
HAL Id: hal-01587086
https://hal.science/hal-01587086v1

Submitted on 13 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrability Of Liouville Theory: Proof Of The Dozz
Formula

Antti Kupiainen, Rémi Rhodes, Vincent Vargas

To cite this version:
Antti Kupiainen, Rémi Rhodes, Vincent Vargas. Integrability Of Liouville Theory: Proof Of The
Dozz Formula. Annals of Mathematics, 2020, 191 (1), pp.81-166. �hal-01587086�

https://hal.science/hal-01587086v1
https://hal.archives-ouvertes.fr


INTEGRABILITY OF LIOUVILLE THEORY: PROOF OF THE DOZZ FORMULA

ANTTI KUPIAINEN1, RÉMI RHODES2, AND VINCENT VARGAS2

Abstract. Dorn and Otto (1994) and independently Zamolodchikov and Zamolodchikov (1996) proposed a
remarkable explicit expression, the so-called DOZZ formula, for the 3 point structure constants of Liouville
Conformal Field Theory (LCFT), which is expected to describe the scaling limit of large planar maps
properly embedded into the Riemann sphere. In this paper we give a proof of the DOZZ formula based
on a rigorous probabilistic construction of LCFT in terms of Gaussian Multiplicative Chaos given earlier
by F. David and the authors. This result is a fundamental step in the path to prove integrability of
LCFT, i.e. to mathematically justify the methods of Conformal Bootstrap used by physicists. From the
purely probabilistic point of view, our proof constitutes the first rigorous integrability result on Gaussian
Multiplicative Chaos measures.
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1. Introduction

A. Polyakov introduced Liouville Conformal Field theory (LCFT hereafter) in his 1981 seminal paper
[43] where he proposed a path integral theory of random two dimensional Riemannian metrics. Motivated
by an attempt to solve LCFT Belavin, Polyakov and Zamolodchikov (BPZ hereafter) formulated in their
1984 paper [3] the general structure of Conformal Field Theory (CFT hereafter). In the BPZ approach the
basic objects of CFT are correlation functions of random fields and solving CFT consists in deriving explicit
expressions for them. BPZ proposed to construct the correlation functions of a CFT recursively from two
inputs: the spectrum and the three point structure constants. The former summarizes the representation
content of the CFT (under the Virasoro algebra) and the latter determine the three point correlation func-
tions, see Section 1.1. The recursive procedure to find higher point correlation functions is called Conformal
Bootsrap. Though BPZ were able to find spectra and structure constants for a large class of CFT’s (e.g. the
Ising model) LCFT was not one of them1. The spectrum of LCFT was soon conjectured in [12, 8, 26] but
the structure constants remained a puzzle.

A decade later, Dorn and Otto [15] and independently Zamolodchikov and Zamolodchikov [59] (DOZZ
hereafter) proposed a remarkable formula for the structure constants of LCFT the so-called DOZZ formula.
Even by the physicists’ standards the derivation was lacking rigor. To quote [59]: “It should be stressed
that the arguments of this section have nothing to do with a derivation. These are rather some motivations
and we consider the expression proposed as a guess which we try to support in the subsequent sections.”
Ever since these papers the derivation of the DOZZ formula from the original (heuristic) functional integral
definition of LCFT given by Polyakov has remained a controversial open problem, even on the physical level
of rigor.

Recently the present authors together with F. David gave a rigorous probabilistic construction of Polyakov’s
LCFT functional integral [13]. This was done using the probabilistic theory of Gaussian Multiplicative Chaos
(GMC). Subsequently in [36] we proved identities for these correlation functions postulated in the work of
BPZ (conformal Ward identities and BPZ equations). This provided a probabilistic setup to address the
conformal bootstrap and in particular the DOZZ formula. In this paper we address the second problem:
we prove that the probabilistic expression given in [13] for the structure constants is indeed given by the
DOZZ formula. This result should be considered as an integrability result for LCFT and in particular for
GMC. As such it constitutes the first rigorous proof of integrability in GMC theory. Integrability of GMC
theory was also conjectured in statistical physics in the study of disordered systems. In this context, a
remarkable formula for GMC on the circle has been proposed by Fyodorov and Bouchaud [23], based on

1Following their work [3], Polyakov qualified CFT as an “unsuccesful attempt to solve the Liouville model” and did not at
first want to publish his work, see [44].
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arguments similar to [15, 59] (soon after, numerous integrability results for GMC on different 1d geometries
appeared in the physics literature: see [24] for instance in the case of the unit interval). It turns out that
the Fyodorov-Bouchaud formula is a particular case of the conjectured one point bulk structure constant
for LCFT on the unit disk with boundary (these formula can be found in Nakayama’s review [39]). We
believe that our approach can be adapted to this situation and hence will provide a rigorous derivation of
the Fyodorov-Bouchaud formula (work in progress [46]).

It should be noted that the LCFT structure constants and the DOZZ formula have a wider relevance
than the scaling limits of planar maps. It has been argued in Ribault’s review [47] that LCFT seems to be
a universal CFT: e.g. the minimal model structure constants (e.g. Ising model, tri-critical Ising model, 3
states Potts model, etc...) originally found by BPZ may be recovered from the DOZZ formula by analytic
continuation. In another spectacular development the LCFT structure constants show up in a seemingly
completely different setup of four dimensional gauge theories via the so-called AGT correspondence [1] (see
the work by Maulik-Okounkov [38] for the mathematical implications of these ideas).

In the remaining part of this introduction we briefly review LCFT in the path integral and in the
conformal bootstrap approach and state the DOZZ formula.

1.1. LCFT in the path integral. In the Feynman path integral formulation, LCFT on the Riemann

sphere Ĉ is the study of conformal metrics on Ĉ of the form eγφ(z)|dz|2 where z is the standard complex
coordinate and d2z the Lebesgue measure. φ(z) is a random function (a distribution in fact) and one defines
an ”expectation”

(1.1) 〈F 〉 :=
∫
F (φ)e−SL(φ)Dφ

where SL is the Liouville Action functional

(1.2) SL(φ) =
1

π

∫

C

(|∂zφ(z)|2 + πµeγφ(z))d2z

see Section 2.1 for the precise formulation2.
LCFT has two parameters γ ∈ (0, 2) and µ > 0. The positive parameter µ in front of the exponential

interaction term eγφ is essential for the existence of the theory (the case µ = 0 corresponds to Gaussian Free
Field theory, a completely different theory) but plays no specific role3. On the other hand, the parameter γ
encodes the conformal structure of the theory; more specifically, one can show that the central charge4 of
the theory is cL = 1 + 6Q2 with

(1.3) Q =
2

γ
+
γ

2
.

The basic objects of interest in LCFT are in physics terminology vertex operators

(1.4) Vα(z) = eαφ(z)

where α is a complex number and their correlation functions 〈∏N
k=1 Vαk

(zk)〉. Their definition involves a
regularization and renormalization procedure and they were constructed rigorously in [13] for N > 3 and for
real αi satisfying certain conditions. The construction of the correlations in [13] is probabilistic and based on

interpreting e−
1
π

∫
C
|∂zφ(z)|

2d2zDφ in terms of a suitable Gaussian Free Field (GFF) probability measure: see
subsection 2.1 below for precise definitions and an explicit formula for the correlations in terms of Gaussian
Multiplicative Chaos.

2We use brackets and not E for the linear functional (1.1) since it turns out the measure e−SL(φ)Dφ is not normalizable
into a probability measure.

3LCFT has a scaling relation with respect to µ so that the precise value of this parameter does not matter.
4In this article, the central charge of LCFT will not appear in a transparent way hence we refer to the work [13] or [36] for

an account on the central charge.
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In particular it was proved in [13] that these correlation functions are conformal tensors. More precisely, if
z1, · · · , zN are N distinct points in C then for a Möbius map ψ(z) = az+b

cz+d (with a, b, c, d ∈ C and ad−bc = 1)

(1.5) 〈
N∏

k=1

Vαk
(ψ(zk))〉 =

N∏

k=1

|ψ′(zk)|−2∆αk 〈
N∏

k=1

Vαk
(zk)〉

where ∆α = α
2 (Q− α

2 ) is called the conformal weight. This global conformal symmetry fixes the three point
correlation functions up to a constant:

(1.6) 〈
3∏

k=1

Vαk
(zk)〉 = |z1 − z2|2∆12 |z2 − z3|2∆23 |z1 − z3|2∆13Cγ(α1, α2, α3)

with ∆12 = ∆α3−∆α1−∆α2 , etc. The constants Cγ(α1, α2, α3) are called the three point structure constants
and they have an explicit expression in terms of the Gaussian Multiplicative Chaos, see Section 2.3. They
are also the building blocks of LCFT in the conformal bootstrap approach as we now review.

1.2. LCFT in the conformal bootstrap. The bootstrap approach to Conformal Field Theory goes back
to the 70’s. It is based on the operator product expansion (OPE) introduced by K. Wilson in quantum field
theory. In a conformal field theory, the OPE is expected to take a particularly simple form as was observed
in the 70’s [21, 45, 37]. The simplest CFT’s (like the Ising model) contain a finite number of primary fields
Φi i.e. random fields whose correlation functions transform as (1.5). The OPE is the statement that in a
correlation function 〈

∏
Φαi(zi)〉 one may substitute

(1.7) Φi(zi)Φj(zj) =
∑

k

Ck
ij(zi, zj)Φk(zj)

where Ck
ij(zi, zj) is an (infinite) sum of linear differential operators which are completely determined up

to the three point structure constants Cijk (these are defined in the same way as in (1.6) for LCFT).
Furthermore it was argued that the resulting expansion should be convergent. A recursive application of
the OPE would then allow in principle to express the N-point function in terms of the structure constants
i.e. to “solve” the CFT.

The input in the bootstrap is thus the set of its primary fields, called the spectrum of the theory, and
their structure constants. In unitary CFT’s such as the ones describing scaling limits of reflection positive
statistical mechanics models the spectrum is in principle determined by the spectral analysis of the repre-
sentation of the generator of dilations acting in the physical Hilbert space of the CFT. This space can be
constructed using the Osterwalder-Schrader reconstruction theorem [41, 42] and in case of LCFT this is
rather straightforward given the results of [13]: see [35] for lecture notes on this.

There is also plenty of evidence what the spectrum of LCFT should be [12, 8, 26], see in particular
Teschner’s review [56] for a thorough discussion. It should consist of the vertex operators VQ+iP with
P ∈ R+ i.e. there is a continuum of primary fields (unlike say in the Ising model where there are three).
Assuming this, one ends up with the following rather explicit formula for the 4 point correlation functions
for αi in the spectrum [47]:

〈Vα1(z)Vα2(0)Vα3(1)Vα4 (∞)〉 =
∫

Q+iR+

Cγ(α1, α2, α)Cγ(2Q− α, α3, α4)|Fα,{αi}(z)|2dα

where Fα,{αi}(z) are explicit meromorphic functions (the so-called universal conformal blocks) which depend

only on the parameters αi, α and the central charge of LCFT cL = 1+ 6Q2. The integral over α is here the
standard Lebesgue integral over P (where α = Q+ iP ) and corresponds to the sum in (1.7).

Note that the spectrum of LCFT consists of vertex operators with complex α whereas the probabilistic
approach naturally deals with real α. Also, the main application of LCFT to Liouville Quantum Gravity
involves real values for α. In the theory of Liouville Quantum Gravity, the scaling limits of e.g. Ising
correlations on a random planar map are given in terms of Liouville correlations with real α’s and regular
planar Ising CFT correlations via the celebrated KPZ relation [33]: for an explicit mathematical conjecture,
see [14, 35]. Thus the probabilistic and bootstrap approaches are in an interesting way complementary.
The basis for the bootstrap approach, the DOZZ formula for Cγ(α1, α2, α3), has a unique meromorphic
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extension to α1, α2, α3 ∈ C3. In our probabilistic approach we prove that the probabilistic expressions for
Cγ(α1, α2, α3) are analytic functions in the αi around their real values and extend to meromorphic functions
in C3 that coincide with the DOZZ expression.

One should note that the bootstrap approach can be turned to a tool to classify CFT’s. By making an
ansatz for the spectrum one can compute the four point function 〈Φα1(z1)Φα2(z2)Φα3(z3)Φα4(z4)〉 using the
OPE by pairing the fields in two different ways. This leads to quadratic relations for the structure constants
that one can attempt to solve. This was succesfully carried out by BPZ in [3] for the minimal models and
has lead to spectacular progress even in three dimensions, e.g. in case of the 3d Ising model [19, 20]. In
the case of LCFT one can check that the DOZZ expression indeed solves these quadratic equations: see
the review [47]. Furthermore, given the DOZZ formula the bootstrap expressions are formally defined for
all γ ∈ C \ iR5. Hence the values of γ for which the theory is defined (within the framework of theoretical
physics) is quite general compared to the path integral formulation which makes sense for γ ∈ (0, 2)6. We
consider the mathematical justification of the bootstrap approach to be a major challenge to probabilists
and plan to pursue this in the case of LCFT in the future (see also [54, 10, 29, 6, 7, 11, 17, 9] for recent
spectacular progress in relating the critical 2d Ising model to the predictions of the bootstrap approach).

1.3. The DOZZ formula. As mentioned above, an explicit expression for the LCFT structure constants
was proposed in [15, 59] . Subsequently it was observed by Teschner [55] that this formula may be derived
by applying the bootstrap framework to special four point functions (see section 6). He argued that this
leads to the following remarkable periodicity relations for the structure constants:

Cγ(α1 +
γ

2
, α2, α3) = − 1

πµ
A(

γ

2
)Cγ(α1 − γ

2
, α2, α3)(1.8)

Cγ(α1 +
2

γ
, α2, α3) = − 1

πµ̃
A(

2

γ
)Cγ(α1 − 2

γ
, α2, α3)(1.9)

with µ̃ =
(µπl( γ2

4 ))
4
γ2

πl( 4
γ2 )

and

A(χ) =
l(−χ2)l(χα1)l(χα1 − χ2)l(χ2 (ᾱ− 2α1 − χ))

l(χ2 (ᾱ− χ− 2Q))l(χ2 (ᾱ − 2α3 − χ))l(χ2 (ᾱ− 2α2 − χ))
.(1.10)

where ᾱ = α1 + α2 + α3 and

(1.11) l(x) = Γ(x)/Γ(1− x).

The equations (1.8), (1.9) have a meromorphic solution which is the DOZZ formula. It is expressed in terms
of a special function Υ γ

2
(z) defined for 0 < ℜ(z) < Q by the formula7

(1.12) lnΥ γ
2
(z) =

∫ ∞

0

((Q
2
− z
)2
e−t − (sinh((Q2 − z) t2 ))

2

sinh( tγ4 ) sinh(
t
γ )

)
dt

t
.

The function Υ γ
2
can be analytically continued to C because it satisfies remarkable functional relations: see

formula (9.4) in the appendix. It has no poles in C and the zeros of Υ γ
2
are simple (if γ2 6∈ Q) and given

by the discrete set (− γ
2N− 2

γN) ∪ (Q + γ
2N+ 2

γN). With these notations, the DOZZ formula (or proposal)

CDOZZ
γ (α1, α2, α3) is the following expression

(1.13) CDOZZ
γ (α1, α2, α3) = (π µ l(

γ2

4
) (
γ

2
)2−γ2/2)

2Q−
∑

i αi
γ

Υ′
γ
2
(0)Υ γ

2
(α1)Υ γ

2
(α2)Υ γ

2
(α3)

Υ γ
2
( ᾱ−2Q

2 )Υ γ
2
( ᾱ2 − α1)Υ γ

2
( ᾱ2 − α2)Υ γ

2
( ᾱ2 − α3)

.

5In fact, LCFT was defined for γ ∈ iR in the physics literature quite recently by Ribault-Santachiara [48] but the theory
is very different than LCFT for γ ∈ C \ iR hence we will not discuss this case here. Let us just mention that Iklhef, Jacobsen
and Saleur [31] have shown how 3 point correlation functions of Conformal Loop Ensembles (CLE) relate to the three point
structure constants of LCFT with γ ∈ iR discovered by Kostov-Petkova [34] and Zamolodchikov [58].

6In fact, one can make sense of LCFT in the path integral for γ = 2 but we will not discuss this case here.
7The function has a simple construction in terms of standard double gamma functions: see the reviews [39, 47, 56] for

instance.
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The main result of the present paper is to show the first important equality between LCFT in the
path integral formulation and the conformal bootstrap approach, namely to prove that for γ ∈ (0, 2) and
appropriate α1, α2, α3 the structure constants Cγ(α1, α2, α3) in (1.6) are equal to CDOZZ

γ (α1, α2, α3) defined
by (1.13).

Our proof is based on deriving the equations (1.8), (1.9) for the probabilistically defined Cγ . An essential
role in this derivation is an identification in probabilistic terms of the reflection coefficient of LCFT. It has
been known for a long time that in LCFT the following reflection relation should hold in some sense:

(1.14) Vα = R(α)V2Q−α.

Indeed the DOZZ formula is compatible with the following form of (1.14):

(1.15) CDOZZ
γ (α1, α2, α3) = RDOZZ(α1)C

DOZZ
γ (2Q− α1, α2, α3).

with

(1.16) RDOZZ(α) = −(π µ l(
γ2

4
))

2(Q−α)
γ

Γ(− γ(Q−α)
2 )

Γ(γ(Q−α)
2 )

Γ(− 2(Q−α)
γ )

Γ(2(Q−α)
γ )

.

The mystery of this relation lies in the fact that the probabilistically defined Cγ(α1, α2, α3) vanish if any of
the αi > Q whereas they are nonzero for αi < Q, see Section 2.2.

In our proof R(α) emerges from the analysis of the tail behavior of a Gaussian Multiplicative Chaos
observable. We prove that it is also given by the following limit

(1.17) 4R(α) = lim
ǫ→0

ǫ Cγ(ǫ, α, α)

i.e. R(α) has an interpretation in terms of a renormalized two-point function. We will show that for those
values of α such that R(α) makes sense from the path integral perspective, i.e. α ∈ (γ2 , Q),

R(α) = RDOZZ(α).

It turns out that some material related to the coefficient R(α) already appears in the beautiful work by
Duplantier-Miller-Sheffield [18] where they introduce what they call quantum spheres (and other related
objects). Quantum spheres are equivalence classes of random measures on the sphere with two marked
points 0 and ∞. Within this framework, the reflection coefficient R(α) can naturally be interpreted as the
partition function of the theory8.

Finally, let us stress that the DOZZ formula 1.13 is invariant under the substitution of parameters

γ

2
↔ 2

γ
, µ↔ µ̃ =

(µπℓ(γ
2

4 ))
4
γ2

πℓ( 4
γ2 )

.

This duality symmetry is at the core of the DOZZ controversy. Indeed this symmetry is not manifest in the
Liouville action functional (1.2) though duality was axiomatically assumed by Teschner [56] in his argument,
especially to get (1.9). It was subsequently argued that this duality could come from the presence in the

action (1.2) of an additional “dual” potential of the form e
2
γ φ

with cosmological constant µ̃ in front of it. As
observed by Teschner [56], this dual cosmological constant may take negative (even infinite) values, which
makes clearly no sense from the path integral perspective. That is why the derivation of the DOZZ formula
from the LCFT path integral has remained shrouded in mystery for so long9.

8We will not elaborate more on this point as no prior knowledge of the work by Duplantier-Miller-Sheffield [18] is required
to understand the sequel (see [2] for an account of the relation between [13] and [18]). More precisely, the required background
to understand R(α) will be introduced in subsection 2.7 below.

9Indeed, there are numerous reviews and papers within the physics literature on the path integral approach of LCFT and
its relation with the bootstrap approach but they offer different perspectives and conclusions (see [28, 40, 52] for instance)
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1.4. Organization of the paper. The organization of the paper is the following: in the next section,
we introduce the necessary background and the main result, namely Theorem 2.11. The next sections are
devoted to the proof of the main result. Section 3 is devoted to the study of tail estimates of GMC and
their connection with the reflection coefficient. In section 4, we show that the correlation functions of vertex
operators are analytic functions of their arguments (αk)k. We prove technical lemmas on the reflection
coefficient in section 5. In Section 6, we prove various OPEs statements with degenerate vertex operators,
which are used to derive non trivial relations between three point structure constants and the reflection
coefficient. These relations will serve prominently in the proof of the DOZZ formula in sections 7 and 8.

Acknowledgements. The authors wish to thank Francois David, Sylvain Ribault and Raoul Santachiara for
fruitful discussions on Liouville Field theory and the conformal bootstrap approach.

2. Probabilistic Formulation of LCFT and Main Results

In this section, we recall the precise definition of the Liouville correlation functions in the path integral
formulation as given in [13], introduce some related probabilistic objects and state the main results.

Conventions and notations. In what follows, z, x, y and z1, . . . , zN all denote complex variables.We use the
standard notation for complex derivatives ∂x = 1

2 (∂x1 − i∂x2) and ∂x̄ = 1
2 (∂x1 + i∂x2) for x = x1 + ix2.

