
HAL Id: hal-01587075
https://hal.science/hal-01587075

Preprint submitted on 13 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PDI, an approach to decouple I/O concerns from
high-performance simulation codes

Corentin Roussel, Kai Keller, Mohamed Gaalich, Leonardo Bautista Gomez,
Julien Bigot

To cite this version:
Corentin Roussel, Kai Keller, Mohamed Gaalich, Leonardo Bautista Gomez, Julien Bigot. PDI, an
approach to decouple I/O concerns from high-performance simulation codes. 2017. �hal-01587075�

https://hal.science/hal-01587075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Research Report

PDI, an approach to decouple I/O concerns from
high-performance simulation codes

Corentin Roussel∗, Kai Keller†, Mohamed Gaalich∗, Leonardo Bautista Gomez†, Julien Bigot∗ ∗ Maison de
la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, FR91191 Gif-sur-Yvette

Emails: {corentin.roussel, julien.bigot, mohammed.gaalich}@cea.fr † Barcelona Supercomputing Center,
Barcelona, Spain

Emails: {leonardo.bautista, kai.keller}@bsc.es

F

Abstract—High-performance computing (HPC) applications manipulate
and store large datasets for scientific analysis, visualization purposes
and/or resiliency. Multiple software libraries have been designed for
interacting with the parallel file system and in some cases with interme-
diate storage levels. These libraries provide different level of abstraction
and have been optimized for different purposes. The best I/O library
for a given usage depends on multiple criteria including the purpose
of the I/O, the computer architecture or the problem size. Therefore,
to optimize their I/O strategies, scientists have to use multiple API’s
depending on the targeted execution. As a result, simulation codes
contain intrusive and library dependent I/O instructions interwoven with
domain instructions. In this paper, we propose a novel interface that
transparently manage the I/O aspects and support multiple I/O libraries
within the same execution. We demonstrate the low overhead of our
interface and perform experiments at scale with the Gysela production
code.

Keywords—Separation of concern; I/O; HPC; Checkpointing; Software-
engineering;

1 INTRODUCTION

Scientific simulations possess several programming aspects.
One is the resolution of the system of equations that defines
a physical models, another one is the post-processing of
results, and a last one could be, for instance, data in- and
out-put (I/O) operations. The first two aspects form the
foundation of computational science.

I/O, on the other hand, is divided into the scientific
regime, what to write (or read), and the technical regime,
how to write (or read). In the following, the decoupling of
these two distinct aspects is referred as separation of concern.
On the one side, we have the concern corresponding to
the physical model, which dictates where and what kind
of data to read or write. And on the other side the rather
technical concern, to handle the data in the most efficient
and secure way. The latter also incorporates checkpointing
to account for execution failures (e.g. caused by breakdown
of hardware components, power outtakes, etc.).

Many different I/O dedicated libraries have been de-
signed to encode the technical knowledge of data transfer
and fault tolerance and hence a basic abstraction is already
provided by the library API’s. However, as we will explain
in this article, some of the I/O concerns remain in the code.

To improve the separation of concern, we propose the
parallel data interface (PDI), a novel interface that enables
users to decouple the I/O strategies from the application
code through a single API. PDI is not an I/O library by itself;
it rather enables to use or implement different I/O strategies
and to access them through a single API in a generic way.
The API supports read- and write- operations using various
I/O libraries within the same execution, and allows to
switch and configure the I/O strategies without modifying
the source (no re-compiling). However, it does not offer
any I/O functionality on its own. It delegates the request
to a dedicated library plug-in where the I/O strategy is
interfaced. The range of functions and the performance of
the underlying I/O libraries are not straitened, as shown in
the evaluation (section 4).

In this section, we demonstrate that PDI significantly
improves the separation of concerns. Using the production-
level 5D Gyrokinetic semi-lagrangien (GYSELA) applica-
tion [9], we show that, through PDI, one can decouple the
semantic aspect of the I/O, from the performance aspect.
We perform the evaluation for several strategies based on
two I/O libraries, (FTI [2] & HDF5 [6]). We show that the
additional abstraction layer comes at a very low cost with
minimal overhead in terms of both, memory consumption
and execution time.

As main contributions of this article we want to for-
mulate: 1) The design and implementation of PDI, a new
interface that improve the separation of concern. It allows
to access multiple I/O strategies and libraries without the
need of modifying or recompiling the source code of the ap-
plication. 2) The adaptation of the GYSELA code to use either

2

FTI/HDF5 plain or embedded via PDI for checkpointing1.
3) The evaluation at scale on different supercomputers with
different architectures.

Our results show that PDI imposes a negligible over-
head while running on over thousands of processes with a
production-level application.

The remainder of the paper is organized as follows.
Section 2 discusses the requirements for PDI and introduces
its design while Section 3 presents its implementation. Sec-
tion 4 evaluates PDI through an application at scale to the
production code GYSELA. Section 5 reviews related work
and Section 6 presents our conclusion.

2 PDI DESIGN

To clarify why a flexible interface such as PDI is a benefit
for the HPC community, we would like to emphasize the
significant amount of I/O libraries (section 5). As each
library is optimized for some specific tasks, we remark that
it is realistic to use different I/O libraries in a single scientific
application. It could be very convenient to have an interface
that allows to easily switch between I/O strategies. Those
can be provided by the user or by an I/O library.

As mentioned in the introduction, HPC applications use
I/O for multiple purposes. One can for example distinguish
between diagnostics and checkpoints but other categories
could be identified and even the checkpoint category could
be further refined (for example, resiliency checkpoints for
fault-tolerance purpose vs. segmentation checkpoints be-
tween two restarts of the simulation.) The purpose of the
I/O is however not the only criterion that impacts the best
strategy to use and one must also take into account other el-
ements such as the architecture of the supercomputer used,
the degree of parallelism, the memory size of the simulated
problem, the developer time available for implementation,
etc.

A given I/O library could theoretically provide cover-
age of all the desired features. However, those are very
numerous due to the combinatorial complexity that comes
from both codes requirements and the possibilities offered
by execution environments. Therefore, such a library would
have to provide complex API’s that enable the code to finely
define the expected behavior. Instead, many I/O libraries
focus on more specific situations and are thus less complex.
To reach the best performance for each situation, it is possi-
ble to use various API’s and/or to change the way a given
API is used every time the application runs in a different
environment.

Modifying the I/O strategy in a code is a tedious work
that is not the main concern (and often nor the main domain
of expertise) of the application developer. I/O experts can
provide new I/O strategies or optimized existing ones.
However, for each new library that is used, and with each
line of code that is added to handle a specific I/O concerns,
the code becomes harder to understand and to maintain.
Moreover, when the number of dependencies is increased,
the portability of the code decreases. As a result, sub-
optimal I/O code is used in many applications at the cost of
millions (if not billions) of dollars of wasted computer time
every year.

1. In both cases we verify the validity of the written data sets.

The main goal of PDI is to separate the I/O aspects
from the domain code and thus to improving the separation
of concerns. PDI is a glue layer that sits in-between the
implementation of these two aspects and interface both of
them.

