

F ∈ Cb(H−s(M)) 7→ Πx,α
γ,µ (g, F )/Π

x,α
γ,µ (g),

which describes the law of some formal ”random function” (it is in fact a distribution).

We obtain a result similar to [DKRV] (done for the sphere).

Proposition 4.4. Let x = (x1, . . . , xn) ∈ Mn and α = (α1, . . . , αn) ∈ R
n. Then for all

bounded continuous functionals F : h ∈ H−s(M) → F (h) ∈ R with s > 0, the limit

Πx,α
γ,µ(g, F ) := lim

ε→0
Πx,α
γ,µ(g, F, ε),

exists and is finite with Πx,α
γ,µ(g, 1) > 0, if and only if:

∑

i

αi + 2Q(g − 1) > 0, (4.9)

∀i, αi < Q. (4.10)

In the case g ∈ Met−1(M), we have the following expression

Πx,α
γ,µ(g) =

eC(x) µ−
∑

i αi−2Q(g−1)Γ(
∑

i αi + 2Q(g − 1)) E
[
Gγg,x,α(M)−

∑
i αi+2Q(g−1)

γ

]

√
det′(∆g)/Volg(M)
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where Γ is Euler gamma function and, if Wg is the function appearing in Lemma 3.2,

Gγg,x,α(dx) := eγ
∑

i αi2πGg(xi,x)Gγg (dx),

C(x) :=
∑

i

α2
i

2
Wg(xi) + 2π

∑

i<j

αiαjGg(xi, xj).
(4.11)

Proof. The argument goes essentially as in the proof of [DKRV, Theorems 3.2 & 3.4], while

having in mind that the Gauss-Bonnet theorem is (2.1) on general compact Riemann surfaces.

We recall the main steps. It suffices to prove the claim for F = 1. By Lemma 3.1, we can

replace Xĝ by Xg in the expression defining (4.8) - in particular V αi
ĝ,ε(xi) becomes V̂ αi

g,ε(xi) :=

εα
2
i /2eαi(c+X̂g,ǫ(xi)). First we notice by (3.10) that

V̂ αi
g,ε(xi) = eαic+

α2
i
4
ϕ(xi)+

α2
i
2
Wg(xi)eαiX̂g,ε(xi)−

α2
i
2
E[X̂g,ε(xi)2](1 + o(1))

as ε → 0, with the remainder being deterministic. Here we have used the notation X̂g,ε(xi) =

〈Xg, µ̂xi,ε〉 as before, where µ̂xi,ε is the uniform probability measure on the Riemannian circle

Cĝ(xi, ε). Then applying Girsanov transform to

Aε :=

∫

R

E

[(∏

i

V̂ αi
g,ε(xi)

)
exp

(
− Q

4π

∫

M
Kĝ(c+Xg) dvĝ − µeγcĜγg,ε(M)

)]
dc

we get

Aε =e
Cε(x)

∫

R

ec(
∑

i αi−Qχ(M))
E

[
exp

(
− Q

4π
〈Xg,Kĝ〉ĝ − µeγcZε

)]
dc (1 + o(1))

where

Zε := ε
γ2

2

∫

M
eγ(X̂g,ε+Hg,ε)dvĝ

Hg,ε(x) :=
∑

i

2παi

∫

Cĝ(xi,ε)
Gg(y, x)dµ̂xi,ε(y),

Cε(x) := 2π
∑

i 6=j
αiαjGg(xi, xj)−

Q

4π

∫

M
KĝHg,εdvĝ +

∑

i

α2
i

4
(ϕ(xi) + 2Wg(xi)).

Notice that, since Kĝdvĝ = (∆gϕ− 2)dvg, we have as ε→ 0

Cε(x) → 2π
∑

i 6=j
αiαjGg(xi, xj) +

∑

i

(
α2
i

4
− Qαi

2
)ϕ(xi) +

Q

2

∑

i

αicg(ϕ) +
1
2

∑

i

α2
iWg(xi).

By applying Girsanov transform just like in the proof of Proposition 4.2, we can get rid of the

〈Xg,Kĝ〉g term and this shifts the field X̂g,ε in Zε by F (x) = −Q
2 (ϕ(x)− cg(ϕ)):

Aε =e
Cε(x)+

Q2

16π
||dϕ||2

L2
g

∫

R

ec(
∑

i αi−Qχ(M))
E

[
exp

(
− µeγcẐε

)]
dc (1 + o(1))

where Ẑε := ε
γ2

2

∫
M eγ(X̂g,ε+Hg,ε+F )dvĝ; here we have denoted cg(ϕ) = 〈ϕ, 1〉g/Volg(M). By

Lemma 3.2, ||Hĝ,ε||L∞ < ∞ thus by Proposition 3.3, we get that E[Ẑε] < ∞ thus we can find
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B > 0 such that P(Ẑε 6 B) > 0. We therefore get

Aε > βε,x

∫ 0

−∞
ec(

∑
i αi−Qχ(M))−µeγc

P(Ẑε 6 B) dc

for some βε,x > 0, and this is infinite if
∑

i αi −Qχ(M) 6 0. Then we assume (4.9). We also

have as in (3.12) the relation

Ẑε = e
γQ
2
cg(ϕ)Zε(1 + o(1)), Zε := ε

γ2

2

∫

M
eγ(Xg,ε+Hg,ε)dGγε .

Making the change of variables c→ c− Q
2 cg(ϕ), we obtain that Aε is equal to

e
C(x)+

∑
i(

α2
i
4
−Qαi

2
)ϕ(xi)+

Q2

16π
||dϕ||2

L2
g
+Q2

2
χ(M)cg(ϕ)

∫

R

ec(
∑

i αi−Qχ(M))
E

[
exp

(
− µeγcZε

)]
dc

times 1 + o(1) as ε → 0, where C(x) is given by (4.11). In particular this implies (4.13) if we

can show that for the case ϕ = 0 the limit of Aε is finite. We now assume ϕ = 0, or equivalently

we consider ĝ = g the hyperbolic metric. We make the change of variable c = µeγcZε in the

c-integral defining Aε (recall that Zε > 0 almost surely), and we get

Aε = γ−1eC(x)µ
−

∑
i αi+Qχ(M)

γ Γ
(∑

i αi −Qχ(M)

γ

)
E[Z

−
∑

i αi−Qχ(M)

γ
ε ].

It remains to show that if αi < Q for all i and s < 0, then

lim
ε→0

E[Zsε ] = E[Zs0 ] ∈ (0,∞), Z0 :=

∫

M
eγHgdGγĝ (4.12)

with Hg := limε→0Hg,ε = 2π
∑

i αiGg(xi, ·) in the H−s(M) topology, and that if αi > Q for

some i, then E[Zsε ] → 0. But this part is only a local argument and therefore Lemma 3.3.

of [DKRV] applies directly. The argument goes essentially as follows. We need to determine

whether the measure Gγg (dx) integrates the singularity 1
dg(x,xi)γαi

in the neighborhood of xi.

Standard multifractal analysis shows that for any δ > 0 one can find a constant Cδ such that

sup
r<1

r−γQ+δGγg (Br(xi)) 6 Cδ

where Br(xi) stands for the geodesic ball of radius r centered at xi. This gives the condition

αi < Q. Finally it remains to determines whether the quantity
∫

R

ec
(∑

i αi−2Q(1−g)
)
E[e−µe

γcGγ
g,x,α(M)] dc

is finite. As we have seen that Gγg,x,α(M) is a well defined non trivial random variable under the

condition (4.10), one may think of it as a macroscopic quantity and replace it by a constant

quantity, say 1, so as to be left with the integral
∫

R

ec
(∑

i αi−2Q(1−g)
)
−µeγc dc,

which is straightforwardly seen to be converging if and only if (4.9) holds. �

In fact the proof of the previous Proposition (adding a functional F does not change any-

thing) also shows the
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Proposition 4.5. (Conformal anomaly and diffeomorphism invariance) Let x = (x1, . . . , xn) ∈
Mn and α = (α1, . . . , αn) ∈ R

n. Let g ∈ Met−1(M) be a hyperbolic metric and ĝ = eωg for

some ω ∈ C∞(M). Then

log
Πx,α
γ,µ(ĝ, F )

Πx,α
γ,µ(g, F (· − Q

2 ))
=

1 + 6Q2

96π

∫

M
(|dω|2g + 2Kgω)dvg +

∑

i

(
α2
i

4
− Qαi

2
)ω(xi) (4.13)

Let ψ :M →M be an orientation preserving diffeomorphism. Then

Πx,α
γ,µ (ψ

∗g, F ) = Πψ(x),αγ,µ (g, F (· ◦ ψ)).