The Lebesgue measure on C (seen as R2) is denoted by d2x . We will also denote | · | the norm in C of the
standard Euclidean (flat) metric and for all r > 0 we will denote by B(x, r) the Euclidean ball of center x
and radius r.

2.1. Gaussian Free Field and Gaussian Multiplicative Chaos. The probabilistic definition of the
functional integral (1.1) goes by expressing it as a functional of the Gaussian Free Field (GFF). Since we

want LCFT to have Möbius symmetry the proper setup is the Riemann Sphere Ĉ = C∪{∞} equipped with
a conformal metric g(z)|dz|2. The correlation functions of LCFT will then depend on the metric but they
have simple transformation properties under the change of g, the so-called Weyl anomaly formula. We refer
the reader to [13] for this point and proceed here by just stating a formulation that will be useful for the
purposes of this paper.

We define the GFF X(z) as the centered Gaussian random field with covariance (see [16, 53] for back-
ground on the GFF)

(2.1) E[X(x)X(y)] = ln
1

|x− y| + ln |x|+ + ln |y|+ := G(x, y)

where we use the notation |z|+ = |z| if |z| > 1 and |z|+ = 1 if |z| 6 1.

Remark 2.1. In the terminology of [13], consider the metric g(z) = |z|−4
+ with scalar curvature Rg(z) :=

−4g−1∂z∂z̄ ln g(z) = 4ν with ν the uniform probability measure on the equator |z| = 1. Then X is the GFF
with zero average on the equator:

∫
X(z)Rg(d

2z) = 0.

For LCFT we need to consider the exponential of X . Since X is distribution valued a renormalization
procedure is needed. Define the circle average of X by

(2.2) Xr(z) :=
1

2πi

∮

|w|=e−r

X(z + w)
dw

w

and consider the measure

(2.3) Mγ,r(d
2x) := eγXr(x)−

γ2

2 E[Xr(x)
2]|x|−4

+ d2x.

Then, for γ ∈ [0, 2), we have the convergence in probability

(2.4) Mγ = lim
r→∞

Mγ,r

and convergence is in the sense of weak convergence of measures. This limiting measure is non trivial and
is a (up to a multiplicative constant) Gaussian multiplicative chaos (GMC) of the field X with respect
to the measure |x|−4

+ d2x (see Berestycki’s work [4] for an elegant and elementary approach to GMC and
references).
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Remark 2.2. For later purpose we state a useful property of the circle averages. First, X0(0) = 0, the
processes r ∈ R+ → Xr(0) and r ∈ R+ → X−r(0) are two indepedent Brownian motions starting from 0.
For z center of a unit ball contained in B(0, 1)c the process r ∈ R+ → Xr(z) − X0(z) is also a Brownian
motion starting at 0 and for disjoint balls B(zi, 1) ⊂ B(0, 1)c the processes r 7→ Xr(zi)−X0(zi) are mutually
independent and independent of the sigma algebra σ{X(z); z ∈ [∪N

k=1B(zi, 1)]
c}. .

2.2. Liouville correlation functions. We may now give the probabilistic definition of the functional
integral (1.1):

(2.5) 〈F 〉 :=
∫

R

e−2Qc
E
[
F (X − 2Q ln |z|+ + c)e−µeγcMγ(C)

]
dc

where E is expectation over the GFF. We refer the reader to [13] (or to [36] for a brief summary) for the
explanation of the connection between (1.1) and (2.5). Briefly, the variable c is essential and stems from the
fact that in (1.1) we need to integrate over all φ and not only the GFF X which is defined up to constants.

The origin of the factor e−2Qc is topological and depends on the fact that we work on the sphere Ĉ. The
random variable Mγ(C) is almost surely finite because EMγ(C) =

∫
C
|z|−4

+ d2z <∞. This implies that 〈·〉 is
not normalizable: 〈1〉 = ∞.

The class of F for which (2.5) is defined includes suitable vertex operator correlation functions once these
are properly renormalized. We set

(2.6) Vα,ǫ(z) = eαceαXǫ(z)−
α2

2 E[Xǫ(z)
2]|x|−4∆α

+

where we recall ∆α = α
2 (Q − α

2 ). Let zi ∈ C, i = 1, . . . , N with zi 6= zj for all i 6= j. It was shown in [13]

that the limit10

(2.7) 〈
N∏

k=1

Vαk
(zk)〉 := 2lim

ǫ→0
〈

N∏

k=1

Vαk,ǫ(zk)〉

exists, is finite and nonzero if and only if the following Seiberg bounds originally introduced in [52] hold:

(2.8)

N∑

k=1

αk > 2Q, αi < Q, ∀i.

The first condition guarantees that the limit is finite and the second that it is nonvanishing. Indeed, if
there exists i such that αi > Q then the limit is zero. Note that these bounds imply that for a nontrivial
correlation we need at least three vertex operators; therefore, we have N > 3 in the sequel. The correlation
function (2.7) satisfies the conformal invariance property (1.5).

The correlation function can be further simplified by performing the c-integral (see [13]):

〈
N∏

k=1

Vαk
(zk)〉 = 2µ−sγ−1Γ(s) lim

ǫ→0
E

[
N∏

k=1

eαkXǫ(zk)−
α2
k
2 EXǫ(zk)

2 |zk|
−4∆αk
+ Mγ(C)

−s

]
(2.9)

where

(2.10) s =

∑N
k=1 αk − 2Q

γ
.

Using the Cameron-Martin theorem (see [13]) we may trade the vertex operators to a shift of X to obtain
an expression in terms of the multiplicative chaos:

(2.11) 〈
N∏

k=1

Vαk
(zk)〉 = 2µ−sγ−1Γ(s)

∏

i<j

1

|zi − zj|αiαj
E

[(∫

C

F (x, z)Mγ(d
2x)

)−s
]

10The global constant 2 is included to match with the physics literature normalization which is based on the DOZZ formula
(1.13)
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where

(2.12) F (x, z) =
N∏

k=1

( |x|+
|x− zk|

)γαk

Thus, up to explicit factors the Liouville correlations are reduced to the study of the random variable∫
C
F (x, z)Mγ(d

2x). In particular, the Seiberg bounds αk < Q for all k are the condition of integrability of
F against the chaos measure Mγ (see [13]).

Finally, we remark that expression (2.11) makes sense beyond the Seiberg bounds i.e. for some s < 0.
Indeed, it was shown in [13] that

(2.13) 0 < E

[(∫

C

F (x, z)Mγ(d
2x)

)−s
]
<∞

provided

(2.14) − s <
4

γ2 ∧ min
1 6 k 6 N

2

γ
(Q − αk), αk < Q, ∀k

with s given by (2.10). Under condition (2.14), it is then natural to define the so-called unit volume corre-
lations by

(2.15) 〈
N∏

k=1

Vαk
(zk)〉uv =

〈∏N
k=1 Vαk

(zk)〉
Γ(s)

.

i.e. we divide by the Γ function which has poles at
∑N

k=1 αk − 2Q ∈ −γN. An important ingredient in our
proof of the DOZZ formula is Theorem 4.1 which says that these correlation functions have an analytic
continuation in the αi’s to a complex neighbourhood of the region allowed by the bounds (2.14).

Remark 2.3. The DOZZ formula for the structure constants is analytic not only in αi but also in γ. A
direct proof of analyticity of the probabilistic correlation functions in γ seems difficult. However, it is an easy
exercise in Multiplicative Chaos theory to prove their continuity in γ, a fact we will need in our argument.
Actually, it is not hard to prove that they are C∞ in γ but we will omit this as it is not needed in our
argument.

2.3. Structure constants and four point functions. The structure constants Cγ in (1.6) can be recov-
ered as the following limit

(2.16) Cγ(α1, α2, α3) = lim
z3→∞

|z3|4∆3〈Vα1 (0)Vα2(1)Vα3(z3)〉

Combining (2.11) with (2.16) we get

(2.17) Cγ(α1, α2, α3) = 2µ−sγ−1Γ(s)E(ρ(α1, α2, α3)
−s)

where

ρ(α1, α2, α3) =

∫

C

|x|γ(α1+α2+α3)
+

|x|γα1 |x− 1|γα2
Mγ(d

2x).

We will also have to work with the unit volume three point structure constants defined by the formula

(2.18) C̄γ(α1, α2, α3) =
Cγ(α1, α2, α3)

Γ(s)
.

The four point function is fixed by the Möbius invariance (1.5) up to a single function depending on
the cross ratio of the points. For later purpose we label the points from 0 to 3 and consider the weights
α1, α2, α3 fixed:

〈
3∏

k=0

Vαk
(zk)〉 = |z3 − z0|

−4∆−
γ
2 |z2 − z1|2(∆3−∆2−∆1−∆0)|z3 − z1|2(∆2+∆0−∆3−∆1)(2.19)

× |z3 − z2|2(∆1+∆0−∆3−∆2)Gα0

(
(z0 − z1)(z2 − z3)

(z0 − z3)(z2 − z1)

)
(2.20)
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We can recover Gα0 as the following limit

(2.21) Gα0(z) = lim
z3→∞

|z3|4∆3〈Vα0(z)Vα1(0)Vα2(1)Vα3 (z3)〉.

Combining with (2.11) we get

(2.22) Gα0(z) = |z|
γα1
2 |z − 1|

γα2
2 Tα0(z)

where, setting s = α0+α1+α2+α3−2Q
γ , Tα0(z) is given by

Tα0(z) = 2µ−sγ−1Γ(s)E[Rα0 (z)
−s](2.23)

and

(2.24) Rα0(z) =

∫

C

|x|
∑3

k=0 αk

+

|x− z|γα0|x|γα1 |x− 1|γα2
Mγ(d

2x).

In this paper we will study the structure constants (2.17) by means of four point functions (2.20) with
special values of α0.

2.4. BPZ equations. There are two special values of α0 for which the reduced four point function Tα0(z)
satisfies a second order differential equation. That such equations are expected in Conformal Field Theory
goes back to BPZ [3]. In the case of LCFT it was proved in [36] that, under suitable assumptions on
α1, α2, α3, if α0 ∈ {− γ

2 ,− 2
γ } then Tα0 is a solution of a PDE version of the Gauss hypergeometric equation

(2.25) ∂2zTα0(z) +
(c− z(a+ b+ 1))

z(1− z)
∂zTα0(z)−

ab

z(1− z)
Tα0(z) = 0

where a, b, c are given by

a =
α0

2
(Q− α0 − α1 − α2 − α3)− 1

2
, b =

α0

2
(Q− α1 − α2 + α3) +

1

2
, c = 1 + α0(Q− α1).(2.26)

This equation has two holomorphic solutions defined on C\]1,∞[:

(2.27) F−(z) = 2F1(a, b, c, z), F+(z) = z1−c
2F1(1 + a− c, 1 + b − c, 2− c, z)

where 2F1(a, b, c, z) is given by the standard hypergeometric series. Using the facts that Tα0(z) is real, single
valued and C2 in C \ {0, 1} we proved in [36] (Lemma 4.4) that it is determined up to a multiplicative
constant as

(2.28) Tα0(z) = λ(|F−(z)|2 +Aγ(α0, α1, α2, α3)|F+(z)|2)
where the coefficient Aγ(α0, α1, α2, α3) is given by

(2.29) Aγ(α0, α1, α2, α3) = −Γ(c)2Γ(1 − a)Γ(1− b)Γ(a− c+ 1)Γ(b− c+ 1)

Γ(2− c)2Γ(c− a)Γ(c− b)Γ(a)Γ(b)

provided c ∈ R \ Z and c − a − b ∈ R \ Z. Furthermore, the constant λ is found by using the expressions
(2.17) and (2.23) (note that s has a different meaning in these two expressions):

(2.30) λ = Tα0(0) = Cγ(α1 + α0, α2, α3).

Hence for α0 ∈ {− γ
2 ,− 2

γ } Tα0 is completely determined in terms of Cγ(α1 + α0, α2, α3).

In the case α0 = − γ
2 we were able to determine in [36] the leading asymptotics of the expression (2.23)

as z → 0 provided 1
γ + γ < α1 +

γ
2 < Q :

(2.31) T− γ
2
(z) = Cγ(α1 −

γ

2
, α2, α3) +B(α1)Cγ(α1 +

γ

2
, α2, α3)|z|2(1−c) + o(|z|2(1−c))

where

(2.32) B(α) = −µ π

l(− γ2

4 )l(γα2 )l(2 + γ2

4 − γα
2 )

.

Hence, in view of (2.28) and (2.30), relations (2.31), (2.32) lead to

(2.33) B(α1)Cγ(α1 +
γ

2
, α2, α3) = Aγ(−

γ

2
, α1, α2, α3)Cγ(α1 −

γ

2
, α2, α3)
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which yields the relation (1.8) (after some algebra!) in the case 1
γ + γ < α1 +

γ
2 < Q. Hence

(2.34) T− γ
2
(z) = Cγ(α1 −

γ

2
, α2, α3)|F−(z)|2 +B(α1)Cγ(α1 +

γ

2
, α2, α3)|F+(z)|2.

The restriction 1
γ + γ < α1+

γ
2 for α1 was technical in [36] and will be removed in section 6. The restriction

α1 + γ
2 < Q seems necessary due to the Seiberg bounds as the probabilistic Cγ(α1 + γ

2 , α2, α3) vanishes
then. Understanding what happens when α1 +

γ
2 > Q is the key to our proof of the DOZZ formula. Before

turning to this we draw a useful corollary from the results of this section.

2.5. Crossing relation. Let us suppose α1 < Q and α2 +
γ
2 < Q. We have from the previous subsection

(2.35) T− γ
2
(z) = Cγ(α1 −

γ

2
, α2, α3)(|F−(z)|2 + Aγ(−

γ

2
, α1, α2, α3)|F+(z)|2).

The hypergeometric equation (2.25) has another basis of holomorphic solutions defined on C \ (−∞, 0):

(2.36) G−(z) = 2F1(a, b, c
′, 1− z), G+(z) = (1− z)1−c′

2F1(1 + a− c′, 1 + b− c′, 2− c′, 1− z)

where c′ = 1+ a+ b− c = 1− γ
2 (Q− α2) (i.e. these are obtained by interchanging α1 and α2 and replacing

z by 1− z). The two basis are linearly related

F−(z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
G−(z) +

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−bG+(z)

F+(z) =
Γ(2− c)Γ(c− a− b)

Γ(1 − a)Γ(1− b)
G−(z) +

Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)
(1 − z)c−a−bG+(z).

and we get

T− γ
2
(z) = Cγ(α1 −

γ

2
, α2, α3)(D|G−(z)|2 + E|G+(z)|2)

with explicit coefficients D,E (see [36], Appendix). On the other hand by studying the asymptotics as z → 1
we get

(2.37) T− γ
2
(z) = Cγ(α1, α2 −

γ

2
, α3) +B(α2)Cγ(α1, α2 +

γ

2
, α3)|1 − z|2(1−c′) + o(|z|2(1−c′)).

In view of expression (2.34), exploiting the decomposition of T− γ
2
in the basis |G−(z)|2, |G+(z)|2 leads to

the following crossing symmetry relation:

Proposition 2.4. Let α2 +
γ
2 < Q and α1 + α2 + α3 − γ

2 > 2Q. Then

(2.38) Cγ(α1 −
γ

2
, α2, α3) = T (α1, α2, α3)Cγ(α1, α2 +

γ

2
, α3)

where T is the given by the following formula

(2.39) T (α1, α2, α3) = −µπ l(a)l(b)

l(c)l(a+ b− c)

1

l(− γ2

4 )l(γα2

2 )l(2 + γ2

4 − γα2

2 )

Remark 2.5. The relations (1.8) and (2.38) were derived in the physics literature [55] by assuming (i)
BPZ equations, (ii) the diagonal form of the solution (2.28) (iii) crossing symmetry (an essential input in
the bootstrap approach). We want to stress that our proof makes no such assumptions, in fact (i)-(iii) are
theorems.

2.6. Reflection relation. One of the key inputs in our proof of the DOZZ formula is the extension of
(2.34) to the case α1 +

γ
2 > Q. In order to appreciate what is involved let us first explain what we should

expect from the DOZZ solution. One can check from the DOZZ formula the following identity:

(2.40) B(α) =
RDOZZ(α)

RDOZZ(α+ γ
2 )
.

Combining this with (1.15) we get that (2.34) for α1 +
γ
2 > Q is compatible with

(2.41) T− γ
2
(z) = Cγ(α1 −

γ

2
, α2, α3)|F−(z)|2 +R(α1)Cγ(2Q− α1 −

γ

2
, α2, α3)|F+(z)|2
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where

(2.42) R(α) = RDOZZ(α).

We will prove (2.41) when α1 +
γ
2 > Q (and under suitable assumptions on α1, α2, α3) in Theorem 6.2 with

a probabilistic expression for R(α1). Once this is done we need to prove (2.42) and use these facts to derive
the DOZZ formula.

2.7. Reflection coefficient. The identity (2.41) follows from a careful analysis of the small z behaviour of
E[R− γ

2
(z)−s]. This in turn will be determined by the behavior of the integral (2.24) around the singularity

at the origin. To motivate the definitions let us consider the random variable

I(α) :=

∫

B(0,1)

|x|−γαMγ(d
2x).

If α > 2
γ we have E I(α) = ∞ and I(α) has a heavy tail. The reflection coefficient enters in the tail behaviour

of I(α). To study this we recall basic material introduced in [18] and in particular we consider the polar
decomposition of the chaos measure. Let Xs := Xs(0) be the circle average (2.2). We have

X(e−seiθ) = Xs + Y (s, θ)

where Xs is Brownian Motion starting form origin at s = 0 and Y (z) is an independent field with covariance

(2.43) E[Y (s, θ)Y (t, θ′)] = ln
e−s ∨ e−t

|e−seiθ − e−teiθ′ | .

We introduce the chaos measure with respect to Y

(2.44) Nγ(dsdθ) = eγY (s,θ)−γ2E[Y (s,θ)2]
2 dsdθ.

Then we get

(2.45) I(α)
law
=

∫ ∞

0

∫ 2π

0

eγ(Bs−(Q−α)s)Zsds.

with

(2.46) Zs =

∫ 2π

0

eγY (s,θ)−γ2E[Y (s,θ)2]
2 dθ.

This is a slight abuse of notation since the process Zs is not a function (for γ >
√
2) but rather a generalized

function. With this convention, notice that Zsds is stationary i.e. for all t the quality Zt+s = Zs holds in
distribution.

It satisfies for all bounded intervals I

(2.47) E

(∫

I

Zsds

)p

<∞, −∞ < p <
4

γ2
.

The following decomposition lemma due to Williams (see [57]) will be useful in the study of I(α):

Lemma 2.6. Let (Bs−νs)s > 0 be a Brownian motion with negative drift, i.e. ν > 0 and let M = sups(Bs−
νs). Then conditionally on M the law of the path (Bs − νs)s > 0 is given by the joining of two independent
paths:

• A Brownian motion ((B1
s + νs))s 6 τM with positive drift ν > 0 run until its hitting time τM of M .

• (M + B2
t − νt)t > 0 where B2

t − νt is a Brownian motion with negative drift conditioned to stay
negative.

Moreover, one has the following time reversal property for all C > 0 (where τC denotes the hitting time
of C)

(B1
τC−s + ν(τC − s)− C)s 6 τC

law
= (B̃s − νs)s 6 L−C

where (B̃s − νs)s > 0 is a Brownian motion with drift −ν conditioned to stay negative and L−C is the last

time (B̃s − νs) hits −C.
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Remark 2.7. As a consequence of the above lemma, one can also deduce that the process (B̃L−C+s −
ν(L−C + s+ C))s > 0 is equal in distribution to (B̃s − νs)s > 0.

This lemma motivates defining the process Bα
s

Bα
s =

{
Bα

−s if s < 0
B̄α

s if s > 0

where Bα
s , B̄

α
s are two independent Brownian motions with negative drift α − Q and conditioned to stay

negative. We may apply Lemma 2.6 to (2.45). Let M = sups > 0(Bs − (Q− α)s) and L−M be the last time
Bα

s hits −M . Then
∫ ∞

0

eγ(Bs−(Q−α)s)Zsds
law
= eγM

∫ ∞

−L−M

eγB
α
s Zs+L−Mds

law
= eγM

∫ ∞

−L−M

eγB
α
s Zsds(2.48)

where we used stationarity of the process Zs (and independence of Zs and Bs). We will prove in section 3
that the tail behaviour of I(α) coincides with that of

J(α) = eγM
∫ ∞

−∞

eγB
α
s Zsds.

The distribution of M is well known (see section 3.5.C in the textbook [32] for instance):

(2.49) P(eγM > x) =
1

x
2(Q−α)

γ

which implies

(2.50) P(J(α) > x) ∼
x→∞

E

(∫ ∞

−∞

eγB
α
s Zsds

) 2(Q−α)
γ

x−
2(Q−α)

γ .

This is the tail behaviour that we prove for I(α) and its generalizations in section 3. Define the unit volume
reflection coefficient R̄(α) for α ∈ (γ2 , Q) by the following formula

(2.51) R̄(α) = E[

(∫ ∞

−∞

eγB
α
s Zsds

) 2
γ (Q−α)

].

