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SOLVING NONLINEAR OPTIMAL CONTROL PROBLEMS WITH
STATE AND CONTROL DELAYS BY SHOOTING METHODS
COMBINED WITH NUMERICAL CONTINUATION ON THE

DELAYS

RICCARDO BONALLI∗, BRUNO HÉRISSÉ† , AND EMMANUEL TRÉLAT‡

Abstract. In this paper we introduce a new procedure to solve nonlinear optimal control prob-
lems with delays which exploits indirect methods combined with numerical homotopy procedures.
It is known that solving this kind of problems via indirect methods (which arise from the Pontrya-
gin Maximum Principle) is complex and computationally demanding because their implementation
is faced to two main difficulties: the extremal equations involve forward and backward terms, and
besides, the related shooting method has to be carefully initialized. Here, starting from the solution
of the non-delayed version of the optimal control problem, delays are introduced by a numerical
continuation. This creates a sequence of optimal delayed solutions that converges to the desired
solution. We establish a convergence theorem ensuring the continuous dependence w.r.t. the delay
of the optimal state, of the optimal control (in a weak sense) and of the corresponding adjoint vector.
The convergence of the adjoint vector represents the most challenging step to prove and it is crucial
for the well-posedness of the proposed homotopy procedure. Two numerical examples are proposed
and analyzed to show the efficiency of this approach.

Key words. Optimal control, time-delayed systems, indirect methods, shooting methods, nu-
merical homotopy methods, numerical continuation methods.
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1. Introduction.

1.1. Delayed Optimal Control Problems. Let n, m be positive integers, ∆ a
positive real number, Ω ⊆ R

m a measurable subset and define an initial state function
φ1(·) ∈ C0([−∆, 0],Rn) and an initial control function φ2(·) ∈ L∞([−∆, 0],Ω). For
every τ = (τ1, τ2) ∈ [0,∆]2 and every positive final time T , consider the following
nonlinear control system on R

n with constant delays

(1)



















ẋτ (t) = f(t, xτ (t), xτ (t− τ1), uτ (t), uτ (t− τ2)) , t ∈ [0, T ]

xτ (t) = φ1(t) , t ∈ [−∆, 0] , uτ (t) = φ2(t) , t ∈ [−∆, 0)

uτ (·) ∈ L∞([−∆, T ],Ω)

where f(t, x, y, u, v) = f1(t, x, y, u) + f2(t, x, y, v) and f1 : R × R
2n × R

m → R
n,

f2 : R × R
2n × R

m → R
n are of class (at least) C2 w.r.t. their second and third

variables. Control systems (1) play an important role describing many phenomena in
physics, biology and economics (see, e.g. [1]).

Let M be a subset of Rn. Assume that M is reachable from φ1(·) for the control
system (1), that is, for every τ = (τ1, τ2) ∈ [0,∆]2, there exists a final time Tτ and
a control uτ (·) ∈ L∞([−∆, Tτ ],Ω), such that the trajectory xτ (·), solution of (1) on
[0, Tτ ], satisfies xτ (Tτ ) ∈ M . Such a control is called admissible and we denote by
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Uτ
Tτ ,Rm the set of all admissible controls of (1) defined on [−∆, Tτ ] taking their values

in R
m while Uτ

Tτ ,Ω
denotes the set of all admissible controls of (1) defined on [−∆, Tτ ]

taking their values in Ω. Then, Uτ
Rm := ∪T>0U

τ
T,Rm and Uτ

Ω := ∪T>0U
τ
T,Ω.

Given a couple τ = (τ1, τ2) ∈ [0,∆]2 of delays, we consider the Optimal Control
Problem with Delays (OCP)τ consisting in steering the control system (1) to M ,
while minimizing the cost function

(2) CTτ
(τ, uτ (·)) :=

∫ Tτ

0

f0(t, xτ (t), xτ (t− τ1), uτ (t), uτ (t− τ2)) dt

where f0(t, x, y, u, v) = f0
1 (t, x, y, u) + f0

2 (t, x, y, v) and f0
1 : R × R

2n × R
m → R,

f0
2 : R × R

2n × R
m → R are of class (at least) C2 w.r.t. their second and third

variables. The final time Tτ may be fixed or not.
The literature is abundant of numerical methods to solve (OCP)τ . Most of

them rely on direct methods, which basically consist in discretizing all the variables
concerned and in reducing (OCP)τ to a finite dimensional problem. The works
[2, 3, 4, 5, 6] develop several numerical techniques to convert the optimal control
problem with delays into nonlinear constrained optimization problems. On the other
hand, [7, 8, 9, 10, 11] propose different approaches that approximate the solution
of (OCP)τ by truncated orthogonal series and reduce the optimal control problem
with delays to a system of algebraic equations. Yet, other contributions (see, e.g.
[12]) propose an approximating sequence of non-delayed optimal control problems
whose solutions converge to the optimal solution of (OCP)τ . However, the dimension
induced by these approaches becomes as larger as the discretization is finer.

Some applications, many of which are found in aerospace engineering, like atmo-
spheric reentry and satellite launching (for example in [13]), require great accuracy
which can be reached by indirect methods. Moreover, the computational load needed
to compute indirect methods remains minimal if compared to the one used to ob-
tain a good solution with direct approaches. It is then interesting to solve efficiently
(OCP)τ via these procedures.

1.2. Indirect Methods Applied to (OCP)τ . The core of indirect methods re-
lies on solving, thanks to Newton-like algorithms, the two-point or multi-point bound-
ary value problem which arises from necessary optimality conditions coming from the
application of the Pontryagin Maximum Principle (PMP) [14].

The paper [15] was first to provide a maximum principle for optimal control
problems with a constant state delay while [16] obtains the same conditions by a simple
substitution-like method. In [17] a similar result is achieved for control problems with
pure control delays. In [18, 19], necessary conditions are obtained for optimal control
problems with multiple constant delays in state and control variables. Moreover, [20]
derives a maximum principle for control systems with a time-dependent delay in the
state variable. Finally, [21] provides necessary conditions for optimal control problems
with multiple constant delays and mixed control-state constraints.

The advantages of indirect methods, whose more basic version is known as shoot-
ing method, are their extremely good numerical accuracy and the fact that, if they con-
verge, the convergence is very quick. Indeed, since they rely on the Newton method,
they inherit the convergence properties of the Newton method. Nevertheless, their
main drawback is related to their difficult initialization (see for example [13]). This is
pointed out as soon as the necessary optimality conditions are computed on (OCP)τ .

It is known that (see, e.g. [14, 22, 21]), if (xτ (·), uτ (·)), τ = (τ1, τ2) ∈ [0,∆]2 is an
optimal solution of (OCP)τ with optimal final time Tτ , there exist a nonpositive scalar
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p0τ and an absolutely continuous mapping pτ : [0, Tτ ] → R
n called adjoint vector, with

(pτ (·), p
0
τ ) 6= (0, 0), such that the so-called extremal (xτ (·), pτ (·), p

0
τ , uτ (·)) satisfies















































































ẋτ (t) =
∂H

∂p
(t, xτ (t), xτ (t− τ1), pτ (t), p

0
τ , uτ (t), uτ (t− τ2)) , t ∈ [0, Tτ ]

ṗτ (t) = −
∂H

∂x
(t, xτ (t), xτ (t− τ1), pτ (t), p

0
τ , uτ (t), uτ (t− τ2))

−
∂H

∂y
(t+ τ1, xτ (t+ τ1), xτ (t), pτ (t+ τ1), p0τ , uτ (t+ τ1), uτ (t+ τ1 − τ2)) ,

t ∈ [0, Tτ − τ1]

ṗτ (t) = −
∂H

∂x
(t, xτ (t), xτ (t− τ1), pτ (t), p

0
τ , uτ (t), uτ (t− τ2)) ,

t ∈ (Tτ − τ1, Tτ ]

(3)

where H(t, x, y, p, p0, u, v) = 〈p, f(t, x, y, u, v)〉+ p0f0(t, x, y, u, v) is the Hamiltonian,
and the maximization condition

H (t, xτ (t), xτ (t− τ1), pτ (t), p
0
τ , uτ (t), uτ (t− τ2))(4)

+ 1[0,Tτ−τ2]H(t+ τ2, xτ (t+ τ2), xτ (t+ τ2 − τ1), pτ (t+ τ2), p0τ , uτ (t+ τ2), uτ (t))

≥ H(t, xτ (t), xτ (t− τ1), pτ (t), p
0
τ , v, uτ (t− τ2))

+ 1[0,Tτ−τ2]H(t+ τ2, xτ (t+ τ2), xτ (t+ τ2 − τ1), pτ (t+ τ2), p0τ , uτ (t+ τ2), v)

∀ v ∈ Ω

holds almost everywhere on [0, Tτ ]. Moreover, if the final time is free and, without
loss of generality, one supposes that Tτ and Tτ − τ are points of continuity of uτ (·),

(5) H(Tτ , xτ (Tτ ), xτ (Tτ − τ1), pτ (Tτ ), p
0
τ , uτ (Tτ ), uτ (Tτ − τ2)) = 0

(see [22] for a more general condition using the concept of Lebesgue approximate
continuity). The extremal (xτ (·), pτ (·), p

0
τ , uτ (·)) is said normal whenever p0τ 6= 0, and

in that case it is usual to normalize the adjoint vector so that p0τ = −1; otherwise it
is said abnormal.

Assuming that uτ (·) is known as a function of xτ (·) and pτ (·) (by the maximization
condition (4)), each iteration of a shooting method consists in solving the coupled
dynamics (3), where a value of pτ (Tτ ) is provided. This means that one has to solve a
Differential-Difference Boundary Value Problem (DDBVP) where both forward and
backward terms of time appear within mixed type differential equations. The difficulty
is then the lack of global information which forbids a purely local integration by
usual iterative methods for ODEs. Some techniques to solve mixed type differential
equations were developed. For example, [23] proposes an analytical decomposition of
the solutions as sums of forward solutions and backward solutions, while [24] provides
a solving numerical scheme. However, these approaches treat either only linear cases
or the inversion of matrices whose dimension increases as much as the numerical
accuracy raises.

In order to initialize correctly a shooting method for (3), a guess of the final value
of the adjoint vector pτ (Tτ ) is not sufficient, but rather, a good numerical guess of
the whole function pτ (·) must be provided to make the procedure converge. This
represents an additional difficulty with respect to the usual shooting method and it
requires a global discretization of (3).
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It seems that this topic has been little addressed in the literature. The paper [25]
proposes a collocation methods to solve the DDBVP arising from (3) that turns out
to be successful to solve several optimal control problems with delays. However, as a
consequence of the collocation method, the degree of interpolating polynomials grows
up fast for hard problems. Moreover, a precomputation of points where the solution
of (3) has discontinuous derivative is needed to make the whole approach feasible,
intensifying the quantity of numerical computations.

1.3. Numerical Homotopy Approach. The basic idea of homotopy methods
is to solve a difficult problem step by step, starting from a simpler problem, by pa-
rameter deformation. Theory and practice of continuation methods are well known
(see, e.g. [26]). Combined with the shooting problem derived from the PMP, a ho-
motopy method consists in deforming the problem into a simpler one (that can be
easily solved) and then in solving a series of shooting problems step by step to come
back to the original problem. The main difficulty of homotopy methods lies in the
choice of a sufficiently regular deformation that allows the convergence of the homo-
topy method. The starting problem should be easy to solve, and the path between
this starting problem and the original problem should be handy to model. This path
is parametrized by a parameter denoted λ and, when the homotopic parameter λ is
a real number and the path is linear in λ, the homotopy method is rather called a
continuation method.

Consider the Optimal Control Problem without Delays (OCP)≡(OCP)0 which
consists of steering to M the control system

(6)







ẋ(t) = f(t, x(t), x(t), u(t), u(t)) , t ∈ [0, T ]

x(t) = φ1(0) , u(·) ∈ L∞([0, T ],Ω)

while minimizing the cost function

(7) CT (u(·)) := CT (0, u(·)) =

∫ T

0

f0(t, x(t), x(t), u(t), u(t)) dt .