PDI has been designed in such a way that the sepa-
ration of concern does not come at the expense of good
properties of existing approaches. The implementation of a
given I/O strategy through PDI should be as efficient and as
simple (ideally less complex) than existing approaches, both
from the user and I/O expert point of view. This should
hold, whatever the level of complexity of the I/O strategy,
from the simplest one where the implementation time is
paramount, to the most complex one where the evaluation
criterion is the performance on a specific hardware.

We therefore design PDI to act as a lingua franca, a thin
layer of indirection that exposes a declarative API for the
code to describe the information required for I/O and that
offers the ability to implement the I/O behavior using these
informations. In order to decouple both sides, we rely on a
configuration file that correlates information exposed by the
simulation code with that required by the I/O implementa-
tion and enables to easily select and mix the I/O strategies
used for each execution. This approach brings important
benefits as it improves the separation of concerns thanks
to the two abstraction layers. It offers a simple API that
allows a uniform code design while accessing and mixing
the underlying I/O libraries.

We design the PDI API to support concepts as close as
possible to those manipulated by simulation codes. Using
PDI, the simulation code exposes information that it would
handle in any case. It does not have to generate additional
information dedicated to I/O management. This makes
the API easy to grasp for code developers and prevents
computations dedicated to I/O from cluttering the code,
impacting readability or adding useless overheads.

The API limits itself to the transmission of information
(required by the I/O implementation) that can only be pro-
vided during execution. Information that is known statically
is expressed in the configuration file. The only elements
that have to be described through the API are therefore: 1)
the buffers that contain data with their address in memory
and the layout of their content, 2) the time period along
execution when these buffers are accessible either to be read
or written. In addition, the API handles the transmission of
control flow from the code to the library through an event
system. Events are either generated explicitly by the code or
generated implicitly when a buffer is made available or just
before it becomes unavailable.

The data layout is often at least partially fixed, only some
of its parameters vary from one execution to the other (e.g.
the size of an array). We therefore support the description
of this layout in the configuration file so as not to uselessly
clutter the application code. The value of parameters that
are only known during the execution can be extracted from
the content of buffers exposed by the code.

Implementing an I/O strategy is done by catching the
control flow in reaction to a event emitted by the simulation
code and using one ore more of the exposed buffers. The
name of the events and buffers to use come from the
configuration file, ensuring a weak coupling between both

3

side. Two levels of API are offered. A low level API enables
to react to any event and to access the internal PDI data
structures where all currently exposed buffers are stored.
A higher level API enables to call user-defined functions
to which specific buffers are transmitted in reaction to well
specified events.

When using the low-level API, it is the responsibility
of the I/O code implementation to access the configuration
file to determine the events and buffers to use. This API is
well suited for the development of plugins that require a
somewhat complex configuration because they are intended
to be reused in multiple codes. This is typically the case
when interfacing I/O libraries with declarative API’s close
to that of PDI where options in the configuration file are
enough to match the API’s.

User can implement their own I/O strategies that can
be interfaced with PDI. When using user-defined functions,
the name of the events and buffers passed to the function
are specified in the configuration file in a generic way. The
function itself does neither have access to the configuration
file content nor to the list of shared buffers.

This approach is less flexible but much easier to imple-
ment. It is well suited when a specific code has to be written
to use a given I/O library in a given simulation code as is
often the case with libraries with imperative API’s. It can
be used to provide additional instructions that complement
but are distinct from the library features.

In order to decouple this I/O implementation code both
from PDI and from the simulation code, it is defined in
dedicated object files that can either be loaded statically or
dynamically (a plugin system). This means that PDI does
not depend on any I/O library, only its plugins do. This
also simplifies changing strategy from one execution to the
other as the plugins to load are specified in the configuration
file.

To summarize, PDI offers a declarative API for simula-
tion codes to expose information required by the implemen-
tation of I/O strategies. The I/O strategies are encapsulated
inside plugins that access the exposed information. A week
coupling mechanism enables to connect both sides through
a configuration file. This can be understood as an applica-
tion of aspect oriented programing (AOP) to the domain of
I/O in HPC. The locations in the simulation code where
events are emitted are the joint points of AOP. The I/O
behavior encapsulated in the plugins are the advices of AOP.
The configuration file specifies which behavior to associate
at which location and constitute the pointcuts of AOP.

3 PDI IMPLEMENTATION

PDI is freely and publicly available2 under a BSD license.
It is written in C and offers a C API with Fortran bindings
to the simulation code. This covers uses from C, C++ and
Fortran, the three most widespread languages in the HPC
community. We present the C flavor in this section but
the Fortran binding offers the exact same interface. The
plugin API is currently limited to C but bindings for other
languages (e.g. LUA, Python) are planned.

The simulation code API contain functions to initialize
and finalize the library, change the error handling behavior,

2. https://gitlab.maisondelasimulation.fr/jbigot/pdi

1 enum PDI inout t { PDI IN=1 , PDI OUT=2 , PDI INOUT=3 } ;
2
3 PDI s ta tus t PDI in i t (PC tree t conf , MPI Comm ∗world) ;
4 PDI s ta tus t P D I f i n a l i z e () ;
5
6 PDI errhandler t PDI errhandler (PDI errhandler t handler) ;
7
8 PDI s ta tus t PDI event (const char ∗event) ;
9

10 PDI s ta tus t PDI share (const char ∗name , void ∗data ,
PDI inout t a c c e s s) ;

11 PDI s ta tus t PDI access (const char ∗name , void ∗∗data ,
PDI inout t a c c e s s) ;

12 PDI s ta tus t PDI release (const char ∗name) ;
13 PDI s ta tus t PDI reclaim (const char ∗name) ;

Listing 1. The PDI public API

1 PDI s ta tus t PDI export (const char ∗name , void ∗data) ;
2 PDI s ta tus t PDI expose (const char ∗name , void ∗data) ;
3 PDI s ta tus t PDI import (const char ∗name , void ∗data) ;
4 PDI s ta tus t PDI exchange (const char ∗name , void ∗data) ;
5
6 PDI s ta tus t PDI transact ion begin (const char ∗name) ;
7 PDI s ta tus t PDI transact ion end () ;

Listing 2. Simplified PDI API for buffer exposing

emit events and expose buffers as presented in Listings 1.
The initialization function takes the library configuration (a
reference to the content of a YAML [3] file) and the world
MPI communicator that it can modify to exclude ranks
underlying libraries reserve for I/O purpose. The error
handling function enables to replace the callback invoked
when an error occurs. The event function takes a character
string as parameter that identifies the event to emit.

The most interesting functions of this API are how-
ever the buffer sharing functions. They support sharing
a buffer with PDI identified by a name character string
and with a specified access direction specifying that in-
formation flows either to PDI (PDI_OUT, read-only share),
from PDI (PDI_IN, write-only share) or in both directions
(PDI_INOUT.) The PDI_share and PDI_access function
start a buffer sharing section while the PDI_release
or PDI_reclaim function end it. PDI_share is used
for a buffer whose memory was previously owned by
the user code while PDI_access is used to access a
buffer previously unknown to the user code. Reciprocally,
PDI_reclaim returns the memory responsibility to the
user code while PDI_release releases it to PDI.