R̄(α) is indeed well defined as can be seen from the following lemma

Lemma 2.8. Let α ∈ (γ2 , Q). Then

(2.52) E[

(∫ ∞

−∞

eγB
α
s Zsds

)p

] <∞

for all −∞ < p < 4
γ2 .

The full reflection coefficient is now defined for all α ∈ (γ2 , Q) \ ∪n > 1{ 2
γ − n−1

2 γ} by

(2.53) R(α) = µ
2(Q−α)

γ Γ(−2(Q− α)

γ
)
2(Q− α)

γ
R̄(α)

The function R(α) has a divergence at the points 2
γ − n−1

2 γ with n > 1 because of the Γ function entering

the definition. Its connection to the structure constants is the following:

Lemma 2.9. For all α ∈ (γ2 , Q) \ ∪n > 1{ 2
γ − n−1

2 γ}, the following limit holds

lim
ǫ→0

ǫ Cγ(ǫ, α, α) = 4R(α)

Hence the reflection coefficient should be seen as a 2 point correlation function.
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2.8. Main results. The two main results of this paper are exact formulas for the two point correlation
function (reflection coefficient) and the three point structure constants of the theory. These formulas were
suggested in the context of the conformal bootstrap.

We will first prove the following formula:

Theorem 2.10. For all α ∈ (γ2 , Q) one has

(2.54) R(α) = RDOZZ(α)

Finally, the main result of this paper is the following identity:

Theorem 2.11. Let α1, α2, α3 satisfy the bounds (2.14) with N = 3. The following equality holds

Cγ(α1, α2, α3) = CDOZZ
γ (α1, α2, α3).

From the purely probabilistic point of view, Theorem 2.11 can be interpreted as a far reaching integrability
result on GMC on the Riemann sphere; indeed recall that Cγ(α1, α2, α3) has an expression in terms of a
fractional moment of some form of GMC: see formula (2.17). There are numerous integrability results on
GMC in the physics literature (see the introduction); to the best of our knowledge, theorem 2.11 is the first
rigorous non trivial integrability result on GMC and we believe the techniques of this paper will enable to
prove many other integrability results for GMC.

3. Tail estimates for Multiplicative Chaos

In this section, we prove the tail estimates needed in this paper and that involves the reflection coefficient.

3.1. Tail estimate around one insertion. Let |z| > 2 and consider the random variable

W :=

∫

B(z,1)

F (x)

|x− z|γαMγ(d
2x)

for F bounded and C1 in a neighborhood of z. We assume γ
2 < α < Q and define auxiliary quantities

β = ( 2γ (Q − α) + 2
γ2 ) ∧ 4

γ2 and η̄ by (1 − η̄)β = 2
γ (Q − α) + η̄. Hence η̄ is strictly positive. With these

definitions we have

Lemma 3.1. For all η < η̄ we have

|P(W > x) − |z|4α(α−Q)F (z)
2
γ (Q−α) R̄(α)

x
2
γ (Q−α)

| 6 C

x
2
γ (Q−α)+η

Proof. We will write the integral in polar coordinates of B(z, 1). Define

N =
1

2π

∫ 2π

0

X(z + eiθ)dθ.

Then

Bs :=
1

2π

∫ 2π

0

(X(z + e−seiθ)−X(z + eiθ))dθ

is a Brownian motion with B(0) = 0 and we may decompose the field X as

X(z + x) = N +B− ln |x| + Yz(x)

where Yz is a lateral noise centered around z given by

Yz(x) = X(z + x)− 1

2π

∫ 2π

0

X(z + |x|eiθ)dθ.

Notice that Yz has same distribution as the lateral noise Y (centered around 0), that Yz and B are inde-
pendent and N is independent of B. We have

(3.1) |E[Yz(x)N ]| = | ln |z + x| − ln |z|| 6 C|x|
and the variance of N is

E[N2] = 2 ln |z|.
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Hence, we get the following decomposition into independent components

(3.2) X(z + x) = N +B− ln |x| + (Yz(x)−
E[Yz(x)N ]

E[N2]
N) +

E[Yz(x)N ]

E[N2]
N.

We introduce a variable N̄ distributed as N but independent of N,B, Yz. We can rewrite (3.2) as the
following equality in distribution:

(3.3) X(z + x) = N̄ +B− ln |x| + (Yz(x)−
E[Yz(x)N ]

E[N2]
N) +

E[Yz(x)N ]

E[N2]
N̄

Consider the random function u(x) given by

u(x) = e
E[Yz(x)N ]

E[N2]
N̄− E[Yz(x)N ]

E[N2]
N−γ2

E[Yz(x)N ]F (z + x)

|z + x|4 .

By (3.1) and since F is C1 around z we get

|u(x) − F (z)

|z|4 | 6 (C + eC|N |+C|N̄|)|x|.

We may thus write W =W1 +W2

(3.4) W1
law
= eγN̄− γ2

2 E[N̄2]F (z)

|z|4
∫ ∞

0

eγ(Bs−(Q−α)s)Zsds

with Zs and N̄ independent and

|W2| 6 CeC(N̄+N)

∫

B(0,1)

eγB− ln |x|+γYz(x)−
γ2

E[(Yz (x)+B− ln |x|)
2]

2

|x|γα−1
d2x.

One can notice that

∫

B(0,1)

eγB− ln |x|+γYz(x)−
γ2

E[(Yz(x)+B− ln |x|)
2]

2

|x|γα−1
d2x

law
=

∫ ∞

0

eγ(Bs−(Q−α+ 1
γ )s)Zsds.

Recall the Williams decomposition Lemma 2.6. Let m = sups > 0(Bs − (Q−α+ 1
γ )s) and let L−m be the

largest s s.t. Bα
−s = −m. Then

∫ ∞

0

eγ(Bs−(Q−α+ 1
γ )s)Zsds

law
= eγm

∫ ∞

−L−m

eγB
α+ 1

γ
s Zs+L−mds

law
= eγm

∫ ∞

−L−m

eγB
α+ 1

γ
s Zs(ds) 6 eγm

∫ ∞

−∞

eγB
α+ 1

γ
s Zsds(3.5)

where we used stationarity of the process Zs.
For all p < ( 2γ (Q− α) + 2

γ2 ) ∧ 4
γ2 = β, we have

(3.6) P(|W2| > x) 6 Cx−p

Indeed, for all p1, q1 > 1 with 1
p1

+ 1
q1

= 1 we have by using Hölder and (3.5) that

(3.7) P(|W2| > x) 6
1

xp
E[|W2|p] 6

C

xp
E[eCpp1(N̄+N)]1/p1E[(eγm

∫ ∞

−∞

eγB
α+ 1

γ
s Zsds)

pq1 ]1/q1 6
C

xp

provided q1 is sufficiently close to 1 and where we used Lemma 2.8 which requires p < 4
γ2 .

We first prove an upper bound for P(W > x). From (3.7) we get for η ∈ (0, 1):

P(W > x) = P(W1 +W2 > x) 6 P(W1 > x− x1−η) + Cx−p(1−η)

Proceeding as in (3.5) we get

P(W1 > x− x1−η) 6 P(eγN̄−γ2

2 E[N̄2]F (z)

|z|4 e
γM

∫ ∞

−∞

eγB
α
s Zsds > x− x1−η)
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where M = sups > 0(Bs − (Q− α)s). Then (2.49) implies

P(W > x) 6 e(2(Q−α)2−γ(Q−α))E[N̄2]
(F (z)
|z|4

) 2
γ (Q−α) R̄(α)

(x− x1−η)
2
γ (Q−α)

+ Cx−p(1−η)

6 |z|−4α(Q−α)F (z)
2
γ (Q−α) R̄(α)

x
2
γ (Q−α)

+ Cx−
2
γ (Q−α)−η + Cx−p(1−η)

for p < β. Recall that we defined η̄ > 0 by (1 − η̄)β = 2
γ (Q − α) + η̄. We conclude

P(W > x) 6 |z|−4α(Q−α)F (z)
2
γ (Q−α) R̄(α)

x
2
γ (Q−α)

+ Cx−
2
γ (Q−α)−η(3.8)

for all η < η̄.

Now, we consider the lower bound. We have

P(W > x) > P(W1 > x+ x1−η̄)− P(W2 < −x1−η̄) > P(W1 > x+ x1−η̄)− Cx−
2
γ (Q−α)−η(3.9)

for all η < η̄. By the Williams decomposition we get as in (3.5)

W1
(Law)
= eγN̄−γ2

2 E[N̄2]F (z)

|z|4 e
γM

∫ ∞

−L−M

eγB
α
s Zsds :=W (L−M ).

where M = sups > 0(Bs − (Q− α)s) and M and Bα are independent of Zs.

Let η′ be such that (1− η′) 4
γ2 = 2

γ (Q− α) + η′. One has η′ > η̄. Consider the event E defined by

eγN̄− γ2

2 E[N̄2]F (z)

|z|4
∫ ∞

−L−M

eγB
α
s Zsds < x1−η′

.

We have trivially

P(W1 > x+ x1−η̄) > P({W1 > x+ x1−η̄} ∩ E).
Under {W1 > x + x1−η̄} ∩ E we have eγM > |x|η′

. Indeed, if eγM < |x|η′

then under E we get W1 < x

which is impossible. Thus M > − η′

γ ln |x| whereby L−M > L
−η′

γ ln |x|
and hence W (L

−η′

γ ln |x|
) 6W (L−M ).

We conclude

P(W1 > x+ x1−η̄) > P({W (L
− η′

γ ln |x|
) > x+ x1−η̄} ∩ E)

> P(W (L
− η′

γ ln |x|
) > x+ x1−η̄)− Cx

−(1−η′) 4
γ2 +ǫ

> |z|−4α(Q−α)F (z)
2
γ (Q−α)

E[(

∫ ∞

−L
−

η′

γ
ln x

eγB
α
s Zsds)

2
γ (Q−α)](x+ x1−η̄)−

2
γ (Q−α) − C

x
2
γ (Q−α)+η′−ǫ

(3.10)

for all ǫ > 0 where in the second step we used Lemma 2.8.
We claim now that

(3.11) E[(

∫ ∞

−∞

eγB
α
s Zsds)

2
γ (Q−α)]− E[(

∫ ∞

−L
−

η′

γ
ln x

eγB
α
s Zsds)

2
γ (Q−α)] 6 Cx−η′

.

Combined with (3.10) and (3.9) this yields

P(W > x) > |z|−4α(Q−α)F (z)
2
γ (Q−α) R̄(α)

(x− x1−η)
2
γ (Q−α)

+ Cx−p(1−η)

6 |z|−4α(Q−α)F (z)
2
γ (Q−α) R̄(α)

x
2
γ (Q−α)

− Cx−
2
γ (Q−α)−η(3.12)

for all η < η̄. (3.12) and (3.8) then finish the proof.
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It remains to prove (3.11). By Remark 2.7, the process B̂α
s defined for s 6 0 by the relation B̂α

s =

Bα
s−L

−
η′

γ
ln x

+ η′

γ lnx is independent from everything and distributed like (Bα
s )s 6 0. We can then write

∫ ∞

−∞

eγB
α
s Zsds = A+ x−η′

B

where

A =

∫ ∞

−L
−

η′

γ
ln x

eγB
α
s Zsds

and

B =

∫ 0

−∞

eγB̂
α
s Zs−L

−
η′

γ
ln x
ds.

We now distinguish two cases: 2
γ (Q − α) 6 1 and 2

γ (Q− α) > 1.

2
γ (Q − α) 6 1. We use (1 + u)

2
γ (Q−α) − 1 6 2

γ (Q − α)u for u > 0 to bound

E[(A+ x−η′

B)
2
γ (Q−α) −A

2
γ (Q−α)] 6

2

γ
(Q− α)x−η′

E[BA
2
γ (Q−α)−1]

By Hölder’s inequality with p ∈ (1, 4
γ2 ), we get

E[BA
2
γ (Q−α)−1] 6 E[Bp]1/pE[Aq( 2

γ (Q−α)−1)]
1
q <∞

since B is equal in distribution to
∫ 0

−∞
eγB̂

α
s Zsds and A >

∫∞

0
eγB

α
s Zsds which has negative moments of all

order by Lemma 2.8.
2
γ (Q − α2) > 1. Let p := 2

γ (Q− α). By triangle inequality we have

E[(A + x−η′

B)p −Ap] 6
(
(E[Ap])1/p + x−η′

(E[Bp])1/p
)p

− E[Ap]

6

(
(E[Ap])1/p + Cx−η′

)p
− E[Ap] 6 Cx−η′

E[Ap]1−1/p 6 Cx−η′

where again we used that A and B have moment of order p. �

Remark 3.2. A simple variation of the proof yields the result (2.50).

3.2. Tail estimate around two insertions. Let for i = 2, 311

Wi :=

∫

B(zi,1)

Fi(x)

|x− zi|γαi
Mγ(d

2x).

We will suppose that |z2| > 2, |z3| > 2 and |z2 − z3| > 3 so that the balls Bi = B(zi, 1) are well separated.
We denote by η̄2 and η̄3 the exponents occurring in the tail estimates of Lemma 3.1 applied to W2 and W3.
Set

η̃2 = η̄2 ∧ 1

γ
(Q− α3) ∧ 1

2
, η̃3 = η̄3 ∧ 1

γ
(Q− α2) ∧ 1

2
.

Then we have

Lemma 3.3. For all β < β̄ := ( 2γ (Q − α2) + η̃2) ∧ ( 2γ (Q − α3) + η̃3)

|P(W2 +W3 > x)−
3∑

i=2

|zi|4αi(αi−Q)Fi(zi)
2
γ (Q−αi) R̄(αi)

x
2
γ (Q−αi)

| 6 Cx−β

Remark 3.4. The above theorem is useful when β̄ > 2
γ (Q−α2)∨ 2

γ (Q−α3). This is the case when α2 and

α3 are sufficiently close to each other.

11The indices 2, 3 occur in the applications of this estimate in the main text.
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Remark 3.5. The proof of Theorem 3.3 is based on the fact that the two variables W2 and W3 are “nearly”
independent. Along the same lines as the proof of Theorem 3.3, one can in fact show that for all p2, p3 > 0
there exists some constant C > 0 such that

E[W p2

2 W p3

3 ] 6 CE[W p2

2 ]E[W p3

3 ].

Proof. The strategy here is to apply the previous lemma with one insertion. We start with the upper bound.
We have

P(W2 +W3 > x) 6 P(W2 +W3 > x,W2 >
x

2
) + P(W2 +W3 > x,W3 >

x

2
)(3.13)

The variables W2 and W3 are nearly independent as we now argue. We consider the circle of radius 3
2

centered at z2. By the Markov property of the GFF, we have the following decomposition inside B(z2,
3
2 )

X(x) = X̃ + P(X)(x)

where P(X)(x) is the Poisson kernel of the ball B(z2,
3
2 ) applied to X and X̃ is a GFF with Dirichlet

boundary conditions on B(z2,
3
2 ) independent of the outside of B(z2,

3
2 ). On the smaller ball B(z2, 1), the

process P(X)(x) is a smooth Gaussian process hence for all p > 0

E[ep sup|x−z2| 6 1 P(X)(x)] <∞.

We set H = sup|x−z2| 6 1 P(X)(x). Of course, we have

W2 6 eγHW̃2

where W̃2 is computed with the chaos measure of X̃. W̃2,W3 have moments less than orders 2
γ (Q − αi)

respectively so that for all u, v > 0 and all ǫ′ > 0 that

P(W2 > u,W3 > v) 6 P(eγHW̃2 > u,W3 > v)

6
1

u
2
γ (Q−α2)−ǫ′

E[W̃
2
γ (Q−α2)−ǫ′

2 ]E[e(2(Q−α2)−γǫ′)H1W3>v]

6
1

u
2
γ (Q−α2)−ǫ′

E[W̃
2
γ (Q−α2)−ǫ′

2 ]E[ep(2(Q−α2)−γǫ′)H ]1/pP(W3 > v)1/q

6
C

u
2
γ (Q−α2)−ǫ′v

1
q
( 2
γ

(Q−α3)−ǫ′)

for all p, q > 1 such that 1
p + 1

q = 1. By taking q close to 1 we conclude

(3.14) P(W2 > u,W3 > v) 6
C

u
2
γ (Q−α2)−ǫv

2
γ (Q−α3)−ǫ

for all ǫ > 0. Therefore, exploiting (3.14) we have for all ǫ > 0

P(W2 +W3 > x,W2 >
x

2
) 6 P(W2 +W3 > x,W2 >

x

2
,W3 6

√
x) + P(W2 >

x

2
,W3 >

√
x)

6 P(W2 > x−
√
x) +

C

x
2
γ (Q−α2)x

1
γ (Q−α3)−ǫ

We get a similar bound by interchanging 2 and 3. Inserting to (3.13) we obtain

P(W2 +W3 > x) 6 P(W2 > x−
√
x) + P(W3 > x−

√
x) +

C

x
2
γ (Q−α2)x

1
γ (Q−α3)−ǫ

+
C

x
2
γ (Q−α3)x

1
γ (Q−α2)−ǫ

and then we use Lemma 3.1 on one insertion.
Now, we proceed with the lower bound. We have, exploiting (3.14), that for all ǫ > 0
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P(W2 +W3 > x) > P({W2 > x} ∪ {W3 > x}) > P(W2 > x) + P(W3 > x) − P(W2 > x,W3 > x)

> P(W2 > x) + P(W3 > x)− C

x
2
γ (Q−α2)+

2
γ (Q−α3)−ǫ

and then we use again Lemma 3.1.
�

4. Analytic Continuation of Liouville Correlation Functions

In this section we study the analytic continuation of the unit volume correlations (2.15). These are defined
for real weights α = (α1, . . . , αN ) satisfying the extended Seiberg bounds

(4.1) UN := {α ∈ RN :
1

γ
(2Q−

N∑

k=1

αk) <
4

γ2 ∧ min
1 6 k 6 N

2

γ
(Q− αk), ∀k : αk < Q}.

We will prove

Theorem 4.1. Fix N > 3 and disjoint points z1, . . . , zN ∈ CN . The unit volume correlation function (2.15)
extends to an analytic function of α defined in a complex neighborhood of UN in CN .

Proof. By Möbius invariance we may assume |zi| > 2 and |zi − zj | > 2. We use (2.9) to write the unit
volume correlation functions as the limit

〈
N∏

k=1

Vαk
(zk)〉uv = 2µ−sγ−1

N∏

k=1

|zk|
−4∆αk
+ lim

r→∞
Fr(α)(4.2)

where

Fr(α) = E

[
N∏

k=1

eαkXr(zk)−
α2
k
2 EXr(zk)

2

Mγ(Cr)
−s

]
(4.3)

where Cr := C \ ∪N
k=1B(zk, e

−r). Fr is defined for all α ∈ CN and is complex differentiable in αi, hence
defining an entire function in the αi. We show that there is an open V ⊂ CN containing UN s.t. Fr converges
uniformly on compacts of V . Note that this is nontrivial since for αk = ak + ibk we have

|eαkXr(zk)−
α2
k
2 E[Xr(zk)

2]| = eakXr(zk)−
a2
k
2 E[Xr(zk)

2]e
b2k
2 EXr(zk)

2

and e
b2k
2 EXr(zk)

2 ∝ e
b2k
2 r blows up as r → ∞.

By Remark 2.2, we know that t ∈ R+ → Bk
r+t := Xr+t(zk)−Xr(zk) are mutually independent Brownian

motions and they are independent of σ{X(x);x ∈ Cr}. Hence

Fr+1(α)− Fr(α) = E

[
N∏

k=1

eαkXr+1(zk)−
α2
k
2 E[Xr+1(zk)

2](Mγ(Cr+1)
−s −Mγ(Cr)

−s)

]
.

Now we apply the Cameron-Martin theorem as in (2.11) to the real parts of the vertex insertions to get

|Fr+1(α)− Fr(α)| 6 Ce(r+1)
∑N

k=1

b2k
2 |E(

∫

Cr+1

fr(x)Mγ(d
2x))−s − E(

∫

Cr

fr(x)Mγ(d
2x)−s)|(4.4)

where fr(x) = e
∑N

k=1 γakGr+1(x,zk) and we have defined Gr+1(z, z
′) := E[X(z)Xr+1(z

′)]. We get from (2.1)

f(x) := sup
r
fr(x) 6 C

∏

k

( |x|+|zk|+
|x− zk|

)γαk .

We need to estimate the difference of expectations in (4.4). Let

Yr :=

∫

Cr+1\Cr

fr(x)Mγ(d
2x).
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and set also Zr :=
∫
Cr
fr(x)Mγ(d

2x). Then

|E(
∫

Cr+1

fr(x)Mγ(d
2x))−s − E(

∫

Cr

fr(x)Mγ(d
2x))−s)| = |E((Zr + Yr)

−s − Z−s
r )|

6 E[1Yr<ǫ|(Zr + Yr)
−s − Z−s

r |] + E[1Yr > ǫ|(Zr + Yr)
−s − Z−s

r |]

where ǫ > 0 will be fixed later. The first expectation on the RHS is bounded by

E1Yr<ǫ|(Zr + Yr)
−s − Z−s

r | 6 Cǫ sup
t∈[0,1]

E(Zr + tYr)
−ℜs−1 6 Cǫ

uniformly in r. The last bound follows by noting that for −ℜs−1 > 0 the expectation is bounded uniformly
in r by CE(

∫
f(x)Mγ(d

2x))−ℜs−1 which is finite due to (2.14) whereas for −ℜs− 1 < 0 we may bound it

for example by CE(
∫
C1\C2

Mγ(d
2x))−ℜs−1 which is finite as well.