In many situations, exploiting the non-delayed version of the PMP mixed to other
techniques (such as geometric control, dynamical system theory applied to mission
design, etc., we refer the reader to [13] for a survey on these procedures), one is able
to initialize efficiently a shooting method on (OCP). Thus, it is legitimate to wonder
if one may solve (OCP)τ by indirect methods starting a homotopy method where τ
represents the deformation parameter and (OCP) is taken as the starting problem.
This approach is a way to address the flaw of indirect methods applied to (OCP)τ :
on one hand, the global adjoint vector of (OCP) could be used to inizialize efficiently
a shooting method on (3) (for ‖τ‖ small enough) and, on the other hand, we could
solve (3) via usual iterative methods for ODEs (for example, by using the global state
solution at the previous iteration).

However, one should be careful when using homotopy methods. As we pointed
out previously, the existence of a sufficiently regular deformation curve of delays τ
that allows the convergence of the method must be ensured. In [13], it was proved
that, in the case of unconstrained optimal control problems without delays where
M = {x1}, the existence of a parameter deformation curve is equivalent to ask that
neither abnormal minimizers nor conjugate points occur along the homotopy path.
Some similar assumptions must be made to apply this procedure to solve succesfully
(OCP)τ by indirect methods.
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1.4. Main Contribution and Paper Structure. The idea proposed in this
paper consists in introducing a general method that allows to solve successfully
(OCP)τ using indirect methods combined with homotopy procedures, with τ as de-
formation parameter, starting from the solution of its non-delayed version (OCP).

The main contribution of the paper is a convergence theorem that ensures the
continuous dependence w.r.t. the delay of the optimal state, the optimal control (in
a weak sense) and of the corresponding adjoint vector of (OCP)τ . This ensures to
reach the optimal solution of (OCP)τ starting from the optimal solution of (OCP)
iteratively by travelling across a sequence (τk)N converging to τ . The most challenging
and most important nontrivial conclusion is the continuous dependence of the adjoint
vectors of (OCP)τ w.r.t. τ . This last fact is crucial because it allows indirect methods
to solve (OCP)τ starting a homotopy method on τ with (OCP) as initial problem.

The article is structured as follows. Section 2 presents the assumptions and
the statement of the convergence theorem; moreover, a practical algorithm to solve
(OCP)τ by homotopy is provided. In Section 3 the efficiency of this approach is illus-
trated by testing the proposed algorithm on two examples. Finally, in the appendices,
the technical details of the proof of the main result are provided.

2. Convergence Theorem for (OCP)τ . Within the proposed convergence
result, it is crucial to split the case in which the delay τ2 on the control variable
appears from the one which considers only pure state delays. The context of control
delays reveals to be more complex, especially, in proving the existence of optimal
control for (OCP)τ . Indeed, a standard approach to prove existence would consider
usual Filippov’s assumptions (as in the classical reference [27]) which, in the case of
control delays, must be extended. In particular, using the Guinn’s reduction (see, e.g.
[16]), the control system with delays results to be equivalent to a non-delayed system
with a larger number of variables depending on the value of τ2. Such extension was
used in [28]. However, it is not difficult to see that the usual assumption concerning
the convexity of the epigraph of the extended dynamics is not sufficient to prove
Lemma 2.1 in [28]. More details are provided in Remark A.8, in Section A.2.2.

2.1. Main Result. We make the following assumptions.
Common assumptions:

(A1) Ω is a compact and convex subset of Rm and M is a compact subset of Rn;
(A2) (OCP)has a unique solution (x(·), u(·))defined on a neighborhood of [−∆, T ];
(A3) The optimal trajectory x(·) has a unique extremal lift (up to a multiplica-

tive scalar) defined on [0, T ], which is normal, denoted (x(·), p(·),−1, u(·)),
solution of the Maximum Principle;

(A4) There exists a positive real number b such that, for every τ = (τ1, τ2) ∈ [0,∆]2

and every v(·) ∈ Uτ
Ω, denoting xτ,v(·) the related trajectory arising from the

control system (1) with final time Tτ,v, we have

∀t ∈ [−∆, Tτ,v] : T + Tτ,v + ‖xτ,v(t)‖ ≤ b .

In case of pure state delays:
(B1) For every delay τ , every optimal control uτ (·) of (OCP)τ is continuous;
(B2) The sets

{(

f1(t, x, y, u), f
0
1 (t, x, y, u) + γ,

∂f̃1

∂x
(t, x, y, u),

∂f̃1

∂y
(t, x, y, u)

)

: u ∈ Ω , γ ≥ 0

}

are convex for every t ∈ R and every (x, y) ∈ R
2n, where f̃1(t, x, y, u) =

(f1(t, x, y, u), f
0
1 (t, x, y, u)).
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In case of delays both in state and control variables:
(C1) For every delay τ , every optimal control uτ (·) of (OCP)τ takes its values at

extremal points of Ω. Moreover, the optimal final time Tτ and Tτ − τ are
points of continuity of uτ (·);

(C2) The vector field f and the cost function f0 are locally Lipschitz w.r.t. (u, v)
i.e., for every (t, x, y, u0, v0) ∈ R

5 there exist a neighborhood W of (u0, v0)
and a continuous function α(t, x, y), such that

‖f(t, x, y, u1, v1)− f(t, x, y, u2, v2)‖ ≤ α(t, x, y)
(

‖u1 − u2‖+ ‖v1 − v2‖
)

for every (u1, v1) , (u2, v2) ∈W (the same statement holds for f0);
(C3) The sets

{

(f(t, x, y, u, v), f0(t, x, y, u, v) + γ) : u, v ∈ Ω , γ ≥ 0
}

{

(f(t, x, y, u, u), f0(t, x, y, u, u) + γ) : u ∈ Ω , γ ≥ 0
}

are convex for every t ∈ R and every (x, y) ∈ R
2n.

Some remarks on these assumptions are in order.
First of all, assumptions (A2) and (A3) on the uniqueness of the solution of (OCP)

and on the uniqueness of its extremal lift are related to the differentiability properties
of the value function (see, e.g. [29, 30, 31]). They are standard in optimization and
are just made to keep a nice statement (see Theorem 2.1). These assumptions can
be weakened as follows. If we replace (A2) and (A3) with the assumption ”every
extremal lift of every solution of (OCP) is normal”, then the conclusion provided
in Theorem 2.1 hereafter still holds, except that the convergence properties must be
written in terms of closure points. The proof of this fact follows the same guideline
used to prove Theorem 2.1 and we avoid to report the details.

Assumptions (B1) and (C1) play a complementary role in proving the convergence
property for the adjoint vectors. Moreover, Assumption (C1) becomes also crucial to
ensure the convergence of optimal controls and trajectories when considering delays
both in state and control variables. Without this assumption of nonsingular controls,
proving these last convergences becomes a hard task. The issue is related to the
following fact. Let X , Y be Banach spaces and F : X → Y be a continuous map.
Suppose that (xk)k∈N ⊆ X is a sequence such that xk ⇀ x and F (xk) ⇀ F (x̄) for
some x, x̄ ∈ X . Then, in general, we cannot ensure that x ≡ x̄. A way to overcome this
flaw is to ensure the equivalence between weak convergence and strong convergence
under some additional assumptions, and, in our main result, this is achieved thanks
to (C1) (see, e.g. [32]).

Theorem 2.1. Assume that assumptions (A1), (A2), (A3) and (A4) hold.
Consider first the context of pure state delays i.e., problems (OCP)τ such that

τ = (τ1, 0) and f2(t, x, y, u) = f0
2 (t, x, y, u) = 0, and assume that assumptions (B1)

and (B2) hold. Then, there exists τ0 > 0 such that, for every τ = (τ1, 0) ∈ (0, τ0)×{0},
(OCP)τ has at least one solution (xτ (·), uτ (·)) whose arc is defined on [−∆, Tτ ], every
extremal lift of which is normal. Let (xτ (·), pτ (·),−1, uτ (·)) be such a normal extremal
lift. Then, up to continuous extensions on [−∆, T ], as τ tends to 0,

• Tτ converges to T ;
• xτ (·) converges uniformly to x(·);
• pτ (·) converges uniformly to p(·);
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• ẋτ (·) converges to ẋ(·) in L∞ for the weak star topology.
If the final time T of (OCP) is fixed, then Tτ = T for every τ ∈ (0, τ0)

2.
On the other hand, consider general problems (OCP)τ with delays τ = (τ1, τ2) in

both state and control variables. If one assumes that, for every τ ∈ [0,∆]2, if (OCP)τ
is controllable then it admits an optimal solution, then, under assumptions (C1), (C2)
and (C3), there exists τ0 > 0 such that, for every τ = (τ1, τ2) ∈ (0, τ0)

2, the same
conclusions on the convergences given above hold and, in addition, as τ tends to 0,
uτ (·) converges to u(·) almost everywhere in [0, T ]. Moreover, if dynamics f and cost
f0 are affine w.r.t. in the two control variables, the existence of an optimal solution
(xτ (·), uτ (·)) for every τ = (τ1, τ2) ∈ (0, τ0)

2 is ensured.
Finally, for every τ̄ ∈ [−∆, 0], by extending to the delay τ̄ all the previous assump-

tions, we have that the optimal solutions (xτ (·), uτ (·)) of (OCP)τ (or (xτ (·), ẋτ (·))
in the case of pure state delays) and their related adjoint vectors pτ (·) are continuous
w.r.t. τ at τ̄ for the above topologies.

The proof of Theorem 2.1 is technical and lenghty. We report it in Appendix A.
The last statement of Theorem 2.1 (the continuous dependence w.r.t. τ , for every

τ ∈ [−∆, 0]) is the most general conclusion achieved and extends the first part of the
theorem. The proof of this generalization follows the same guidelines of the proof of
the continuity at τ = 0 and we avoid to report the details.

We want to stress the fact that the continuous dependence w.r.t. τ of the adjoint
vectors of (OCP)τ represents the most challenging and the most important result
achieved by Theorem 2.1. It represents the essential step that allows the proposed
homotopy method to converge robustly for every, small enough, couple of delays
τ . The proof of this fact is not easy. An accurate analysis of the convergence of
Pontryagin cones in the case of the delayed version of the PMP is required.

Remark 2.2. Theorem 2.1 can be extended to obtain stronger convergence con-
clusions, by using weaker assumptions, in the particular case of dynamics f that are
affine in the two control variables, and costs of type

∫ Tτ

0

[

C1‖xτ (t)‖
2 + C2‖xτ (t− τ1)‖2 + C3‖uτ (t)‖

2 + C4‖uτ (t− τ2)‖2
]

dt

where C1, C2, C3, C4 ≥ 0 are constants. Indeed, considering assumptions (A1)-(A4)
and either (B1) or (C1), the convergence properties established in Theorem 2.1 for
xτ (·) and pτ (·) still hold and, moreover, uτ (·) converges to u(·) in L2 for the weak
topology, as τ tends to 0. The proof of this fact arises easily adapting the scheme in
Appendix A. For sake of brevity, we do not give these technical details.

2.2. The Related Algorithm and Its Convergence. Exploiting the state-
ment of Theorem 2.1, we may conceive a general algorithm, based on indirect meth-
ods, capable of solving (OCP)τ by applying homotopy procedures on parameter τ ,
starting from the solution of its non-delayed version (OCP).

As we explained in the previous sections, the critical behavior coming out from this
approach consists of the integration of mixed-type equations that arise from System
(3). The previous convergence result suggests us the idea that we may solve (3) via
usual iterative methods for ODEs, for example, by using the global state solution at
the previous iteration. Moreover, the global adjoint vector of (OCP) could be used
to inizialize, from the beginning, the whole shooting.