In a typical code, the buffers are however typically
shared for a brief period of time between two access by the
code. The previously introduced API requires two lines of
code to do that. The API presented in Listing 2 simplifies this
case. Its four first functions define a buffer sharing section
that lasts during the function execution only. The func-
tions differ in terms of access mode for the shared buffer:
share(OUT) + release for PDI_export; share(OUT)
+ reclaim for PDI_expose; share(IN) + reclaim
for PDI_import; and, share(INOUT) + release for
PDI_exchange.

This API has the disadvantage that it does not enable to
access multiple buffers at a time in plugins. Each buffer shar-
ing section ends before the next one starts. The two trans-
action functions solve this. All sharing sections enclosed
between calls to these functions have their end delayed until

https://gitlab.maisondelasimulation.fr/jbigot/pdi

4

1 data :
2 my array : { s i z e s : [$N, $N] , type : double }
3 metadata :
4 N: i n t # data i d and type
5 i t : i n t
6 plugins :
7 declh5 : # plug−i n name
8 outputs :
9 # data to wr i te , dataset and f i l e name

10 my array : { var : array2D , f i l e : example $it . h5 ,
11 # c on d i t i o n to w r i t e
12 s e l e c t : ($ i t >0) && ($ i t %10) }

Listing 3. Example of PDI configuration file

the the transaction ends. This effectively supports sharing
of multiple buffers together. The transaction functions also
emit a named event after all buffers have been shared and
before their sharing section ends.

At the heart of PDI is a list of currently shared buffers.
Each shared buffer has a memory address, a name, an access
and memory mode and a content data type. The access
mode specifies whether the buffer is accessible for reading
or writing and the memory mode specifies whose responsi-
bility it is to deallocate the buffer memory. The content data
type is specified using a type system very similar to that of
MPI and is extracted from the YAML configuration file.

The data section of the configuration file (example
in Listing 3) contains an entry for each buffer, specifying
its type. The type can be a scalar, array or record type.
Scalar types include all the native integer and floating point
of Fortran and C (including boolean or character types.)
Array types are specified by a content type, a number of
dimensions and a size for each dimension. They support
the situation where the array is embedded in a larger buffer
with the buffer size and shift specified for each dimension.
Record types are specified by a list of typed and named
fields with specific memory displacement based on the
record address.

The types can be fully described in the YAML file, but
this makes them completely static and prevents the size of
arrays to change at execution for example. Any value in
a type specification can therefore also be extracted from
the content of an exposed buffer using a dollar syntax
similar to that of bash for example. The syntax supports
array indexing and record field access. For the content of a
buffer to be accessible this way, it does however needs to be
specified in the metadata section of the YAML file instead
of its data section. When a metadata buffer is exposed, its
content is cached by PDI to ensure that it can be accessed at
any time including outside its sharing section.

The plugins to load are specified in the plugins section
of the configuration file. Each plugin is loaded statically
if linked with the application and dynamically otherwise.
A plugin defines five function: an initialization function,
a finalization function and three event handling functions.
The event handling functions are called whenever one of the
three types of PDI event occurs, just after a buffer becomes
available, just before it becomes unavailable and when a
named event is emitted.

The plugins can access the configuration content and the
buffer repository. Configuration specific to a given plugin
is typically specified under this plugin in the plugins

1 main comm = MPI COMM WORLD
2 c a l l PDI in i t (PDI subtree , main comm)
3 c a l l PDI transact ion begin (” checkpt ”)
4 p t r i n t=> N; c a l l PDI expose (”N” , p t r i n t)
5 p t r i n t=> i t e r ; c a l l PDI expose (” i t ” , p t r i n t)
6 c a l l PDI expose (”my array” , ptr A)
7 c a l l PDI transact ion end ()
8 c a l l P D I f i n a l i z e ()

Listing 4. Example of PDI API usage

section of the YAML file. The YAML file can however also
contain configuration used by plugins in any section. It
can for example contain additional information in a buffer
description.

Three plugins are used in this paper. The FTI plugin
interfaces the declarative FTI library, the decl’H5 plugin
interfaces a declarative interface built on top of HDF5 and
the usercode plugin supports user written code as specified
in Section 2. A plugin interfacing a declarative version
of SIONlib is also available in the repository, but most
imperative libraries are best accessed through the usercode
plugin.

Let us now present an example to show how PDI usage
works in practice. Listing 4 shows the use of the Fortran
API to expose to PDI two integers: N and it, and an array
of dimension N×N, my_array. The configuration file for this
example is the one presented in Listing 3.

When the PDI_init function is called, the configuration
file is parsed and the decl’H5 plugin is loaded. This plugin
initialization function is called and analyzes its part of the
configuration to identify the events to which it should react.
No plugin modifies the provided MPI communicator that is
therefore returned unchanged. A transaction is then started
in which three buffers are exposed: N, it and my_array.
The decl’H5 plugin is notified of each of these events but
reacts to none. The transaction is then closed that triggers
a named event to which the decl’H5 plugin does not react
as well as three end of sharing section events, one for
each buffer. The decl’H5 reacts to the end of the my_array
sharing since this buffer is identified in the configuration
file. It evaluates the value of the select clause and if
nonzero writes the buffer content in a dataset whose name is
provided by the var value (“array2D”) to a HDF5 file whose
name is provided by the file value (“example$it.h5”.)

4 EVALUATION

To evaluate PDI we check that we attain the main goals
introduced in Sections 2. These goals are that: 1) PDI
should separate I/O concerns from the simulation code,
2) changing and combining different I/O strategies should
be transparent inside the application, 3) the implementation
of an I/O strategy through PDI should be (at least) as simple
as without PDI, 4) all the features of the I/O libraries used
through PDI should be accessible, 5) similar performance as
with a direct use of a library should be accessible through
PDI.

Points 1 and 2 ensure that PDI provides a new approach
for I/O in a HPC context with added value compared to
existing approaches in term of decoupling. Points 3 to 5
validate that PDI does not impose any artificial limitations

5

compared to existing approaches that would hinder its
acceptability.

The tests are carried out using the GYSELA production
code on different platforms. The remaining of this section
describes the application and introduce our experiments,
which used GYSELA code. We evaluate PDI approach both
in terms of software engineering (Separation of concern and
ease of use) and performance.

4.1 Example Application

GYSELA [9], [11] is a scientific code that models the elec-
trostatic branch of the ion temperature gradient turbulence
in tokamak plasmas. The code consists of around 60 000
lines of code: 95% Fortran and 5% C, parallelized using
a hybrid MPI+OpenMP approach. It has run on up to
1.8 million threads on a Blue Gene/Q machine with 91%
relative efficiency [4], [8] excluding I/O. At the heart of
GYSELA is a self-consistent coupling between a 3D Poisson
solver and a 5D Vlasov solver. The main data manipulated
in the code from which all other values are derived is a
5D particle distribution function in phase space. The array
containing this dataset is referred to as f5D.