For the second expectation we use the Hölder inequality

E1Yr > ǫ|Z−s
r+1 − Z−s

r | 6 CP(Yr > ǫ)1/p((EZ−qℜs
r+1 )1/q + (EZ−qℜs

r )1/q).

Taking q > 1 s.t. −qℜ(s) < minj
2
γ (Q − αj) ∧ 4

γ2 we may bound the two expectations uniformly in r as in

the previous paragraph and then using Markov inequality we get

E1Yr > ǫ|Z−s
r+1 − Z−s

r | 6 Cǫ−m/p(EY m
r )1/p.

It remains to bound EY m
r for suitable m > 0. We note that Cr+1 \ Cr = ∪iA

i
r where Ai

r is the annulus
centred at zi with radi e−r−1, e−r. Then we obtain for m < 4

γ2

EY m
r 6 CE(

∑

k

∫

Ak
r

f(x)Mγ(d
2x))m 6 Cmax

k
e−r(γ(Q−ak)m− γ2m2

2 ) := Ce−rθ(4.5)

where in the second step we used the estimate (9.2). Now, let us fix a
0 ∈ UN . Then we can find m > 0 and

δ > 0 s.t. θ > 0 for all a with mink |ak − a0k| 6 δ. Hence, for α ∈ CM with αk = ak + ibk and ǫ > 0

|Fr+1(α)− Fr(α)| 6 Ce(r+1)
∑N

k=1

bk
2 (ǫ + ǫ−m/pe−

r
p θ).

Taking ǫ = e−δr with δ = θ
p+m we then have

|Fr+1(α)− Fr(α)| 6 Ce−(δ−
∑N

k=1

bk
2 )r.

Hence, Fr(α) converges uniformly in a ball around a
0 in CN . �

5. Proof of lemmas 2.8 and 2.9 on the reflection coefficient

5.1. Proof of lemma 2.8. By symmetry, it is enough to show that

E[

(∫ ∞

0

eγB
α
s Zsds

)p

] <∞.

Let first p > 0. If 0 < p 6 1 we have by subadditivity

E[

(∫ ∞

0

eγB
α
s Zsds

)p

] 6

∞∑

n=1

E

[(∫ n+1

n

eγB
α
s Zsds

)p ]

and for 1 < p < 4
γ2 by convexity

[E

(∫ ∞

0

eγB
α
s Zsds

)p

]1/p 6

∞∑

n=1

[
E

(∫ n+1

n

eγB
α
s Zsds

)p ]1/p
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We set ν = Q − α. The process Bα
s is stochastically dominated by a Brownian motion with drift −ν

starting from origin and conditioned to stay below 1 (see Appendix); hence we have if Bs is a standard
Brownian motion starting from 0

E

[(∫ n+1

n

eγB
α
s Zsds

)p ]
6 CE

[(
1Bn−νn 6 1

∫ n+1

n

eγ(Bs−νs)Zsds

)p ]

6 CE[(

∫ n+1

n

Zsds)
p]E[eγp sups∈[n,n+1](Bs−Bn)]E[1Bn−νn 6 1e

γp(Bn−νn)]

6 CE[1Bn−νn 6 1e
γp(Bn−νn)] = Cn− 1

2

∫ 1

−∞

eγpye−
(y+νn)2

2n dy

where we used (2.47). Considering separately y < − νn
2 and y ∈ [− νn

2 , 1] the last integral is seen to be
exponentially small in n and the claim follows.

Let now p = −q < 0. Set τ−1 = inf{s > 0, Bα
s = −1}. The process Bα

s+τ−1
+1 is a Brownian motion with

drift −ν starting from 0 and conditioned to stay below 1. Therefore, we have if Bs is a standard Brownian
motion starting from 0 and β := sups > 0(Bs − νs)

E[

(∫ ∞

0

eγB
α
s Zsds

)−q

] 6 E[

(∫ τ−1+1

τ−1

eγB
α
s Zsds

)−q

] = CE[1β 6 1

(∫ 1

0

eγ(Bs−νs)Zsds

)−q

]

since Zs is stationary and Bα
s is independent from Z. Finally, we conclude by

E[1β 6 1

(∫ 1

0

eγ(Bs−νs)Zsds

)−q

] 6 E[1β 6 1e
−q infs∈[0,1](Bs−νs)]E(

∫ 1

0

Zsds)
−q <∞

where (2.47) was used. �

5.2. Proof of lemma 2.9. We use formula (1.6) to write Cγ(ǫ, α, α) in terms of 〈Vǫ(0)Vα(z2)Vα(z3)〉 where
we take |z2|, |z3| > 2 with |z2 − z3| > 2. Then

2∆12 = −2∆ǫ = −ǫ(Q− ǫ

2
) →
ǫ→0

0.

and

2∆23 = 2∆ǫ − 4∆α →
ǫ→0

α(α − 2Q)

Therefore, we have

lim
ǫ→0

ǫCγ(ǫ, α, α) = lim
ǫ→0

ǫ|z2 − z3|α(2Q−α)〈Vǫ(0)Vα(z2)Vα(z3)〉

= |z2 − z3|2α(Q−α)2µ
2
γ (Q−α)γ−1Γ(− 2

γ
(Q − α)) lim

ǫ→0
ǫE[(

∫

C

Fǫ(x)Mγ(d
2x))

2
γ (Q−α)− ǫ

γ ]

where

Fǫ(x) =
|x|γ(ǫ+2α)

+

|x|γǫ|x− z2|γα|x− z3|γα
.

Let Wi,ǫ =
∫
B(zi,1)

Fǫ(x)Mγ(d
2x) for i = 2, 3 and Aǫ =

∫
(B(z1,1)∪B(z2,1))c

Fǫ(x)Mγ(d
2x) so that

∫

C

Fǫ(x)Mγ(d
2x) = Aǫ +W2,ǫ +W3,ǫ.

Now, we have the following inequality if 2
γ (Q− α) 6 1

E[(W2,ǫ +W3,ǫ)
2
γ (Q−α)− ǫ

γ ] 6 E[(Aǫ +W2,ǫ +W3,ǫ)
2
γ (Q−α)− ǫ

γ ]

6 E[A
2
γ (Q−α)− ǫ

γ
ǫ ] + E[(W2,ǫ +W3,ǫ)

2
γ (Q−α)− ǫ

γ ]

By the double tail estimate Lemma 3.3 we have

P(W2,ǫ +W3,ǫ) > x) = 2|z2 − z3|−2α(Q−α)R̄(α)x−
2
γ (Q−α)(1 +O(x−η))
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for η > 0, uniformly in ǫ. Since ǫE[A
2
γ (Q−α)− ǫ

γ
ǫ ] converges to 0, this yields

lim
ǫ→0

ǫE[(

∫

C

Fǫ(x)Mγ(d
2x))

2
γ (Q−α)− ǫ

γ ] = 2γ|z2 − z3|−2α(Q−α)R̄(α)

and then

lim
ǫ→0

ǫCγ(ǫ, α, α) = 4µ
2
γ (Q−α) 2(Q−α)

γ
Γ(− 2(Q−α)

γ
)R̄(α) = 4R(α)

If 2
γ (Q − α) > 1 we have by triangle inequality and ǫ small enough so that p = 2

γ (Q− α)− ǫ
γ > 1

[E(W2,ǫ +W3,ǫ)
p]1/p 6 [E(Aǫ +W2,ǫ +W3,ǫ)

p]1/p 6 [E(Aǫ)
p]1/p + [E(W2,ǫ +W3,ǫ)

p]1/p

and we can conclude similarly as the previous case.

6. The BPZ equations and algebraic relations

This section is devoted to the study of the small z asymptotics of the four point functions T− γ
2
and T− 2

γ

leading to the proof of (2.34) and (2.41). The proof of the latter is the technical core of the paper and the
key input in the probabilistic identification of the reflection coefficient.

6.1. Fusion without reflection. As mentioned in Section 2.4 the relation (2.34) was proven in [36, The-
orem 2.3] with the assumption 1

γ + γ < α1 +
γ
2 < Q or in other words γ

2 + 1
γ < α1 <

2
γ . This interval is non

empty if and only if γ2 < 2. In this section we will remove this constraint. The reason for the restriction
γ
2 + 1

γ < α1 was the following. In order to prove (2.34), one must perform the asymptotic expansion of

T− γ
2
(z) around z → 0 (2.31) as explained in section 2.4. In the case 1

γ +
γ
2 < α1, the exponent 2(1−c) which

is equal to γ(Q−α1) is strictly less than 1 hence there are no polynomial terms in z and z̄ in the expansion
(2.31) to that order (such terms are present in the small z expansion of |F−(z)|2). In the case α1 <

1
γ + γ

2 ,

the asymptotic expansion of T− γ
2
(z) around 0 is more involved. Nonetheless, we prove here:

Theorem 6.1. We assume the Seiberg bounds for (− γ
2 , α1, α2, α3), i.e.

∑3
k=1 αk > 2Q+ γ

2 and αk < Q for

all k. If γ
2 < α1 <

2
γ then

(6.1) T− γ
2
(z) = Cγ(α1 −

γ

2
, α2, α3)|F−(z)|2 − µ

π

l(− γ2

4 )l(γα1

2 )l(2 + γ2

4 − γα1

2 )
Cγ(α1 +

γ

2
, α2, α3)|F+(z)|2

and the relation (1.8) holds.

Proof. Let first γ2 < 2. (6.1) was proven in [36, Theorem 2.3] in the case γ
2+

1
γ < α1 <

2
γ . This result extends

to the interval γ
2 < α1 <

2
γ by analyticity. Indeed, for fixed γ ∈ (0,

√
2), the interval γ

2 + 1
γ < α1 <

2
γ is non

empty. Furthermore, by Theorem 4.1 both sides of eq. (6.1) are analytic in α1 (with other parameters fixed)
in a neighborhood of the interval γ

2 < α1 <
2
γ seen as a subset of C. Uniqueness of analytic continuation

thus establishes (6.1) for γ2 < 2. γ2 = 2 is obtained by continuity in γ (see Remark 2.3 on this).
Let now γ2 > 2 and γ

2 < α1 <
2
γ : The proof of (6.1) follows from the study of the function T− γ

2
(z) as z

tends to 0. Thus by (2.23) we need to study the function (2.24) with α0 = − γ
2 .To streamline notation let

us set

(6.2) K(z, x) =
|x− z| γ

2

2 |x|γ(
∑3

k=1 αk−
γ
2 )

+

|x|γα1 |x− 1|γα2

and for any Borel set B ⊂ C

(6.3) KB(z) :=

∫

B

K(z, x)Mγ(d
2x).

Then R− γ
2
(z) = KC(z). We will also write K(z) for KC(z). We set p := 1

γ (
∑3

k=1 αk − γ
2 − 2Q). Taylor

expansion yields the relation

E[K(z)−p] = E[K(0)−p] + z∂zE[K(z)−p]|z=0 + z̄∂z̄E[K(z)−p]|z̄=0 +R(z)
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where

R(z) :=
1

2

∫ 1

0

(
z2∂2zE[K(tz)−p] + 2zz̄∂z∂z̄E[K(tz)−p] + z̄2∂2z̄E[K(tz)−p]

)
dt.

Notice that the term ∂zE[K(z)−p]|z=0 is well defined. Indeed we have

∂zE[K(z)−p]|z=0 = −pγ
2

4
E

[ ∫

C

1

x
K(0, x)Mγ(d

2x)K(0)−p−1
]
.

Split the the x-integral over C in two parts, over B1/2 and over Bc
1/2 where in this section we use the

notation Br = B(0, r). Then

|E
( ∫

Bc
1/2

1

|x|K(0, x)Mγ(d
2x)K(0)−p−1

)
| 6 2EK(0)−p <∞

as GMC measures possess negative moments of all orders. For the integral over B 1
2
we use the Cameron-

Martin theorem to get

E
( ∫

B1/2

1

|x|K(0, x)Mγ(d
2x)K(0)−p−1

)
6 CE(

∫

B1/2

|x|−1−γα1+
γ2

2 Mγ(d
2x)K(0)−p−1)

= C

∫

B1/2

|x|−1−γα1+
γ2

2 E
[( ∫

C

K(0, u)eγ
2G(x,u)Mγ(d

2u)
)−p−1]

d2x.(6.4)

To bound the last expectation we note that the integrand is strictly positive on x ∈ B 1
2
and for example

u ∈ B(3, 1). This ball is far away from the singularities, hence on u ∈ B(3, 1) the kernel K(0, u)eγ
2G(x,u) is

bounded from below away from 0 . Thus

E
[( ∫

C

K(0, u)eγ
2G(x,u)Mγ(d

2u)
)−p−1]

6 CE(Mγ(B(3, 1))−p−1 <∞

as the measureMγ possesses moments of negative order. The final integral in (6.4) converges as the constraint

α1 < 2
γ guarantees that 1 + γα1 − γ2

2 < 3 − γ2

2 < 2 since γ2 > 2. The same argument shows that

z̄∂z̄E[(K0(z))
−p]|z̄=0 is well defined.

It remains to investigate the remainder R(z). All the three terms are treated in the same way and we
focus on the first. It may be written as a sum of two terms:

R1(z) :=− p
γ2

4
(1 +

γ2

4
)z2
∫ 1

0

(1− t)E
[ ∫

C

1

(x− tz)2
K(tz, x)Mγ(d

2x)(K(tz))−p−1
]
dt

R2(z) :=p(p+ 1)
γ4

16
z2
∫ 1

0

(1 − t)E
[( ∫

C

1

(x− tz)
K(tz, x)Mγ(d

2x)
)2

(K(tz))−p−2
]
dt.

The term R1 is the leading one contributing and explicit factor c|z|γ(Q−α1). It is analysed in the same
way as a similar term in the proof of [36, Theorem 2.3] so we will be brief. First as above we may restrict
the integral to B1/2 up to an O(z2) contribution from the integral over Bc

1/2. By Cameron-Martin and the

change of variables x→ ytz this term equals

−pγ2

4
(1 +

γ2

4
)|z|2+γ2

2 −γα1

∫ 1

0

(1− t)t
γ2

2 −γα1

∫

B 1
2t|z|

|y − 1| γ
2

2

(y − 1)2|y|γα1 |yzt− 1|γα2

× E

[(∫

C

K(tz, u)eγ
2G(tyz,u))Mγ(d

2u)
)−p−1]

dtd2y.

Dominated convergence theorem then ensures that this term is equivalent as z → 0 to

−pγ2

4
(1 +

γ2

4
)|z|γ(Q−α1)

∫ 1

0

(1 − t)t
γ2

2 −γα1dt

∫

C

|y − 1| γ
2

2

(y − 1)2|y|γα1
d2yE

[(∫

C

K(0, u)eγ
2G(0,u)Mγ(d

2u)
)−p−1]

.

The y integral can then be computed thanks to (9.7) and one can show that this term, combined with the
corresponding term coming from the ∂2z̄ derivative, gives rise to the structure constant Cγ(α1 +

γ
2 , α2, α3).
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The rest of this proof is dedicated to showing that R2 is a o(|z|γ(Q−α1)). We will bound the expectation
occuring in R2 so let us denote

I(B, tz) := E

[( ∫

B

1

|x− tz|K(tz, x)Mγ(d
2x)
)2

(

∫

C

K(tz, u)Mγ(d
2u))−p−2

]
.(6.5)

We shall prove

I(C, tz) 6 C|tz|γ(Q−α1)−2+η(6.6)

with η > 0 which proves our claim since resulting t integral converges at 0 as γ(Q−α1)− 2 = γ2

2 − 2 > −1.

We can now put t = 1 and we will bound I(C, z) for z small. For z small enough 1
|x−z| is bounded in Bc

1
2

and we have I(Bc
1
2
, z) < C. Since I(C, z) 6 2(I(B 1

2
, z) + I(Bc

1
2
, z)) it suffices to bound I(B 1

2
, z).

Next we bound I(A, z) where A is the annulus centered at origin with radii L|z| and 1
2 and L > 1 will

be chosen later. First, we use Jensen’s inequality in the normalized measure 1A(x)K(z, x)Mγ(d
2x) to get

I(A, z) 6 E

[ ∫

A

1

|x− z|2K(z, x)Mγ(d
2x)KA(z)

−p−1
]
.

Next we observe that on A the covariance kernel of X coincides with that of the exact scale invariant kernel
constructed in [51] (in the Gaussian case) up to a global additive constant. In particular, up to an additive
independent Gaussian random variable, the restriction of X to B 1

2
can be constructed as an increasing

function of some white noise in this ball and therefore we can make use of the FKG inequality (see [27,
section 2.2] for the case of countable product) to get

E

[ ∫

A

1

|x− z|2K(z, x)Mγ(d
2x)KA(z)

−p−1
]
6 E

[ ∫

A

1

|x− z|2K(z, x)Mγ(d
2x)
]
E[KA(z)

−p−1]

6 C

∫

A

|x− z| γ
2

2 −2

|x|γα1
d2x 6 C|z| γ

2

2 −γα1

∫

|y|>L

|y − 1| γ
2

2 −2

|y|γα1
d2y 6 C|z|−2|z|γ(Q−α1)L−γ(α1−

γ
2 )

where the last integral was convergent due to α1 >
γ
2 . This fits to (6.6) provided we take L = |z|−δ with

δ > 0.
We are left with estimating I(BL|z|, z). Let us first consider the part not too close to the singularity at

z: set S := BL|z| \B(z, |z|1+ǫ) for some ǫ > 0, to be fixed later. We have

E

[( ∫

S

1

|x− z|K(z, x)Mγ(d
2x)
)2

K(z)−p−2
]
6 |z|−2−2ǫ

E[KS(z)
2K(z)−p−2].

Then we get, for r ∈ (0, 2) using the fact that KS(z) 6 K(z)

E[KS(z)
2K(z)−p−2] 6 E[KS(z)

r(K(z))−p−r ] 6 C(EKS(z)
qr)1/q

where in the second step we used Hölder inequality and bounded the negative GMC moment again by a
constant. Finally, since |x− z| 6 2|Lz| on S we get

[E(KS(z)
qr)]1/q 6 C|Lz| γ

2

2 r[E[(

∫

BL|z|

|x|−γα1Mγ(d
2x))qr ]]1/q 6 C|Lz|γ(Q−α1+

γ
2 )r−

1
2 γ2qr2

where the last estimate was an easy consequence of the annulus bound (9.2) (see also [13, Lemma A.1]).
Here we need to assume that rq < 4

γ2 ∧ 2
γ (Q−α1). Notice that since we assume γ

2 < α1 then 4
γ2 >

2
γ (Q−α1)

so that given q we need to have 0 < r < 2
γq (Q − α1). The optimal choice for r is r⋆ =

γ
2 +Q−α1

γq (this is less

than 2
γq (Q− α1) for α1 <

2
γ ), in which case

E[KS(z)
rq]1/q 6 C|Lz| 1

2q (
γ
2 +Q−α1)

2

.

Gathering everything we conclude

|E
[( ∫

S

1

|x− z|K(z, x)Mγ(d
2x)
)2

K(z)−p−2
]
6 CL

1
2q (

γ
2 +Q−α1)

2 |z|−2−2ǫ+ 1
2q (

γ
2 +Q−α1)

2

.
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We can now fix δ, q, ǫ. First notice that 1
2 (

γ
2 +Q−α1)

2 − γ(Q−α1) =
1
2 (Q−α1 − γ

2 )
2 > 0. Hence choosing

q sufficiently close to 1 and then ǫ < ǫ(q) and finally δ < δ(ǫ), I(S, z) can be bounded by (6.6).

We are thus left with proving (6.6) for I(B, z) where B := B(z, |z|1+ǫ). An application of the Cameron-
Martin theorem gives

I(B, z) =

∫

B2

K(z, x)K(z, x′)eγ
2G(x,x′)

(x− z)(x′ − z)
E

[( ∫

C

K(z, u)eγ
2G(x,u)+γ2G(x′,u)Mγ(d

2u)
)−p−2]

d2xd2x′

6 C

∫

B2

|x− z| γ
2

2 −1|x′ − z| γ
2

2 −1

|x|γα1 |x′|γα1 |x− x′|γ2 E

[(∫

B 1
2

|u− z| γ
2

2

|u|γα1 |u− x|γ2 |u− x′|γ2Mγ(d
2u)
)−p−2]

d2xd2x′(6.7)

where for upper bound we restricted the u integral to B 1
2
. By a change of variables x = zy, x′ = zy′ this

becomes

I(B, z) 6 C|z|2−2γα1

∫

B(1,zǫ)2

|y − 1| γ
2

2 −1|y′ − 1| γ
2

2 −1

|y − y′|γ2 A(y, y′, z) d2yd2y′(6.8)

with

A(y, y′, z) = E

[( ∫

B 1
2

|u− z| γ
2

2

|u|γα1 |u− yz|γ2|u− y′z|γ2Mγ(d
2u)
)−p−2]

.