5. Liouville Quantum gravity

5.1. The full partition function. The partition function of Liouville quantum gravity is a

weighted integral over the moduli space of the Liouville quantum field theory coupled to a

Conformal Field Theory (sometimes called matter field in physics in this context). The weight

of each modulus is given by some explicit functional ZGhost(g) (this weight depends on the

underlying surface (M,g)), called the ghost system in physics. This takes into account the

factorization of the space of metrics by the action of the group of diffeomorphisms of the

surface (as explained for example in [DhPh]).

Let us first recall the physics heuristics that leads to the partition function, by following

[Po, DhPh, DiKa, Da]; the following discussion is not mathematically rigorous but is rather a

“state of the art” in physics literature. The partition function for (Euclidean) quantum gravity

in 2D, coupled with matter, is

Z =

∫

R
e−SEH(g)

( ∫
e−SM(g,φm)Dgφm

)
Dg

where R = Met(M)/Diff(M) is the space of Riemannian structures, the action SEH(g) =

µ0Volg(M) is the Einstein-Hilbert action (or gravity action) with µ0 ∈ R the cosmological

constant and φm are matter fields with SM(g, φm) being the action for matter which depends

in g in a conformally invariant way. Notice that, in comparison with (1.10), we got rid of the

term
∫
M Kg dvg as it is a topological invariant in 2d because of the Gauss-Bonnet theorem:

this is an important feature of 2d-quantum gravity. The quantity

ZM(g) :=

∫
e−SM(g,φm)Dgφm

is supposed to be a CFT with central charge cM, Dgφm a formal measure depending on g and

Dg is the formal Riemannian measure induced by the L2 Riemannian metric on Met(M) given

by (2.5) (the group Diff(M) acts by isometries on Met(M) thus the L2-metric on Met(M)

descends to R). Each metric can be decomposed as g = ψ∗(eϕgτ ) where τ is a parameter on

moduli space Mg, gτ is a family of metrics representing moduli space and ψ ∈ Diff(M), and

the formal measure Dg can be accordingly decomposed as

Dg = ZGhost(e
ϕgτ )DeϕgτϕDτ
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where ZGhost is the ghost determinant which comes from the Jacobian of the quotient of

Met(M) by the group of diffeomorphism Diff(M) (see for example [DhPh]), and given by

ZGhost(g) =
(det(P ∗

g Pg)

detJg

)1/2

where Pg, Jg are defined in Section 2.3. The ghost determinant satisfies the conformal anomaly

formula (4.3) with central charge

cghost = −26. (5.1)

Here Dτ is a measure on the slice of metrics gτ chosen to represent moduli space, whose value

is Dτ := (det Jgτ )
1/2dτ with dτ being the Weil-Petersson volume form on the moduli space Mg

(somehow ZGhost(e
ϕgτ )Dτ is the quantity that makes invariant sense, as it does not depend on

the matrix Jg). The formal measure Deϕgτϕ should be induced by the L2 Riemannian metric

on metrics, which on the tangent space to the conformal orbit [gτ ] = {eϕgτ ;ϕ ∈ C∞(M)} is

given by

||f ||2eϕgτ =

∫

M
ω2eϕdvgτ , f = ωeϕgτ ∈ Teϕgτ [gτ ].

This measure depends non-linearly on ϕ and it is difficult to “do the functionnal integral” for

this measure, as written in [DiKa]. Therefore David and Distler-Kawai [Da, DiKa] made the

“well-motivated” assumption that

e−SEH(g)ZM(g)Dg = ZM(gτ )ZGhost(gτ )e
−SL(gτ ,ϕ)DτDgτϕ

where SL(g, ϕ) is the Liouville action defined by (2.2) for some parameter Q, γ, µ to be chosen.

A formal justification of this fact was written down later in [MaMi] and [DhKu]. Invariance

of the theory by choice of slice gτ representing moduli space forces the partition function∫
e−SL(gτ ,ϕ)Dgτϕ to be a CFT with central charge cL = 1+6Q2 such that the total conformal

anomaly vanishes:

cghost + cM + cL = 0

and Q, γ need to be related by Q = γ/2 + 2/γ.

Now we stop the physics parenthesis and come back to mathematics. For the matter field,

we take the particular case the most studied in the physics literature, namely

ZM(g) :=
(det′(∆g)

Volg(M)

)−cM/2
(5.2)

where cM is a constant in (−∞, 1]. Note that this has the central charge cM by (2.10). Fur-

thermore, there are at least two important particular cases: pure gravity where cM = 0 and

the 2d bosonic string in the case cM = 1. Because it is the critical situation os this approach,

the latter case is especially interesting and raises serious additional difficulties. One could con-

sider also other CFT partition functions provided that we get an expression explicit enough to

determine how it behaves at the boundary of the moduli space. For each modulus τ ∈ Mg, we

can associate a hyperbolic metric gτ and we will denote by (gτ )τ the family of hyperbolic met-

rics representing the moduli space. By definition, the partition function of Liouville quantum

gravity is given by the following formula:

Z :=

∫

Mg

ZGhost(gτ )× ZM(gτ )×Πγ,µ(gτ )Dτ (5.3)
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where Dτ := (det Jgτ )
1/2dτ with dτ the Weil-Petersson volume form on the moduli space Mg,

and Πγ,µ(g) is the partition function of the Liouville quantum field theory. This can be reduced

to

Z = Cg

∫

Mg

det(P ∗
gτPgτ )

1/2 × det′(∆gτ )
−cM/2 ×Πγ,µ(gτ ) dτ (5.4)

with Cg a constant depending only on the genus of M . Furthermore, as we have defined LQFT

only for γ ∈]0, 2[, this shows that the central charge cM of the matter field must satisfy cM < 1

and, combining with the expression Q = γ
2 + 2

γ , we obtain another KPZ relation [KPZ]

γ =

√
25− cM −√

1− cM√
6

, (5.5)

which fixes the value of γ in terms of cM.

Now, the main result of this section is the following

Theorem 5.1. If γ ∈]0, 2] and cM satisfies relation (5.5), the partition function Z given by

(5.3) is finite. Hence it gives rise to a finite measure ν on Rad(M) ×Mg defined as follows:

if (gτ )τ is a family of hyperbolic metrics parametrizing the moduli space Mg, then

ν(F ) :=

∫

Mg×R

( det(P ∗
gτPgτ )

(det′∆gτ )
cM+1

)1
2
E
[
F (eγcGγgτ (dz), τ)e−Qχ(M)c−µeγcGγ

gτ (M)
]
dτ dc

for all continuous functionals F : Rad(M) ×Mg → R. When renormalized by its total mass

Z = ν(1), it becomes a probability measure which we call P(gτ )τ ,µ (with expectation E(gτ )τ ,µ) and

the couple (eγcGγgτ (dz), τ) becomes a random variable on Rad(M) ×Mg, which we denote by

(Lγ , R) and stands for the volume form of the space (called Liouville quantum gravity measure)

and its modulus (called quantum modulus).

Furthermore, for all continuous functionals F : Rad(M)×Mg → R

E(gτ )τ ,µ[F (Lγ(dz), R)] (5.6)

=
Γ(2Q(g−1)

γ )

γZµ
2Q(g−1)

γ

∫

Mg

( det(P ∗
gτPgτ )

(det′∆gτ )
cM+1

) 1
2
E

[
F

(
ξγ

Gγgτ (dz)
Gγgτ (M)

, τ

)
Gγgτ (M)

Q
γ
χ(M)

]
dτ

where ξγ is a random variable with Gamma law of density µ
2Q(g−1)

γ

Γ(
2Q(g−1)

γ
)
e−µxx

2Q(g−1)
γ

−11x > 0 and

the random modulus R has density

det(P ∗
gτPgτ )

1
2

(det′(∆gτ )

Volgτ (M)

)− (cM+1)

2
E

[
Gγgτ (M)

Q
γ
χ(M)

]

with respect to the dτ measure.