A typical GYSELA run is sized based on memory require-
ments first, and typically uses from one thousand to a few
thousands nodes (16,000 cores is a usual value). The wall-
clock time for a complete simulation is then often in the
range from one week to a few months. For executions of
such duration, a checkpoint/restart mechanism is a require-
ment for both, fault-tolerance and segmenting, i.e. running
the simulation in multiple subsequent jobs. Indeed, most job
schedulers limit jobs duration to between 12 and 48 hours.

The complete simulation state can be derived from the
5D particle distribution function (f5D) and a few scalar
values (time-step, etc.) These are thus the values stored
in checkpoint files. The f5D array usually represents in
the order of one quarter of the total memory consumed.
Storing it too often would represent a large overhead both
in term of time and storage space. Therefore, actual results
exploited by physicists, take the form of diagnostics: smaller
(0D-3D) values derived from the 5D distribution function
and written to permanent storage regularly. In term of I/O
these two parts of the code have different requirements.

Storing diagnostics is usually not an issue due to their
relatively small size. On the contrary, storing checkpoints
can consume up to 1h for the biggest simulations resulting
in an overhead in the order of 10%. Depending on the
simulation size and platform different strategies should be
used to limit this overhead. Our experiments thus focus on
the case of the checkpoints.

By default, GYSELA uses the HDF5 library to store
checkpoints. Its portable file-format is used in GYSELA post-
processing tools. Another option is the FTI multilevel check-
pointing library that leverages node-local storage (such as
SSDs) for burst buffering and can be configured to use a
dedicated MPI task per node in order to overlap I/O with
computation. This is mostly useful for intermediate fault-
tolerance checkpoints as no overlap is possible for segmen-
tation checkpoints performed at the end of a run. To store
the dataset, FTI uses a binary file-format that is tuned for
performance. This file format is not portable across different

architectures and make it difficult to analyze data. From the
authors point of view, the two libraries are complementary
and the code would benefit from their combination to obtain
the best from two very different approaches.

We have upgraded the GYSELA code to support FTI
and PDI. Through PDI, we have implemented support
for decl’H5, HDF5 and FTI. The decl’H5 approach simply
specifies in the configuration the list of buffers to write
in an HDF5 file whose name depend on the current time-
step. The HDF5 approach adds additional logic to mimic
GYSELA HDF5 use, alternating writing between two files
and selecting the latest coherent file for reading. This logic
and the HDF5 usage is implemented through dedicated
functions passed to the usercode plugin. The FTI approach
simply maps PDI event to FTI calls in the configuration and
lets FTI use is pre-defined logic for checkpoints writing and
reading.

Each approach has its advantages and drawbacks and
targets different use-cases with different requirements such
as simplicity for decl’H5, limited disk overhead and file
portability for HDF5, I/O and computation overlap for FTI.
In addition and as a baseline, we support execution with
no checkpoint writing at all. Experiments done using no
checkpointing, HDF5 and FTI without PDI are denoted none,
HDF5 and FTI respectively in the remaining of the section.
Experiments done using no checkpointing, decl’H5, HDF5,
FTI and a combination of HDF5 and FTI through PDI are
denoted none, decl’H5, HDF5, FTI and FTI+HDF5 with a PDI
prefix.

Our experiments are organized as follows. We evaluate
the simplicity of usage from the I/O strategy implemen-
tation side first and application code side second. In the
process we also discuss the level of separation of concern
offered by the approach. Finally, we evaluate performance
on 4 different clusters and supercomputers: Nord (BSC,
Spain), Curie (TGCC, France), Poincare (IDRIS, France) and
Jureca (JSC, Germany).

4.2 Software Engineering Evaluation
No perfect indicator exist to measure the simplicity of use of
a library. In our experiment we settle to measure the number
of lines of code that even if not ideal gives a rough idea of
the amount of work required. We also study the number of
distinct functions used in a piece of code that gives an idea
of the complexity for writing this code.

To
Native PDI

From HDF5 FTI decl’H5 HDF5 FTI

Nat.
HDF5 931 895 891 885 869
FTI 895 216 199 205 189
decl’H5 891 199 238 19 5

PDI HDF5 885 205 15 242 3
FTI 869 189 31 33 211

TABLE 1
Number of lines in GYSELA to support a given I/O strategy. On the

diagonal: total number of line. Non-diagonal: number of line
modifications required to change the I/O strategy.

In Table 1 we report the number of physical line of source
codes required in GYSELA to support the HDF5 and FTI
I/O strategies with and without PDI. As expected, HDF5

6

requires more lines than FTI due to the declarative and
domain specific nature of FTI. Due to its declarative nature,
PDI requires a number of lines in the same order as FTI.
Thus, while supporting different approaches PDI intrusive-
ness is small and comparable with a domain specific library.

Another element that can be noticed on the table is
the effort required to change the implementation from one
strategy to another. Using the native libraries (HDF5 or FTI)
API’s, only a very little amount of code (less than 2%) can be
reused from one implementation to the other. Using PDI, the
implementation of an additional strategy only requires very
little additional lines of code (1 to 10%). The typical addition
required is for example a pair of transaction enclosing calls
or the exposure of an additional buffer. We would also like
to strongly stress that the addition of these lines does not
prevent other versions from working. A version supporting
the combination of all three plugins requires less than 300
lines of code. Using PDI, a change of I/O strategy has
therefore very limited impact on the code which strongly
improves the separation of concern.

To
From decl’H5 HDF5 FTI

decl’H5 150 6 1
HDF5 3 153 1

FTI 2 6 148
TABLE 2

Number of lines used to declare data in the PDI configuration. On the
diagonal: total number of line. Non-diagonal: number of line

modifications required to change the I/O strategy.

When using PDI, one does not only have to make func-
tion calls in the code, but also to provide a configuration
file. The content of this file can be separated in two parts.
The first area contains the declaration of data and metadata
buffers exposed to PDI while the second contains the config-
uration of the various I/O strategies. In Table 2 we report the
number of lines used to declare the data and the metadata.
The number of lines to modify to implement a new I/O
strategy is very low. These lines correspond to buffers that
have to be exposed for one strategy but not in another. Once
again, providing information for buffers that are not used
in a given strategy is not a problem and a configuration
file supporting all three approaches requires less than 160
lines. The data type declaration part of the configuration is
therefore also only very slightly impacted by the choice of
I/O strategy.

decl’H5 HDF5 FTI FTI + HDF5
12 21 (665) 9 30 (665)

TABLE 3
Number of lines in the PDI configuration file dedicated to the

management of the I/O strategy. The number of lines of user source
code is given in parenthesis, when appropriate.