Note that the only potential divergence in the y, y′ integral is at y = y′ since γ2 > 2. Hence we need to show
A(y, y′, z) vanishes at diagonal. The behaviour of A(y, y′, z) as y → y′ is controlled by the fusion rules (see
[36]). In the case at hand we have four insertions, located at 0, zy, zy′, z that are all close to each other as
z → 0. Fusion estimates have been proven in [36] in the case of three insertions. A simple adaptation of that
proof to the case of 4 insertions is stated in the Appendix, Lemma 9.1. The estimate for A(y, y′, z) depends on
the relative positions of the four insertions. In our case we have |zy−z|∨|zy′−z|∨|zy−zy′| ≪ |z|∧|zy|∧|zy′|.
This means that the insertions zy, zy′, z will merge together way before merging with 0. We will partition
the integration region in (6.8) acording to the relative positions of these three points or equivalently the
relative positions of y, y′, 1. By symmetry in y, y′ we have then three integration regions in (6.8) to consider

• Let A1 := {|y − 1| 6 |y′ − 1| 6 |y − y′|}. Then on B ∩ A1 we have by Lemma 9.1

A(y, y′, z) 6 C|1− y′| 12 ( 3γ
2 −Q)2 |z| 12 ( 3γ

2 +α1−Q)2 .

Since 2− 2γα1 +
1
2 (

3γ
2 + α1 −Q)2 = −2 + γ(Q− α1) + 1

2 (α− 2
γ )

2 we get

I(B ∩ A1, z) 6 C|z|−2+γ(Q−α1)+ 1
2 (α− 2

γ )2
∫

B(1,|z|ǫ)2

1

|y − y′|2− 1
2 (

3γ
2 −Q)2

d2yd2y′.(6.9)

The integral is convergent if (3γ2 −Q)2 > 0 which is the case if γ2 6= 2.

• Let A2 := {|y − 1| 6 |y − y′| 6 |y′ − 1|}. Then on B1 ∩ A2 we have by Lemma 9.1

A(y, y′, z) 6 C|y − y′| 12 ( 3γ
2 −Q)2 |z| 12 ( 3γ

2 +α1−Q)2 .

Hence we end up with the bound (6.9) for I(B ∩ A2) as well (since
γ2

2 − 1 > 0) .

• Let A3 := {|y − y′| 6 |y − 1| 6 |y′ − 1|}. Then on B1 ∩ A3 we have by Lemma 9.1

A(y, y′, z) 6 C|y − y′| 12 (2γ−Q)2 |y − 1|1−γ2

2 |z| 12 ( 3γ
2 +α1−Q)2 .

Hence

I(B ∩A3) 6 C|z|−2+γ(Q−α1)+ 1
2 (α− 2

γ )2
∫

B(1,|z|ǫ)2

1

|y − y′|γ2− 1
2 (2γ−Q)2

d2yd2y′.

The integral converges since γ2 − 1
2 (2γ −Q)2 = 4− 1

2Q
2 < 2. �
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6.2. Fusion with reflection. In this section we uncover the probabilistic origin of the reflection relation
(1.14), (1.15). We prove the following extension of Theorem 6.1 to the case α1 +

γ
2 > Q:

Theorem 6.2. Let
∑

i αi − γ
2 > Q and αi < Q for all i. There exists η > 0 s.t. if Q− α1 < η then

(6.10) T− γ
2
(z) = Cγ(α1 −

γ

2
, α2, α3)|F−(z)|2 +R(α1)Cγ(2Q− α1 −

γ

2
, α2, α3)|F+(z)|2.

Proof. We use the notations introduced in the proof of (6.1). We will prove

E
[
K(z)−p

]
− E

[
K(0)−p

]
= µpγΓ(p)−1R(α1)|Cγ(2Q− α1 −

γ

2
, α2, α3)|z|γ(Q−α1) + o(|z|γ(Q−α1)).

Note that since now γ(Q− α1) < 1 we need Taylor series only to 0th order.
The leading asymptotics will result from the integral defining K in a small ball at origin. Let us denote

B := B|z|1−ξ with ξ ∈ (0, 1) to be fixed later. We define

(6.11) T1 := E
[
KBc(z)−p

]
− E

[
K(0)−p

]
and T2 := E

[
K(z)−p

]
− E

[
KBc(z)−p

]

so that

(6.12) E
[
K(z)−p

]
− E

[
K(0)−p

]
= T1 + T2.

We first show that T1 = o(|z|γ(Q−α1)). Interpolating we get

|T1| 6 p

∫ 1

0

E

[
|KBc(z)−K(0)|

(
tKBc(z) + (1− t)K(0)

)−p−1]
dt

6 CE
[
|KBc(z)−K(0)|

(
KBc(0)

)−p−1]
(6.13)

where we used KBc(z) > CK(0) > KBc(0) since |x − z| γ
2

2 > C|x| γ
2

2 on Bc. Since K(0) = KB(0) + KBc(0)
we obtain |T1| 6 C(A1 +A2) where

A1 = E[KB(0)KBc(0)−p−1] and A2 = E[|KBc(z)−KBc(0)|KBc(0)−p−1].

Using Cameron-Martin theorem, we get for A1 that

A1 6 C

∫

|x| 6 |z|1−ξ

|x| γ
2

2 −γα1E

[( ∫

|u|>|z|1−ξ

K(0, u)|u− x|−γ2

Mγ(du)
)−p−1]

d2x.

Since |u− x| 6 2|u| we may bound the expectation by

E

[(∫

|u|>|z|1−ξ

|u|−γα1−
γ2

2 Mγ(d
2u)
)−p−1]

6 C|z|(1−ξ)
(α1+

γ
2
−Q)2

2(6.14)

where we used the GMC estimate (9.3) in the Appendix. We conclude that

A1 6 C|z|(1−ξ)
(

(α1+
γ
2
−Q)2

2 +γ(Q−α1)
)
.(6.15)

Hence A1 = o(|z|γ(Q−α1)) if e.g. ξ < 1
2 and η is small enough.

Next we bound A2. Let A be the annulus A := {x ∈ C; |z|1−ξ 6 |x| 6 1/2}. We can split the numerator
in A2 into |KBc

1/2
(z) − KBc

1/2
(0)| and |KA(z) − KA(0)| by means of the triangular inequality. On Bc

1/2 we

can use ||x− z| γ
2

2 − |x| γ
2

2 | 6 C|x| γ
2

2 |z| to get

E[|KBc
1/2

(z)−KBc
1/2

(0)|KBc(0)−p−1] 6 C|z|E[KBc
1/2

(0)KBc(0)−p−1] 6 C|z|E[KBc(0)−p] 6 C|z|.

Finally, using ||x− z| γ
2

2 − |x| γ
2

2 | 6 C|x| γ
2

2 −1|z| on A and then applying Cameron-Martin, we get

E[|KA(z)−KA(0)|KBc(0)−p−1] 6 C|z|
∫

A

|x| γ
2

2 −1−γα1E

[(∫

|u|>|z|1−ξ

K(0, u)|u− x|−γ2

Mγ(d
2u)
)−p−1]

d2x.

Since |z|1−ξ 6 |x| we can bound
∫

|u|>|z|1−ξ

K(0, u)|u− x|−γ2

Mγ(d
2u) > C

∫

|u|>|x|

|u|−γα1−
γ2

2 Mγ(d
2u)
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and then the GMC estimate (9.3) in the Appendix gives

E[|KA(z)−KA(0)|KBc(0)−p−1] 6 C|z|
∫

A

|x| γ
2

2 −1−γα1+
1
2 (α1+

γ
2 −Q)2d2x(6.16)

6 C|z|ξ+(1−ξ)
(
γ(Q−α1)+

1
2 (α1−

2
γ )2
)
= o(|z|γ(Q−α1))(6.17)

for ξ < 1
2 and η small enough (since α1 − 2

γ >
γ
2 − η). Hence T1 = o(|z|γ(Q−α1)).

Now we focus on T2. First we show that it suffices to restrict K to the complement of the annulus
Ah := {x ∈ C; e−h|z| 6 |x| 6 |z|1−ξ} where h > 0 is fixed: it will serve as a buffer zone to decorrelate the
regions {x ∈ C; |x| 6 e−h|z|} and {x ∈ C; |x| > |z|1−ξ}. Interpolating as in (7.11) we deduce

|E[K(z)−p −KAc
h
(z)−p]| 6 E[KAh

(z)KBc(0)−p−1].

Using the Cameron-Martin theorem we get

|E[K(z)−p −KAc
h
(z)−p]| 6 C

∫

Ah

|x− z| γ
2

2 |x|−γα1E

[(∫

Bc

K(0, u)|u− x|−γ2

Mγ(du)
)−p−1]

d2x.(6.18)

The expectation was estimated in (6.14) so that we get

|E[K(z)−p −KAc
h
(z)−p]| 6 C|z|(1−ξ)

(
γ(Q−α1)+

1
2 (Q−α1−

γ
2 )

2
)
.(6.19)

For ξ < 1
2 and η small this yields |E[K(z)−p −KAc

h
(z)−p]| = o(|z|γ(Q−α1)).

Therefore, we just need to evaluate the quantityE[KAc
h
(z)−p]−E[KBc(z)−p] where we recall the definitions

Bc = {|x| > |z|1−ξ} and Ac
h = Bc ∪ Be−h|z|. Hence KAc

h
(z) = KBc(z) + KB

e−h|z|
(z). We use the polar

decomposition of the chaos measure introduced in Section 2.7. Let |z| = e−t. Then

KBc(z) =

∫ 2π

0

∫ (1−ξ)t

−∞

eγ(Bs−(Q−α1)s)
|e−s+iθ − z| γ

2

2

|1− e−s+iθ|γα2
(e−s(γ(α1+αa+α3−

γ
2 ) ∨ 1)Nγ(dsdθ) := K1

KB
e−h|z|

(z) =

∫ 2π

0

∫ ∞

t+h

eγ(Bs−(Q−α1)s)
|e−s+iθ − z| γ

2

2

|1− e−s+iθ|γα2
Nγ(dsdθ) := K2.

The lateral noises in K1 and K2 are weakly correlated. Indeed, from (2.43) we get

(6.20) − e−ξt
6 E[Y (s, θ)Y (s′, θ′)] 6 2e−ξt.

for all s < (1− ξ)t, s′ > t+ h and θ, θ′ ∈ [0, 2π]. Define then the process

P (s, θ) := Y (s, θ)1{s<(1−ξ)t} + Y (s, θ)1{s>t+h}.

Let Ỹ be independent of everything with the same law as Y and define the process

P̃ (s, θ) := Y (s, θ)1{s<(1−ξ)t} + Ỹ (s, θ)1{s>t+h}.

Then we get

E[P̃ (s, θ)P̃ (s′, θ′)]− e−ξt 6 E[P (s, θ)P (s′, θ′)] 6 E[P̃ (s, θ)P̃ (s′, θ′)] + 2e−ξt.

Let N be a unit normal variable independent of everything. Then the above means that the covariance

of P̃ + e−ξtN dominates that of P and the covariance of P +
√
2e−

1
2 ξtN dominates that of P̃ . Since

K|P+aN = eγaN− 1
2 γ2a2

K|P we get by Kahane’s convexity inequality (see [49, Theorem 2.1]) with the convex
function x ∈ R+ 7→ x−p

e−C|z|2ξ
E[(K1 + K̃2)−p] 6 E[(K1 +K2)−p] 6 eC|z|ξ

E[(K1 + K̃2)−p]

where K̃2 is computed with Ỹ . Let

ǫ := eγBt+h−γ(Q−α1)(t+h)− γ2

2 t.(6.21)
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Then by the Markov property of Brownian motion

K̃2 =ǫ

∫ 2π

0

∫ ∞

0

eγ(B̃s−(Q−α1)s)
|e−s−h+iθ − z

|z| |
γ2

2

|1− |z|e−s−h+iθ|γα2
Ñγ(d(h+ t+ s), dθ)(6.22)

where B̃ is a Brownian motion independent of everything. Moreover, by stationarity of Ỹ and its indepen-
dence of everything we may replace Nγ(d(h+ t+ s), dθ) by Nγ(ds, dθ). As a consequence

E[(K1 + ǫc−K3)−p] 6 E[(K1 + K̃2)−p] 6 E[(K1 + ǫc+K3)−p](6.23)

where

K3 =

∫ ∞

0

eγ(B̃s−(Q−α1)s)Z̃sds

and

(6.24) c± :=
(1± e−h)

γ2

2

(1∓ |z|e−h)γα2
.

By the Williams path decomposition Lemma 2.6 and (2.48) we deduce

(6.25) K3 law
= eγM

∫ ∞

−L−M

eγB
α1
s Z̃s ds

where we recall M = sups(B̃s − (Q − α1)s) and L−M is the last time Bα1
s hits −M . We discuss the lower

and upper bounds in (6.23) in turn.

Lower bound. Let us use the notation JB =
∫
B
eγB

α1
s Z̃sds and J for JR. We have

E[(K1 + ǫc−K3)−p] > E[(K1 + ǫc−e
γMJ)−p]

Now we can use the standard fact that M has exponential law with parameter 2(Q− α1) to get

E[(K1 + ǫc−K3)−p]− E[(K1)−p] >
2(Q−α1)

γ

∫ ∞

1

E

[(
K1 + ǫc−vJ

)−p

− (K1)−p
]
v−1− 2

γ (Q−α1) dv

>
2(Q−α1)

γ
c

2
γ (Q−α1)

− E

[
(ǫJ)

2
γ (Q−α1)(K1)−p− 2

γ (Q−α1)
] ∫ ∞

0

(
(1 + w)−p − 1

)
w−1− 2

γ (Q−α1) dw

=
2(Q−α1)

γ
c

2
γ (Q−α1)

−

Γ(− 2
γ (Q− α1))Γ(p+

2
γ (Q − α1))

Γ(p)
E[J

2
γ
(Q−α1)]E

[
ǫ

2
γ
(Q−α1)(K1)−p− 2

γ
(Q−α1)

]

where in the second step we made a change of variables w = ǫc−J
K1 v and for lower bound took the integration

over w > 0. In the last step we used Lemma 9.3 in the appendix to compute the integral and independence
of J from everything. We end up with

E[(K1 + ǫc−K3)−p]− E[(K1)−p] >Wc
2
γ (Q−α1)

− E

[
ǫ

2
γ (Q−α1)(K1)−p− 2

γ (Q−α1)
]

where we have have set

W := µ− 2
γ (Q−α1)R(α1)

Γ(p+ 2
γ (Q− α1))

Γ(p)

and R(α1) is the reflection coefficient defined in (2.53). The remaining expectation can be computed thanks

to the Cameron-Martin theorem applied to the term ǫ
2
γ (Q−α1). Since t+ h > (1− ξ)t we get

E

[
ǫ

2
γ (Q−α1)(K1)−p− 2

γ (Q−α1)
]
= |z|γ(Q−α1)E

[
K̂Bc(z)−p− 2

γ (Q−α1)
]

where we defined for D ⊂ C

(6.26) K̂D(z) :=

∫

D

|x− z| γ
2

2

|x|γ(2Q−α1)|x− 1|γα2
|x|γ(2Q−α1−

γ
2 +α2+α3)

+ Mγ(d
2x)
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and in the case D = C we will write K̂(z) for K̂C(z). Next, we claim

E
[
K̂Bc(z)−p− 2

γ (Q−α1)
]
− E

[
K̂Bc(0)−p− 2

γ (Q−α1)
]
= o(|z|γ(Q−α1)).(6.27)

Indeed, the LHS is just T1 in (6.11) computed with a larger p and |x|γα1 replaced by |x|γ(2Q−α1). It is readily
checked from (6.15) and (6.16) that (6.27) holds.

Summarizing all of our considerations related to the lower bound, we have shown that

E[(K1)−p]− E[(K2)−p]

> e−C|z|ξ
(
|z|γ(Q−α1)c

2
γ (Q−α1)

− WE
[
K̂(0)−p− 2

γ (Q−α1)
]
+ o(|z|γ(Q−α1))

)
− (1− e−C|z|ξ)E[KBc(z)−p].

The second term on the RHS is O(|z|ξ) = o(|z|γ(Q−α1)) provided we take ξ > γ(Q−α1) (this is the condiition
that fixes ξ) so that recalling (6.24), we deduce

lim inf
z→0

|z|−γ(Q−α1)
(
E[KB

e−h|z|
(z)−p −KBc(z)−p]

)
> (1 + e−h)γ(Q−α1)WE

[
K̂(0)−p− 2

γ (Q−α1)
]
.

Since h is arbitrary, it can be chosen arbitrarily large so as to get

lim inf
z→0

|z|−γ(Q−α1)
(
E[KB

e−h|z|
(z)−p −KBc(z)−p]

)
>WE

[
K̂(0)−p− 2

γ (Q−α1)
]

= µpγΓ(p)−1R(α1)|Cγ(2Q− α1 −
γ

2
, α2, α3)

which is the desired lower bound.

Upper bound: For the upper bound we go back to the formula (6.25) where we need to face the integration
region lower value L−M . For A > 0 fixed, we consider first the quantity

L(z) := E

[(
K1 + ǫc+e

γM

∫ ∞

−L−M

eγB
α1
s Z̃s(ds)

)−p

− (K1)−p
)
1{M 6 A}

]

and we want to show that L(z) = o(|z|γ(Q−α1)).
Indeed, interpolating and using Cameron-Martin for the ǫ we get

|L(z)| 6 c+E
[
ǫeγM

∫ ∞

−L−M

eγB
α1
s Z̃sdsKBc(z)−p−11{M 6 A}

]
6 CeγAE

[ ∫

R

eγB
α1
s Z̃sds

]
E
[
ǫKBc∩B(0, 12 )(z)

−p−1
]

6 C|z|γ(Q−α1)eγAE
[ ∫

R

eγB
ν
s Z̃s ds

]
E
[( ∫

|z|1−ξ 6 |z| 6 1
2

|x|−γα1−
γ2

2 Mγ(d
2x)
)−p−1]

6 CeγA|z|γ(Q−α1)|z| 1−ξ
2 (Q−α1−

γ
2 )

2

where we used the GMC estimate (9.3) and Lemma 2.8

It remains to investigate the quantity

U(z) :=E

[(
K1 + ǫc+e

γM

∫ ∞

−L−M

eγB
α1
s Z̃s(ds)

)−p

− (K1)−p
)
1{M > A}

]

6 E

[(
K1 + ǫc+e

γMJ(A)
)−p

− (K1)−p
)
1{M>A}

]

where we set J(A) =
∫∞

−L−A
eγB

α1
s Z̃sds. Using again the law of M , which is exponential with parameter

2(Q− α1), and making the change change of variables ǫc+JA

K1 eγv = y we get

U(z) 6
2(Q−α1)

γ
E

[ ∫ ∞

A

((
K1 + ǫc+e

γvJA

)−p

− (K1)−p
)
e−2(Q−α1)v dv

]

=
2(Q−α1)

γ
c

2
γ (Q−α1)

+ E

[
J

2
γ (Q−α1)

A ǫ
2
γ (Q−α1)

∫ ∞

eγA
ǫc+JA

K1

(
(1 + y)−p − 1

)
(K1)−p− 2

γ (Q−α1)y−
2
γ (Q−α1)−1 dy

]
.
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Now we can use Cameron-Martin as in the case of the lower bound to get that the above expectation can
be rewritten as (recall (6.26))

E

[
J

2
γ (Q−α1)

A ǫ
2
γ (Q−α1)

∫ ∞

eγA
ǫc+JA

K1

(
(1 + y)−p − 1

)
(K1)−p− 2

γ (Q−α1)y−
2
γ (Q−α1)−1 dy

]

=|z|γ(Q−α1)E

[
J

2
γ (Q−α1)

A

∫ ∞

eγA
ǫ(|z|e−h)−2γ(Q−α1)c+JA

K̂Bc (z)

(
(1 + y)−p − 1

)
K̂Bc(z)−p− 2

γ (Q−α1)y−
2
γ (Q−α1)−1 dy

]
.

Recalling (6.21) we have ǫ(|z|e−h)−2γ(Q−α1) = eγBt+h+γ(Q−α1)(t+h)−γ2

2 t and thus ǫ(|z|e−h)−2γ(Q−α1) → 0
almost surely as z → 0 provided α1+

γ
2 > Q which is the case. Dominated convergence theorem then ensures

that the latter expectation converges to

E[J
2
γ (Q−α1)

A ]E[K̂Bc(z)−p− 2
γ (Q−α1)]

∫ ∞

0

(
(1 + y)−p − 1

)
y−

2
γ (Q−α1)−1 dy.