Let us make some comment on the above result. The LQG measure depends on the family

of hyperbolic metrics (gτ )τ but this is not an issue since it enjoys the following invariance by

reparametrization: if (ψτ )τ is a family of orientation preserving diffeomorphisms, we get the

following equality for all τ

E(ψ∗
τgτ )τ

[F (Lγ ◦ ψτ )|R = τ ] = E(gτ )τ [F (Lγ)|R = τ ] (5.7)
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5.2. Proof of Theorem 5.1 in the case γ = 2. Our purpose is to determine the behaviour

of the partition function (5.3) of LQFT (for γ = 2) at the boundary of the moduli space with

ZM(g) defined by (5.2) and cM = 1. According to the relation (4.6), this amounts to showing

that the integral
∫

Mg

( det(P ∗
gτPgτ )

(det′∆gτ )
cM+1

)1
2
E

[
Gγgτ (M)

Q
γ
χ(M)

]
dτ (5.8)

is finite. The singularities in this integral appear at the boundary of the moduli space, namely

when the surface (M,g) gets close to a surface with nodes (M0, g0) by pinching np geodesics

with respective lengths (ℓj)j on (M,g) (see section 2.5). According to the explicit bounds

(2.12) and (2.15) for the product
(

det(P ∗
gτ
Pgτ )

(det′∆gτ )
cM+1

)1
2
and the expression for the Weyl-Petersson

measure (2.9), we can give an upper bound

C
( np∏

j′=1

ℓ−2
j′

∏

λi<1/4

λ−1
i

)( 3g−3∏

j=1

ℓj dℓjdθj

)
(5.9)

for the quantity
(

det(P ∗
gτ
Pgτ )

(det′∆gτ )
cM+1

)1
2
dτ in the coordinate system (ℓj , θj)j=1,...,3g−3 associated to a

pant decomposition. Hence it suffices to check the integrability of the expectation E
[
Gγg (M)

Qχ(M)
γ

]

with respect to the measure (5.9) near (M0, g0). It turns out that the mass of the measure

Gγg (M) will become very large when g gets close to g0 in the pinched region of the surface

(M,g), making the expectation E
[
Gγg (M)

Qχ(M)
γ

]
very small. We have to quantify the rate of

decay of this expectation to show integrability. Proposition 2.7 describes how the Green func-

tion behaves near the pinched geodesics. The purpose of what follows is to explain how these

estimates transfer to the above expectation.

We assume (M0, g0) possesses m+1 connected components, and we consider a neighborhood

of (M0, g0); there is a subpartition {γ1, . . . , γnp} of M corresponding to the pinched geodesics.

Let us denote by (Sj)j=1,...,m+1 the connected components ofM\(∪np

j′=1γj′). Each γj′ has a collar

neighborhood denoted Cj′ (see (2.29), for simplicity of notation we remove the g dependance

in Cj′(g)). We denote by S′
j the set obtained by removing from Sj all the collars

S′
j :=

np⋂

j′=1

(Sj \ Cj′)

in such a way that M = ∪m+1
j=1 S

′
j ∪

np

j′=1 Cj′. Furthermore, for each j = 1, . . . ,m + 1, we define

Ij = {j′ ∈
{
1, . . . , np};Sj ∩Cj′ 6= ∅

}
the set of indices j′ such that the collar Cj′ encounters Sj .

We define the following quantities for x > 0 and 1 6 j′ 6 np

C+
j′ := Cj′ ∩ {ρ > 0} C−

j′ := Cj′ ∩ {ρ 6 0}
Cj′(x)+ := Cj′ ∩ {x 6 ρ} Cj′(x)− := Cj′ ∩ {ρ 6 − x},

here ρ : ∪j′Cj′ → [−1, 1] is the function in the collars so that the metric is given by (2.37).

Let us denote by (ϕi)1 6 i 6 m the eigenfunctions associated to the small (non zero) eigenvalues
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(λi)1 6 i 6 m and write the Green function G as
∑

1 6 i 6 m
1
λi
Πλi+Ag. ConsiderX

′
g the Gaussian

field with covariance 2πAg, which is nothing but

X ′
g = Xg −

∑

1 6 i 6 m

(2π/λi)
1/2 〈Xg, ϕi〉

(2π)1/2
ϕi. (5.10)

The finite sequence (
〈Xg ,ϕi〉
(2π)1/2

)1 6 i 6 m is a sequence of i.i.d. standard Gaussian random variables,

namely with law N (0, 1), which we denote (ai)1 6 i 6 m. Furthermore, (ai)1 6 i 6 m and X ′
g are

independent. In case the surface (M0, g0) is not disconnected, write Ag = G and X ′
g = Xg. We

introduce the random measure: ∀A ⊂M Borel set

G′(A) := lim
ε→0

(− ln ε)1/2ε2
∫

A
e2X

′
g,ε dvg,

whereX ′
g,ε is the regularization ofX ′

g as in Lemma 3.2. Notice that the convergence in probabil-

ity of this measure is ensured by the convergence in probability of the same measure involving

the field Xg instead of X ′
g (both field coincide up to an additive continuous field so that con-

vergence of one measure is equivalent to convergence of the other one). The main technical

estimate we need in the proof is the following

Lemma 5.2. Let U0 ⊂ Mg be a neighborhood of some metric with nodes g0. For any j
′, δ > 0,

q > 0, λ ∈ [0, 1] there exists some constant C such that for all g ∈ U0, ∀ℓ, ℓ′ > ℓj′ and A,B > 0

and ψ : R → R of class C1 such that ψ ◦ Fj′(−1) = ψ ◦ Fj′(1) = 0

E

[(∫

Cj′
φeψ◦Fj′ dG′

)−q]
6 CqA

−qλB−q(1−λ)(ℓℓ′)
1
2−δ exp

(
C

∫

1 6 |r| 6 2π
min(ℓ,ℓ′)1−δ

|ψ′(r)|2 dr
)
.

where the function φ is defined on the collar Cj′ by φ(ρ) = A1Cj′ (ℓ)+ +B1Cj′ (ℓ′)−, and Fj′(ρ) :=
2π
ℓj′

arctan(
ℓj′
ρ ). The constant Cq depends on q and the mapping q ∈ [0,+∞[7→ Cq is locally

bounded.

The proof of this lemma is postponed to the end of this subsection. As a direct consequence

we claim

Corollary 5.3. For any j′, δ > 0 q > 0, there exists some constant C such that for all g ∈ U0

and ℓ, ℓ′ > ℓj′ and A,B > 0

1) E

[
G′(Cj′(ℓ)+)−q

]
+ E

[
G′(Cj′(ℓ)−)−q

]
6 Cℓ1/2−δ.

2) E

[
(AG′(Cj′(ℓ)+) +BG′(Cj′(ℓ′)−))−q

]
6 C(AB)−q/2(ℓℓ′)1/2−δ .

Now we complete the proof while considering two main situations: either the surface (M0, g0)

is disconnected or not.

• Case (M0, g0) is not disconnected: In that case the measure (5.9) can be estimated

from above by the measure

C
( np∏

j′=1

ℓ−1
j′

) 3g−3∏

j=1

dℓjdθj . (5.11)
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Obviously we have

E
[
Gγg (M)

Qχ(M)
γ

]
6 E

[( np∑

j′=1

G′(Cj′)
)Qχ(M)

γ
]
.

Now we observe that the cross covariances of the field X ′
g in the various regions Cj′ are bounded

by some uniform constant, i.e. supg∈U0
supj′1 6=j′2 supx∈Cj′1 ,y∈Cj′2

|E[X ′
g(x)X

′
g(y)]| 6 C (see Propo-

sition (2.2)). Kahane’s inequality [Ka, Lemma 1] then tells us that, considering independent

copies (Ĝ′
j′)1 6 j′ 6 np of G′, the latter expectation is less than (for some irrelevant constant C)

CE
[( np∑

j′=1

Ĝ′
j′(Cj′)

)Qχ(M)
γ

]
.

Then, we use the following elementary inequality valid for b1, . . . , bn > 0 and w1, . . . , wn > 0

with
∑n

j=1wj = 1 and q > 0

(
n∑

i=1

bi)
−q 6

n∏

i=1

b−wiq
i (5.12)

to deduce that the above expectation is less than
∏np

j′=1 E
[(
Ĝ′
j′(Cj′)

)Qχ(M)
γnp

]
. Combining with

Corollary 5.3, we obtain

E
[
Gγg (M)

Qχ(M)
γ

]
6 C

np∏

j′=1

ℓ1−δj′

for some arbitrary δ > 0. This is enough to show integrability with respect to (5.11).

• Case (M0, g0) is disconnected: Recall that the eigenfunctions (ϕi)i=1,...,m converge

uniformly on the compact subsets of each Sj respectively towards some fixed value denoted

vij . From Lemma 2.8, we have the estimate in the region |ρ| > Cℓj′ of the cusp Cj′ ∩ Sj
ϕ+
ij 6 ϕi 6 ϕ−

ij (5.13)

where we have set

ϕ+
ij :=vij(1− S(vij)Cǫ)|ρ|−λi+CS(vij)λ2i − Cǫ (5.14)

ϕ−
ij :=vij(1 + S(vij)Cǫ)|ρ|−λi−CS(vij)λ2i + Cǫ (5.15)

for some constant C > 0; here we have denoted by S the function x ∈ R 7→ S(x) := sign(x).