In Table 3 we report the number of lines required to
specify the I/O strategy. This part only requires between
9 and 30 lines of configuration. The case of the HDF5
approach also require dedicated code to implement the
same logic as in the original GYSELA code through the
usercode plugin. The 665 lines amount to slightly more

than two third of the 931 lines of the original code iden-
tified in Table 1. This is due to two aspects: C is slightly
more concise than Fortran and PDI handles a part of the
boilerplate code required for this implementation, letter
the developer focus on the actual strategy implementation.
The table also presents the FTI+HDF5 implementation that
simply combines the FTI and HDF5 version to use FTI
for intermediate fault-tolerance checkpoints and HDF5 for
final segmentation checkpoints. From these figures, one can
notice that choosing a given I/O strategy through PDI is
very simple for declarative libraries and requires no more
work than with a native approach for imperative ones. Once
implemented through PDI, the combination of multiple
strategies is also greatly eased and only requires selecting
in which situation to apply what strategy.

To summarize, PDI improves the separation of concern
by minimizing the number of lines related to the I/O
strategy implementation impacting the simulation code and
by making these lines independent of the strategy used. The
description of the buffers content type in the configuration
is also independent of the strategy. The strategy choice is
relegated to the dedicated part of the configuration file. Its
implementation for imperative libraries is provided through
well defined functions passed to the usercode plugin. From
this study, we can see that PDI clearly separates aspects
related to the simulation on one side with the PDI API calls
and the specification of the buffer content and elements
related to the I/O strategy on the other side with the
I/O strategy configuration and its potential implementation
through the usercode plugin.

To
Native PDI

From HDF5 FTI decl’H5 HDF5 FTI

Nat.
HDF5 24 31 30 32 31
FTI 31 7 13 15 14
decl’H5 30 13 6 2 2

PDI HDF5 32 15 0 8 0
FTI 31 14 1 1 7

TABLE 4
Number of distinct API functions from FTI, HDF5 or PDI. On the

diagonal: total number of distinct functions. Non-diagonal: number of
distinct functions required to change the I/O strategy.

In Table 4 we give the number of different API functions
required to use HDF5 or FTI in GYSELA natively or through
PDI. Similarly to the number of lines analyzed in Table 1 the
declarative API’s of PDI and FTI minimize the complexity.
This approach requires about use about a third of the
number of distinct functions required for the imperative API
of HDF5. Similarly to the observation made for the number
of lines of code, the implementation of new strategies when
using PDI has only very limited impact on the simulation
code with 1 or 2 functions to add while with the use of
native API’s it requires invasive changes.

Once again, these number do not represent the complete
complexity of an I/O strategy implementation. One must
also take into account the I/O strategy configuration identi-
fied in Table 3. This is especially true for the usercode plugin
HDF5 support relying on dedicated code implementing the
same logic as the native HDF5 code and hence using a
similar number of distinct functions from HDF5 API. One
must however notice that this only one option amongst

7

0.0 0.2 0.4 0.6 0.8 1.0

(a) Instructions (×1012)

0.0

0.2

0.4

0.6

0.8

1.0

H
ea

p
si

ze
(G

B
)

PDI NONE

NONE

0.0 0.2 0.4 0.6 0.8 1.0

(b) Instructions (×1012)

0.0

0.2

0.4

0.6

0.8

1.0

H
ea

p
si

ze
(G

B
)

PDI HDF5

HDF5

0.0 0.2 0.4 0.6 0.8 1.0

(c) Instructions (×1012)

0.0

0.2

0.4

0.6

0.8

1.0

H
ea

p
si

ze
(G

B
)

PDI FTI

FTI

Fig. 1. Memory usage as a function of the number of instructions with and without PDI library for three I/O strategies: (a) no I/O, (b) using HDF5
library (c) using FTI library. Experiments are done on 4 nodes (64 cores) of the Nord supercomputer.

many. A user not willing to invest much time in I/O can rely
on the decl’H5 approach and only switch to the usercode
plugin when it becomes critical in term of performance.

From our observations, PDI will add less I/O directives
and fewer lines inside the application code. It also reduce
the number of distinct API required. Furthermore, the com-
plexity and time to implement the PDI version of the code
supporting both libraries together is much lower than using
their native interface.

Finally, all the FTI or HDF5 features that were previously
used inside GYSELA code are supported by the plug-ins.
There is no loss of functionalities between the GYSELA
version using the native API of the HDF5 version and the
one using HDF5 through the PDI API.

To summarize, we have shown that PDI improves the
separation of concern and that I/O aspects are mostly
removed from the application code. In order to support
PDI, an initial investment similar to that required to support
a simple domain specific I/O library with a declarative
interface is required. The number of lines to insert inside
the application code and the number of API functions is
minimized. Once this initial work done, the separation
of concerns offered by PDI ensure that replacing the I/O
strategy by another can be done at minimal cost and with
minimal impact on the simulation code. These properties
come at no loss of functionality and with the additional
possibility to use multiple libraries for different purposes.

4.3 Performance Evaluation
In this section we check that PDI has no impact the perfor-
mance of the application. We evaluate the memory overhead
of PDI, present the results of a weak scaling experiment
and compare the efficiency of five I/O strategies for four
different use-cases. In all experiments, FTI-based strategies
use one dedicated MPI task per node. GYSELA requires an
even number of threads and we therefore use two cores less
for the computation in this situation. All other strategies use
all the cores available on the nodes.

4.3.1 Memory evaluation
In this section we perform a study on the memory overhead
caused by PDI. The experiments are performed on the
Nord supercomputer based on Marenostrum. Nord has two
E5–2670 SandyBridge processor (2.6GHz) on each compute

node with 128GB of DDR3 RAM. The total number of thread
per node is 16. GYSELA and PDI use of the stack is negligi-
ble. Thus, the heap size during the simulation corresponds
to the memory consumption. In Figure 1 we report the
memory allocated on the heap for all MPI processes as a
function of the number of instructions. The heap size over
time is tracked using the massif tool of Valgrind [17]. We
chose not to show the MPI task dedicated to FTI I/O due to
their low maximum memory consumption (which is lower
than 10MB).

For all curves we observe similar number of instructions
with and without PDI. A first peak appears at the beginning
of the initialization and is followed by a plateau. Since the
computation uses buffers, oscillations appear. The heap size
exhibits the same pattern between all cases except for the
HDF5 cases that are using additional buffers to copy the
main array (f5D) without the so-called ghost cells to do
the checkpoint. Taken as a whole the curves show that
there is no significant overhead in the memory consumption
when using PDI. PDI only manipulate pointer to buffers and
perform no additional copy.

4.3.2 Weak scaling study

In order to demonstrate that PDI does not impact the scaling
of parallel I/O, we perform a weak scaling experiment on
Curie supercomputer. Curie thin node have 2 eight-core
Sandy Bridge E5-2680 (2.7 GHz) with 64 GB of RAM and
one local SSD disk.

In Figure 2 we plot the wall clock time with and without
PDI for the different I/O strategies (no I/O, HDF5, FTI)
against the number of nodes. For each case one run consist
of three iterations. Two checkpoints are saved, one at the
end of the second iteration and one at the end of the run. For
each checkpoint and on each node the simulation produces
approximately 8.6GB of data resulting in a total data size
ranging from 34.3GB for the 64 cores experiments up to
1.1TB for the 2048 cores runs.