These considerations lead us to Algorithm 1. To prove the convergence of Algo-
rithm 1 we apply Theorem 2.1. We focus on the case of general state and control
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Algorithm 1 - Indirect Numerical Homotopy Algorithm for solving (OCP)τ

Set k = 0, τk = 0, and fix an integer kmax. Solve (OCP) by indirect methods and
denote (xτk(·), pτk(·), p

0
τk
, uτk(·)) its numerical extremal solution.

while ‖τk‖ < ‖τ‖ and k < kmax do

A.1) Compute τk+1 by predictor-corrector methods and steplength adaptation;

A.2) Solve recursively (OCP)τk+1
by indirect methods initialized by pτk(·) i.e.,

fixing k, an integer imax, a tolerance ε and setting i = 1, piτk+1
(·) := pτk(·), do

while ‖pi+1
τk+1

(·)− piτk+1
(·)‖C0 ≥ ε, xi+1

τk+1
(T i+1

τk+1
) /∈M1 and i < imax do

B.1) Guess p̄i+1
τk+1

(·) from piτk+1
(·) (via Newton-like algorithms);

B.2) Using the PMP, express ui+1
τk+1

(·) as function of (xi+1
τk+1

(·), p̄i+1
τk+1

(·), p0,i+1
τk+1

);

B.3) Solve











ẋi+1
τk+1

(t) =
∂H

∂p
(·, xi+1

τk+1
(·), p̄i+1

τk+1
(·), p0,i+1

τk+1
, ui+1

τk+1
(·))(t)

xi+1
τk+1

(t) = φ1(t) , t ∈ [−∆, 0]

Then, with xi+1
τk+1

(·) as solution of the previous system, solve







































































ṗi+1
τk+1

(t) = −
∂H

∂x
(·, xi+1

τk+1
(·), pi+1

τk+1
(·), p0,i+1

τk+1
, ui+1

τk+1
(·))(t)

−
∂H

∂y
(·, xi+1

τk+1
(·), pi+1

τk+1
(·), pi+1

τk+1
(· − τ1k+1), p

0,i+1
τk+1

, ui+1
τk+1

(·))(t + τ1k+1) ,

t ∈ [0, T i+1
τk+1

− τ1k+1]

ṗi+1
τk+1

(t) = −
∂H

∂x
(·, xi+1

τk+1
(·), pi+1

τk+1
(·), p0,i+1

τk+1
, ui+1

τk+1
(·))(t) ,

t ∈ (T i+1
τk+1

− τ1k+1, T
i+1
τk+1

]

pi+1
τk+1

(T i+1
τk+1

) = p̄i+1
τk+1

(T i+1
τk+1

)

B.4) piτk+1
(·) = pi+1

τk+1
(·) and i→ i+ 1.

end while

A.3) pτk(·) = pτk+1
(·) and k → k + 1.

end while

delays, highlighting that the same conclusion holds for problems with pure state de-
lays provided that optimal controls can be expressed as continuous functions of the
state and the adjoint vector (by using the maximality condition on the Hamiltonian).

Suppose that assumptions (A1), (A2), (A3), (A4), (C1), (C2) and (C3) hold and
that the delay τ = (τ1, τ2) ∈ [0,∆]2 considered is such that τ ∈ (0, τ0)

2. Then, we
know that for every ε = (ε1, ε2) in the open ball B‖τ‖(0, 0), (OCP)ε has at least an
optimal solution with normal extremal lift. The first consequence is that, referring to
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Algorithm 1, we can put p0,iτk
= −1 for every integers k, i. Thanks to Theorem 2.1,

xε(·)
C0

−−→ x(·), uε(·)
a.e.
−−→ u(·) and pε(·)

C0

−−→ p(·) as soon as ε → (0, 0). Then, the
indirect method inside Algorithm 1 results to be well defined and well initialized by the
adjoint vector p(·) of (OCP). Indeed, necessarily, the algorithm will travel backward
one of the subsequence converging to the solution of (OCP). Since for every sequence
(εk)k∈N converging to (0, 0) the related extremal lift (xε(·), pε(·),−1, uε(·)) of (OCP)ε
converge to the one of (OCP) (for the evident topologies), every homotopy methods
on τ lead to the same optimal solution of (OCP)τ .

Remark 2.3. It is interesting to remark that, at least formally, there are no dif-
ficulties to apply Algorithm 1 to more general (OCP)τ which consider locally bounded
varying delays that are functions of the time and the state i.e., τ : R×R

n → [−∆, 0]2 :
(t, x) 7→ τ(t, x). In this context, some relations close to (3)-(5) are still provided (see,
e.g. [33]), so that, the proposed numerical continuation scheme remains well-defined.

3. Numerical Example. In order to prove effectiveness and robustness of our
approach, we test it on two examples. As a matter of standard analysis for numerical
approaches to solve optimal control problems with delays, we follow the guideline
provided by [6]. The first test is an academic example while the second one considers
the nontrivial problem consisting of a continuous nonlinear two-stage stirred tank
reactor system (CSTR), proposed by [34] and [35].

We stress the fact that, in this paper, we are interested in solving an optimal
control problem with delays (OCP)τ starting from its non-delayed version (OCP),
without taking care of how (OCP) is solved. Even if we are aware of the fact that this
task is far from being easy, here, we focus our attention on the performance achieved
once the solution of (OCP) is known. However, as suggested in Section 1, in many
situations one is able to initialize correctly a shooting method on (OCP) (see [13]).

3.1. Setting Preliminaries. The numerical examples proposed are solved ap-
plying verbatim Algorithm 1. Good solutions are obtained using a basic linear contin-
uation on τ . Moreover, an explicit second-order Runge-Kutta method is handled to
solve all the ODEs coming from the dual formulation while the routine hybrd [36] is
used to solve the shooting problem. The procedure is initialized using the solution of
(OCP) provided by the optimization software AMPL [37] combined with the interior
point solver IPOPT [38].

We stress the fact that one has to be careful when passing the numerical ap-
proximation of the extremals in step B.3) of the previous algorithm. Indeed, it is
known that, using collocation methods like Runge-Kutta schemes, the error between
the solution and its numerical approximation remains bounded throughout [0, T ] and
decreases with hp, where h is the time step while p is the order of the method, only if
this numerical approximation is obtained by interpolating the numerical values within
each subinterval of integration with a polynomial of order p. From this remark, it
is straightforward that the dimension of the shooting considered in Algorithm 1, not
only it increases w.r.t. 1/h, but it is also proportional to p. In the particular case of
an explicit second-order Runge-Kutta method, the dimension of shootings is bounded
above by 2n/h (where n is the dimension of the state).

The numerical calculations are computed on a machine Intel(R) Xeon(R) CPU
E5-1607 v2 3.00GHz, with 8.00 Gb of RAM.

3.2. Analytical Example. Consider the Optimal Control Problem with Delays

(OCP)1τ which consists in minimizing the cost J1(xτ , uτ) =
∫ 3

0 (x
2
τ (t) + u2τ (t)) dt
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subject to



















ẋτ (t) = xτ (t− τ1)uτ (t− τ2) , t ∈ [0, 3]

xτ (t) = 1 , t ∈ [−τ1, 0] , uτ (t) = 0 , t ∈ [−τ2, 0)

uτ (·) ∈ L∞([−τ2, 3],R) , τ = (τ1, τ2) = (1, 2)

Since no terminal conditions are imposed, this particular (OCP)τ can only have
normal extremals. Then, the Hamiltonian is H(t, x, y, p, u, v) = pyv−x2−u2 and the
adjoint equation is ṗτ (t) = 2xτ (t)−1[0,3−τ1](t)pτ (t+τ

1)uτ (t−τ
2+τ1), with pτ (3) = 0.

Finally, we infer from the maximization condition (4), that optimal controls are given
by uτ (t) =

1
21[0,3−τ2](t)xτ (t+τ

2−τ1)pτ (t+τ
2). The paper [6] shows that the optimal

synthesis of (OCP)1τ can be obtained analytically. In particular, one has

(8) u2(t) =
1[0,1](t)

e2 + 1
(et − e2−t) , x1(t) = 1[0,2](t) +

1[2,3](t)

e2 + 1
(et−2 + e4−t)

Considering Remark 2.2, we apply Algorithm 1 to solve (OCP)1τ with N = 1/h = 60
Runge-Kutta time steps and a tolerance of 10−10 and 1500 maximal iterations for
hybrd routine. Using a Simpson’s rule, the optimal value J1(xτ , uτ ) = 2.76173 is
obtained in 20ms just in one iteration of the continuation scheme. Moreover, global
errors in the sup norm between (8) and their numerical approximations respectively of
0.024% for the control and of 0.031% for the state are obtained. Figure 1 shows the
optimal quantities for (OCP)1τ , its non-delayed version and an intermediate solution
when τ = (0.5, 1).
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Fig. 1. a) Optimal states xτ (·), b) Optimal controls uτ (·), c) Optimal adjoints pτ (·) for (OCP)1τ .
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3.3. A Nonlinear Chemical Tank Reactor Model. Let us consider a two-
stage nonlinear continuous stirred tank reactor (CSTR) system with a first-order
irreversible chemical reaction occurring in each tank. The system was studied by [35]
and successively by [34] in the framework of the dynamic programming. This Optimal
Control Problem with Delays (OCP)2τ consists in minimizing the cost J2(xτ , uτ) =
∫ T

0

(

‖xτ (t)‖
2 + 0.1‖uτ(t)‖

2
)

dt subject to







































































ẋ1τ (t) = 0.5− x1τ (t)−R1(x
1
τ (t), x

2
τ (t)) , t ∈ [0, T ]

ẋ2τ (t) = R1(x
1
τ (t), x

2
τ (t))− (u1τ (t) + 2)(x2τ (t) + 0.25) , t ∈ [0, T ]

ẋ3τ (t) = x1τ (t− τ)− x3τ (t)−R2(x
3
τ (t), x

4
τ (t)) + 0.25 , t ∈ [0, T ]

ẋ4τ (t) = x2τ (t− τ)− 2x4τ (t)− u2τ (t)(x
4
τ (t) + 0.25) +R2(x

3
τ (t), x

4
τ (t))

−0.25 , t ∈ [0, T ]

x1τ (t) = 0.15 , x2τ (t) = −0.03 , t ∈ [−τ, 0] , x3τ (0) = 0.1 , x4τ (0) = 0

u1τ (·) , u
2
τ (·) ∈ L∞([0, T ],R)

where, now, we have a fixed scalar delay τ which is chosen in the interval [0, 0.8] and
acts on the state only, the final time T = 2 is fixed and functions R1, R2 are given by

R1(x, y) = (x + 0.5)exp

(

25y
y+2

)

, R2(x, y) = (x + 0.25)exp

(

25y
y+2

)

. Since no terminal

conditions are imposed, (OCP)2τ have only normal extremals. The Hamiltonian is

H = p1
(

0.5− x1 −R1(x
1, x2)

)

+ p2
(

R1(x
1, x2)− (u1 + 2)(x2 + 0.25)

)

+p3
(

y1 − x3 −R2(x
3, x4) + 0.25

)

+ p4
(

y2 − 2x4 − u2(x4 +0.25)+R2(x
3, x4)− 0.25

)

−
(

(x1)2 + (x2)2 + (x3)2 + (x4)2 + 0.1(u1)2 + 0.1(u2)2
)

Thus, the adjoint equations take the following form















































































ṗ1τ (t) = p1τ (t) +
∂R1

∂x
(x1τ (t), x

2
τ (t))

(

p1τ (t)− p2τ (t)
)

+ 2x1τ (t)

−1[0,T−τ ](t)p
3
τ (t+ τ)

ṗ2τ (t) = p2τ (t)(u
1
τ (t) + 2) +

∂R1

∂y
(x1τ (t), x

2
τ (t))

(

p1τ (t)− p2τ (t)
)

+ 2x2τ (t)

−1[0,T−τ ](t)p
4
τ (t+ τ)

ṗ3τ (t) = p3τ (t) +
∂R2

∂x
(x3τ (t), x

4
τ (t))

(

p3τ (t)− p4τ (t)
)

+ 2x3τ (t)

ṗ4τ (t) = p4τ (t)(u
2
τ + 2) +

∂R2

∂y
(x3τ (t), x

4
τ (t))

(

p3τ (t)− p4τ (t)
)

+ 2x4τ (t)

with pτ (T ) = 0. From the maximality condition (4), the optimal controls are given

by u1τ (t) = −5p2τ(t)
(

x2τ (t) + 0.25
)

, u2τ (t) = −5p4τ (t)
(

x4τ (t) + 0.25
)

.
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τ 0 0.05 0.1 0.2 0.4

J2(xτ , uτ ) 0.02248 0.02282 0.02313 0.02370 0.02459

N. of Continuation Iterations 1 1 1 1 3

Computational Time (s) 0.200 0.240 0.450 0.820 2.120

τ 0.6 0.8 1 1.2 1.5

J2(xτ , uτ ) 0.02516 0.02547 0.02556 0.02549 0.02527

N. of Continuation Iterations 5 5 5 3 6

Computational Time (s) 2.860 3.260 3.070 2.150 4.220

Table 1

Optimal values of (OCP)2τ for different delays τ .