Restricting the integral to the cusp regions and then using (5.13), we have the estimate condi-

tionally on the (ai)1 6 i 6 m

E
[
Gγg (M)

Qχ(M)
γ |(ai)1 6 i 6 m

]
6 E

[
Gγg (∪j′Cj′)

Qχ(M)
γ |(ai)1 6 i 6 m

]

=E
[(∑

j′

∫

Cj′
e
∑

i 2(2π/λi)
1/2aiϕidG′)Qχ(M)

γ |(ai)1 6 i 6 m

]

6 E
[(∑

j,j′

∫

Cj′∩Sj

e
∑

i 2(2π/λi)
1/2aiϕ

S(ai)
ij dG′)Qχ(M)

γ |(ai)1 6 i 6 m

]
,
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where ϕ
S(ai)
ij = ϕ+

ij if ai > 0 and ϕ
S(ai)
ij = ϕ−

ij if ai < 0. Once again we can use Kahane’s

convexity inequality to show that there exists a collection of mutually independent random

measure (G′
(j′))1 6 j′ 6 np (and independent of the (ai)1 6 i 6 m) such that, for some irrelevant

constant C > 0

E
[(∑

j,j′

∫

Cj′∩Sj

e
∑

i 2(2π/λi)
1/2aiϕ

S(ai)
ij dG′)Qχ(M)

γ |(ai)1 6 i 6 m

]

6 CE
[(∑

j,j′

∫

Cj′∩Sj

e
∑

i 2(2π/λi)
1/2aiϕ

S(ai)
ij dG′

(j′)

)Qχ(M)
γ |(ai)1 6 i 6 m

]
.

Now we choose a collection of real-valued random variables (rj)1 6 j 6 m+1 that are non neg-

ative with
∑

j rj = 1 and measurable with respect to the family (ai)1 6 i 6 m. The precise choice

of the family (rj)1 6 j 6 m+1 will be made later when appropriate. Given those (rj)1 6 j 6 m+1,

we construct new weights (wj′)1 6 j′ 6 np as follows. For each j = 1, . . . ,m + 1, we define

I+j = {j′ ∈
{
1, . . . , np};Sj ∩ C+

j′ 6= ∅
}
the set of indices j′ such that the collar C+

j′ encounters

Sj and we define similarly I−j . Also, for each j
′ = 1, . . . , np, there exists a unique j such that

C+
j′ ⊂ Sj and we denote by j′+ that index. Similarly for j′−. Finally for j′ = 1, . . . , np, we define

w+
j′ =

rj′+
|I+j′+ |+ |I−j′+ |

, w−
j′ =

rj′−
|I+j′− |+ |I−j′− |

and wj′ = w+
j′ +w−

j′ . (5.16)

The first observation is that ∑

j′=1,...,np

wj′ = 1. (5.17)

Indeed

∑

j′=1,...,np

wj′ =

m+1∑

j=1

∑

j′∈I+j

w+
j′ +

m+1∑

j=1

∑

j′∈I−j

w−
j′

=

m+1∑

j=1

∑

j′∈I+j

rj

|I+j |+ |I−j |
+

m+1∑

j=1

∑

j′∈I−j

rj

|I+j |+ |I−j |

=
m+1∑

j=1

rj = 1.

Relation (5.17) allows us to use inequality (5.12). Together with independence of the measures

(G′
(j′))1 6 j′ 6 np conditionally on the (ai)1 6 i 6 m, this yields

E
[
Gγg (M)

Qχ(M)
γ |(ai)1 6 i 6 m

]

6 C

np∏

j′=1

E
[(∑

j

∫

Cj′∩Sj

e
∑

i 2(2π/λi)
1/2aiϕ

S(ai)
ij dG′)wj′

Qχ(M)
γ |(ai)1 6 i 6 m

]
.

Notice that the sum over j in the latter expression contains at most two non trivial terms as

a cusp Cj′ possesses at most two non trivial intersections with the Sj’s. More precisely

∑

j

∫

Cj′∩Sj

e
∑

i 2(2π/λi)
1/2aiϕ

S(ai)
ij dG′ =

∫

C−
j′

e

∑
i 2(2π/λi)

1/2aiϕ
S(ai)

ij′
− dG′ +

∫

C+
j′

e

∑
i 2(2π/λi)

1/2aiϕ
S(ai)

ij′
+ dG′.
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Now introduce t+j′ = F−1
j′ (1) and t−j′ = F−1

j′ (−1) and rewrite the above integrals as
∫

Cj′
φeψ◦Fj′dG′

in view of applying Lemma 5.2, with ℓ = ℓ′ = ℓj′

φ = e

∑
i 2(2π/λi)

1/2aiϕ
S(ai)

ij′
+

(t+
j′
)
1C+

j′
+ e

∑
i 2(2π/λi)

1/2aiϕ
S(ai)

ij′
−

(t−
j′
)
1C−

j′

ψ =
∑

i

2(2π/λi)
1/2ai

(
(ϕ

S(ai)
ij′−

◦ F−1
j′ − ϕ

S(ai)
ij′−

(t−j′))1C−
j′
+ (ϕ

S(ai)
ij′+

◦ F−1
j′ − ϕ

S(ai)
ij′+

(t+j′))1C+
j′

)
.

Notice that ψ ◦ Fj′(1) = ψ ◦ Fj′(−1) = 0. Then Lemma 5.2 with λ =
w+

j′

wj′
gives the estimate

E
[(∑

j

∫

Cj′∩Sj

e
∑

i 2(2π/λi)
1/2aiϕ

S(ai)
ij dG′)

)wj′
Qχ(M)

γ |(ai)1 6 i 6 m

]

6 C
(
e

Qχ(M)
γ

∑
i 2(2π/λi)

1/2ai

(
w−

j′
ϕ
S(ai)

ij′−
(t−

j′
)+w+

j′
ϕ
S(ai)

ij′+
(t+

j′
)
))
ℓ1−δj′ eC

∑
i λia

2
i .

To estimate the quantity
∫
1 6 |r| 6 2π

ℓ1−δ
j′

|ψ′(r)|2 dr appearing in the conclusion of Lemma 5.2,

we have used the chain rule formula for derivatives combined with the following elementary

estimates for F−1
j′ (r) =

ℓj′

tan
ℓ
j′

r

2π

valid for all r ∈ [1, 2π
ℓ1−δ
j′

] and for some irrelevant constant c > 0

c−1

r
6 F−1

j′ (r) 6
c

r
and − c

r2
6 (F−1

j′ )′(r) 6 − c−1

r2
.

Combining with the expressions (5.14)+(5.15) we obtain the estimate

|ψ′(r)|2 6 C(
∑

i

λ
1/2
i ai|r|λi−1)2,

yielding in turn, after integrating (and recalling that 0 < λi < 1/4),
∫

1 6 |r| 6 2π

ℓ1−δ
j′

|ψ′(r)|2 dr 6 C
∑

i,i′

aiai′(λiλi′)
1/2 6 C

∑

i

λia
2
i

for some global constant C (which may change along lines). Let us make a remark here. In the

statement of Lemma 5.2, the exponent q is deterministic whereas here it is here random as a

measurable function of the wj′ (hence of the ai’s), namely q = wj′
Qχ(M)

γ . Yet conditionally on

the ai’s the exponent can be seen as deterministic. We can thus apply Lemma 5.2. The resulting

constant Cq is therefore a measurable function of the ai’s. Yet, because Cq is locally bounded

as a function of q and because wj′ ∈ [0, 1] for all j′, we can obtain an overall deterministic

constant C in the above inequality by taking C = sup
q∈[0,Qχ(M)

γ
]
Cq.

So far, we have established that

E
[
Gγg (M)

Qχ(M)
γ

]
6 CE

[
eC

∑
i λia

2
i e

Qχ(M)
γ

∑
i,j′ 2(2π/λi)

1/2ai

(
w−

j′
ϕ
S(ai)

ij′
−

(t−
j′
)+w+

j′
ϕ
S(ai)

ij′
+

(t+
j′
)
)]∏

j′

ℓ1−δj′ .
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We can convert the sums over j′ in the above expectation into sums of the type
∑

j

∑
j′∈I±j

and use the relation ϕ
S(ai)
ij′±

(t±j′) = vij +O(λi) +O(ǫ) for j′ ∈ I±j (the O entering this relation

are uniform w.r.t. the ai’s as easily seen from the expressions (5.14) and (5.15)) to get for some

C > 0

E
[
Gγg (M)

Qχ(M)
γ

]
(5.18)

6 CE

[
eC

∑
i λia

2
i e
C

∑
i

|ai|√
λi

(O(ǫ)+O(λi))
e
Qχ(M)

γ
∑

i,j 2(2π/λi)
1/2airjvij

)]∏

j′

ℓ1−δj′ .