PDI library does not add any significant overhead to the
time to completion of GYSELA for the tested cases. When
observed, the overhead is negligible and may be caused by
the uncertainties of the measured. This result demonstrates
that the impact of PDI on performance is negligible and
especially that is has no noticeable impact on scalability.

8

4 8 16 32 64 128

Nodes

1000

1100

1200

1300

1400

1500

1600

1700

1800

S
im

u
la

ti
on

ti
m

e
(s

)

FTI

HDF5

NONE

PDI FTI

PDI HDF5

PDI NONE

Fig. 2. Weak scaling study between 64 cores and 2048 cores with
and without PDI for different I/O strategies: no I/O, using FTI or the
gysela HDF5 strategy. Weak scaling studies are carried out on Curie
supercomputer.

Case 1 Case 2 Case 3 Case 4
90

100

110

120

130

140

150

160

170

180

T
im

e
el

ap
se

d
/

B
es

t
I/

O
st

ra
te

gy
(%

)

PDI Best

PDI HDF5

PDI DECLH5

PDI FTI

PDI FTI+HDF5

PLAIN HDF5

PDI Best

Fig. 3. Efficiency breakdown for various usage across different architec-
tures. Case 1, uses 24 cores (1 node) of Jureca Supercomputer, the
checkpoint size is 520 MB; case 2 and 3, use 16384 (1024 node) of
Curie supercomputer, the checkpoint size is 4.4 TB; case 4, uses 64
cores (4 nodes) of Poincare supercomputer, the checkpoint size is 8.5
GB.

4.3.3 Efficiency breakdown for four use cases
On figure 3 we plot the wall clock time for different I/O
strategies normalized by what we consider as the best
approach, for four use cases. For each case one run consist of
three iterations. Two checkpoints are saved, one at the end
of the second iteration and one at the end of the run.

The first case corresponds to a small debug run on a
single node of Jureca supercomputer that has two Intel
Xeon E5-2680 v3 Haswell CPUs per node with 12 physical
cores at 2.5 GHz and 128GB of DDR4 RAM. The second
case corresponds to a large-scale simulation running on
16 384 cores of the Curie supercomputer. The third case
corresponds to a simulation of the same scale on Curie but
in a situation where the code is intended to be restarted on
a different computer requiring the files to be portable. The
fourth case corresponds to a medium-scale debug run on 4
nodes the Poincare cluster.

The first case uses the 24 physical cores of one node

on the Jureca supercomputer and the main variable (f5D)
requires 512MB/checkpoints. FTI can not run in its nominal
mode on a single node as it requires at least four node
for data replication. We do therefore not evaluate this ap-
proach in this case. In term of wall-clock time all evaluated
approaches are very similar. For such a small case, filling
the disk with checkpoints is not a concern and keeping
all checkpoint files might actually be useful for debug
purposes. The decl’H5 strategy that requires only minimal
investment in term of development and no involvement of
any I/O specialist does thus offer the best compromise in
this case.

For the second case, the experiments consists of running
GYSELA code for 3 iterations on 16384 cores (1024 nodes)
of the Curie supercomputer. An intermediate checkpoint is
written at the end of the second iteration and a segmentation
checkpoint at the end of the run. Each checkpoint consumes
4398.0 TB of storage (around 4.3GB per node). We evaluate
five checkpointing strategies that are meaningful: using FTI
or decl’H5 library or using the native HDF5 based strategy
in its initial version or through PDI. The last approach con-
sists of using PDI to combine FTI to store the intermediate
checkpoint and the HDF5 based approach to store the final
checkpoint. The decl’H5 approach can not be realistically
used in this case as it would quickly fill the disk for a longer
run. From a performance point of view, the best option is
FTI that therefore offers the best compromise in this case.

The third case consist in the exact same simulation with
the additional constraint of producing portable checkpoint
files at the end of the simulation. Once again the decl’H5
approach can not be used due to disk space limitations. The
FTI strategy that uses a non-portable binary file format for
the final checkpoint is not an option either. The remaining
strategies all HDF5 for the final checkpoint and can be used.
For this experiment, PDI using the native HDF5 approach
is the more efficient approach and best solution. For a more
realistic longer run, the ratio of intermediate checkpoints
over final one would typically be higher and the FTI+HDF5
approach would likely be competitive.

For the last case, the experiments are done on four
nodes of the Poincare cluster. Each nodes writes 2.1GB of
data and he code therefore produces 8.4GB checkpoint files.
Unlike Jureca or Curie, Poincare does not have SSD’s on its
compute nodes but HDD’s. In this case, the burst buffering
strategy of FTI is not competitive. A comparison between
decl’H5 and the usercode HDF5 shows that the second is
faster. This is likely due to an inefficient implementation
”hyperslab” feature of the HDF5 library used in decl’H5 on
the version of the library available on this cluster. The HDF5
approach with or without PDI are both using intermediate
buffers and are more efficient on this specific cluster.

To summarize we have performed different experiments
on 3 clusters. We observe that for each of the four use
cases a different I/O strategy is preferred. Using native
API’s this situation would make the choice of the strategy
to implement in the code difficult. Thanks to PDI, a single
implementation makes it possible to access all strategies and
choose the best one for each execution simply by changing
the configuration file. The decl’H5 can be implemented with
a very limited knowledge of I/O aspects and other strate-
gies can be provided by expert with very limited impact

9

on the simulation code. This approach solves a problem
often encountered in the development of high-performance
simulation codes lead by experts of the simulated domain.

5 RELATED WORK

There are many I/O libraries for various purposes. Oper-
ating systems offer standardized I/O services such as the
POSIX I/O API on which language standard libraries typi-
cally build portable interfaces such as the ANSI C library.
However, these where not designed with parallel codes
in mind. Therefore, specialized libraries exist for parallel
codes. Some of them are optimized for fast checkpointing
in multiple storage levels, others aim to maximize data
readability and portability, and yet others optimize for par-
allel writing in shared files. In the following we introduce
some of the most widely used I/O libraries in the HPC
community.

The message passing interface I/O API (MPI-IO) [22],
[24] allows HPC applications, using the MPI standard, to
write files in a parallel and collaborative fashion while
keeping coherency. MPI-IO uses a combination of portable
code and architecture-dependent optimized modules. MPI-
IO covers a large spectrum of features, including collective
and asynchronous I/O, non-contiguous accesses and atom-
icity semantics [23]. The library has been optimized, to work
with multiple file systems [5] such as NFS, GPFS [18], Lustre
and others. In addition to these features, MPI-IO has also
implemented client-side caching, to reduce the amount of
data transfer between client nodes and I/O servers. How-
ever, this also produces coherence problems when some
files are accessed by multiple clients. Techniques, such as
aligned accesses according to the system stripe size [13],
have been studied and show important performance bene-
fits. Nonetheless, writing on the file system is still bounded
by the theoretical peak I/O bandwidth, which does not
scale with the number of compute nodes (opposed to local
storage).