We can then conclude as for the lower bound by letting h,A→ ∞. �

6.3. The 4 point function with − 2
γ insertion. In this section, we prove an analogue of Theorem 6.2 for

the other degenerate insertion with weight − 2
γ :

Theorem 6.3. We assume the Seiberg bounds for (− 2
γ , α1, α2, α3), i.e.

∑3
k=1 αk > 2Q+ 2

γ and αk < Q for

all k. There exists η > 0 such that for all α1, α2, α3 ∈ (Q − η,Q)

(6.28) T− 2
γ
(z) = Cγ(α1 − 2

γ
, α2, α3)|F−(z)|2 +R(α1)Cγ(2Q− α1 − 2

γ
, α2, α3)|F+(z)|2.

Proof. The proof follows the proof of Theorem 6.2 almost word by word and we keep the same notation
with the following obvious modifications. The function K in (6.29) is replaced by

(6.29) K(z, x) =
|x− z|2|x|γ(

∑3
k=1 αk−

2
γ )

+

|x|γα1 |x− 1|γα2

i.e. most important, the factor |x − z| γ
2

2 is replaced by |x − z|2. Furthermore the exponent p is now given
by p = (α1 + α2 + α3 − 2

γ − 2Q)/γ and it is positive.

We will fix η > 0 and ξ > 0 so that the following conditions hold for all α1 ∈ (Q− η,Q)

4
γ (Q − α1) <(1− ξ)(4 − γα1 − 2γη)(6.30)

4
γ (Q − α1) <ξ.(6.31)

Note that for ξ = η = 0 (6.30) holds since 4−γQ = 2− γ2

2 > 0 and therefore by continuity for small enough

η and small enough ξ > 4
γ η they hold as well.

As in the proof of Theorem 6.2 we start with the splitting (6.12) to T1 and T2 given by (6.11) and we

first show that T1 = o(|z| 4γ (Q−α1)). We obtain again |T1| 6 C(A1 +A2) with the same definitions for Ai.
The Cameron-Martin bound for A1 becomes

A1 6 C

∫

|x| 6 |z|1−ξ

|x|2−γα1E

[( ∫

|u|>|z|1−ξ

K(0, u)|u− x|−γ2

Mγ(du)
)−p−1]

d2x

and as the expectation is bounded by a constant we conclude that

A1 6 C|z|(1−ξ)(4−γα1) = o(|z| 4γ (Q−α1))(6.32)

by (6.30).
Next, for A2 the bound (6.16) is replaced by

E[|KA(z)−KA(0)|KBc(0)−p−1] 6 C|z|
∫

A

|x|1−γα1d2x 6 C|z|1+(1−ξ)(3−γα1) = o(|z| 4γ (Q−α1))(6.33)

again by (6.30). Hence T1 = o(|z| 4γ (Q−α1)).
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Now we proceed with T2, again with the obvious changes (e.g. γ2

2 in the definitions for K1,K2 and c±
replaced by 2). Hence replacing (6.26) by

K̂D(z) :=

∫

D

|x− z|2
|x|γ(2Q−α1)|x− 1|γα2

|x|γ(2Q−α1−
2
γ +α2+α3)

+ Mγ(d
2x)

we obtain instead of (6.27) the bound

E
[
K̂Bc(z)−p− 2

γ (Q−α1)
]
− E

[
K̂Bc(0)−p− 2

γ (Q−α1)
]
= o(|z| 4γ (Q−α1)).(6.34)

Indeed, the LHS is T1 computed with a larger p and |x|γα1 replaced by |x|γ(2Q−α1). Hence from (6.32) and
(6.33) we get the bound

E
[
K̂Bc(z)−p− 2

γ (Q−α1)
]
− E

[
K̂Bc(0)−p− 2

γ (Q−α1)
]
6 C|z|(1−ξ)(4−γ(2Q−α1))

Since 4−γ(2Q−α1) = 4−γα1−2γ(Q−α1) 6 4−γα1−2γη and so (6.34) holds. The rest of the arguments
for the lower and the upper bounds for T2 follow then word by word. �

6.4. Crossing relations. Proposition 2.4 now follows from Theorem 6.1 as explained in Section 2.5. Let
us state it in the form we will apply it and also for the unit volume structure constants:

Proposition 6.4. Let ǫ ∈ (γ2 ,
2
γ ) and α, α

′ < Q s.t. α+ α′ + ǫ− γ
2 > 2Q. Then

(6.35) Cγ(α
′ − γ

2
, ǫ, α) = T (α′, ǫ, α)Cγ(α

′, ǫ+
γ

2
, α)

where T is the given by the following formula

(6.36) T (α′, ǫ, α) = −µπ l(a)l(b)

l(c)l(a+ b− c)

1

l(− γ2

4 )l(γǫ2 )l(2 +
γ2

4 − γǫ
2 )

where

(6.37) a =
γ

2
(
α′

2
− Q

2
) +

γ

2
(
ǫ

2
+
α

2
− γ

2
)− 1

2
b =

γ

2
(
α′

2
− Q

2
) +

γ

2
(
ǫ

2
− α

2
) +

1

2

and

(6.38) c = 1 +
γ

2
(α′ −Q).

where a, b, c are given by

a =
γ

4
(α′ + α+ ǫ−Q− γ

2
)− 1

2
b =

γ

4
(α′ − α+ ǫ−Q) +

1

2
c = 1− γ

2
(Q − α′).(6.39)

The above relation can be rewritten under the following form for the unit volume correlations (see (2.18)
for the definition)

(6.40) C̄γ(α
′ − γ

2
, ǫ, α) = T̄ (α′, ǫ, α)C̄γ(α

′, ǫ+
γ

2
, α)

where T̄ is given by

(6.41) T̄ (α′, ǫ, α) =
Γ( 1γ (α+ α′ + ǫ+ γ

2 − 2Q)

Γ( 1γ (α+ α′ + ǫ− γ
2 − 2Q)

T (α′, ǫ, α).

Along the same lines as Proposition 6.4, by exploiting Theorem 6.3 with the − 2
γ insertion, one can show

the following crossing symmetry relations:

Proposition 6.5. Let when α, ǫ and α′ close but strictly less than Q with α+ α′ + ǫ > 2Q+ 2
γ . Then

(6.42) Cγ(α− 2

γ
, ǫ, α′) = T̃ (α, ǫ, α′)R(ǫ)Cγ(α, 2Q− ǫ− 2

γ
, α′)

where T̃ is the given by the following formula

(6.43) T̃ (α, ǫ, α′) =
l(a)l(b)

l(c)l(a+ b− c)
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where

(6.44) a =
2

γ
(
α

2
− Q

2
) +

2

γ
(
ǫ

2
+
α′

2
− 2

γ
)− 1

2
b =

2

γ
(
α

2
− Q

2
) +

2

γ
(
ǫ

2
− α′

2
) +

1

2

and

(6.45) c = 1 +
2

γ
(α −Q).

7. Proof of formula (2.54) on the reflection coefficient

We will suppose that γ2 6∈ Q. This is no restriction since the general case can be deduced from this case
by continuity in γ (Remark 2.3). The proof of formula (2.54) for the reflection coefficient is made of several
steps and relies on proving that R satisfies the same shift equations (9.5) and (9.6) as RDOZZ. For the benefit
of the reader we give here the summary of the structure of the argument (recall (2.53) and (2.52)):

Subsection 7.1: We prove that R̄ is analytic in the interval (γ2 , Q). More specifically, we show that for all

compact intervals I ⊂ (γ2 , Q) there exists β > 0 such that R̄ can be extended to a holomorphic function in
I × (−β, β).
Subsection 7.2: We prove that R satisfies the following shift equation for α ∈ (γ,Q)

(7.1) R(α− γ

2
) = −µπ R(α)

l(− γ2

4 )l(γα2 − γ2

4 )l(2 + γ2

2 − γα
2 )

In fact, we will show this relation in a small interval of the form (Q− η,Q) with η > 0. By analyticity, this
leads to the same relation for α ∈ (γ,Q). One can choose an interval I ⊂ (γ2 , Q) of length greater than γ

2

such that R̄ can be extended to a holomorphic function in I× (−β, β). The functional relation (7.1) enables
to extend R to R× (−β, β); the extension that we also denote R is meromorphic with simple poles on the
real line located at { 2

γ − γ
2N} ∪ { γ

2 − 2
γN}.

Subsection 7.4: We prove that R satisfies the following shift equation (inversion relation)

(7.2) R(α)R(2Q− α) = 1

One key ingredient is the analytic continuation result of subsection 7.3, the so-called gluing lemma, i.e.
lemma 7.3. In fact, we will prove this relation for α in a small interval of the form (Q − η,Q) with η > 0.
By analyticity, the condition will extend everywhere.

Subsection 7.5: We prove that R (as a meromorphic function on R × (−β, β)) satisfies the following shift
equation

(7.3) R(α) = −cγ
R(α+ 2

γ )

l(− 4
γ2 )l(

2α
γ )l(2 + 4

γ2 − 2α
γ )

where cγ = γ2

4 µπR(γ) 6= 0 is an unknown constant depending on γ (and µ). Recall that from the DOZZ
solution we expect that

(7.4) cγ =
(µπl(γ

2

4 ))
4
γ2

l( 4
γ2 )

.

This indeed is the case since, quite miraculously, we show that the three equations (7.1), (7.2), (7.3) fully
determine R and in particular lead to the above relation for cγ . Now RDOZZ satisfies (7.1) and (7.3) with
(7.4); these shift equations fully determine RDOZZ and therefore we conclude R is equal to RDOZZ.
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7.1. Proof of analycity of R̄ in the interval (γ2 , Q). We start with the consequence (6.40) of the BPZ
equations (with α = α′)

(7.5) C̄γ(α− γ

2
, ǫ, α) = T̄ (α, ǫ, α)C̄γ(α, ǫ +

γ

2
, α)

which holds for α close but strictly less than Q and ǫ ∈ (γ2 ,
2
γ ) with 2α+ ǫ − γ

2 > 2Q. In the same way as

in the proof of lemma 2.9, we get for α ∈ (γ2 , Q)

lim
ǫ↓γ

2

(ǫ − γ

2
)C̄γ(α− γ

2
, ǫ, α) = µ

2
γ (Q−α) 4(Q− α)

γ
R̄(α).

By Theorem 4.1, for ǫ > γ
2 , C̄γ(α− γ

2 , ǫ, α) is analytic in α ∈ (γ2 , Q) and for ǫ > γ
2 , C̄γ(α, ǫ+

γ
2 , α) is analytic

in α ∈ (γ4 + ǫ
2 , Q). Hence the relation (7.5) holds for all ǫ > γ

2 and α ∈ (γ4 + ǫ
2 , Q). Since

lim
ǫ↓ γ

2

(ǫ− γ

2
)T̄ (α, ǫ, α) = µπ

2

γ

l(γ2α− γ2

4 − 1)

l(1 + γ
2 (α−Q))l(− γ2

4 )l(γ
2

4 )

Γ( 2γ (α −Q) + 1)

Γ( 2γ (α−Q))

we conclude that for all α ∈ (γ2 , Q)

(7.6) R̄(α) = µ1− 2
γ (Q−α) π

γ

l(γ2α− γ2

4 − 1)

l(1 + γ
2 (α−Q))l(− γ2

4 )l(γ
2

4 )

Γ(2(α−Q)
γ + 1)

Γ(2(α−Q)
γ ) 2γ (Q− α)

C̄γ(α, γ, α)

which proves our claim since C̄γ(α, γ, α) is analytic in α ∈ (γ2 , Q).

7.2. Proof of the γ
2 shift equation. We use again (6.40)

(7.7) C̄γ(α
′ − γ

2
, ǫ, α) = T̄ (α′, ǫ, α)C̄γ(α

′, ǫ+
γ

2
, α)

which holds for ǫ ∈ (γ2 ,
2
γ ) and α+ α′ + ǫ − γ

2 > 2Q with α, α′ < Q.

Let now

α′ = Q− η, α =
2

γ
+ η

where we fix η such that

(7.8) η ∈ (0, 2γ − γ
2 ) ∧

γ

8

and consider both sides of (7.7) as a function of ǫ. From Theorem 4.1 we infer that both sides are analytic
in ǫ in the region ǫ > 2η and hence the identity (7.7) extends to this region. As in the proof of Lemma 2.9
we have

lim
ǫ↓2η

(ǫ− 2η)C̄γ(α
′ − γ

2
, ǫ, α) = µ

2
γ (Q−α) 4(Q− α)

γ
R̄(α).

This indicates C̄γ(α
′ − γ

2 , ǫ, α) has a pole at ǫ = 2η. We will now extract this pole.
Fix points z2, z3 ∈ C such that |z2| > 2, |z3| > 2 and |z2 − z3| > 3. We have

C̄γ(α
′ − γ

2
, ǫ, α) = Gǫ,α,α′(z2, z3)EZC(ǫ)

1− ǫ
γ

where

Gǫ,α,α′(z2, z3) = 2µ1− ǫ
γ γ−1

∏

i<j

1

|zi − zj |αiαj+2∆ij

with z1 = 0, (α1, α2, α3) = (ǫ, α, α′ − γ
2 ) = (ǫ, 2γ + η, 2

γ − η) and for A ⊂ C

(7.9) ZA(ǫ) :=

∫

A

|x|γ(ǫ+α2+α3)
+

|x|γǫ|x− z2|γα2 |x− z3|γα3
Mγ(d

2x).

Define next
F (ǫ) := E

(
ZC(ǫ)

1− ǫ
γ − (ZB1(z2)(ǫ) + ZB1(z3)(ǫ))

1− ǫ
γ
)
.

Importantly, notice that ZB1(z2)(ǫ) and ZB1(z3)(ǫ) do not depend on ǫ since for x ∈ B1(z2) or x ∈ B1(z3)

we have
|x|γǫ

+

|x|γǫ = 1. Hence we denote them by ZB1(z2).
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We want to show that F (ǫ) is analytic over a neighborhood of the pole at ǫ = 2η (observe that (7.8)
entails 2η < 1

γ ).

Lemma 7.1. F (ǫ) is analytic in ǫ ∈ (−2η − δ, 1γ ) for some δ > 0.

Proof. Let us fix δ > 0 such that

(7.10) 2η + δ < 4
γ − γ and 4η + δ < γ

which is possible because of (7.8). As in the proof of Theorem 4.1 we construct F as the uniform limit as
t → ∞ of analytic functions Ft in a neighborhood of (−2η − δ, 1γ ). Let us denote Ct = {z : |z| > e−t} and

define (recall that Br stands for the ball Br(0))

Ft(ǫ) = E

[
eǫXt(0)−

tǫ2

2

(
Zt(0)

1− ǫ
γ − (ZB1(z2) + ZB1(z3))

1− ǫ
γ

)]
.

Let us first show that for each t, ǫ 7→ Ft(ǫ) is an analytic function of ǫ in an open neighborhood of
(−2η − δ, 1γ ). Let R1 := ZB1(z2) + ZB1(z3) and R2 := Zt(0)−R1. By (2.13) and (2.14) R1 admits moments

of order q for q < 2
γ (Q− η − 2

γ ) and R2 has moments of order q for q < 4
γ2 . We interpolate

(7.11) E[eǫXt(0)
(
(R2 +R1)

1− ǫ
γ −R

1− ǫ
γ

1

)
] =

∫ 1

0

E[eǫXt(0)R2(sR2 +R1)
− ǫ

γ ] ds

Let ǫ = ǫ1 + iǫ2. If ǫ1 > 0 then since EepǫXt(0) <∞ for all p <∞ and since chaos has negative moments by

Hölder we can bound the integrand by CE[Rq
2]

1
q for any q > 1.

If ǫ1 < 0 we bound

|E[R2(sR2 +R1)
− ǫ

γ ]| 6 C(E[R
1−

ǫ1
γ

2 ] + E[R2R
−

ǫ1
γ

1 ]).

Hence we need 1 − ǫ1
γ < 4

γ2 and by (slight variant of) Remark 3.5 we need − ǫ1
γ < 2

γ (Q − η − 2
γ ) = 1 − 2η

γ .

These conditions hold due to (7.10). Ft is easily seen to be complex differentiable in ǫ.

Let us show that the family Ft is Cauchy for the topology of uniform convergence over compact subsets.
For this we will bound Ft+1 − Ft. First observe that because ZB1(z2)(ǫ) and ZB1(z3)(ǫ) are independent of
Xt(0) these terms cancel out in Ft+1 − Ft. Furthermore, Girsanov theorem gives

EeǫXt(0)−
tǫ2

2 Zt(0)
1− ǫ

γ = Eeiǫ2Xt(0)+
tǫ22
2 Zt(ǫ1)

1−
ǫ1
γ

Hence as in the proof of Theorem 4.1 we get

|Ft+1 − Ft| 6 e
(t+1)ǫ22

2 E|Zt+1(ǫ1)
1−

ǫ1
γ − Zt(ǫ1)

1−
ǫ1
γ |.

From now on, since ǫ1 is fixed we suppress it in the notation and denote Zt(ǫ1) by Zt. We proceed as in
the proof of Theorem 4.1. Let Yt := Zt+1 − Zt. We fix θ > 0 and write

E|Z1−
ǫ1
γ

t+1 − Z
1−

ǫ1
γ

t | 6 E1Yt 6 e−θt |Z1−
ǫ1
γ

t+1 − Z
1−

ǫ1
γ

t |+ E1Yt > e−θt |Z1−
ǫ1
γ

t+1 − Z
1−

ǫ1
γ

t |
Interpolating the first term is bounded by

E1Yt<e−θt |(Zt + Yt)
1−

ǫ1
γ − Z

1−
ǫ1
γ

t | 6 Ce−θt sup
s∈[0,1]

E(Zt + sYt)
−

ǫ1
γ 6 Ce−θt

E(ZC(ǫ1)
−

ǫ1
γ )

The last expectation is finite since − ǫ1
γ < 2

γ (Q− η − 2
γ ) = 1− 2η

γ holds by (7.10).

For the second term we use in turn Hölder’s inequality (with conjugate exponents p, q), the mean value
theorem and the Markov inequality (for some m ∈ (0, 1) to ensure finiteness of the expectation last expec-
tation below) to get

E1Yt > e−θt |Z1−
ǫ1
γ

t+1 − Z
1−

ǫ1
γ

t | 6 [P
(
Yt > e−θt

)
]1/p[E|Z1−

ǫ1
γ

t+1 − Z
1−

ǫ1
γ

t |q] 1q

6 [P
(
Yt > e−θt

)
]1/p sup

s∈[0,1]

[EY q
t (Zt + sYt)

−q
ǫ1
γ ]

1
q

6 Ct(q)e
− θm

p t
E[Y m

t ]1/p 6 Ct(q)e
1
p (γ(Q−ǫ1−θ)m−

m2γ2

2 )
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where we used Remark 3.5 and defined

(7.12) Ct(q) = sup
s∈[0,1]

[EY q
t (Zt + sYt)

−q
ǫ1
γ ]

1
q .

Summarizing, we have shown

(7.13) |Ft+1 − Ft| 6 Ce
tǫ22
2 (e−θt + Ct(q)e

1
p (γ(Q−ǫ1−θ)m−

m2γ2

2 )).

Now we have to optimize with respect to the free parameters p, q, θ,m. Let us first fix q (hence p). We
first fix q to make (7.12) finite. Let first ǫ1 > 0. By existence of negative moments of chaos we get for all
r > q

Ct(q) 6 C(r)[EY r
t ]

1
r .

Hence supt Ct(q) <∞ if q < 2
γ (Q− ǫ1) ∧ 4

γ2 = 4
γ2 .

If ǫ1 < 0 we bound Yt 6 ZB1(ǫ1) and Zt+1 6 ZB1(ǫ1) + ZBc
1
(ǫ1) to get

Ct(q) 6 [EY q
t Z

−q
ǫ1
γ

t+1 ]
1
q 6 C[EZB1(ǫ1)

q(1−
ǫ1
γ ) + EZB1(ǫ1)

qZBc
1
(ǫ1)

−q
ǫ1
γ ]

1
q .

The first expectation is finite if q
(
1 + 2η+δ

γ

)
< 4

γ2 and by Remark 3.5 the second one is finite if q 2η+δ
γ <

2
γ (Q − η − 2

γ ) = 1 − 2η
γ . Due to (7.10) we can find q > 1 such that this condition holds and hence

supt Ct(q) <∞.
Next, we choose θ > 0 such that Q− 2

γ − θ > 0 and then m ∈ (0, 1) small enough such that

κ := p−1(γ(Q − 2

γ
− θ)m− γ2

2 m
2) > 0.

As we have ǫ1 <
2
γ we get from (7.13)

(7.14) |Ft+1 − Ft| 6 Ce
tǫ22
2 (e−θt + e−κt).

Hence for ǫ22 6 min(θ, κ) the sequence Ft converges uniformly in compacts of a neighborhood of (−2η−δ, 1γ ).
Finally observe that F (ǫ) = limt→∞ Ft(ǫ) for ǫ ∈ R with ǫ ∈ (2η,Q). �

Lemma 7.2. We have

Gǫ,α,α′(z2, z3)E((ZB1(z2)(ǫ) + ZB1(z3)(ǫ))
1− ǫ

γ ) =
γ − 2η

ǫ− 2η
R̄(

2

γ
+ η) + F2(ǫ, z2, z3)

where F2 is analytic in ǫ on (−2η, 1γ ) and

lim
ǫ→−2η

(ǫ+ 2η)F2(ǫ) = 2µ1+ 2η
γ (1 +

2η

γ
)R̄(

2

γ
− η).