To complete the proof we use the structure of the coefficients (vij)ij . Recall that the vec-

tors vi ∈ R
m+1 with components (vij)j form an orthonormal family for the inner product

(u, v) =
∑

j ujvjVolg0(Sj) and the orthogonal complement of span(vi)i is the vector 1 with

all components equal to 1. Now we define the precise values of the coefficients rj involved in

(5.18). Set V = maxij |vij | and define

rj = R
(
1 + 1

2mV

∑

i

S(ai)vij
)
Volg0(Sj) (5.19)

where R is a normalizing constant such that
∑

j rj = 1. Observe that 0 < rj < 1 for all j and

with this choice

∀i,
∑

j

rjvij =
R

2mV
S(ai).

Now we plug this relation into the estimate (5.18) to get for some C > 0

E
[
Gγg (M)

Qχ(M)
γ

]
6 CE

[
e
−C

∑
i

|ai|√
λi

(1+O(ǫ)+O(λi))+C
∑

i λia
2
i
] np∏

j′=1

ℓ1−δj′ .

We can choose the neighborhood of (M0, g0) in such a way that the term |O(ǫ) +O(λi)| is
less than 1/2 uniformly with respect to i, (ai)i, in which case taking expectation of the above

expression yields

E
[
Gγg (M)

Qχ(M)
γ

]
6 CE

[
e
−C∑

i
|ai|√
λi

+C
∑

i λia
2
i
]( np∏

j′=1

ℓ1−δj′

)
6 C

m∏

i=1

λ
1/2
i

np∏

j′=1

ℓ1−δj′ .

This establishes integrability with respect to the measure (5.9) by using the rough estimate

(2.31) on the eigenvalues λj(g) in terms of the lengths ℓk(g). �

5.3. Proof of Theorem 5.1 in the case γ < 2. The proof of the case γ < 2 is much simpler

than the case γ = 2. The main reason is that the quantity
(

det(P ∗
gτ Pgτ )

(det′∆gτ )
cM+1

)1
2
dτ appearing in

the integral (5.8) presents a more gentle behaviour at the boundary of the moduli space due

to the lower central charge cM < 1. More precisely (2.12) and (2.15) now gives the following

estimate for this term

C
( 3g−3∏

j=1

ℓj

)( np∏

j′=1

ℓ
− 5−cM

2
j′ e

−π2(1−cM)

6ℓ
j′

∏

λi<1/4

λ
− cM+1

2
i

)∏

j

dℓjdθj , (5.20)

hence an additional exponential decay in comparison with the case cM = 1.
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We stick to the notations introduced in section 2.4 and in the proof of Theorem 5.1 in the

case γ = 2. We introduce (ai)1 6 i 6 m i.i.d. standard Gaussian random variables and consider

the following Gaussian field:

Y (x) =

m∑

i=1

fvi(x)
ai√
νi

where the νi’s are defined in Theorem 2.3 and fvi in (2.30), with vi = (vij)1 6 j 6 m+1 ∈ R
m+1

from Lemma 2.5. Now, recall that on each S′
j the field Y (x) is the constant random variable

Yj =
∑m

i=1 vij
ai√
νi
.

By combining Proposition 2.2 and Lemma 2.5, the Green function Gg is such that for all

x, x′ ∈ ∪1 6 j 6 m+1S
′
j

Gg(x, x
′) 6

m∑

i=1

fvi(x)fvi(x
′)

νj(g)
+Ag(x, x

′) +
Cδ1/L

ν1

where C,L > 0 are global constants. Hence, if we introduce a standard normalized Gaussian

variable Z and an independent Gaussian field X ′
g (living in the space of distributions) with

covariance Ag, we get that for all x, x′ ∈ ⋃
1 6 j 6 m+1 S

′
j

Gg(x, x
′) 6 E[Y (x)Y (x′)] + E[X ′

g(x)X
′
g(x

′)] + Cδ1/Lν−1
1 EZ2

in such a way that Kahane’s convexity inequality [Ka] ensures that for all q > 0

E
[
Gγg (∪1 6 j 6 m+1S

′
j)

−q]

= E

[(m+1∑

j=1

∫

S′
j

eγXg(x)− γ2

2
E[Xg(x)2]e

γ2

2
Wg(x)dvg(x)

)−q]

6 E

[(m+1∑

j=1

∫

S′
j

eγY (x)− γ2

2
E[Y (x)2]+X′

g(x)− γ2

2
E[X′

g(x)
2]+γ(Cδ1/L/ν1)1/2Z− γ2

2
Cδ1/L/ν1e

γ2

2
Wg(x)dvg(x)

)−q]

6 e
(q+q2/2)γ

2

2
Cδ1/L

ν1 E

[(m+1∑

j=1

∫

S′
j

eγY (x)− γ2

2
E[Y (x)2]+γX′

g(x)− γ2

2
E[X′

g(x)
2]e

γ2

2
Wg(x)dvg(x)

)−q]
.

Now, by Proposition 2.2 and Lemma 2.5, there is some global constant C > 0 such that for all

j and x ∈ S′
j we have

Wg(x) > E[Y (x)2]− C (5.21)

so that for some other global constant C > 0

E
[
Gγg (∪1 6 j 6 m+1S

′
j)

−q] 6 Ce
Cδ1/L

ν1 E

[(m+1∑

j=1

∫

S′
j

eγY (x)+γX′
g(x)− γ2

2
E[X′

g(x)
2]dvg(x)

)−q]
.

Notice that
∑

j

Volg(Sj)Yj =
∑

j

Volg(Sj)(
∑

i

vij
ai√
νi
) =

∑

i

ai√
νi
(
∑

j

Volg(Sj)vij) = 0
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since the vectors (vi)i are orthogonal to 1 in the ||.||g norm (2.27). Hence there exists almost

surely some j such that Yj > 0. Therefore, gathering the above considerations, we have

E

[
Gγg (∪m+1

j=1 S
′
j)

−q
]
6 Ce

Cδ1/L

ν1 E

[(m+1∑

j=1

∫

S′
j

eγY (x)+γX′
g(x)− γ2

2
E[X′

g(x)
2]dvg(x)

)−q]

6 Ce
Cδ1/L

ν1

∑

j

E

[
1Yj > 0

(∫

S′
j

eγYj+γX
′
g(x)− γ2

2
E[X′

g(x)
2]dvg(x)

)−q]

6 Ce
Cδ1/L

ν1

∑

j

E

[(∫

S′
j

eγX
′
g(x)− γ2

2
E[X′

g(x)
2]dvg(x)

)−q]

6 Ce
Cδ1/L

ν1

where in the last inequality we have used the fact that the covariance of X ′
g can be controlled

independently of the size of the small eigenvalues (this is a consequence of Proposition 2.2

and Lemma 2.5). Combining with (5.20), this estimate shows integrability with respect to the

measure (5.20) by recalling that ν1 > Cℓ1 for some some constant C > 0 and by choosing δ

such that Cδ1/L < (1−cM)π2

6 .

Finally, it remains to identify the relation (5.6). Starting from the definition of ν, we have

E(gτ )τ ,µ[F (Lγ(dz), R)] = ν(F )/ν(1)

=
1

Z

∫

Mg

∫

R

( det(P ∗
gτPgτ )

(det′∆gτ )
cM+1

) 1
2
E

[
F (eγcGγgτ (dz), τ)e−Qχ(M)c−µeγcGγ

gτ (M)
]
dτdc.

It suffices to make the change of variables y = eγcGγgτ (M) to get

E(gτ )τ ,µ[F (Lγ(dz), R)]

=
1

γZ

∫

Mg

( det(P ∗
gτPgτ )

(det′∆gτ )
cM+1

)1
2
E

[
F
(
y
Gγgτ (dz)
Gγgτ (M)

, τ
)
Gγgτ (M)

− 2Q(g−1)
γ

]
y

2Q(g−1)
γ

−1
e−µy dy,

from which our claim follows. �

5.4. Proof of Lemma 5.2. We will use the results in Lemma 2.42 and Proposition 2.7. So it

is convenient to introduce the notations

C±
j′ := Cj′(ℓ)+ ∪ Cj′(ℓ′)−, Fj′(ρ) :=

2π
ℓj′

arctan(
ℓj′
ρ ),

h(ρ) :=
∑

i

|ρ|−2λi
(
1 + ln(1/|ρ|)

)
.

We further denote by F−1
j′ the inverse of the function Fj′ . Finally, in what follows, C stands

for a generic irrelevant positive constant, the value of which may change along lines.

Proposition 2.7 ensures that the Green function Ag (which is the covariance of the field X ′
g

defined in (5.10)) satisfies for x = ρeiθ and x′ = ρ′eiθ in the collar Cj′
Ag(x, x

′) 6 Ggj′ (x, x
′) + C2h(ρ)h(ρ′). (5.22)

Otherwise stated, we have bounded the errors terms in Proposition 2.7 with the help of the

function h. We stress that the function χ in Proposition 2.7 is worth 1 only for |ρ| 6 1/4 so
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that the above bound is rigorously valid only for |ρ| 6 1/4. Yet in the following we assume

that it is valid for |ρ| 6 1 for notational convenience because it does not change the validity of

the argument.