The hierarchical data format (HDF5) [6] is perhaps the
most widespread I/O library in scientific computing. It
comes in two flavors: a sequential version and a parallel
version, based on MPI-IO, that enables multiple parallel
processes to work on a single coherent file [25]. HDF5 stan-
dardizes both, a library API and a self-describing file format.
This makes it possible to move files from one machine
to another without worrying about different architectures
whose internal data representation might differ [10]; how-
ever, this means that the cost for transforming the data from
the internal representation to the file representation has to
be paid for every write. Checkpoint writing using HDF5
can either use the sequential or the parallel approach. The
parallel approach makes it possible to write to a single file
and thus reload it in a subsequent execution with a different
domain decomposition. However, this incurs overheads due
to synchronization. In contrast, writing one file per process
requires to reuse the same domain decomposition for restart
but can be much more efficient.

The network common data format (NetCDF) [19], [20]
is another widespread library for scientific computing I/O,
especially in the climate modeling community [21]. The last
version of NetCDF is based on HDF5 and thus shares most

of its advantages and drawbacks. It provides a parallel ver-
sion [12] that relies on MPI-IO like HDF5. The library is well-
known for its programming convenience and its parallel
version provides high performance dataset handling.

The fault tolerance interface (FTI) [2] is a multilevel
checkpointing library that aims to minimize the time to
write checkpoints by using multiple storage levels com-
bined with data replication and erasure codes [7]. The
library attempts to offer a high-level interface to handle
datasets and move the data transparently between different
storage levels. FTI has shown over an order of magni-
tude performance improvement over plain writes to the
PFS while checkpointing large datasets at high frequency.
However, FTI uses a private binary file-format which is
not convenient for data analysis, requires restarting with
the same parallelization and does not guarantee checkpoint
portability to other systems.

The scalable checkpoint/restart library (SCR) [16] is not
a full-fledged I/O library as it does not handle the actual
writing and reading of the checkpoints that has to be done
using another I/O library. Instead, SCR offers an interface to
move, replicate and encode checkpoint files written locally
on each compute node. As with FTI, SCR offers orders of
magnitude faster checkpointing compared with classic I/O
libraries writing in the parallel file system (PFS). We note
that some I/O libraries can write in local storage but then
the user is responsible of keeping data integrity and file
availability, which is difficult to guarantee in extreme scale
systems. These multilevel checkpoint libraries offer those
features transparently for the user.

There are many other HPC I/O libraries, such as for
instance Damaris, DDN Infinite Memory Engine, SIONlib. . .
Each one has been created to account for a specific need and
provides interesting features in a specialized context. Citing
them all would be close to impossible, but still one may
intent to give a classification.

Amongst these libraries, some offer a process-local view
of files (e.g the POSIX or ANSI C libraries) while other
support coherent access across process boundaries (e.g MPI-
IO or parallel HDF5). Some support I/O for most –if not
any– purpose (e.g POSIX or HDF5) while others are specific
to a specific goal (e.g FTI or SCR). We also observe that
some libraries expose files as a stream of bytes (e.g POSIX
or ANSI C) while others offer an API where typed data
–objects– can be manipulated in the files (e.g HDF5 or
NetCDF). Finally, some expose a very imperative API where
the code explicitly specifies the operation to execute (e.g
POSIX or HDF5) while others adopt a more declarative
approach where many aspects of the actual action to take
is not specified in the code (e.g FTI). As the actual action is
not specified in the application, the separation of concern
is increased. Two I/O libraries are using this appraoch to
improve the separation of concern: ADIOS and XIOS.

The adaptable I/O system (ADIOS) [1], [14] and the
XML I/O Server (XIOS) [15], are two I/O libraries that
offer a unified interface to access different I/O strategies
(thus improving the separation of concern). ADIOS is an
I/O framework dedicated to performance in I/O of scien-
tific code. It is based on two particular observations. First,
scientists are not required to know the exact layout of their
data as far as they can access it, second, in order to have

10

the best performance, users should not have to reorganize
their I/O directives for each different platform they run their
application on. ADIOS provides its own file format and is
able to bufferize and/or compress data during I/O opera-
tion, to change output file format to one of the supported
file format (e.g. HDF5). XIOS is an I/O library that offers
a unified API for I/Os climate codes. XIOS includes many
features such as management of history files and calendar,
temporal and spatial post-processing that are often used by
the climate scientists. Those features also make sense for
other communities. XIOS currently supports only NetCDF4
file format and part of the performance for writing depends
on the installation of the dependencies (NetCDF and HDF5).

The API’s of both libraries are somewhat declarative
which makes it possible to abstract from the choice of the
I/O strategy in the domain code and the description of
the actual strategy is provided through a dedicated XML
configuration file. These libraries increase the separation of
concern while providing a simple unified API. Both libraries
support a wide range of features such as the dedication of
compute nodes to I/O, the use of a single file or multiple
files per process.

XIOS and ADIOS internal structures are designed to
provide I/O performance and high level functionalities.
Thus, they provide additional levels of data abstraction
compared with the API native language (C and Fortran).
For instance, data and mesh are distinct objects with specific
treatment. The libraries internal structures and their data
classifications restrict their use and thus, these libraries are
mostly designed for post-processing and I/O performance
issues in parallel. This limited scope still contains very
complex issues that causes the libraries to become complex
and to induce some memory overhead due to the use of
internal buffers (for performance purpose). This means that
porting the library to a new architecture is not always
straightforward and it might not be the first choice of usage
for very simple I/O strategies (e.g. where POSIX calls are
possible) or when even minimal memory overhead matters.

I/O requirements of a given code evolve and may
need specific features that are best handled outside of the
previous library for the sake of simplicity. For instance,
for fault tolerance purpose, one may need to detect miss-
ing or corrupted files, and, when appropriate, to recover
application state from other checkpoint files that are not
corrupted. Specific user instruction would be harder to
implement using ADIOS internal plug-in system that is not
designed to handle transparently fault tolerance issues. The
additional effort will lead to the existence of additional I/O
instructions in the application code and I/O concerns will
be mixed with domain concerns. The separation of concern
would be reduced.

PFS

... andPost-processI/O structure

Application

I/O

solver

mesh

models

...

statistics,
resampling,

compute
new data,

file format

chunking

data format
checking files
selecting files

choosing
post-process

.........

compression

backend
I/O aspects

Fig. 4. The various level of abstraction for I/O

Figure 4 presents a schematic of the I/O components
of an application code. One may observe that the aspects
related to I/O are organized in different layers that are
interacting directly with the application code on the left
or with the PFS on the right. For the sake of conciseness
many I/O features are not shown. Imperative libraries (such
as NetCDF, MPI-IO) are located on the right side of this
schematic. Declarative library (such as ADIOS and XIOS) in-
ternally managed several I/O features and provide a higher
level of abstraction. While ADIOS and XIOS are closer to
the application-side of the schematic, there is no declarative
I/O library that have a general and global approach for any
I/O strategy. I/O libraries are designed for a given purpose
and the data and libraries structures are adapted to ease the
associated tasks.