We test several different delays τ , as it was done in [35]. We use N = 1/h = 50
Runge-Kutta time steps, a tolerance of 10−10 and 1500 maximal iterations for hybrd
routine and a Simpson’s rule for the cost. Our results are reported in Table 1.

Clearly these values are comparable with the ones obtained by [35] and [34].
Moreover, our continuation scheme finds a solution also for larger delays i.e., τ ∈
[0.8, 1.5] (see Table 1). As expected, the more the delay grows the larger the number of
iterations of the continuation method is. In order to check our results, we implemented
also these problems within an AMPL framework (IPOPT solver with an explicit
forward Euler scheme and N = 100000) and the optimal values provided by the direct
method are the same. Nevertheless, for 10000 ≤ N ≤ 100000, AMPL takes between
4.4 and 43.7 seconds to find the optimal solution, while our simulations take at most
4.3 s. Some optimal quantities obtained using our method are shown in Figure 2.

4. Conclusions. In this paper we propose a new methodology to solve optimal
control problems with delays by means of a shooting method combined with contin-
uation on the delay. It is known that necessary conditions applied to this kind of
problems lead to differential-difference boundary value problems which are strongly
complex to solve. We overcome this difficulty by introducing the delay step by step
exploiting homotopy procedures. Under appropriate assumptions, we provide a cru-
cial convergence result that justifies rigorously the proposed approach. Moreover, the
numerical simulations confirm the validity of the procedure for nontrivial applications.

Future works focus on applying this strategy to compute in real-time optimal
solutions in the context of aeronautic motion planning. In several situations, when
simulating launch vehicle systems, fast optimal solutions must be provided taking
into account phenomena like the non-minimum phase (see, e.g. [39]). Since this
phenomenon can be approximated by delays, one is led to manage a fast resolution
of optimal control problems with delays. Then, indirect methods are preferred and
the proposed approach is a good candidate for a real-time processing. Moreover, in
this constext, it is shown (see, e.g. [40]) that the solution of the non-delayed version
of the problem can be rapidly provided by combining shooting methods again with
homotopy procedures. This fixes the flaw concerning the initialization of (OCP) in
the launch vehicle context.
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Fig. 2. Optimal quantities of (OCP)2τ for different delays τ .

Appendix A. Proof of Theorem 2.1. This final section is devoted to the
proof of Theorem 2.1 and is organized in two main parts.

First, the fundamental steps of the classical proof of the PMP with constant delays
in the state and the control are recalled. Basically, this proof lies on the development
of some ad hoc variations of the optimal control and it is interesting to note that such
approach is barely presented in the litterature. This proof is important because it
introduces tools and techniques which are the basis for the proof of our main result.

Afterwards, the main result is proved. The questions of the existence of delayed
controls and trajectories and their convergence are addressed firstly. As final result,
the convergence of delayed adjoint vectors is proposed. This nontrivial result requires
an accurate analysis of the convergence of Pontryagin cones which is accomplished
using a conic version of the implicit function theorem (see, e.g. [41, 42]).

A.1. Delayed Maximum Principle. In this section we sketch the proof of
the Maximum Principle for (OCP)τ using needle-like variations. For this, we do not
rely on the assumptions of Theorem 2.1, giving the result for a large class of control
systems with delays. It is interesting to note that our reasoning is not affected for
problem with free final time Tτ . Indeed, we do not employ the well known reduction
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to a fixed final time problem, but rather, we modify conveniently the Pontryagin cone
to keep track of the free variable Tτ (as done in [15]).

A.1.1. Preliminaries. For every τ = (τ1, τ2) ∈ [0,∆]2, consider (OCP)τ . For
every positive final time T , introduce the instantaneous cost function x0τ (·), defined
on [−∆, T ] and solution of







ẋ0τ (t) = f0(t, xτ (t), xτ (t− τ1), uτ (t), uτ (t− τ2)) , t ∈ [0, T ]

x0τ (t) = 0 , t ∈ [−∆, 0]

such that the cost CT (τ, uτ (·)) of the initial trajectory xτ (·) is CT (τ, uτ (·)) = x0τ (T ).
The extended state x̃ ∈ R

n+1 is defined by x̃ = (x, x0), and the extended dynamics by
f̃(t, x̃, ỹ, u, v) = (f(t, x, y, u, v), f0(t, x, y, u, v)). We will often denote f̃(t, x, y, u, v) =
f̃(t, x̃, ỹ, u, v). Then, consider the extended delayed control system in R

n+1,

(9)



















˙̃xτ (t) = f(t, x̃τ (t), x̃τ (t− τ1), uτ (t), uτ (t− τ2)) , t ∈ [0, T ]

x̃τ (t) = (φ1(t), 0) , t ∈ [−∆, 0] , uτ (t) = φ2(t) , t ∈ [−∆, 0)

uτ (·) ∈ L∞([−∆, T ],Ω)

Admissible controls for system (9) are defined in the same way as we defined
admissible controls for (1), and we denote Ũτ

T,Rm the set of all admissible controls of

(9) taking their values in R
m while Ũτ

T,Ω denotes the set of all admissible controls of

(9) with values in Ω. Then, Ũτ
Rm := ∪T>0Ũ

τ
T,Rm and Ũτ

Ω := ∪T>0Ũ
τ
T,Ω.

For every uτ (·) ∈ Ũτ
T,Rm , the extended end-point mapping Ẽτ is then defined by

Ẽτ (T, uτ(·)) = x̃τ (T ). As standard facts, the set Ũτ
T,Rm , endowed with the standard

topology of L∞([−∆, T ],Rm), is open and the end-point mapping is C1 on Ũτ
T,Rm .

For every τ = (τ1, τ2) ∈ [0,∆]2 and every t ≥ 0, define the extended accessible
set Ãτ,Ω(t) as the image of the mapping Ẽτ (t, ·) : Ũ

τ
t,Ω → R

n+1, with the agreement

Ãτ,Ω(0) = {(φ1(0), 0)}. The following classical fact is at the basis of the proof of the
Maximum Principle.

Lemma A.1. Given a couple of delays τ = (τ1, τ2) ∈ [0,∆]2, let (xτ (·), uτ (·)) be
a solution of (OCP)τ defined on [−∆, Tτ ]. Then, the point x̃τ (Tτ ) belongs to the
boundary of the set Ãτ,Ω(Tτ ).

A.1.2. Needle-Like Variations and Pontryagin Cone. In what follows we
consider (OCP)τ where the final time Tτ is free; all the proposed results can be easily
adapted when Tτ is fixed. Moreover, we suppose that Tτ is a Lebesgue point for the
optimal control uτ (·) of (OCP)τ and of uτ (· − τ2). If it is not, we can extend all the
conclusions by using closure points of Tτ (in the same way as in [43, 44]).

Given a couple of delays τ = (τ1, τ2) ∈ [0,∆]2, let (xτ (·), uτ (·)) be a solution
of (OCP)τ . Without loss of generality, we extend uτ (·) by some constant vector
of Ω in [Tτ , Tτ + τ2]. Let p ≥ 1 be an integer and consider 0 < t1 < · · · < tp < Tτ
Lebesgue points respectively of uτ (·), uτ (·−τ

2) and of uτ (·+τ
2). Chosing p arbitrary

values ui ∈ Ω, for every ηi > 0 such that ti + ηi < Tτ , the needle-like variation
π = {t1, . . . , tp, η1, . . . , ηp, u1, . . . , up} of the control uτ (·) is defined by

uπτ (t) :=

{

ui t ∈ [ti, ti + ηi),

uτ (t) otherwise.
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Control uπτ (·) takes its values in Ω and, by continuity w.r.t. initial data, it is clear
that, if every ηi > 0 is small enough, then uπτ (·) ∈ Ũτ

Ω. Moreover, the trajec-
tory x̃πτ (·) solution of (9) with control uπτ (·) converges uniformly to x̃τ (·) whenever
‖(η1, . . . , ηp)‖ → 0.

For every z ∈ Ω and appropriate Lebesgue point s, we define the vectors

ω−
z (s) := f̃(s, x̃τ (s), x̃τ (s− τ1), z, uτ (s− τ2))(10)

− f̃(s, x̃τ (s), x̃τ (s− τ1), uτ (s), uτ (s− τ2))

ω+
z (s) := f̃(s+ τ2, x̃τ (s+ τ2), x̃τ (s+ τ2 − τ1), uτ (s+ τ2), z)(11)

− f̃(s+ τ2, x̃τ (s+ τ2), x̃τ (s+ τ2 − τ1), uτ (s+ τ2), uτ (s))

and, given ξ ∈ R
n+1 and s ∈ (0, Tτ), we denote ṽτs,ξ(·) the solution of































ψ̇(t) =
∂f̃

∂x
(t, x̃τ (t), x̃τ (t− τ1), uτ (t), uτ (t− τ2))ψ(t)

+
∂f̃

∂y
(t, x̃τ (t), x̃τ (t− τ1), uτ (t), uτ (t− τ2))ψ(t− τ1)

ψ(s) = ξ , ψ(t) = 0 , t ∈ (s− τ1, s)

(12)

Vectors ṽτs,ξ(·) are called variations vectors. The first crucial part of the proof of the
Maximum Principle consists of the following result.

Lemma A.2. Let δ ∈ R small enough. Then, for every Lebesgue point t ≤ Tτ of
uτ (·) and uτ (· − τ2), the following expression holds

x̃πτ (t+ δ) = x̃τ (t) + δf̃(t, x̃τ (t), x̃τ (t− τ1), uτ (t), uτ (t− τ2))

+

p
∑

i=1

ηi

(

ṽτ
ti,ω

−

ui
(ti)

(t) + ṽτ
ti+τ2,ω+

ui
(ti)

(t)
)

+ o
(

δ +

p
∑

i=1

ηi

)

Proof. This is done by induction on Gronwall inequalities as in the classical proof
of the PMP. Unlike the classical approach, additional p terms of type

∫ ti+τ2+ηi

ti+τ2

[

f̃(s, x̃π
τ (s), x̃

π
τ (s− τ

1), uτ (s), ui)− f(s, x̃τ (s), x̃τ (s− τ
1), uτ (s), uτ (s− τ

2))
]

ds

appear, producing further discontinuities in the derivative of the trajectory at ti+τ
2.

It is useful to denote w̃τ
s,z(t) := ṽτ

s,ω−

z (s)
(t) + ṽτ

s+τ2,ω+
z (s)

(t).

Definition A.3. For every t ∈ (0, Tτ ], the first Pontryagin cone K̃τ (t) ⊆ R
n+1

at x̃τ (t) for the extended system is defined as the closed convex cone containing vec-
tors w̃τ

s,z(t) where z ∈ Ω and 0 < s < t is a Lebesgue point of uτ (·), uτ (· − τ2)

and of uτ (· + τ2). The augmented first Pontryagin cone K̃τ
1 (t) ⊆ R

n+1 at x̃τ (t) for
the extended system is defined as the closed convex cone containing f̃(t, x̃τ (t), x̃τ (t−
τ1), uτ (t), uτ (t − τ2)), −f̃(t, x̃τ (t), x̃τ (t − τ1), uτ (t), uτ (t − τ2)) and vectors w̃τ

s,z(t)
where z ∈ Ω and 0 < s < t is a Lebesgue point of uτ (·), uτ (· − τ2) and of uτ (·+ τ2).