Proof. Let us first make the following general observation. Consider a random variable Y > 0 admitting a
”maximal” moment of order β > 0, namely E[Y α] < +∞ for α < β and E[Y β ] = +∞. Then the mapping
s ∈ C 7→ E[Y s] is holomorphic on the set {s ∈ C; 0 < ℜ(s) < β}. Furthermore it diverges at s = β. The
point is to find an analytic continuation and, for this, we need to know more about the shape of the tail of
the random variable Y .

The simplest situation is when we know that |P(Y > t)−c1t−β | 6 c2t
−β−δ for some constants c1, c2, β, δ >

0 and for all t > t0. In this case, we start from the following standard decomposition for s < β

E[Y s] =

∫ ∞

0

P(Y > t)ts−1 dt

that we rewrite as

E[Y s] =

∫ ∞

0

(
P(Y > t)− c1t

−β1{t > 1}

)
ts−1 dt− c1

s− β
.

In the above right-hand side, the parametrized integral is holomorphic on the set {s ∈ C; 0 < ℜ(s) < β+ δ}
as can be shown by the theorem of holomorphicity of such integrals and our tail estimate. This provides the
desired analytic continuation for E[Y s] as well as identification of the pole at s = β.
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The argument can be extended to situations when we are able to give a more precise asymptotic expansion
of the tail. In our lemma, this corresponds to the case when we have a tail estimate of the type

|P(Y > t)− c1t
−β1 − c2t

−β2 | 6 c3t
−β2−δ

for some constants c1, c2, c3, δ > 0 and 0 < β1 < β2. In this case, the analytic continuation (still denoted by
E[Y s]) is given by the expression

E[Y s] =

∫ ∞

0

(
P(Y > t)− (c1t

−β1 + c2t
−β2)1{t > 1}

)
ts−1 dt− c1

s− β1
− c2
s− β1

.

One again the integral is holomorphic for s < β2 + δ and we have two poles. The second pole at s = β2 can
be recovered by taking the limit

lim
s→β2

(s− β2)
(
E[Y s] +

c1
s− β1

) = c2.

The statement of our lemma is nothing but the above argument applied to the random variable Y :=
ZB1(z2)(ǫ) + ZB1(z3)(ǫ). The shape of the tail of this random variable is given by Lemma 3.3 (when α2, α3

are both sufficiently close to Q as indicated in Remark (3.4)). �

Combining we get that the function

f(ǫ) := C̄γ(
2

γ
− η, ǫ,

2

γ
+ η)− γ − 2η

ǫ− 2η
R̄(

2

γ
+ η)

is analytic on ǫ ∈ (−2η, 1γ ). By (7.7) on ǫ ∈ (2η, 1
γ ) f = g where

g(ǫ) := T̄ (Q− η, ǫ,
2

γ
+ η)C̄γ(Q − η, ǫ+

γ

2
,
2

γ
+ η)− γ − 2η

ǫ − 2η
R̄(

2

γ
+ η)

Thus by analytic continuation g is analytic in ǫ on (−2η, 1
γ ).

Consider now the limit ǫ→ −2η. We get from Lemma 7.2

(7.15) lim
ǫ→−2η

(ǫ+ 2η)f(ǫ) = 2µ1+ 2η
γ (1 +

2η

γ
)R̄(

2

γ
− η) =

R( 2
γ − η)

Γ(−1− 2η
γ )

and then

(7.16) lim
ǫ→−2η

(ǫ + 2η)g(ǫ) =
2T (Q− η,−2η, 2

γ + η)R(Q− η)

Γ(−1− 2η
γ )

.

Now, we have for ǫ = −2η = − γ
2 + α′ − α that

a =
γ

2
α′ − γ2

2
− 1 b =

γ

2
(α′ − α)− γ2

4
=
γǫ

2
and

c = 1 +
γ

2
(α′ −Q) a+ b− c =

γ

2
(α′ − α)− γ2

2
− 1 = 1− (2 +

γ2

4
− γǫ

2
)

Therefore, we have l(b) = l(γǫ2 ) and l(a+ b− c)l(2 + γ2

4 − γǫ
2 ) = 1 and

T (Q− η,−2η,
2

γ
+ η) = −µπ l(γ2α

′ − γ2

2 − 1)

l(1 + γ
2 (α

′ −Q))l(− γ2

4 )

In conclusion, we get the following relation from the fact that (7.15) and (7.16) are equal:

(7.17) R(α′ − γ

2
) = −µπ l(γ2α

′ − γ2

2 − 1)

l(1 + γ
2 (α

′ −Q))l(− γ2

4 )
R(α′)

We have proven (7.17) for α′ close to Q but since by previous subsection R̄ is analytic on (γ2 , Q) it extends to

α′ ∈ (γ,Q). Combined with expression (7.6) for R̄, we can use the relation (7.17) to analytically continue R
to a neighborhood of R of the form R× (−β, β) with β > 0. In the sequel, we will consider the meromorphic

extension of R to R× (−β, β). Since RDOZZ also satisfies (7.17) and 0 < R(α)
RDOZZ(α) <∞ for α ∈ (γ2 , Q), one
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can see that R and RDOZZ have their poles and zeros located at the same place. For instance, the poles of
R are located at { 2

γ − γ
2N} ∪ { γ

2 − 2
γN}.

7.3. The gluing lemma. We introduce the following condition:

(7.18) 2Q+
γ

2
− 2

γ
− α2 − α3 <

4

γ
∧ γ ∧ min

2 6 i 6 3
2(Q− αi), ∀i, αi < Q

Lemma 7.3. We suppose that α2, α3 satisfies condition (7.18). Then the function

S : α 7→
{
Cγ(α, α2, α3), if α < Q

R(α)Cγ(2Q− α, α2, α3), if α > Q

is the restriction on the real line of a holomorphic function defined on a neighborhood of Q. This holomorphic
function is explicitely given for α = α1 +

γ
2 by

(7.19) S̄ : α1 7→ Cγ(α1 − γ
2 , α2, α3)

πµ

l(− γ2

4 )l(γα1

2 )l(α1γ
2 − γ2

4 )l(γ4 (ᾱ− 2α1 − γ
2 ))

l(γ4 (ᾱ − γ
2 − 2Q))l(γ4 (ᾱ− 2α3 − γ

2 ))l(
γ
4 (ᾱ− 2α2 − γ

2 ))

In particular, the function S is real analytic in the neighborhood of Q.

Proof. We will show that α1 7→ S(γ2 +α1) is the restriction on the real line of a holomorphic function defined

on the neighborhood of 2
γ . Clearly, one can find ǫ > 0 and ǫ < 2

γ − γ
2 such that for all α1 ∈ [ 2γ − ǫ, 2γ + ǫ]

(7.20) 2Q+
γ

2
− α1 − α2 − α3 <

4

γ
∧ γ ∧ min

1 6 i 6 3
2(Q− αi), ∀i, αi < Q

As a consequence of Theorem 6.1, we get the crossing symmetry relation (1.8); more specifically, one
can find η > 0 such that for all α̃2, α̃3 ∈ (Q − η,Q) and all α̃1 in an interval I ⊂ (γ2 ,

2
γ ) of size η we have

2Q+ γ
2 − α̃1 − α̃2 − α̃3 < 0 and

Cγ(α̃1 +
γ

2
, α̃2, α̃3) = −Cγ(α̃1 − γ

2 , α̃2, α̃3)

πµ

l(− γ2

4 )l(γα̃1

2 )l( α̃1γ
2 − γ2

4 )l(γ4 (
¯̃α− 2α̃1 − γ

2 ))

l(γ4 (
¯̃α− γ

2 − 2Q))l(γ4 (
¯̃α− 2α̃3 − γ

2 ))l(
γ
4 (

¯̃α− 2α̃2 − γ
2 ))

.

where ¯̃α = α̃1 + α̃2 + α̃3. By analytic continuation from α̃1, α̃2, α̃3 to α1, α2, α3(see Theorem 4.1), we get
for all α1 ∈ ( 2γ − ǫ, 2

γ )

Cγ(α1 +
γ

2
, α2, α3) = −Cγ(α1 − γ

2 , α2, α3)

πµ

l(− γ2

4 )l(γα1

2 )l(α1γ
2 − γ2

4 )l(γ4 (ᾱ− 2α1 − γ
2 ))

l(γ4 (ᾱ− γ
2 − 2Q))l(γ4 (ᾱ− 2α3 − γ

2 ))l(
γ
4 (ᾱ− 2α2 − γ

2 ))
.

where ᾱ = α1 + α2 + α3.
Now, recall that we are working with R extended to a strip R × (−β, β) thanks to relation (7.17). As

a consequence of Theorem 6.2 we get the following crossing symmetry relation (derived similarly to (1.8)):
one can find η > 0 such that for all α̃1, α̃2, α̃3 ∈ (Q − η,Q) we have 2Q+ γ

2 − α̃1 − α̃2 − α̃3 < 0 and

R(α̃1+
γ

2
)Cγ(2Q−α̃1−

γ

2
, α̃2, α̃3) = −Cγ(α̃1 − γ

2 , α̃2, α̃3)

πµ

l(− γ2

4 )l(γα̃1

2 )l( α̃1γ
2 − γ2

4 )l(γ4 (
¯̃α− 2α̃1 − γ

2 ))

l(γ4 (
¯̃α− γ

2 − 2Q))l(γ4 (
¯̃α− 2α̃3 − γ

2 ))l(
γ
4 (

¯̃α− 2α̃2 − γ
2 ))

.

where ¯̃α = α̃1 + α̃2 + α̃3. By analytic continuation from α̃1, α̃2, α̃3 to α1, α2, α3 (see Theorem 4.1 and use
the fact that R̄ is analytic), we get for all α1 ∈ ( 2γ ,

2
γ + ǫ)

R(α1+
γ

2
)Cγ(2Q−α1−

γ

2
, α2, α3) = −Cγ(α1 − γ

2 , α2, α3)

πµ

l(− γ2

4 )l(γα1

2 )l(α1γ
2 − γ2

4 )l(γ4 (ᾱ− 2α1 − γ
2 ))

l(γ4 (ᾱ− γ
2 − 2Q))l(γ4 (ᾱ− 2α3 − γ

2 ))l(
γ
4 (ᾱ− 2α2 − γ

2 ))
.

where ᾱ = α̃1 + α̃2 + α̃3. This yields the result.
�
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7.4. Proof of the inversion relation. We use the relation from Proposition 6.5:

(7.21) Cγ(α− 2

γ
, ǫ, α′) = T (α, ǫ, α′)R(ǫ)Cγ(α, 2Q− ǫ− 2

γ
, α′)

which was proven for α, ǫ and α′ close but strictly less than Q with α+ α′ + ǫ > 2Q+ 2
γ .

The case γ <
√
2. By analytic continuation of the unit volume three point structure constants C̄γ(α −

2
γ , ǫ, α

′), C̄γ(α, 2Q− ǫ− 2
γ , α

′) (given by (2.18)) and R(ǫ), the relation is valid for

α = Q− η, ǫ =
2

γ
+ η′, α′ =

2

γ

for η′ in the interval (0, η). One can notice that (7.21) is also valid within this range of parameters with no
poles since

α− 2

γ
+ ǫ+ α′ =

γ

2
+

4

γ
+ η′ − η >

4

γ
+ 2η′

and

α+ 2Q− ǫ− 2

γ
+ α′ = Q− η + γ − η′ +

2

γ
= 2Q+

γ

2
− η − η′

Now, we wish to analytically continue α to the value Q + η by using the gluing lemma 7.3. We can indeed
use the gluing lemma when the 4 point correlation function

〈V− γ
2
(z)V 2

γ +η′′(0)Vγ−η′(1)V 2
γ
(∞)〉

stays well defined for all η′ ∈ (0, η) and all η′′ ∈ (−η, η) (indeed, one can show that the existence of the
above 4 point correlation function implies that one can apply the gluing lemma). More specifically, we must
check that

2Q+
γ

2
− 2

γ
− η′′ − γ + η′ − 2

γ
< γ ∧ (γ − 2η′′) ∧ (

4

γ
− γ + 2η′)

This is possible as soon as γ
2 < γ ∧ ( 4γ − γ), i.e. γ <

√
8
3 .

Therefore, the relation (7.21) becomes for α = Q + η, ǫ = 2
γ + η′, α′ = 2

γ for η sufficiently small and

η′ ∈ (0, η)

(7.22) Cγ(α− 2

γ
, ǫ, α′) = T (α, ǫ, α′)R(ǫ)R(α)Cγ(2Q− α, 2Q− ǫ − 2

γ
, α′)

(7.23) Cγ(Q+ η − 2

γ
, ǫ,

2

γ
) = T (α, ǫ, α′)R(ǫ)R(α)Cγ(Q− η, 2Q− ǫ− 2

γ
,
2

γ
)

Now, we consider the limit of (7.23) as ǫ increases to Q− η. From (2.17) we infer

lim
ǫ↑Q−η

(Q − η − ǫ)Cγ(α− 2

γ
, ǫ,

2

γ
) = −2, lim

ǫ↑Q−η
(Q − η − ǫ)Cγ(Q − η, 2Q− ǫ− 2

γ
,
2

γ
) = 2

Indeed, one can notice that the two limits above correspond to insertions such that s goes to 0 in expression
(2.17). Also we get

lim
ǫ↑Q−η

(Q− η − ǫ)l(a) = −γ, lim
ǫ↑Q−η

(Q− η − ǫ)l(b) =
1

γ

and

lim
ǫ↑Q−η

l(c)l(a+ b− c) = l(1 +
2η

γ
)l(−2η

γ
) = 1

This yields R(Q− η)R(Q+ η) = 1 for η small hence R(2Q− α)R(α) = 1 on the strip R× (−β, β) where R
admits a meromorphic extension.
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The case γ >
√
2. By analytic continuation, the relation is valid for

α = Q− η, ǫ = γ + η′, α′ =
2

γ

for η′ around 0. Indeed, in this case, we have

α+ 2Q− ǫ− 2

γ
+

2

γ
= Q− η − η′ +

4

γ
> 2Q

and (in Cγ(α− 2
γ , ǫ, α

′) the biggest insertion is at ǫ = γ + η′ since γ >
√
2)

α− 2

γ
+ ǫ+ α′ =

γ

2
− η + γ + η′ +

2

γ
> 2γ

In fact, both relations above are valid for η and η′ in a small interval. We want to analytically continue
α = Q − η to α = Q + η by using the gluing lemma. In order to do so, we must check that the 4 point
correlation function

〈V− γ
2
(z)V 2

γ +η′′(0)V 2
γ −η′(1)V 2

γ
(∞)〉

is well defined during the procedure, i.e. for η′′ ∈ [−η, η] and η′ small. We have

−γ
2
+

2

γ
+ η′′ +

2

γ
− η′ +

2

γ
>

4

γ
+ η

for η small. Hence, we can analytically continue to α = Q+ η which leads to the following relation

Cγ(α− 2

γ
, ǫ, α′) = T (α, ǫ, α′)R(ǫ)R(α)Cγ(2Q− α, 2Q− ǫ − 2

γ
, α′)

or equivalently for all η′ small

Cγ(
γ

2
+ η, γ + η′,

2

γ
) = T (α = Q+ η, ǫ = γ + η′, α′ =

2

γ
)R(γ + η′)R(Q+ η)Cγ(Q − η,

2

γ
− η′,

2

γ
)

Now, we can conclude as in the previous case by letting ǫ = γ + η′ increase to Q− η.

7.5. Proof of the 2
γ shift equation. We get that for all ǫ, α, α′ close to but strictly less than Q that

(7.24) R(ǫ)Cγ(2Q− ǫ− 2

γ
, α, α′) =

l(c− 1)l(c− a− b+ 1)

l(c− a)l(c− b)
R(α)Cγ(ǫ, 2Q− α− 2

γ
, α′)

where

(7.25) a =
2

γ
(
ǫ

2
− Q

2
) +

2

γ
(
α+ α′

2
− 2

γ
)− 1

2
b =

2

γ
(
ǫ

2
− Q

2
) +

2

γ
(
α− α′

2
) +

1

2

and

(7.26) c = 1 +
2

γ
(ǫ−Q) c− a− b+ 1 = 2− 2

γ
(α− 2

γ
)

This leads to the following values

(7.27) c− a =
3

2
+

2

γ
(
ǫ

2
− Q

2
)− 2

γ
(
α+ α′

2
− 2

γ
) c− b =

1

2
+

2

γ
(
ǫ

2
− Q

2
)− 2

γ
(
α− α′

2
)

and

(7.28) c− 1 =
2

γ
(ǫ−Q) c− a− b+ 1 = 2− 2

γ
(α− 2

γ
)

We fix η very small. Now, we can analytically continue equation (7.24) to the following values

(7.29) ǫ =
γ

2
+ η′, α =

γ

2
+ η′′, α′ =

2

γ
+ η
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with η′ ∈ [η, 2η] and η′′ ∈ [6η, 7η]. This is indeed possible if each side is well defined without taking out
poles. Indeed, we have with these values that

2Q− ǫ− 2

γ
+ α+ α′ = 2Q− η′ + η′′ + η > 2Q

so Cγ(2Q− ǫ− 2
γ , α, α

′) satisfies the standard Seiberg bounds. Also, we have

ǫ+ 2Q− α− 2

γ
+ α′ = 2Q+ η′ − η′′ + η

therefore the quantity Cγ(ǫ, 2Q−α− 2
γ , α

′) exists provided that the largest insertion does not blow up. The

largest insertion is 2Q−α− 2
γ = Q−η′′ which has a moment of order 2

γ η
′′. The moment of Cγ(ǫ, 2Q−α− 2

γ , α
′)

is given by
1

γ
(2Q− (2Q+ η′ − η′′ + η)) =

1

γ
(η′′ − η′ − η) <

2

γ
η′′

Now, we want to let η′ go to −η. To do so, we must use the gluing lemma which correponds to the fact
that the following 4 point correlation function is defined during the procedure (2Q− ǫ− 2

γ = Q− η′)

〈V− γ
2
(z)V 2

γ−η′(0)V γ
2+η′′ (1)V 2

γ +η(∞)〉

This well defined if for all η̃ ∈ (−2η, η) we have (biggest insertion is 2
γ + η)

2Q+
γ

2
− 2

γ
− η̃ − γ

2
− η′′ − 2

γ
− η < γ − 2η

which is equivalent to η̃ + η′′ + η > 2η which holds since η′′ ∈ [6η, 7η].
Therefore, we get for ǫ = γ

2 − η that for all η′′ ∈ [6η, 7η]

(7.30) R(ǫ)R(2Q− ǫ− 2

γ
)Cγ(ǫ +

2

γ
, α, α′) =

l(c− 1)l(c− a− b+ 1)

l(c− a)l(c− b)
R(α)Cγ(ǫ, 2Q− α− 2

γ
, α′)

Thanks to the inversion relation, we have

(7.31)
R(ǫ)

R(ǫ + 2
γ )
Cγ(ǫ +

2

γ
, α, α′) =

l(c− 1)l(c− a− b+ 1)

l(c− a)l(c− b)
R(α)Cγ(ǫ, 2Q− α− 2

γ
, α′)

Now, by analytic continuation, we can let η′′ converge to 0, i.e. α converge to γ
2 . We get the following limit

when η′′ goes to 0

l(c− 1)l(c− a− b+ 1)

l(c− a)l(c− b)
R(α) ∼

η′′→0

1

l(− 4
γ2 )l(

2ǫ
γ )l(2 +

4
γ2 − 2ǫ

γ )
(−η

′′

γ
)R(α)

∼
η′′→0

1

l(− 4
γ2 )l(

2ǫ
γ )l(2 +

4
γ2 − 2ǫ

γ )
(−η

′′

γ
)(

2

γη′′
µπR(γ)

l(− γ2

4 )l(γ
2

4 )
)

=
1

l(− 4
γ2 )l(

2ǫ
γ )l(2 +

4
γ2 − 2ǫ

γ )
cγ

with c̃γ = γ2

8 µπR(γ) and where we have used l(x)l(−x) = − 1
x2 and the first shift equation

R(α) = −µπ R(α+ γ
2 )

l(− γ2

4 )l(γα2 )l(2 + γ2

4 − γα
2 )

It is clear that Cγ(ǫ +
γ
2 , α, α

′) ∼
η′′→0

2
η′′ . Now, we can conclude by looking at the limit as η′′ goes to 0 of

Cγ(
γ
2 − η,Q− η′′, 2γ + η). We prove below that

(7.32) lim
η′′→0

E

[
ρ(Q− η′′,

γ

2
− η,

2

γ
+ η)

η′′

γ

]
= 2.
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This yields that Cγ(
γ
2 − η,Q− η′′, 2γ + η) ∼

η′′→0
− 4

η′′ and therefore we get the shift equation

(7.33)
R(ǫ)

R(ǫ+ 2
γ )

= − cγ

l(− 4
γ2 )l(

2ǫ
γ )l(2 + 4

γ2 − 2ǫ
γ )

with cγ = γ2

4 µπR(γ) 6= 0.