6 CONCLUSION

In this work we propose a novel interface, abbreviated PDI,
that allows to separate most of the I/O concerns from the
application code. PDI transparently manage the I/O aspects
that are provided by external libraries or user codes. Our
proposal does not impose any limitation on the under-
lying I/O aspects and decreases the programming effort
required to perform and adapt I/O operations for different
machines. We demonstrate that, thanks to PDI, scientists
can use multiple I/O libraries within the same execution
by simply changing a configuration file and without the
need of modifying or recompiling the source code of the
application. Our evaluation with GYSELA shows that PDI
does not impose any significant overhead on the application
or on the underlying I/O libraries and I/O strategies. A
weak scaling experiments show that PDI behaves well even
at large scale. In addition, comparison of five I/O strategies
for four representative use cases shows that PDI make it pos-
sible to obtain the best performance from several strategies
with a very limited development cost and no overhead.

As future work we would like to test PDI with other I/O
libraries and in other use cases, such as in-situ visualization
and scientific workflows.

7 ACKNOWLEDGMENT

We would first like to deeply thank Guillaume Latu for his
help in understanding the GYSELA code and running bench-
marks using it. We would also like to stress that this work
was supported by the Energy oriented Center of Excellence
(EoCoE), grant agreement number 676629, funded within
the Horizon2020 framework of the European Union. The
research leading to these results has also received funding
from the European Community Programme [H2020] un-
der the Marie Slodowska-Curie Actions Fellowship DURO
(2016-2018), grant agreement No. 708566 and it has been
supported in part by the European Union (FEDER funds)
under contract TTIN2015-65316-P.

REFERENCES

[1] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and
F. Zheng. Datastager: scalable data staging services for petascale
applications. Cluster Computing, 13(3):277–290, 2010.

11

[2] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka. FTI: high performance fault
tolerance interface for hybrid systems. In Proceedings of 2011
international conference for high performance computing, networking,
storage and analysis, page 32. ACM, 2011.

[3] O. Ben-Kiki, C. Evans, and I. d. Net. YAML Ain’t Markup Language
(YAML) Version 1.2, 3rd edition. No Starch Press, 2009.

[4] J. Bigot, V. Grandgirard, G. Latu, C. Passeron, F. Rozar, and
O. Thomine. Scaling GYSELA code beyond 32K-cores on
Blue Gene/Q. ESAIM: Proceedings, 43:117–135, Dec. 2013.

[5] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost,
M. Snirt, B. Traversat, and P. Wong. Overview of the MPI-IO
parallel I/O interface. In Input/Output in Parallel and Distributed
Computer Systems, pages 127–146. Springer, 1996.

[6] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson. An
overview of the HDF5 technology suite and its applications. In
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases,
pages 36–47. ACM, 2011.

[7] L. A. B. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka. Dis-
tributed diskless checkpoint for large scale systems. In Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pages 63–72. IEEE Computer Society, 2010.

[8] V. Grandgirard. High-Q club: Highest scaling codes on JUQUEEN
– GYSELA: GYrokinetic SEmi-LAgrangian code for plasma turbu-
lence simulations. online, March 2015.

[9] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crou-
seilles, G. Dif-Pradalier, C. Ehrlacher, D. Esteve, X. Garbet, P. Ghen-
drih, G. Latu, M. Mehrenberger, C. Norscini, C. Passeron, F. Rozar,
Y. Sarazin, E. Sonnendrücker, A. Strugarek, and D. Zarzoso. A 5D
gyrokinetic full-f global semi-Lagrangian code for flux-driven ion
turbulence simulations. Computer Physics Communications, 207:35–
68, 2016.

[10] M. Howison. Tuning HDF5 for Lustre file systems. In Workshop
on Interfaces and Abstractions for Scientific Data Storage (IASDS10),
Heraklion, Crete, Greece, September 24, 2010, 2012.

[11] G. Latu, J. Bigot, N. Bouzat, J. Gimenez, and V. Grandgirard.
Benefits of smt and of parallel transpose algorithm for the large-
scale gysela application. In Proceedings of the Platform for Advanced
Scientific Computing Conference, PASC ’16, pages 10:1–10:10, New
York, NY, USA, 2016. ACM.

[12] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel
NetCDF: A high-performance scientific I/O interface. In Super-
computing, 2003 ACM/IEEE Conference, pages 39–39. IEEE, 2003.

[13] W.-k. Liao, A. Ching, K. Coloma, A. Choudhary, and L. Ward. An
implementation and evaluation of client-side file caching for MPI-
IO. In 2007 IEEE International Parallel and Distributed Processing
Symposium, pages 1–10. IEEE, 2007.

[14] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin.
Flexible IO and integration for scientific codes through the adapt-
able IO system (ADIOS). In Proceedings of the 6th International Work-
shop on Challenges of Large Applications in Distributed Environments,
pages 15–24. ACM, 2008.

[15] Y. Meurdesoif. XIOS fortran reference guide, February 2016.
[16] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supin-

ski. Design, modeling, and evaluation of a scalable multi-level
checkpointing system. In 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–11. IEEE, 2010.

[17] N. Nethercote, R. Walsh, and J. Fitzhardinge. Building workload
characterization tools with valgrind. In 2006 IEEE International
Symposium on Workload Characterization, pages 2–2. IEEE, 2006.

[18] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges. MPI-
IO/GPFS, an optimized implementation of MPI-IO on top of
GPFS. In Supercomputing, ACM/IEEE 2001 Conference, pages 58–
58. IEEE, 2001.

[19] R. Rew and G. Davis. NetCDF: an interface for scientific data
access. IEEE computer graphics and applications, 10(4):76–82, 1990.

[20] R. Rew, G. Davis, S. Emmerson, H. Davies, and E. Hartnett.
NetCDF User’s Guide, 1993.

[21] R. Rew, E. Hartnett, J. Caron, et al. NetCDF-4: software imple-
menting an enhanced data model for the geosciences. In 22nd
International Conference on Interactive Information Processing Systems
for Meteorology, Oceanograph, and Hydrology, 2006.

[22] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO
portably and with high performance. In Proceedings of the sixth

workshop on I/O in parallel and distributed systems, pages 23–32.
ACM, 1999.

[23] R. Thakur, W. Gropp, and E. Lusk. Optimizing noncontiguous
accesses in MPI-IO. Parallel Computing, 28(1):83–105, 2002.

[24] R. Thakur, E. Lusk, and W. Gropp. Users guide for ROMIO: A
high-performance, portable MPI-IO implementation. Technical
report, Technical Report ANL/MCS-TM-234, Mathematics and
Computer Science Division, Argonne National Laboratory, 1997.

[25] Y. Wang, Y. Su, and G. Agrawal. Supporting a light-weight
data management layer over HDF5. In Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium
on, pages 335–342. IEEE, 2013.

	Introduction
	PDI Design
	PDI Implementation
	Evaluation
	Example Application
	Software Engineering Evaluation
	Performance Evaluation
	Memory evaluation
	Weak scaling study
	Efficiency breakdown for four use cases

	Related Work
	Conclusion
	Acknowledgment
	References