The first Pontryagin cone Kτ (t) ⊆ R
n and the augmented first Pontryagin cone

Kτ
1 (t) ⊆ R

n at xτ (t) for the initial system are defined similarly, considering the initial
dynamics f instead of the extended dynamics f̃ . Obviously, Kτ (t) and Kτ

1 (t) are the
projections on R

n respectively of K̃τ (t) and K̃τ
1 (t).
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A.1.3. The Maximum Principle. The proof of the Maximum Principle using
needle-like variations argues by contradiction using the definition of first Pontryagin
cones and the following lemma, whose proof can be found in [45].

Lemma A.4 (Conic Implicit Function Theorem). Let C ⊆ R
m be a convex subset

with non empty interior, of vertex 0, and F : C → R
n be a Lipschitzian mapping such

that F (0) = 0 and F is Gâteaux differentiable at 0. Assume that dF (0) · Cone(C) =
R

n, where Cone(C) stands for the convex cone generated by elements of C. Then, 0
belongs to the interior of F (V ∩ C), for every neighborhood V of 0 in R

m.

Now, consider any integer p ≥ 1 and a positive real number εp > 0. Define

Gτ
p : Bεp(0) ∩ R× R

p
+ → R

n+1 : (δ, η1, . . . , ηp) 7→ x̃πτ (Tτ + δ)− x̃τ (Tτ )

where π is a variation and εp is small enough such that Gτ
p is well defined. We have:

• Gτ
p(0) = 0 and Gτ

p is Lipschitz continuous;
• Gτ

p is Gâteaux differentiable at 0 (from Lemma A.2);
Note that, the Lipschitz behavior of Gτ

p is proved by a recursive use of needle-like
variations at ti − ε, 1 ≤ i ≤ p (for ε small enough), Lebesgue points of u(·). Since
ti − ε are Lebesgue points of u(·) only for almost every ε, the recursive use of Lemma
A.2 can be done only almost everywhere. The conclusion follows from the continuity
of Gτ

p. The Maximum Principle is then established as follows.

Suppose, by contradiction, that K̃τ
1 (Tτ ) coincides with R

n+1. Then, by definition,
there would exist an integer p ≥ 1, a variation and a positive real number εp > 0 such
that dGτ

p(0) · (R × R
p
+) = R

n+1, and then Lemma A.4 would imply that the point

x̃τ (Tτ ) belongs to the interior of the accessible set Ãτ,Ω(Tτ ), which contradicts Lemma
A.1. Therefore:

Lemma A.5. There exists ψ̃τ ∈ R
n+1 \ {0} (Lagrange multiplier) such that

〈ψ̃τ , f̃(Tτ , x̃τ (Tτ ), x̃τ (Tτ − τ1), uτ (Tτ ), uτ (Tτ − τ2))〉 = 0

〈ψ̃τ , ṽτ 〉 ≤ 0 , ∀ ṽτ ∈ K̃τ(Tτ )

These relations permit to derive (in the usual way, see, e.g. [14]) the necessary condi-
tions (3)-(5) given in the first section. The relation with the above Lagrange multiplier
ψ̃τ = (ψτ , ψ

0
τ ) is that the adjoint vector is constructed so that pτ (Tτ ) = ψτ , p

0
τ = ψ0

τ .
From the previous considerations, the following useful result follows

Lemma A.6. Suppose that the final time Tτ of (OCP)τ is free. For the optimal
trajectory xτ (·) the following statements are equivalent:

• The trajectory xτ (·) has an unique extremal lift (xτ (·), pτ (·), p
0
τ , uτ (·)) whose

adjoint (pτ (·), p
0
τ ) is unique up to a multiplicative scalar, which is moreover

normal i.e., p0τ < 0;
• K̃τ

1 (Tτ ) is a half-space of Rn+1 and Kτ
1 (Tτ ) = R

n.

A.2. Proof of the Main Result. The proof exploits the results introduced
previously. Unfortunately, Lemma A.4 does not take into account the dependence
w.r.t. the delay τ and a more general version of this lemma, depending on parameters,
must be introduced.

As pointed out previously, when the delay varies, Lemma A.2 can be applied
only to almost every τ . This obliges to introduce a notion of conic implicit function
theorem depending on parameters on dense subsets.

A function f : C ⊆ R
n → R

m is said almost everywhere strictly differentiable at
some point x0 ∈ C whenever there exists a linear continuous mapping df(x0) : R

n →
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R
m, such that

f(y)− f(x) = df(x0) · (y − x) + ‖y − x‖g(x, y)

for almost every x, y ∈ C, where g(x, y) → 0 as ‖x− x0‖+ ‖y − x0‖
a.e.
−−→ 0.

Lemma A.7. Let C ⊆ R
m be an open convex subset with non empty interior, of

vertex 0, and F : R2
+ × C → R

n : (ε1, ε2, x) 7→ F (ε1, ε2, x) be a continuous mapping
satisfying the following assumptions:

• F (0, 0, 0) = 0;
• For almost every ε1, ε2 ≥ 0, F is almost everywhere strictly differentiable

w.r.t. x at 0, and
∂F

∂x
(ε1, ε2, 0) is approximately continuous w.r.t. (ε1, ε2);

•
∂F

∂x
(0, 0, 0) · Cone(C) = R

n.

Then, there exists ε0 > 0, a neighborhood V of 0 in R
n, and a continuous function

h : [0, ε0)
2 × V → R

m with values in C, such that

F (ε1, ε2, h(ε1, ε2, y)) = y

for every (ε1, ε2) ∈ [0, ε0)
2 and every y ∈ V .

The proof of Lemma A.7 is done in Appendix B.
From now on, assume that assumptions (A1), (A2), (A3) and (A4) hold and we

summon the other assumptions of Theorem 2.1 when they are needed. Moreover, in
the sequel (x(·), u(·)) denotes the (unique) solution of (OCP) and we assume that
its related final time T is a Lebesgue point of u(·) (if not, we refer the reader to the
approach proposed by [44]) and it is free (otherwise, the proof is similar but simpler).
We divide the proof in several main subparts.

A.2.1. Controllability. For any integer p ≥ 1, fix 0 < t1 < · · · < tp < T
Lebesgue points of control u(·) and p arbitrary values ui ∈ Ω. We denote v|n the
first n coordinates of a vector v ∈ R

n+1. For an appropriate small positive real
number εp > 0, denoting by x̃(ε1,ε2)(·) the trajectory solution of (9) with control
u(ε1,ε2)(·) = u(·), we define the mapping

Γ : Bεp(0) ∩ (R2
+ × R× R

p
+) → R

n : (ε1, ε2, δ, η1, . . . , ηp) 7→ [x̃π(ε1,ε2)(T + δ)− x̃(T )]|n

Thanks to Assumption (A2) and by continuity w.r.t. initial data, Γ is well defined
and continuous. Moreover, Γ(0, . . . , 0) = 0 and we note that

Γ(ε1, ε2, δ, η1, . . . , ηp) = [x̃π(ε1,ε2)(T + δ)− x̃(ε1,ε2)(T )]|n + [x̃(ε1,ε2)(T )− x̃(T )]|n

From Lemma A.2 and a recursive use of needle-like variations, it follows that, for
almost every (ε1, ε2) ∈ R

2
+ small enough, Γ is almost everywhere strictly differen-

tiable w.r.t. (δ, η1, . . . , ηp) at 0 and
∂Γ

∂(δ, η1, . . . , ηp)
(ε1, ε2, 0) is approximately con-

tinuous w.r.t. (ε1, ε2). Finally, from Assumption (A3), the unique extremal lift
of x(·) is normal, hence, it follows from Lemma A.6 (applied to the non-delayed
case) that K0

1(T ) = R
n. Therefore, exploiting the particular form of the dynam-

ics of (OCP)τ , there exist a real number δ, an integer p ≤ 1 and a variation
π = {t1, . . . , tp, η1, . . . , ηp, u1, . . . , up} such that the associated mapping Γ satisfies

∂Γ

∂(δ, η1, . . . , ηp)
(0, 0, 0) · (R× R

p
+) = K0

1(T ) = R
n .
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Then, Lemma A.7 implies that there exists τ0 > 0 such that, for every τ =
(τ1, τ2) ∈ [0, τ0)

2, there exist a real number δτ and positive real numbers ητ1 , . . . , η
τ
p

such that Γ(τ1, τ2, δτ , η
τ
1 , . . . , η

τ
p ) = 0. Moreover, δτ is small whenever τ0 is small

enough. From Assumption (A4), it follows that the subset M is reachable for the
control system (1), in a final time Tτ ∈ [0, b], using control uπ(τ1,τ2)(·) ∈ L∞([0, Tτ ],Ω).

We have proved that, for every τ = (τ1, τ2) ∈ (0, τ0)
2, (OCP)τ is controllable.

Note that the previous argument still holds for optimal control problems (OCP)τ
with pure state delays τ = (τ1, 0).

A.2.2. Existence of Optimal Controls. Now, we focus on the existence of an
optimal control for (OCP)τ , for every τ = (τ1, τ2) ∈ (0, τ0)

2.
First, we focus on the case where f and f0 are affine in the two control variables.

No other assumptions but (A1)-(A4) are considered. Notice that, in this case, the
existence can be achieved by using the arguments in [46, Theorem 2]. However, we
prefer to develop the usual Filippov’s scheme (following [47]) to highlight the difficulty
in applying this scheme to more general dynamical systems (see Remark A.8).

Fix τ = (τ1, τ2) ∈ (0, τ0)
2 and let

α = inf
uτ (·)∈Uτ

Ω

CTτ (uτ )(τ, uτ (·)) =

∫ Tτ (uτ )

0

f0(t, xτ (t), xτ (t− τ1), uτ (t), uτ (t− τ2)) dt

Consider now a minimizing sequence of trajectories xτ,k(·) associated to uτ,k(·) i.e.,

CTτ (uτ,k)(τ, uτ,k(·)) → α when k → ∞ and define F̃k(t) := f̃(t, xτ,k(t), xτ,k(t −
τ1), uτ,k(t), uτ,k(t−τ

2)) for almost every t ∈ [0, Tτ(uτ,k)]. By Assumption (A4), we can

extend F̃k(·) by zero on (Tτ (uτ,k), b] so that (F̃k(·))k∈N is bounded in L∞([0, b],Rn+1).

Then, up to some subsequence, (F̃k(·))k∈N converges to some F̃ (·) = (F (·), F 0(·)) ∈
L∞([0, b],Rn+1) for the weak star topology of L∞. Up to some subsequence, the
sequence (Tτ (uτ,k))k∈N converges to some T̄ ≥ 0. Now, we define

y(t) := φ1(t)1[−∆,0)(t) + 1[0,T̄ ](t)

[

φ1(0) +

∫ t

0

F (s) ds

]

for every t ∈ [−∆, T̄ ]. Clearly, y(·) is absolutely constinuous and, taking continuous
extensions, (xτ,k(·))k∈N converges pointwise to y(·) within [−∆, T̄ ]. Firstly, we show
that y(·) comes from an admissible control in Uτ

T̄ ,Ω
.

For almost every t ∈ [0, Tτ (uτ,k)], set h̃k(t) := f̃(t, y(t), y(t− τ1), uτ,k(t), uτ,k(t−
τ2)) and, if Tτ (uτ,k) + τ2 < T̄ , extend it by 0 on (Tτ (uτ,k), b]. Now, we introduce
several structures to deal with the presence of the control delay τ2. First, let

β := max{|f0(t, x, y, u, v)| : 0 ≤ t ≤ b, ‖(x, y)‖ ≤ b, (u, v) ∈ Ω2} > 0

Let N ∈ N such that Nτ2 ≤ T̄ < (N +1)τ2. Taking continuous extensions, we clearly
see that y(·) is defined on [−∆, (N + 1)τ2]. Then, a.e. in [0, τ2], we define

(13) G(t, u
1
, . . . , u

N+1
, γ

1
, . . . , γ

N+1
) =























f(t, y(t), y(t − τ1), u1, φ2(t − τ2))

f0(t, y(t), y(t − τ1), u1, φ2(t − τ2)) + γ1

f(t + τ2, y(t + τ2), y(t + τ2
− τ1), u2, u1)

f0(t + τ2, y(t + τ2), y(t + τ2
− τ1), u2, u1) + γ2

. . .

f(t + Nτ2, y(t + Nτ2), y(t + Nτ2
− τ1), uN+1, uN )

f0(t + Nτ2, y(t + Nτ2), y(t + Nτ2
− τ1), uN+1, uN ) + γN+1
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and

Ṽβ(t) :=

{

G(t, u1, . . . , uN+1, γ1, . . . , γN+1) : (u1, . . . , uN+1) ∈ ΩN+1,∀i = 1, . . . , N + 1 : γi ≥ 0,

|f0(t, y(t), y(t − τ1), u1, φ2(t − τ2)) + γ1| ≤ β,

∀i = 1, . . . , N : |f0(t + iτ2, y(t + iτ2), y(t + iτ2 − τ1), ui+1, ui) + γi+1| ≤ β

}

By Assumption (A1), Ṽβ(t) is compact for the standard topology of R
(n+1)(N+1).