Then we need to decompose the Gaussian field with covariance function Ggj′ according to

its radial/angular parts. So we consider two independent centered Gaussian fields Xr and Xa

defined on the collar Cj′ = [−1, 1]ρ × (R \ Z)θ with respective covariance kernels Gr and Ga

defined by

Gr(ρ, θ, ρ′, θ′) :=

{
min(Fj′(|ρ|), Fj′(|ρ′|)) −

ℓj′

2π2Fj′(|ρ|)Fj′(|ρ′|) + C2h(ρ)h(ρ′) if ρρ′ > 0
ℓj′

2π2Fj′(|ρ|)Fj(|ρ′|) + C2h(ρ)h(ρ′) if ρρ′ 6 0

(5.23)

Ga(ρ, θ, ρ′, θ′) := − ln
∣∣∣1− e−|Fj′ (ρ)−Fj′ (ρ

′)|+2iπ(θ−θ′)
∣∣∣1{ρρ′ > 0}. (5.24)

The two quantities Gr and Ga are positive definite, hence the existence of such fields (pointwise

for Xr and distributional for Xa). Combining the above two relations we get that for x = ρeiθ

and x′ = ρ′eiθ in the collar Cj′

E[X ′
g(x)X

′
g(x

′)] 6 E[Xr(x)Xr(x′)] + E[Xa(x)Xa(x′)] + E[(δ(0)h(ρ))(δ(0)h(ρ′))] (5.25)

where δ(0) is a standard Gaussian random variable independent of everything. Hence we can

use Kahane’s inequality [Ka, Lemma 1] to get the estimate (recall that mgj′ is the Robin

constant defined in Lemma 2.42) for q > 0

E

[(∫
φeψ◦Fj′ dG′

)−q]
(5.26)

6 CqE
[( ∫

C±
j′

φ eψ◦Fj′ e2Cδ
(0)h−2h2e2X

r−2E[(Xr)2]e
4πmg

j′ dGag
)−q]

where Cq is an explicit constant such that lnCq is quadratic in q. Here we have defined the

random measure Gag as the limit in law as ǫ → 0 (eventually up to some subsequence) of the

family of random measures (− ln ε)1/2e2X
a
ε−2E[(Xa

ε )
2] dvg. From (2.42)+Proposition 2.7, we get

that 4πmgj′ − 2E[X2
r ] > 2 ln |ρ| − 2C2h(ρ)2 for |ρ| > ℓj′ for some constant C > 0. Hence,

for |ρ| > ℓj′ , the measure e2Cδ
(0)h−2h2+2Xr−2E[(Xr)2]e

4πmg
j′ dGag is greater than the measure

e2X
r
eg(ρ)ρ−2 dGag where we have set

g(ρ) := 2Cδ(0)h(ρ) + 4 ln |ρ| − 4C2h(ρ)2. (5.27)

Now that we have simplified the deterministic part of the measure we analyze the random

part. For this, we write a path decomposition result for the process Xr

Lemma 5.4. Let us consider two standard Gaussian r.v. δ(1), δ(2) ∼ N (0, 1) and two standard

Brownian bridges (Br+ρ )ρ∈[0,1] (Br−ρ )ρ∈[0,1] , all of them mutually independent. We have the

following equality in law in the sense of processes for ρ ∈ [−1, 1]

Xr(ρ) = 1{ρ>0}π/
√
ℓj′Br

+
ℓj′

π2 Fj′ (|ρ|)
+1{ρ<0}π/

√
ℓj′Br

−
ℓj′

π2 Fj′ (|ρ|)
+

√
ℓj′/2

π Fj′(|ρ|) δ(1) +Ch(ρ)δ(2).
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Proof. Recall the covariance structure of the Brownian bridge E[Br+ρ Br
+
ρ′ ] = ρ∧ ρ′− ρρ′. Hence

for arbitrary constants a, c > 0 and ρ < 1/c

E[(aBr+cρ)(aBr
+
cρ′)] = a2cρ ∧ ρ′ − a2c2ρρ′.

Adjusting the constants a, c to fit with the covariance function min(ρ, ρ′) − ℓj′

π2 ρρ
′ leads to

a = π/
√
ℓj′ and c =

ℓj′

π2 . One completes easily the proof of the claim by time changing with

Fj′ and adding the covariance structure of the term

√
ℓj′/2

π Fj′(|ρ|) δ(1) + Ch(ρ)δ(2). �

Now, observe that if we restrict to those ℓj′ 6 |ρ| 6 1 then
ℓj
π2Fj′(|ρ|) ∈ [0, 12 ] and the law of

the Brownian bridge Br on [0, 12 ] is absolutely continuous with respect to the law of Brownian

motion B with density 2e−|B1/2|2 . Using this relation with Br+ and Br− together with the

scaling relation for Brownian motion aBt/a2
law
= Bt for fixed a > 0, we deduce using (5.26) and

Lemma 5.4 that

E

[(∫
φeψ◦Fj′ dG′

)−q]
(5.28)

6 CqE
[(
A

∫

Cj′ (ℓ)+
eψ◦Fj′ e

2B+
F
j′

(ρ)
+Θ(ρ)

ρ−2 dGag +B

∫

Cj′ (ℓ′)−
eψ◦Fj′ e

2B−
F
j′

(ρ)
+Θ(ρ)

ρ−2 dGag
)−q]

,

where B+, B− are two independent Brownian motions, independent of everything, and the

function Θ is defined by Θ(ρ) :=
√

2ℓj′/πFj′(ρ) δ
(1) + 2Ch(|ρ|)δ(2) + g(ρ). Now we would like

to get rid of the drift term Θ. The point is that the behaviour of Θ is rather tricky for those |ρ|
that are very close to (or less than) ℓj′ whereas the contribution of the Θ(ρ), say for |ρ| > ℓ1−δj′

for any δ > 0, turns out to be easily controlled. So we fix an arbitrary δ ∈]0, 1[ and remark

that the expectation in the r.h.s. of (5.28) is less than the same expectation with integration

restricted to Cj′(ℓ
′1−δ)− and Cj′(ℓ1−δ)+. Furthermore, we introduce the (random) function Yρ

through the relation

∀ρ ∈]0, 1], Θ(ρ) = 2

∫ Fj′ (ρ)

Fj′(1)
Yu du+Θ(1). (5.29)

We set κ(ℓ) := Fj′(ℓ
1−δ) = 2π

ℓj′
arctan(ℓj′ℓ

δ−1). Then the Girsanov theorem tells us that, under

the probability measure

RdP, with R := e
∫ κ(ℓ)
κ(1)

Yr dB
+
r +

∫ κ(ℓ′)
κ(1)

Yr dB
−
r −1

2

∫ κ(ℓ)
κ(1)

Y 2
r dr−

1
2

∫ κ(ℓ′)
κ(1)

Y 2
r dr,

the processes ρ ∈ [1, ℓ1−δ ] 7→ 2B+
Fj′ (ρ)

and ρ ∈ [1, ℓ
′1−δ] 7→ 2B−

Fj′ (ρ)
have respectively the same

laws as the processes ρ ∈ [1, ℓ1−δ ] 7→ 2B+
Fj(ρ)

+Θ(ρ)−Θ(1) and ρ ∈ [1, ℓ1−δ ] 7→ 2B−
Fj(ρ)

+θ(ρ)−
Θ(1) under P. Therefore, using the Girsanov transform in the expectation (5.28), we get

E

[( ∫
φeψ◦Fj′ dG′

)−q]

6 4E
[
Re−qΘ(1)

(
A

∫

Cj′ (ℓ1−δ)+
eψ◦Fj′ e

2B+
F
j′

(ρ)ρ−2 dGag +B

∫

Cj(ℓ
′1−δ
j′

)−
eψ◦Fj′ e

2B−
F
j′

(ρ)ρ−2 dGag
)−q]

6 4Eℓ,ℓ′(q)E
[(
A

∫

Cj′ (ℓ1−δ)+
eψ◦Fj′ e

2B+
F
j′

(ρ)ρ−2 dGag +B

∫

Cj′ (ℓ
′1−δ)−

eψ◦Fj′ e
2B−

F
j′

(ρ)ρ−2 dGag
)−pq] 1

p
.