Remark 7.4. A straightforward computation yields that

γ2

4
µπRDOZZ(γ) =

(πµl(γ
2

4 ))
4
γ2

l( 4
γ2 )

and therefore we expect that cγ =
(πµl( γ2

4 ))
4
γ2

l( 4
γ2 )

. However, at this stage of the proof, we can not determine the

constant cγ . It will be determined indirectly in subsection 7.6.

It remains prove the limit (7.32), i.e. we study (recall expression (2.17))

E

[
ρ(Q − η′′,

γ

2
− η,

2

γ
+ η)

η′′

γ

]

as η′′ goes to 0 with (α1, α2, α3) = Q− η′′, γ2 − η, 2γ + η, i.e. we put the Q− η′′ insertion at 0. We decompose

ρ(Q− η′′,
γ

2
− η,

2

γ
+ η) = Rη′′ + Sη′′

where Rη′′ is the reminder

Rη′′ =

∫

|x| > 1
2

|x|γ(α1+α2+α3)
+

|x|γα1 |x− 1|γα2
Mγ(d

2x)

and Sη′′ is the rest. We have the following lemma:

Lemma 7.5. For all p ∈ (1, 2), we have

(7.34) lim
η′′→0

E[R
η′′p
γ

η′′ ] =
2

2− p

Proof. It is obvious that we can replace Rη′′ with
∫

|x| 6 1

1

|x|γα1
Mγ(d

2x)

We set M = sups > 0(Bs − (Q − η′′)s) where Bs is the circle average of X of radius e−s. We set L−M the

last time Bα1
−s hits −M . Recall that P(M > v) = e−2η′′v and therefore E[(eγM )

η′′p
γ ] = 2

2−p . We have in

distribution ∫

|x| 6 1

1

|x|γα1
Mγ(d

2x)
law
= eγM

∫ ∞

−L−M

eγB
α1
s Zsds.

Therefore, we have the following inequality with α = 2
γ for instance and Rs a two sided Bessel process by

stochastic domination (see the section 9.2 in the appendix on diffusions)

eγM
∫ 1

0

eγB
α
s Zsds 6 eγM

∫ ∞

−S−M

eγB
α1
s Zsds 6 eγM

∫ ∞

−∞

e−γRsZsds.

From these inequalities, we can conclude that lim
η′′→0

E[R
η′′p
γ

η′′ ] = 2
2−p . �

Now, we have

E[R
η′′

γ

η′′ ] 6 E[ρ(Q− η′′,
γ

2
− η,

2

γ
+ η)

η′′

γ ] 6 E[R
η′′

γ

η′′ (1 +
Sη′′

Rη′′

)
η′′

γ ]
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The left hand side in the above inequality converges to 2. The right hand side satisfies for all p, q > 1 such
that 1

p + 1
q = 1

E[R
η′′

γ

η′′ (1 +
Sη′′

Rη′′

)
η′′

γ ] 6 E[R
pη′′

γ

η′′ ]1/pE[(1 +
Sη′′

Rη′′

)
qη′′

γ ]1/q

Now for all q > 1, E[(1+
Sη′′

Rη′′
)

qη′′

γ ]1/q →
η′′→0

1 hence we the result (7.32) follows from the Lemma since p can

be taken arbitrary close to 1.

7.6. Proof that R = RDOZZ. Let ψ(α) = R(α)
RDOZZ(α) . ψ is meromorphic in the strip R × (−β, β). Since R

and RDOZZ obey the same γ
2 shift equation, the function ψ is γ

2 periodic. ψ is strictly positive in (γ2 , Q) so

by periodicity ψ is strictly positive on R. By the 2
γ shift equation, one has for all α ∈ R

ψ(α) = Cγψ(α +
2

γ
)

for some constant Cγ . If
γ
2 and 2

γ are independent over the rationals i.e. if γ2 /∈ Q then we conclude that

Cγ = 1 and ψ(α) = ψ is constant in α. From (2.51) we see that R̄(Q) = 1 and from (2.53) since Γ(−x)x→ −1
as x → 0 we get R(Q) = −1. On the other hand, from (1.16) follows RDOZZ(Q) = −1 hence the constant
ψ = 1.Hence R(α) = RDOZZ(α) for all α. The case γ2 ∈ Q follows by continuity. This concludes the proof.

8. Proof of the DOZZ formula

We suppose that γ2 /∈ Q; the general case follows by continuity. Let us fix α2, α3 in (Q − η,Q) for η
sufficiently small and consider the function F : α1 7→ Cγ(α1, α2, α3). Let us collect what we have proven
about F . By Theorem 4.1 F is analytic on (2η,Q) and by Theorem 6.1 it satisfies the the γ

2 shift equation

(1.8), for γ
2 +2η < α1 <

2
γ . Therefore F extends to a meromorphic function on a strip of the form R×(−β, β)

with β > 0 satisfying (1.8). We call this extension F too.

Now, using the exact expression for R (or relation (7.3) with cγ = µπl(γ
2

4 ))
4
γ2 l( 4

γ2 )
−1) Theorem 6.3 can

be written as

T− 2
γ
(z) = Cγ(α1−

2

γ
, α2, α3)|F−(z)|2−

(µπl(γ
2

4 ))
4
γ2

l( 4
γ2 )

R(α1 +
2
γ )

l(− 4
γ2 )l(

2α1

γ )l(2 + 4
γ2 − 2α1

γ )
Cγ(2Q−α1−

2

γ
, α2, α3)|F+(z)|2

By the gluing Lemma, the extension F is given in a neighborhood of α = Q by F (α) = R(α)F (2Q − α).
Hence, one can infer from the above expression the shift equation (1.9) for α1 ∈ R×(−β, β) (same argument
as the one used to derive (1.8)). Hence F satisfies both (1.8) and (1.9).

Now, we consider the function ψα2,α3 : α1 7→ Cγ(α1,α2,α3)
CDOZZ

γ (α1,α2,α3)
in the strip R × (−β, β). This function is

holomorphic since Cγ and CDOZZ
γ are meromorphic with the same simple poles and zeros (which can be read

off the γ
2 shift equation (1.8)). Furthermore, ψα2,α3 is γ and 4

γ periodic since Cγ and CDOZZ
γ both satisfy

(1.8) and (1.9). Therefore ψα2,α3(α1) = cα2,α3 for some constant cα2,α3 depending on α2, α3.
Since Cγ and CDOZZ

γ are symmetric in their arguments we obtain ψα2,α3(α1) = ψα1,α3(α2) = ψα1,α2(α3)

for α1, α2, α3 ∈ (Q−η,Q). Hence cα2,α3 is constant in α2, α3. ThereforeCγ(α1, α2, α3) = aγC
DOZZ
γ (α1, α2, α3)

for α1, α2, α3 satisfying (2.14) with N = 3 for some constant aγ (by analycity). Finally aγ = 1 since both
Cγ and CDOZZ

γ satisfy Lemma 2.9. �

9. Appendix

9.1. Chaos estimates. We list in this Appendix estimates for chaos integrals that are used frequently in
the paper. Let A(z, ǫ) be the annulus with radi ǫ, 2ǫ and centre z. Then, for m ∈ [0, 4

γ2 )

(9.1) E(Mγ(A(z, ǫ)
m) 6 CǫγQm− γ2m2

2
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and as a corollary

(9.2) E

(∫

A(z,ǫ)

|x− z|−αMγ(d
2x)

)m

6 Cǫγ(Q−α)m− γ2m2

2

For negative moments we have for α > Q:

E

[(∫

|x−z|>ǫ

|x− z|−αMγ(d
2u)
)−p]

6 Cǫ
1
2 (α−Q)2(9.3)

Lemma 9.1. Assume (αi)i=1,...,4 are real numbers satisfying αi < Q and p := γ−1(
∑

i αi − 2Q) > 0.
Consider y1, y2, y3, y4 ∈ C are such that |y1 − y2| 6 |y1 − y3| 6 |y2 − y3| 6 mini∈{1,2,3} |y4 − yi|.

1) If α1 + α2 < Q, α1 + α2 + α3 > 0 and α4 > 0 then

E

[( ∫

B(y1,10)

4∏

i=1

|u− yi|−γαiMγ(d
2u)
)−p−2

]

6 C
( |y1 − y3|
|y1 − y4|

) 1
2 (α1+α2+α3−Q)2

|y1 − y4|
1
2 (α1+α2+α3+α4−Q)2 .

2) If α1 + α2 > Q, α3 6 0 and α3 + α4 > 0 then

E

[(∫

B(y1,10)

4∏

i=1

|u− yi|−γαiMγ(d
2u)
)−p−2

]

6 C
( |y1 − y2|
|y1 − y3|

) 1
2 (α1+α2−Q)2( |y1 − y3|

|y1 − y4|
) 1

2 (α1+α2+α3−Q)2−
α2
3
2 |y1 − y4|

1
2 (α1+α2+α3+α4−Q)2 .

9.2. A reminder on diffusions. A drifted Brownian motion (Bt + µt) with µ > 0 is a diffusion with

generator Gµ = 1
2

d2

dx2 + µ d
dx . When seen until hitting b > 0, the dual process Yb of Bt + µt is a diffusion

with generator 1
2

d2

dx2 −µ coth(µ(b−x)) d
dx . Therefore, b−Yb has generator

1
2

d2

dx2 +µ coth(µx) d
dx which is the

generator of (Bt + µt) conditioned to be positive. We denote this process Bµ
t .

We have the following comparison principle:

Lemma 9.2. There exists a probability space such that for all µ < µ′, we have Bµ
t 6 Bµ′

t almost surely.

Proof. For all x > 0, we consider the drift ϕx(µ) = µ coth(µx). A straightforward computation yields

ϕ′
x(µ) =

e4µx − 4µxe2µx − 1

(e2µx − 1)2
.

Therefore ϕ′
x(µ) > 0 since eu − ue

u
2 − 1 > 0 for all u > 0.

We will need another comparison principle. We want to show that Bµ
t starting from 0 stochastically

dominates (Bt + µt) starting from 0 and conditioned to be above −A with A > 0. This can also be read off
the drift. Indeed, for µ, x fixed, we consider ψµ,x(A) = µ coth(µ(x+A)). We have

∀x > −A, ψ′
µ,x(A) = µ2(1 − coth(µ(x +A))2) 6 0

�

By taking µ to 0 in lemma 9.2 , the above comparison principle can in fact be extended to B0
t where B0

t

denotes the standard 3d Bessel process.

9.3. Functional relations on Υ γ
2

and RDOZZ. The function Υ γ
2
defined by (1.12) can be analytically

continued to C and it satisfies the following remarkable functional relations for z ∈ C

(9.4) Υ γ
2
(z +

γ

2
) =

Γ(γ2 z)

Γ(1− γ
2 z)

(
γ

2
)1−γzΥ γ

2
(z), Υ γ

2
(z +

2

γ
) =

Γ( 2γ z)

Γ(1− 2
γ z)

(
γ

2
)

4
γ z−1Υ γ

2
(z).

The function Υ γ
2
has no poles in C and the zeros of Υ γ

2
are simple (if γ2 6∈ Q) and given by the discrete set

(− γ
2N− 2

γN)∪ (Q+ γ
2N+ 2

γN): for more on the function Υ γ
2
and its properties, see the reviews [39, 47, 56]

for instance.
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With definition (1.16) and a little algebra, one can show that RDOZZ(α) satisfies the following shift
equation for all α ∈ C

(9.5) RDOZZ(α− γ

2
) = −µπ RDOZZ(α)

l(− γ2

4 )l(γα2 − γ2

4 )l(2 + γ2

2 − γα
2 )

as well as the dual shift equation for all α ∈ C

(9.6) RDOZZ(α) = − (µπl(γ
2

4 ))
4
γ2

l( 4
γ2 )

RDOZZ(α + 2
γ )

l(− 4
γ2 )l(

2α
γ )l(2 + 4

γ2 − 2α
γ )

9.4. Derivation of RDOZZ form CDOZZ
γ . Recall that the function Υ γ

2
satisfies the shift equations (9.4).

According to the DOZZ formula (1.13), since Υ γ
2
(0) = 0, we get for α > γ

2 and using the above relations

ǫC(α, ǫ, α) ∼
ǫ→0

4(π µ l(
γ2

4
) (
γ

2
)2−γ2/2)

2(Q−α)
γ

ǫ2Υ′
γ
2
(0)2Υ γ

2
(α)2

ǫ2Υ′
γ
2
(0)2Υ γ

2
(α−Q)Υ γ

2
(α)

= 4(π µ l(
γ2

4
) (
γ

2
)2−γ2/2)

2(Q−α)
γ

Υ γ
2
(α)

Υ γ
2
(α−Q)

= 4(π µ l(
γ2

4
) (
γ

2
)2−γ2/2)

2(Q−α)
γ

Γ(
γ(α−Q+ 2

γ )

2 )

Γ(1− γ(α−Q+ 2
γ )

2 )
(
γ

2
)1−γ(α−Q+ 2

γ )
Γ(2(α−Q)

γ )

Γ(1− 2(α−Q)
γ )

(
γ

2
)

4
γ (α−Q)−1

= 4(
2

γ
)−2(π µ l(

γ2

4
))

2(Q−α)
γ

Γ(1− γ(Q−α)
2 )

Γ(γ(Q−α)
2 )

Γ(− 2(Q−α)
γ )

Γ(1 + 2(Q−α)
γ )

= −4(π µ l(
γ2

4
))

2(Q−α)
γ

Γ(− γ(Q−α)
2 )

Γ(γ(Q−α)
2 )

Γ(− 2(Q−α)
γ )

Γ(2(Q−α)
γ )

= 4RDOZZ(α).

9.5. An integral formula. We have:

Lemma 9.3. For all p > 0 and a ∈ (1, 2) the following identity holds
∫ ∞

0

(
1

(1 + v)p
− 1

)
1

va
dv =

Γ(−a+ 1)Γ(p+ a− 1)

Γ(p)

Proof. We set ā = −a+ 1 and b̄ = p+ a− 1. We have

∫ 1

0

(
1

(1 + v)p
− 1

)
1

va
dv −

∫ ∞

1

1

va
dv

= − 1

a− 1

∑

k > 1

(−1)k
(p)k(−a+ 1)k
k!(−a+ 2)k

− 1

a− 1

= − 1

a− 1

∑

k > 0

(−1)k
(p)k(−a+ 1)k
k!(−a+ 2)k

=
1

ā
2F1(ā, ā+ b̄, ā+ 1, z = −1)
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Now, we have
∫ ∞

1

1

(1 + v)p
1

va
dv =

∫ 1

0

1

(1 + v)p
vp+a−2dv

=
1

p+ a− 1

∑

k > 0

(−1)k
(p)k(p+ a− 1)k

k!(p+ a)k

=
1

b̄
2F1(b̄, ā+ b̄, b̄+ 1, z = −1)

Now, we use the following formula (see [30]):

b̄ 2F1(ā, ā+ b̄, ā+ 1, z = −1) + ā 2F1(b̄, ā+ b̄, b̄+ 1, z = −1) =
Γ(ā+ 1)Γ(b̄+ 1)

Γ(ā+ b̄)

This yields the desired relation since Γ(z + 1) = zΓ(z).

9.6. Some identities. We have the following identity for all z

∫

C

|u− z| γ
2

2 − |u| γ
2

2 − γ2

4 |u| γ
2

2 ( zu + z̄
ū )

|u|γα1
d2u = |z|γ(Q−α1)

π

l(γα1

2 )l(− γ2

4 )l(2− γα1

2 + γ2

4 )
.

By taking the ∂zz derivative, we get

γ2

4
(
γ2

4
− 1)

∫

C

|u− z| γ
2

2

(z − u)2|u|γα1
d2u =

γ(Q− α1)

2
(
γ(Q− α1)

2
− 1)

|z|γ(Q−α1)

z2
π

l(γα1

2 )l(− γ2

4 )l(2− γα1

2 + γ2

4 )
.

Hence for z = 1 this yields

(9.7)
γ2

4
(
γ2

4
− 1)

∫

C

|u− 1| γ
2

2

(1− u)2|u|γα1
d2u = (

γ2

4
+ 1− γα1

2
)(
γ2

4
− γα1

2
)

π

l(γα1

2 )l(− γ2

4 )l(2− γα1

2 + γ2

4 )
.

Similarly, we get

(9.8)
γ2

4
(
γ2

4
− 1)

∫

C

|u− 1| γ
2

2

(1− ū)2|u|γα1
d2u = (

γ2

4
+ 1− γα1

2
)(
γ2

4
− γα1

2
)

π

l(γα1

2 )l(− γ2

4 )l(2− γα1

2 + γ2

4 )
.

Finally, by taking the ∂zz̄ derivative, we get

(9.9) (
γ2

4
)2
∫

C

|u− 1| γ
2

2

|1− u|2|u|γα1
d2u = (

γ2

4
+ 1− γα1

2
)2

π

l(γα1

2 )l(− γ2

4 )l(2− γα1

2 + γ2

4 )
.
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[17] Dubédat J.: Exact bosonization of the Ising model, arXiv:1112.4399.
[18] Duplantier B., Miller J., Sheffield: Liouville quantum gravity as mating of trees, arXiv:1409.7055.
[19] El-Showk, S., Paulos M.F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A.: Solving the 3D Ising model with the

conformal bootstrap, Phys. Rev. D 86, 025022 (2012).
[20] El-Showk, S., Paulos M.F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A.: Solving the 3D Ising model with the

conformal bootstrap II. c-minimization and precise critical exponents , Phys. Rev. D 86, 025022 (2012).
[21] S. Ferrara, A. F. Grillo, and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator

product expansion, Annals Phys. 76 (1973) 161188.
[22] Forrester P.J., Warnaar S.O.: The importance of Selberg integral, Bulletin of the AMS, vol 45, no 4, 2008, p. 489-534.
[23] Fyodorov Y., Bouchaud J.-P.: Freezing and extreme value statistics in a Random Energy Model with logarithmically

correlated potential, J. Phys.A: Math.Theor 41 (2008) 372001.
[24] Fyodorov Y., Le Doussal P., Rosso A.: Statistical Mechanics of Logarithmic REM: Duality, Freezing and Extreme Value

Statistics of 1/f Noises generated by Gaussian Free Fields, J. Stat.Mech. P10005 (2009).
[25] Gawedzki K.: Lectures on conformal field theory, Quantum field theory program at IAS.
[26] Gervais J.-L. and Neveu A. Nucl.Phys., B238 (1984) 125
[27] Grimmett G.R.: Percolation, second edition, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften,

321, 1999.
[28] Harlow D., Maltz J., Witten E.: Analytic Continuation of Liouville Theory, Journal of High Energy Physics (2011).
[29] Hongler C., Smirnov S.: The energy density in the planar Ising model, Acta Mathematica 211 (2), 191-225 (2013).
[30] http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/03/04/
[31] Ikhlef Y., Jacobsen J.L., Saleur H.: Three-point functions in c 6 1 Liouville theory and conformal loop ensembles, Phys.

Rev. Lett. 116, 130601 (2016).
[32] Karatzas I. Shreve S.: Brownian motion and stochastic calculus, Springer-Verlag.
[33] Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D-quantum gravity, Modern Phys. Lett A,

3(8), 819-826 (1988).
[34] Kostov I.K., Petkova V.B.: Bulk correlation functions in 2D quantum gravity, Theoretical and mathematical physics 146

(1), 108-118 (2006).
[35] Kupiainen A., Constructive Liouville Conformal Field Theory, arXiv:1611.05243
[36] Kupiainen A., Rhodes R., Vargas V.: Local conformal structure of Liouville Quantum Gravity, arXiv:1512.01802.
[37] G. Mack, Duality in quantum field theory, Nucl. Phys. B118 (1977) 445457.
[38] Maulik D. Okounkov A.: Quantum Groups and Quantum Cohomology, arXiv:1211.1287.
[39] Nakayama Y.: Liouville field theory: a decade after the revolution, Int.J.Mod.Phys. A 19, 2771-2930 (2004).
[40] O’Raifeartaigh L., Pawlowski J.M., and Sreedhar V.V.: The Two-exponential Li- ouville Theory and the Uniqueness of

the Three-point Function, Physics Letters B 481 (2-4), 436-444 (2000).
[41] Osterwalder, K., Schrader, R.: Axioms for Euclidean Green?s functions I. Commun. Math. Phys. 31, 83-112 (1973).
[42] Osterwalder, K., Schrader, R.: Axioms for Euclidean Green?s functions II, Commun. Math. Phys. 42, 281-305 (1975).
[43] Polyakov A.M.: Quantum geometry of bosonic strings, Phys. Lett. 103B 207 (1981).
[44] Polyakov A.M.: From Quarks to Strings,arXiv:0812.0183.
[45] A. M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 2342.
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