Moreover, it is not difficult to see that the assumption of affine dynamics and cost
and (A1) ensure that Ṽβ(t) is convex for the same topology. Finally, we introduce

Ṽ := {g̃(·) ∈ L2([0, τ2],R(n+1)(N+1)) : g̃(t) ∈ Ṽβ(t), a.e. [0, τ
2]}

Now, for every i = 0, . . . , N , we denote

g̃i+1
k (t) := f̃(t+ iτ2, y(t+ iτ2), y(t+ iτ2 − τ1), uτ,k(t+ iτ2), uτ,k(t+ (i− 1)τ2))

and g̃k(t) = (g̃1k(t), . . . , g̃
N+1
k (t)). Then g̃k(·) ∈ Ṽ, for every k ∈ N and Ṽ is convex

and closed in L2([0, τ2],R(n+1)(N+1)) for the strong topology of L2. From the second
statement, it follows that Ṽ is convex and closed in L2([0, τ2],R(n+1)(N+1)) for the
weak topology of L2. Since (g̃k(·))k∈N is bounded in L2([0, τ2],R(n+1)(N+1)), up to
some subsequence, it converges for the weak topology of L2 to a function g̃(·) that nec-
essarily belongs to Ṽ. We obtain that, for almost every t ∈ [0, τ2] and i = 1, . . . , N+1,
there exist ūiτ (t) ∈ Ω and γ̄iτ (t) ≥ 0 such that

g̃1(t) :=

(

f(t, y(t), y(t− τ1), ū1τ (t), φ
2(t− τ2))

f0(t, y(t), y(t− τ1), ū1τ (t), φ
2(t− τ2)) + γ̄1τ (t)

)

and, for every i = 1, . . . , N ,

g̃i+1(t) :=

(

f(t+ iτ2, y(t+ iτ2), y(t+ iτ2 − τ1), ūi+1
τ (t), ūiτ (t))

f0(t+ iτ2, y(t+ iτ2), y(t+ iτ2 − τ1), ūi+1
τ (t), ūiτ (t)) + γ̄i+1

τ (t)

)

Moreover, since Ω is compact, functions ūiτ (·), γ̄
i
τ (·) can be chosen to be measurable

on [0, τ2] using a measurable selection lemma (see, e.g. [43, Lemma 3A, page 161]).
Now, set

ūτ (t) :=

{

φ2(t) t ∈ [−τ2, 0],
ūiτ (t− iτ2) t ∈ [iτ2, (i+ 1)τ2], i = 0, . . . , N

γ̄τ (t) := γ̄iτ (t− iτ2) t ∈ [iτ2, (i+ 1)τ2], i = 0, . . . , N

which are measurable functions and let

h̃(t) :=

(

f(t, y(t), y(t− τ1), ūτ (t), ūτ (t− τ2))
f0(t, y(t), y(t− τ1), ūτ (t), ūτ (t− τ2)) + γ̄τ (t)

)

From the weak convergence in L∞ of (g̃k(·))k∈N towards g̃(·) it follows that (h̃k(·))k∈N

converges to h̃(·) for the weak topology of L2. Since lim
k→∞

∫ T̄

0 ϕ(t)
(

F̃k(t)−h̃k(t)
)

dt = 0

for every ϕ(·) ∈ L2([0, T̄ ],Rn+1), we infer that h̃ = F̃ almost everywhere in [0, T̄ ].
Then

y(t) := φ1(t)1[−∆,0)(t)+1[0,T̄ ](t)

[

φ1(0)+

∫ t

0

f(t, y(t), y(t− τ1), ūτ (t), ūτ (t− τ2)) ds

]
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It remains to show that control ūτ (·) is optimal for (OCP)τ . First of all,
since M is compact and (xτ,k(Tτ (uτ,k)))k∈N ⊆ M , from what we showed previ-
ously, we necessarily obtain y(T ) ∈ M . Furthermore, from what we showed above
and by definition of weak star convergence, we have CTτ (uτ,k)(τ, uτ,k(·)) → α and

CTτ (uτ,k)(τ, uτ,k(·)) →
∫ T̄

0

(

f0(t, y(t), y(t − τ1), ūτ (t), ūτ (t − τ2)) + γ̄τ (t)
)

dt. Since
γ̄τ (·) takes only non negative values, it follows that

∫ T̄

0

f0(t, y(t), y(t− τ1), ūτ (t), ūτ (t− τ2)) dt ≤ α ≤ CTτ (vτ )(τ, vτ (·))

for every vτ (·) ∈ Uτ
Ω. Then, γ̄τ (·) is necessarily zero and the conclusion follows.

Now, consider pure state delays i.e., problems (OCP)τ where τ = (τ1, 0). It
is clear that, if Assumption (B2) holds, one can proceed with the same procedure
as above (which is nothing else but the usual Filippov’s argument) to achieve the
existence of optimal controls. Of course, Guinn’s reduction (13) is not needed.

Remark A.8. Guinn’s reduction (13) converts the dynamics with control delays
into a new dynamics without delays but with a larger number of variables. It is clear,
from the context, that the natural assumption to provide the existence of optimal
controls for generic nonlinear dynamics is the convexity of system (13) for every
N ∈ N (since the delay varies), which is a too strong assumption. From this, we see
that the proof of Lemma 2.1 in [28] does not work under the weaker assumption of
convexity of the epigraph of the extended dynamics.

A.2.3. Convergence of Trajectories and Controls. Let us now establish
the convergence properties of the trajectories and related controls and/or dynamics.

We start by considering general nonlinear dynamics and costs, assuming the ex-
istence of optimal controls of (OCP)τ for every τ = (τ1, τ2) ∈ (0, τ0)

2. Assumptions
(C1), (C2) and (C3) are now required. Note that this concerns also the case of control
systems with dynamics and cost affine w.r.t. the two control variables satisfying (C1),
whose existence of optimal controls was proved in the previous paragraph.

Let (τk)k∈N = ((τ1k , τ
2
k ))k∈N ∈ (0, τ0)

2 an arbitrary sequence converging to 0
as k tends to ∞ and let (xτk(·), uτk(·)) be an optimal solution of (OCP)τk with
final time Tτk(uτk). Since Tτ (uτ ) ∈ [0, b], up to some subsequence, the sequence
(Tτk)k∈N := (Tτk(uτk))k∈N converges to some T̄ ∈ [0, b] and, since M is compact, the
sequence (xτk(Tτk)k∈N ⊆M converges up to some subsequence to a point in M .

For every integer k and almost every t ∈ [0, Tτk ], set g̃k(t) := f̃(t, xτk(t), xτk(t −
τ1k ), uτk(t), uτk(t− τ

2
k )). By Assumption (A4), we extend g̃k(·) by zero on (Tτk , b]. As-

sumptions (A1) and (A4) imply that the sequence (g̃k(·))k∈N is bounded in L∞, then,
up to some subsequence, it converges to some g̃(·) = (g(·), g0(·)) ∈ L∞([0, b],Rn+1)
for the weak star topology of L∞. Exploiting the weak star convergence of L∞ (using
1[T̄ ,b]g̃ as test function), we get that g̃(t) = 0 for almost every t ∈ [T̄ , b]. Then, for

every t ∈ [0, T̄ ], denote

(14) x̄(t) := φ1(t)1[−∆,0)(t) + 1[0,T̄ ](t)

[

φ1(0) +

∫ t

0

g(s) ds

]

Clearly, x̄(·) is absolutely continuous and x̄(t) = limk→∞ xτk(t) pointwise in [−∆, T̄ ].
Moreover, by (A1), (A4) and the Arzelà-Ascoli theorem, up to some subsequence,
xτk(·) converges to x̄(·), uniformly in [−∆, T̄ ]. In particular, by continuity, x̄(T̄ ) ∈M .

Let us prove that there exists a control ū(·) ∈ L∞([0, T̄ ],Ω) such that x̄(·) is an
admissible trajectory of (OCP) associated with control ū(·).
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Using the definition of β given previously, for every t ∈ [0, T̄ ], we consider the set

Z̃β(t) :=

{(

f(t, x̄(t), x̄(t), u, v)
f0(t, x̄(t), x̄(t), u, v) + γ

)

: (u, v) ∈ Ω2
, γ ≥ 0, |f0(t, x̄(t), x̄(t), u, v) + γ| ≤ β

}

Assumption (C3) provides that Z̃β(t) is compact and convex for the standard topology
of Rn+1. Then, let us consider the following statements.

• For every δ > 0, t ∈ [0, T̄ ], the set Z̃δ(t) := {x ∈ R
n+1 : d(x, Z̃β(t)) ≤ δ},

where d is the standard set distance, is convex and compact for the standard
topology of Rn+1. This fact is straightforward.

• For every δ > 0, the set

Z̃δ := {g̃(·) ∈ L2([0, T̄ ],Rn+1) : g̃(t) ∈ Z̃δ(t) for almost every t ∈ [0, T̄ ]}

is convex and closed in L2([0, T̄ ],Rn+1) for the strong topology of L2. Then,
it is closed in L2([0, T̄ ],Rn+1) for the weak topology of L2.

Convexity is obvious. Let (w̃k(·))k∈N ∈ Z̃δ such that w̃k(·)
L2

−−→ w̃(·). Then

w̃(·) ∈ L2([0, T̄ ],Rn+1) and there exists a subsequence such that w̃km
(·)

a.e
−−→

w̃(·). Since Z̃δ(t) is closed for the standard topology of Rn+1, for almost every
t ∈ [0, T̄ ], it holds w̃(t) = lim

m→∞
w̃km

(t) ∈ Z̃δ(t) and the statement follows.

• For every δ > 0, it exists an integer kδ such that: ∀k ≥ kδ : g̃k(·) ∈ Z̃δ.
Indeed, thanks to assumptions (A1), (A4), mappings f , f0 are globally Lips-

chitz onto [0, T̄ ]×B2n
b (0)×Ω2 and, using the mean value theorem, for almost

every t ∈ [0, T̄ ]

inf
z∈Z̃β(t)

‖g̃k(t)− z‖ ≤ C
[

‖xτk(t)− x̄(t)‖ + ‖xτk(t− τ1k )− x̄(t)‖
]

for a suitable constant C > 0. The conclusion follows.
Using the closedness of Z̃δ w.r.t. the weak topology of L2, we infer that g̃(·) ∈
Z̃δ, ∀ δ > 0. This implies that g̃(·) ∈ Z̃0. We obtain that, for almost every t ∈ [0, T̄ ],
there exist v̄(t), w̄(t) ∈ Ω and χ̄(t) ≥ 0 such that

(15) g̃(t) :=

(

f(t, x̄(t), x̄(t), v̄(t), w̄(t))
f0(t, x̄(t), x̄(t), v̄(t), w̄(t)) + χ̄(t)

)

Moreover, since Ω is compact, functions v̄(·), w̄(·) and χ̄(·) can be chosen to be mea-
surable on [0, T̄ ] using the usual standard measurable selection lemma cited previously.