54 COLIN GUILLARMOU, RÉMI RHODES, AND VINCENT VARGAS

where we have used the Hölder inequality to get the last inequality with p,m, r > 1 and
1
p +

1
m + 1

r = 1 and set

Eℓ,ℓ′(q) :=E

[(
e
∫ κ(ℓ)
κ(1)

Yu dB
+
u +

∫ κ(ℓ′)
κ(1)

Yu dB
−
u −1

2

∫ κ(ℓ)
κ(1)

Y 2
u du−

1
2

∫ κ(ℓ′)
κ(1)

Y 2
u du

)m]1/m
E[e−qrΘ(1)]1/r

=E

[
e
m2−m

2

∫ κ(ℓ)
κ(1)

Y 2
r dr+

m2−m
2

∫ κ(ℓ′)
κ(1)

Y 2
r dr

]1/q
E[e−qrΘ(1)]1/r.

So we have got rid of the drift term Θ(ρ) with the Girsanov trick. The cost is the constant

Eℓ,ℓ′(q) but an easy computation shows that supℓ,ℓ′ > ℓj Eℓ,ℓ′(q) < +∞ for any q > 1. This

computation is left to the reader but we give a brief convincing heuristic argument. The process

Yu is defined by (5.29). We have already explained in the proof of Theorem 5.1 that for small

ℓj′ and for |ρ| > ℓj′ , Fj′(ρ) behaves like 1/ρ. Hence Y (ρ) is with good approximation given

by −Θ′(1/ρ)ρ−2. Then it is readily seen that −Θ′(1/ρ)ρ−2 is a sum of terms of the type

1/ρ, |ρ|−cλi−1(ln |ρ|)n (for n = 0, 1, 2) or ℓ
1/2
j′ . It is then obvious to see that the square of

every possible linear combination of such terms has its
∫ κ(ℓ)
κ(1) -intergal bounded by constant

independently of ℓ > ℓj′ .

We can use the same argument to explicitly determine the effect of the drift term ψ ◦ Fj′ .
The variance of the Girsanov transform to get rid of this term is less than

C

∫

1 6 |r| 6 2π/min(ℓ1−δ ,ℓ′1−δ)
|ψ′(r)|2dr

(here we have used the fact that κ(1) > 1 and κ(ℓ) 6 2π/ℓ1−δ). All in all, this entails that for

arbitrary p > 1 there exists some constant Cp such that

E

[(∫
φeψ◦Fj′ dG′

)−q]
6 Cp exp

(∫ 2πmax(ℓ,ℓ′)δ−1

0
|ψ′(r)|2dr

)
(5.30)

× E

[(
A

∫

Cj(ℓ1−δ)+
e
2B+

Fj (ρ)ρ−2 dGag +B

∫

Cj(ℓ′1−δ)−
e
2B−

Fj (ρ)ρ−2 dGag
)−pq]1/p

,

which in turn less than

Cp(AB)−
q
2 exp

(∫ 2πmax(ℓ,ℓ′)δ−1

0
|ψ′(r)|2dr

)
(5.31)

× E

[(∫

Cj′ (ℓ1−δ)+
e
2B+

F
j′

(ρ)ρ−2 dGag
)−pqλ( ∫

Cj′ (ℓ
′1−δ)−

e
2B−

F
j′

(ρ)ρ−2 dGag
)−pq(1−λ)] 1

p

after using the elementary inequality (a + b)−m 6 a−λmb−(1−λ)m for a, b > 0, λ ∈ [0, 1] and

m > 0.

It remains to evaluate the latter expectation. So we introduce the sets for n, k > 0 and ℓ > 0

A+
n (ℓ) ={ sup

u∈[ℓ1−δ,1]

B+
Fj′(u)

−B+
Fj′ (1)

∈]n, n+ 1]}

A−
k (ℓ

′) ={ sup
u∈[ℓ′1−δ,1]

B−
Fj′(u)

−B−
Fj′ (1)

∈]k, k + 1]}

as well as the stopping times

T+
n ={ inf

u∈]0,1]
B+
Fj′(u)

−B+
Fj′ (1)

= n} T−
n ={ inf

u > 0
B−
Fj′ (u)

−B−
Fj′(1)

∈]n, n+ 1]}.
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Partitioning the probability space according to the events A+
n (ℓ) and A−

k (ℓ
′) and using sub-

additivity of the mapping x ∈ R+ 7→ x1/p for p > 1, we get the estimate

E

[(∫

Cj′ (ℓ1−δ)+
e
2B+

Fj′ (ρ)ρ−2 dGag
)−pqλ( ∫

Cj′ (ℓ
′1−δ)−

e
2B−

Fj′ (ρ)ρ−2 dGag
)−pq(1−λ)]1/p

6
∑

k,n

En,k

where we have set

En,k := E

[
1A+

n (ℓ)1A−
k (ℓ′)

( ∫

Cj′ (ℓ1−δ)+
e
2B+

F
j′

(ρ)ρ−2 dGag
)−pqλ

×
(∫

Cj′ (ℓ
′1−δ)−

e
2B−

F
j′

(ρ)ρ−2 dGag
)−pq(1−λ)] 1

p
.

The idea is now the following: the fluctuations of the Brownian motion B+ over an interval of

length 1 are of order 1. Hence over the interval I+
n := [Fj′(T

+
n ), Fj′(Tn)+1], B+ is approximately

equal to n. Put in other words, the process B+
Fj′ (u)

is worth n on the interval [F−1
j′ (Fj′(T

+
n ) +

1), T+
n ]. Same remark for B−. Hence En,k should be estimated by

En,k 6 e−(n+k)pq
P(A+

n )
1
pP(A−

k )
1
p

× sup
x,x′∈]ℓj ,1]

E

[( ∫

{ρ∈I+(x)}
ρ−2 dGag

)−pqλ
×
( ∫

{ρ∈I−(x′)}
ρ−2 dGag

)−pq(1−λ)] 1
p
.

(5.32)

where for x ∈]0, 1], we denote I+(x) := [F−1
j (Fj(x) + 1), x] and for x′ ∈ [−1, 0[, I−(x′) :=

[−x′,−F−1
j (Fj(x

′) + 1)]. We will conclude with the two following lemmas

Lemma 5.5. For any q > 0, we have

sup
ℓ′j 6 1

sup
x∈]ℓj′ ,1]

E

[( ∫

{ρ∈I+(x)}
ρ−2 dGag

)−q]
< +∞.

The same property for I−(x′) and x′ ∈ [−1,−ℓj [.

Lemma 5.6. There is some constant C > 0 such that for any δ > 0, n, k > 0 and ℓ, ℓ′ > ℓj′

P(A+
n (ℓ)) 6 Cnℓ

1
2 (1−δ) P(A−

k (ℓ
′)) 6 Ckℓ

′ 1
2 (1−δ).

Indeed, using Hölder inequality and Lemma 5.5 we see that the expectation involved in the

r.h.s. of (5.32) is less than some constant independent of everything. Hence we get the bound

En,k 6 Ce−(n+k)qp
P(A+

n )P(A
−
k ). Lemma 5.6 and summability of the series

∑
n,k > 0 kne

−(n+k)qp

complete the argument.

The only remaining detail to fix is to show (5.32). This is an easy task as, using the inde-

pendence of B+, B−,Gag as well as the strong Markov property of the Brownian motion, we
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have

En,k 6 E

[
1A+

n (ℓ)∩A−
k (ℓ′)e

−2λpqB+
F
j′

(1)
−2(1−λ)pqB−

F
j′

(1)

×
( ∫

I+
n

e
2B+

Fj′ (ρ)
−2B+

Fj′ (1)ρ−2 dGag
)−pqλ

×
( ∫

I−
n

e
2B−

Fj′ (ρ)
−2B−

Fj′ (1)ρ−2 dGag
)−pq(1−λ)] 1

p

6 E[e
−2λpqB+

F
j′

(1)
−2(1−λ)pqB−

F
j′

(1) ]
1
p e−pq(n+k)(P(A+

n (ℓ))P(A
−
k (ℓ

′)))
1
p

E[e
−pqλminu∈Is

n
B+

F
j′

(u)
−B+

Fjj
′(1) ]

1
pE[e

−pq(1−λ)minu∈Is
n
B−

F
j′

(u)
−B−

Fjj
′(1) ]

1
p

sup
x,x′∈]ℓj′ ,1]

E

[(∫

{ρ∈I+(x)}
ρ−2 dGag

)−pqλ
×

(∫

{ρ∈I−(x′)}
ρ−2 dGag

)−pq(1−λ)] 1
p
.