As final step, we want to show that
∫ T̄

0 g̃(t) · ϕ(t) dt =
∫ T̄

0 h̃(t) · ϕ(t) dt for every test
function ϕ(·) ∈ L2([0, T̄ ],Rn+1), where

h̃(t) =

(

f(t, x̄(t), x̄(t), ū(t), ū(t))
f0(t, x̄(t), x̄(t), ū(t), ū(t)) + γ̄(t)

)

with ū(·) ∈ L∞([0, T̄ ],Ω) and γ̄(·) is a non-negative measurable function. From this
and (14), it will follow that (x̄(·), ū(·)) is the admissible trajectory of (OCP) sought.

For this, we define h̃k(t) := f̃(t, xτk(t), xτk(t − τ1k ), uτk(t), uτk(t)) which, with the
obvious extensions presented previously, is bounded in L∞([0, b],Rn+1). Then, up

to some subsequence, it converges to some h̃(·) ∈ L∞([0, b],Rn+1) for the weak star

topology of L∞. Using exactly the previous argument where Z̃β(t) is replaced by

W̃β(t) :=

{(

f(t, x̄(t), x̄(t), u, u)
f0(t, x̄(t), x̄(t), u, u) + γ

)

: u ∈ Ω, γ ≥ 0, |f0(t, x̄(t), x̄(t), u, u) + γ| ≤ β

}
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it follows that there exist (again using (C3)), for almost every t ∈ [0, T̄ ], ū(t) ∈ Ω and
γ̄(t) ≥ 0 such that

h̃(t) =

(

f(t, x̄(t), x̄(t), ū(t), ū(t))
f0(t, x̄(t), x̄(t), ū(t), ū(t)) + γ̄(t)

)

Moreover, as done previously, the functions ū(·) and γ̄(·) can be chosen to be measur-
able on [0, T̄ ]. The last statement follows by proving that, up to some subsequence,

lim
k→∞

∫ T̄

0

(

f̃(t, xτk(t), xτk(t− τ1k ), uτk(t), uτk(t− τ2k ))

−f̃(t, xτk(t), xτk(t− τ1k ), uτk(t), uτk(t))

)

· ϕ(t) dt = 0

for every test function ϕ(·) ∈ L2([0, T̄ ],Rn+1). Then, fix ϕ(·) ∈ L2([0, T̄ ],Rn+1) and
consider the shift operator

Sτ : L2(R,Rm) → L2(R,Rm) :
(

t 7→ φ(t)
)

7→
(

t 7→ φ(t − τ)
)

Using the dominated convergence theorem, it is clear that, for every φ(·) ∈ L2(R,Rm),
it holds ‖Sτφ−φ‖L2 → 0 when τ → 0. Extending uτk(·), uτk(·−τ

2
k ) by zero out [−∆, b]

and considering Assumption (A4), up to some subsequence, (uτk(·))k∈N converges to
some µ̄(·) ∈ L2

loc(R,R
m) for the weak topology of L2

loc. Necessarily, up to some
subsequence, (uτk(· − τk))k∈N also converges to µ̄(·) for the weak topology of L2

loc.
Indeed, for every η(·) ∈ L2

loc(R,R
m), one has

∫

R

(uτk(t−τk)−µ̄(t))·η(t) dt =

∫

R

(uτk(t)−µ̄(t))·
(

S−τkη
)

(t) dt+

∫

R

(Sτk µ̄−µ̄)(t)·η(t) dt

=

∫

R

(uτk(t)−µ̄(t))·η(t) dt+

∫

R

(uτk(t)−µ̄(t))·
(

S−τkη−η
)

(t) dt+

∫

R

(Sτk µ̄−µ̄)(t)·η(t) dt

which clearly converges to 0. Now, Assumption (C1) gives that both (uτk(·))k∈N and
(uτk(· − τk))k∈N converge to µ̄(·) for the strong topology of L1

loc (see [32, Corollary
1]). This implies that, up to some subsequence, (uτk(·)− uτk(· − τ2k ))k∈N converges to
0 a.e. in [0, T̄ ]. Then, thanks to Assumption (C2), up to some subsequence,

∣

∣

∣

∣

∣

∫

T̄

0

(

f̃(t, xτk
(t), xτk

(t − τ
1
k), uτk

(t), uτk
(t − τ

2
k)) − f̃(t, xτk

(t), xτk
(t − τ

1
k), uτk

(t), uτk
(t))

)

· ϕ(t) dt

∣

∣

∣

∣

∣

≤ Λ ‖ϕ(·)‖L2 ‖uτk(· − τ2k )− uτk(·)‖L2 → 0

where Λ ≥ 0 is a constant and we use the dominated convergence theorem.
We complete this step by showing that T̄ = T and (x̄(·), ū(·)) = (x(·), u(·)).

We denote by CS(τ, w(·)) the cost of (OCP)τ given by the admissible control w(·)
and the final time S. First, the previous argument shows that CTτk

(τk, uτk(·)) →

CT̄ (0, ū(·))+
∫ T̄

0 γ̄(t) dt. By Section A.2.1, for every integer k, there exists a sequence
(Sk, wk(·), yk(·)) respectively of final times, admissible controls and trajectories of
(OCP)τk which converges to (T, u(·), x(·)) (with the evident topologies) as k converges
to ∞. By optimality, we have CTτk

(τk, uτk(·)) ≤ CSk
(τk, wk(·)). Since γ̄(t) ≥ 0,

passing to the limit gives CT̄ (0, ū(·)) ≤ CT (u(·)) and from Assumption (A2) we infer
that γ̄(·) = 0 and T̄ = T , (x̄(·), ū(·)) = (x(·), u(·)).
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All the previous arguments can be used to show that also, up to some subse-
quence, (uτk(·))k∈N converges to u(·) almost everywhere in [0, T ]. Indeed, if µ̄(·) ∈
L2
loc(R,R

m) is the previous limit for the weak topology of L2
loc of a subsequence of

(uτk(·))k∈N, the previous result shows that
∫ T̄

0 f̃(t, x̄(t), x̄(t), ū(t), ū(t)) · ϕ(t) dt =
∫ T̄

0 f̃(t, x̄(t), x̄(t), µ̄(t), µ̄(t)) · ϕ(t) dt for every test function ϕ(·) ∈ L2([0, T̄ ],Rn+1)
which means that u(·) = ū(·) generates the same trajectory and cost as µ(·), and so,
by uniqueness, µ(·) = u(·).

Now, we consider the case consisting of pure state delays i.e., problems (OCP)τ
such that τ = (τ1, 0) ∈ (0, τ0)×{0}. It is not difficult to see that the argument above
until expression (15) can be iterated in this context, with the help of Assumption

(B2), by substituting Z̃β(t) with
{(

f1(t, x, y, u), f
0
1 (t, x, y, u) + γ,

∂f̃1

∂x
(t, x, y, u),

∂f̃1

∂y
(t, x, y, u)

)

: u ∈ Ω, γ ≥ 0, |f0
1 (t, x̄(t), x̄(t), u, v) + γ| ≤ β

}

to obtain the sought convergence of trajectories, costs and dynamics (instead of opti-
mal controls). Moreover, the convexity of the epigraph concerning the derivatives of
the dynamics leads to the following weak convergences (useful in the sequel)



















∂f̃1

∂x
(·, xτk(·), xτk(· − τ

1
k ), uτk (·))

(L∞)∗

⇀
∂f̃1

∂x
(·, x(·), x(·), u(·))

∂f̃1

∂y
(·, xτk(·), xτk(· − τ

1
k ), uτk (·))

(L∞)∗

⇀
∂f̃1

∂y
(·, x(·), x(·), u(·))

(16)

At this step, for every considered case, we have shown that (T, x(·), u(·)) (substi-
tuted by (T, x(·), ẋ(·)) for the case of pure state delays) is the unique closure point (for
the topologies used above) of (Tτk , xτk(·), uτk(·))k∈N ((Tτk , xτk(·), ẋτk(·))k∈N for the
cases of pure state delays), for any (sub)sequence of delays (τk)k∈N converging to 0 and
therefore the convergence holds as well for the whole family (Tτ , xτ (·), uτ (·))τ∈(0,τ0)2

((Tτ , xτ (·), ẋτ (·))τ∈(0,τ0)2 for the cases of pure state delays).

A.2.4. Convergence of the Adjoint Vectors. In the sequel, (xτ (·), uτ (·))
will denote an optimal solution of (OCP)τ defined on [−∆, Tτ ] such that, if needed,
it is extended continuously in [−∆, T ]. From the PMP, it follows that xτ (·) is the
projection of an extremal (xτ (·), pτ (·), p

0
τ , uτ (·)) which satisfies (3). From now on, we

consider that either Assumption (B1) or Assumption (C1) are satisfied, depending
on whether we consider pure state delays or not. We remind that (C1) implies the
convergence almost everywhere of (uτ (·))τ∈(0,τ0)2 towards u(·).

The main step of this part consists in showing the convergence of the Pontryagin
cone of (OCP)τ towards the Pontryagin cone related to (OCP). Since the definition
of variation vectors relies on Lebesgue points of optimal controls, we need first an
appropriate set of converging Lebesgue points.

Lemma A.9. Consider (OCP)τ with pure state delays i.e., τ = (τ1, 0). For every
s ∈ (0, T ), Lebesgue point of function f̃1(·, x(·), x(·), u(·), u(·)), there exists a family
(sτ )τ1∈(0,τ0) ⊆ [s, T ), which are Lebesgue points of f̃1(·, xτ (·), xτ (· − τ1), uτ (·)), such

that f̃1(sτ , xτ (sτ ), xτ (sτ − τ1), uτ (sτ )) → f̃1(s, x(s), x(s), u(s)) and sτ → s as τ → 0.
Conversely, if we consider (OCP)τ with general delays τ = (τ1, τ2), for every

s ∈ (0, T ), Lebesgue point of u(·), there exists a family (sτ )τ∈(0,τ0)2 ⊆ [s, T ), which
are Lebesgue points of uτ (·), uτ (· − τ2) and of uτ (· + τ2), such that uτ (sτ ) → u(s),
uτ (sτ − τ2) → u(s), uτ (sτ + τ2) → u(s) and sτ → s as τ → 0.
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Proof of Lemma A.9. We start by proving the first assertion. Denote hτ (t) =
(hτ1(t), . . . , h

τ
n+1(t)) := f̃1(t, xτ (t), xτ (t−τ

1), uτ (t)) and h(t) = (h1(t), . . . , hn+1(t)) :=

f̃1(t, x(t), x(t), u(t)). Let us prove that, for every s ∈ (0, T ) Lebesgue point of function
h(·), for every β > 0, αs > 0 (small enough so that s+αs < T ), there exists γs,αs,β > 0
such that, for every τ1 ∈ (0, γs,αs,β), there exists sτ ∈ [s, s + αs] Lebesgue point of
function hτ (·) for which ‖hτ (sτ ) − h(s)‖ < β. By contradiction, suppose that there
exists s ∈ (0, T ) Lebesgue point of the function h(·), αs > 0, β > 0 such that, for every
integer k, there exists τk ∈ (0, 1/k)× {0} and ik ∈ {1, . . . , n+ 1} for which, for every
t ∈ [s, s+αs] Lebesgue point of function h

τk(·), there holds |hτkik (t)−hik(s)| ≥ β. From
the previous results, the family (hτ (·))τ∈(0,τ0)×{0} converges to h(·) in L

∞ for the weak
star topology. From this, the restriction of the components of (hτ (·))τ∈(0,τ0)×{0} to
[s, s+αs] converges to the restriction of the components of h(·) to [s, s+αs] in the L1

norm. This means that, for every ε > 0 and component i, there exists an integer kε,i

such that, for every k ≥ kε,i, it holds
∣

∣

∣

∫ s+αs

s
hτki (t) dt−

∫ s+αs

s
hi(t) dt

∣

∣

∣
< ε. Since s is

a Lebesgue point of h(·), it exists a real δαs,i such that
∫ s+αs

s
hi(s) ds = hi(s)+ δαs,i.