Standard estimates about the supremum of the Brownian motion over an interval of size 1 show

that the E[e
−pqλmin

u∈I+
n
B+

Fj(u)
−B+

Fj(1) ]1/p and E[e
−pq(1−λ)min

u∈I−
n
B−

Fj (u)
−B−

Fj (1) ]1/p are bounded

by some constant independent of ℓ, ℓ′. Hence our claim. �

Proof of Lemma 5.5. Recall that Gaussian multiplicative chaos at criticality (i.e. γ = 2) pos-

sesses moments of negative order (see [DRSV1, Prop. 5]). This entails that for any x > 0,

E

[( ∫
{x 6 ρ 6 1} ρ

−2 dGag
)−q]

< +∞. Then we observe that we have the relation F−1
j′ (Fj′(x) +

1) > Cℓj′ for some irrelevant constant C and for all x > ℓj′ . Therefore, for some C and all

x > ℓj′

E

[( ∫

I+(x)
ρ−2 dGag

)−q]
6 CE

[(∫

I+(x)
(ρ2 + ℓ2j′)

−1 dGag
)−q]

.

To conclude, observe that the measure (ρ2 + ℓ2j′)
−1 dGag is the pushforward of the measure

e
2Xa(F−1

j′
(ρ))−2E[Xa(F−1

j′
(ρ))2]

dρ (implicitly understood as the limit of a regularized sequence)

under the mapping ρ 7→ Fj′(ρ). The Gaussian random distribution ρ 7→ Xa(F−1
j′ (ρ)) is sta-

tionary and its law does not depend on ℓj′ in such a way that the process x ∈ R+ 7→
∫ x+1
x e

2Xa(F−1
j′

(ρ))−2E[Xa(F−1
j′

(ρ))2]
dρ is stationary (and its law does not depend on ℓj′ either)

and has the same law as
∫
I(x)(ρ

2 + ℓ2j′)
−1 dGag , hence our claim. �

Proof of Lemma 5.6. Recall the standard computation related to Brownian motion

P( sup
r∈[0,t]

Br 6 β) 6 βt−1/2.

Therefore

P(A+
n (ℓ)) 6 P

(
sup

u∈[ℓ1−δ,1]

B+
Fj′ (u)−Fj(1)

6 n+ 1
)
6 (n+ 1)(Fj′(ℓ

1−δ)− Fj′(1))
−1/2.

We conclude by noticing that ℓ−1
j′ arctan(ℓj′/x) > C/x for some constant C and all x > ℓj′ .

Same argument for A−
k (ℓ

′). �
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5.5. Relation with random planar maps. The purpose of this subsection is to write a pre-

cise mathematical conjecture relating LQG to the scaling limit of large planar maps. Following

Polyakov’s work [Po], it was soon acknowledged by physicists that LQG should describe the

scaling limit of discretized 2d quantum gravity given by finite triangulations of a given surface,

eventually coupled with a model of statistical physics (often called matter field in the physics

language), see for example the classical textbook from physics [ADJ] for a review on this prob-

lem. We will describe two situations in what follows: pure gravity (no matter) or the bosonic

string embedded in D = 1 dimension.

We consider a fixed family (gτ )τ of hyperbolic metrics on a compact surface M (without

boundary) with genus g as previously and the associated Liouville measure Lγ under E(gτ )τ ,µ[·].
Let TN,g be the set of triangulations with N faces with the topology of a surface of genus g.

Since these triangulations are seen up to orientation preserving homeorphisms, there are only

a finite number of such triangulations. We equip T ∈ TN,g with a standard metric structure hT
where each triangle is given volume a2. The metric structure consists in gluing flat equilateral

triangles: the exact definition of the metric structure is given in Les Houches lecture notes

[RhVa2] in the case of the sphere and the case we consider here does not present additional

difficulties for the definition. The uniformization theorem tells us that there exists a unique

τT ∈ Mg along with an orientation preserving diffeomorphism ψT : T → M and a conformal

factor ϕT (with logarithmic singularities at the images of the vertices of the triangles) such

that

hT = ψ∗
T (e

ϕT gτT ). (5.33)

Recall that in the decomposition (5.33), the functions ϕT and ψT are unique except if the

metric gτT possesses non trivial isometries. In that case, the isometry group is finite of the

form (ψ(i))1 6 i 6 n and starting with a decomposition (5.33) all the other decompositions of

hT are ((ψ(i))−1 ◦ ψT )∗(eϕT ◦ψ(i)
gτT ). Therefore, in the following discussion, we will suppose

that the functions ϕT and ψT are uniquely determined by the triangulation T and if this is

not the case (i.e. there exists a non trivial isometry group), we replace eϕT gτT in what follows

by the average 1
n

∑n
i=1 e

ϕT ◦ψ(i)
gτT : these special metrics should play no role anyway as their

equivalence classes are of measure 0 with respect to the Weil-Petersson volume form.

Pure gravity. It is proved in [BeCa] that the following asymptotic holds:

|TN,g| ∼
N→∞

CT e
µcNN

5
2
(g−1)−1 (5.34)

where CT > 0 and µc > 0 are constants. The constants CT , µc are non universal in the

sense that one can consider quadrangulations say in the place of triangulations: in this set-

ting, the number of quadrangulations QN,g of size N will satisfy the asymptotic |QN,g| ∼
N→∞

CQeµ̃cNN
5
2
(g−1)−1 where CQ is different from CT and µ̃c > 0 is different from µc.

We set

µ̄ = µc + a2µ, (5.35)

where µ > 0 is fixed, and we consider the following random volume form on the surface M ,

defined in terms of its functional expectation
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E
a[F (νa)] =

1

Za

∑

N > 1

e−µ̄N
∑

T∈TN,g

F (eϕT dvgτT ), (5.36)

for positive bounded functions F where Za is a normalization constant ensuring that E
a[·] is

the expectation of a probability measure. We denote by P
a the probability law associated to

E
a.

We can now state a precise mathematical conjecture:

Conjecture 1. Under P
a, the random measure νa converges in law as a→ 0 with µ̄ given by

(5.35) in the space of Radon measures equipped with the topology of weak convergence towards

the Liouville measure Lγ under E(gτ )τ ,µ[·] with parameter γ =
√

8
3 .

The fact that γ =
√

8
3 can be read of the total volume of space; indeed, thanks to (5.34), it

is easy to show that in the above asymptotic the total volume νa(M) converges to the Gamma

law with density µ
5
2 (g−1)

Γ( 5
2
(g−1))

e−µxx
5
2
(g−1)−11x > 0. This law matches the law of the total volume

ξγ of Lγ in Theorem 5.1 for 2Q
γ = 5

2 , i.e. γ =
√

8
3 .

Finally, let us mention that conjectures similar to 1 have appeared in other topologies:

the sphere [DKRV], the disk [HRV] and the torus [DRV]. However, in these other topologies,

the corresponding conjectures are still completely open. Let us nevertheless mention some

partial progress by Curien in [Cu] where appealing convergence results are proven assuming a

reasonable condition that has unfortunately not been proven yet.

Bosonic string. Given a triangulation T , let us denote by VT the vertex set of the dual

lattice. We consider the partition function of the bosonic string on T by

Z(T ) :=

∫
e−

1
2
∑

v∼v′(xv−xv′)2
∏

v∈V

dxv

where ∼ denotes adjacent vertices of the dual lattice. It is expected that

∑

T∈TN,g

Z(T ) ∼
N→∞

C ′
T e

µ′cNN2(g−1)−1 (5.37)

where C ′
T > 0 and µ′c > 0 are (non universal) constants. We set

µ̄ = µ′c + a2µ, (5.38)

where µ > 0 is fixed, and we consider the following random volume form on the surface M ,

defined in terms of its functional expectation

E
a[F (νa)] =

1

Za

∑

N > 1

e−µ̄N
∑

T∈TN,g

F (eϕT dvgτT )Z(T ), (5.39)

for positive bounded functions F where Za is a normalization constant ensuring that E
a[·] is

the expectation of a probability measure. We denote by P
a the probability law associated to

E
a.
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Conjecture 2. Assume g = 2. Under P
a, the random measure νa converges in law as a → 0

with µ̄ given by (5.38) in the space of Radon measures equipped with the topology of weak

convergence towards the Liouville measure Lγ under E(gτ )τ ,µ[·] with parameter γ = 2.

The reader can find much more material on 2d-string theory in the review [Kleb] or the

lecture notes [Polch].
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[Du1] J. Dubédat, SLE and the Free Field: partition functions and couplings, Journal of the AMS, 22 (2009)

(4), 995–1054.

[DMS] Duplantier B., Miller J., Sheffield S.: Liouville quantum gravity as a mating of trees, arXiv:1409.7055.

[DRSV1] Duplantier B., Rhodes R., Sheffield S., Vargas V.: Critical Gaussian multiplicative chaos: convergence

of the derivative martingale, Annals of Probability vol 42, Number 5 (2014), 1769–1808.

https://arxiv.org/abs/1307.1689
http://arxiv.org/abs/1506.09113
http://arxiv.org/abs/1409.7055
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