Without loss of generality, we can assume β > δαs,i and let M > 0 such that β/M +
δαs,i < β, −β/M + δαs,i > −β. Assumption (B1) implies that hτ (·) is continuous for
every τ1 > 0, and then, there exists tk,i ∈ [s, s+αs] and an integer ks,αs,β,i such that,

for every i and every k ≥ ks,αs,β,i,
∣

∣

∣
hτki (tk,i)−

∫ s+αs

s
hi(t) dt

∣

∣

∣
< βαs/M . This implies

that there exists an integer k̃ := maxi ks,αs,β,i such that for every τk ∈ (0, 1/k̃)× {0}
and every i ∈ {1, . . . , n + 1} there exists tk,i ∈ [s, s + αs] Lebesgue point of function
hτk(·) (because hτk(·) is continuous) such that |hτki (tk,i)−hi(s)| < β, a contradiction.

Now, we consider the second statement. Without loss of generality, we extend
uτ (·) by some constant vector of Ω in [Tτ , b]. Denote hτ (t) = (h1τ (t), . . . , h

3m
τ (t)) :=

(

uτ (t), uτ (t− τ2), uτ (t+ τ2)
)

, h(t) = (h1(t), . . . , h3m(t)) :=
(

u(t), u(t), u(t)
)

and fix

s ∈ (0, T ), Lebesgue point of h(·). By contradiction, suppose that there exist β > 0
and α > 0 such that, for every integer k, there exist τk = (τ1k , τ

2
k ) ∈ (0, 1/k)2 and

ik ∈ {1, . . . , 3m} for which, for every r ∈ [s, s + α] Lebesgue point of hτk(·), it holds
|hikτk(r)− hik(s)| ≥ β. From the previous argument, up to some extension, the family
(uτ (·))τ∈(0,τ0)2 converges to u(·) almost everywhere in [0, T ]. Clearly, the same holds
true for (uτ (· − τ2))τ∈(0,τ0)2 and (uτ (· + τ2))τ∈(0,τ0)2 . Then, (hiτk(·))k∈N converges
almost everywhere to hi(·), raising a contradiction.

We are now able to prove the convergence property for Pontryagin cones.

Lemma A.10. For every ṽ ∈ K̃0(T ) and every τ = (τ1, τ2) ∈ (0, τ0)
2 (or τ =

(τ1, 0) ∈ (0, τ0)× {0} in the case of pure state delays), there exists ṽτ ∈ K̃τ (Tτ ) such
that ṽτ converges to ṽ as τ tends to 0.

Proof of Lemma A.10. We prove the statement for problems (OCP)τ with gen-
eral delays τ = (τ1, τ2). If pure state delays τ = (τ1, 0) are considered, the same
guideline can be used by exploiting Lemma A.9 and (16).

Suppose first that ṽ = w̃0
s,z(T ), where z ∈ Ω and 0 < s < T is a Lebesgue point

of u(·). By definition, w̃0
s,z(·) is the solution of











ψ̇(t) =

(

∂f̃

∂x
(t, x(t), x(t), u(t), u(t)) +

∂f̃

∂y
(t, x(t), x(t), u(t), u(t))

)

ψ(t)

ψ(s) = f̃(s, x(s), x(s), z, z)− f̃(s, x(s), x(s), u(s), u(s))

(17)

From Lemma A.9, there exists a family (sτ )τ∈(0,τ0)2 ⊆ [s, T ), which are Lebesgue
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points of uτ (·), uτ (· − τ2) and of uτ (· + τ2), such that uτ (sτ ) → u(s), uτ (sτ −
τ2) → u(s), uτ (sτ + τ2) → u(s) and sτ → s as τ → 0. Then, we are able to
consider ṽτ

sτ ,ω
−

z (sτ )
(·) and ṽτ

sτ+τ2,ω+
z (sτ )

(·), solutions of (12) with initial data provided

respectively by (10) and (11), and we denote w̃τ
sτ ,z

(t) = ṽτ
sτ ,ω

−

z (sτ )
(t)+ṽτ

sτ+τ2,ω+
z (sτ )

(t).

Using the particular form of the dynamics and the cost of (OCP)τ , Lemma A.9

gives limτ→0

(

ω−
z (sτ ) + ω+

z (sτ )
)

= f̃(s, x(s), x(s), z, z) − f̃(s, x(s), x(s), u(s), u(s)).

Moreover, from the previous sections, ∂f̃
∂x

(·, xτ (·), xτ (· − τ1), uτ (·), uτ (· − τ2)) and
∂f̃
∂y

(·, xτ (·), xτ (· − τ1), uτ (·), uτ (· − τ2)) tend respectively to ∂f̃
∂x

(·, x(·), x(·), u(·), u(·))

and ∂f̃
∂y

(·, x(·), x(·), u(·), u(·)) for the weak star topology of L∞, as τ → 0. By the
continuous dependence w.r.t. intial data and since Tτ converges to T , it follows
immediately that ṽτ := w̃τ

sτ ,z
(Tτ ) ∈ K̃τ (Tτ ) converges to ṽ as τ tends to 0. The

extension to general ṽ ∈ K̃0(T ) is then straightforward.

For the last part of the proof, an iterative use of Lemma A.10 is done. In this
context, a distinction between problems with pure state delays and problems with
general delays is not needed anymore because the concerned proofs are the same.
Then, we focus only on (OCP)τ with general delays τ = (τ1, τ2). Assumptions (B1)
and (C1) are always implicitly assumed.

We need first to prove that, considering if necessary a smaller τ0 > 0, for every
τ = (τ1, τ2) ∈ (0, τ0)

2, every extremal lift (xτ (·), pτ (·), p
0
τ , uτ (·)) of any solution of

(OCP)τ is normal. Moreover, the set {pτ(Tτ ) : τ ∈ (0, τ0)
2} is bounded.

We consider the first statement proceeding by contradiction. Assume that, for
every integer k, there exist τk = (τ1k , τ

2
k ) ∈ (0, 1/k)2 and a solution (xτk(·), uτk(·))

of (OCP)τk having an abnormal extremal lift (xτk(·), pτk(·), 0, uτk(·)). Set ψτk =

pτk(Tτk) for every integer k. Then, there holds
〈

(ψτk , 0), ṽτk

〉

≤ 0, for every ṽτk ∈

K̃τk(Tτk), and, since the final time is free, we infer that 〈ψτk , f(Tτk , xτk(Tτk), xτk(Tτk−
τ1k ), uτk(Tτk), uτk(Tτk − τ2k ))〉 = 0, for every integer k. Since the final adjoint vector
(pτk(·), p

0
τk

= 0) is defined up to a multiplicative scalar, we assume that ψτk is a unit
vector for every integer k. Then, up to a subsequence, the sequence (ψτk)k∈N converges
to some unit vector ψ ∈ R

n. Using the previous results, passing to the limit we infer

that
〈

(ψ, 0), ṽ
〉

≤ 0 for every ṽ ∈ K̃0(T ) and that 〈ψ, f(T, x(T ), x(T ), u(T ), u(T ))〉 =

0. It then follows that (x(·), u(·)) has an abnormal extremal lift. This contradicts
Assumption (A3).

For the second statement, again by contradiction, assume that there exists a
sequence (τk = (τ1k , τ

2
k ))k∈N ⊆ (0, τ0)

2 converging to 0 such that ‖pτk(Tτk)‖ tends to

+∞. Since the sequence
(

pτk
(Tτk

)

‖pτk
(Tτk

)‖

)

k∈N

is bounded in R
n, up to some subsequence,

it converges to some unit vector ψ. By the construction of the adjoint vector, we have
〈

(pτk(Tτk),−1), ṽτk

〉

≤ 0, for every ṽτk ∈ K̃τk(Tτk), and

〈pτk(Tτk), f(Tτk , xτk(Tτk), xτk(Tτk − τ1k ), uτk(Tτk), uτk(Tτk − τ2k ))〉

−f0(Tτk , xτk(Tτk), xτk(Tτk − τ1k ), uτk(Tτk), uτk(Tτk − τ2k )) = 0

for every integer k. Dividing by ‖pτk(Tτk)‖ and passing to the limit, thanks to the
previous results, it follows that the solution (x(·), u(·)) has an abnormal extremal lift,
which again contradicts Assumption (A3).
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Now, let ψ be a closure point of {pτ (Tτ ) : τ ∈ (0, τ0)
2} and (τk = (τ1k , τ

2
k ))k∈N ⊆

(0, τ0)
2 a sequence converging to 0 such that pτk(Tτk) tends to ψ. Using the continuous

dependence w.r.t. initial data and the convergence properties established, we infer
that the sequence (pτk(·))k∈N converges uniformly to the solution z(·) of the Cauchy
problem











ż(t) = −
∂H

∂x
(t, x(t), x(t), z(t),−1, u(t), u(t))−

∂H

∂y
(t, x(t), x(t), z(t),−1, u(t), u(t))

z(T ) = ψ

Moreover, since
〈

(pτk(Tτk),−1), ṽτk

〉

≤ 0, for every ṽτk ∈ K̃τk(Tτk) and

〈pτk(Tτk), f(Tτk , xτk(Tτk), xτk(Tτk − τ1k ), uτk(Tτk), uτk(Tτk − τ2k ))〉

−f0(Tτk , xτk(Tτk), xτk(Tτk − τ1k ), uτk(Tτk), uτk(Tτk − τ2k )) = 0

for every integer k, passing to the limit, thanks to the previous results, we ob-

tain
〈

(ψ,−1), ṽ
〉

≤ 0, for every ṽ ∈ K̃0(T ) and 〈ψ, f(T, x(T ), x(T ), u(T ), u(T ))〉 −

f0(T, x(T ), x(T ), u(T ), u(T )) = 0. It follows that (x(·), z(·),−1, u(·)) is a normal ex-
tremal lift of (OCP). By (A3), we obtain z(·) = p(·) in [0, T ], giving the conclusion.

Appendix B. Proof of Lemma A.7.
We start by recalling the following standard result (see [45] for a proof).

Lemma B.1. Let ℓ : Rm → R
n be a linear mapping such that ℓ(Rm

+ ) = R
n. Then,

• we have m > n+ 1 and the intersection (0,+∞)m ∩ ker ℓ is nontrivial;
• there exists a n-dimensional subspace W ⊆ R

m such that ℓ|W : W → R
n is

an isomorphism.

Applying this lemma to ℓ = ∂F
∂x

(0, 0, 0) yields the existence of a nontrivial vector
v ∈ (0,+∞)m such that ℓ(v) = 0, and the existence of a n-dimensional subspace
W ⊆ R

m such that ℓ|W :W → R
n is an isomorphism.

Let δ > 0 small enough such that v +Bδ = v +W ∩ B̄δ(0) ⊆ (0,+∞)m. The set
Uδ = ℓ(Bδ) is then a closed neighborhood of 0 in R

n. For every ε1, ε2 ≥ 0, y, u ∈ R
n,

set Φ(ε1, ε2, y, u) = u−F (ε1, ε2, ℓ|W
−1(u))+ y. There holds Φ(0, 0, 0, 0) = 0, and, for

almost every ε1, ε2 ≥ 0, y, u1, u2 ∈ R
n, one has

Φ(ε1, ε2, y, u1)−Φ(ε1, ε2, y, u2) = u1−u2+
∂F

∂x
(ε1, ε2, 0).ℓ|W

−1(u2−u1)+‖u2−u1‖g(ε1, ε2, u1, u2)

where g(ε1, ε2, u1, u2) → 0 as soon as ‖u1‖ + ‖u2‖
a.e.
−−→ 0. Since ∂F

∂x
is approxi-

mately continuous w.r.t. (ε1, ε2), it follows that, up to sets of measure zero, the

mapping ∂F
∂x

(ε1, ε2, 0).ℓ|W
−1

is close to the identity for almost every (ε1, ε2) small
enough. Therefore, by continuity, there exist k ∈ (0, 1) and ε0 > 0 such that, for
every (ε1, ε2) ∈ [0, ε0)

2, y ∈ R
n, the mapping u 7→ Φ(ε1, ε2, y, u) is k-Lipschitzian on

an open neighborhood of 0.
With the same argument, it is not difficult to show that, if δ, (ε1, ε2) and ‖y‖ are

small enough, then the mapping u 7→ Φ(ε1, ε2, y, u) maps Uδ into itself. Lemma A.7
follows from the application of the usual Banach fixed point theorem to the contraction
mapping u 7→ Φ(ε1, ε2, y, u) with parameters (ε1, ε2, y).
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