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Introduction

Let X 1 , . . . , X n be a sequence of independent random variables valued in some measurable space (X , F), and identically distributed according to a law P . Let P n denote the empirical probability measure P n := n -1 (δ X 1 + . . . + δ Xn ). Let F be a countable class of measurable functions f : X → R such that P (f ) = 0 and |f (x)| ≤ 1 for all x ∈ X and all f ∈ F . We are concerned with exponential deviation inequalities with precise rate functions in the large deviations bandwidth for the random variable

Z := sup{nP n (f ) : f ∈ F }, (1.1) 
1 around its mean. First, let us briefly recall known results on concentration of Z around its mean for uniform bounded classes F . Talagrand [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF] obtains a Bennett-type inequality by means of isoperimetric inequalities for product measures. Ledoux [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF] introduces a new method based on entropic inequalities to recover more directly Talagrand's inequalities. This method, which allows to bound above the Laplace transform of Z, is the starting point of a series of papers, mainly to reach optimal constants in Talagrand's inequalities. Let us cite, among others, Massart [START_REF] Massart | About the constants in Talagrand's concentration inequalities for empirical processes[END_REF], Rio [START_REF] Rio | Inégalités de concentration pour les processus empiriques de classes de parties[END_REF][START_REF] Rio | Une inégalité de Bennett pour les maxima de processus empiriques[END_REF][START_REF] Rio | Sur la fonction de taux dans les inégalités de Talagrand pour les processus empiriques[END_REF], Bousquet [START_REF] Bousquet | Concentration inequalities for sub-additive functions using the entropy method[END_REF], Klein [START_REF] Klein | Une inégalité de concentration à gauche pour les processus empiriques[END_REF], Klein and Rio [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]. In the large deviations bandwidth, as rate function, we expect the Legendre transform of t → sup f ∈F f (t), denoted by * F , where f is the log-Laplace transform f (t) := log P (e tf ) for all t ≥ 0 and all f ∈ F . Indeed, one has

1 n log E[e tZ ] ≥ sup f ∈F f (t) =: F (t), (1.2) 
which implies

1 n log E[e t(Z-E[Z]) ] ≥ F (t) -t E[Z] n . ( 1.3) 
Now, if E[Z]/n tends to 0 (for example, this condition is satisfied when F is a Glivenko-Cantelli class), then lim inf n→∞ 1 n log E[e t(Z-E [Z]) ] ≥ F (t). (1.4) This elementary lower bound shows that the large deviations rate function * F cannot be improved. To the best of our knowledge, the only result in this direction is obtained in Rio [START_REF] Rio | Inégalités de concentration pour les processus empiriques de classes de parties[END_REF] and concerns the particular case of set-indexed empirical processes. Rio gets as rate function, for the right-hand side deviations for sets with large measure under P and for the left-hand side deviations, that of a Bernoulli random variable which actually corresponds to * F . In this paper, we obtain as rate function for the general case, the function * F with an additional corrective term which tends to 0 as n tends to infinity as soon as F is a weak Glivenko-Cantelli class (see Remark 3.3). Our methods are only based on martingale techniques and comparison inequalities.

The paper is organized as follows. First, in Section 2 we recall some definitions and preliminary results on the Conditional Value-At-Risk and some comparison inequalities. In Section 3 we state the main results of this paper. We study the rate function * F in Section 4. Finally, we provide detailed proofs in Section 5.

Notation and preliminary results

In this section, we give notation and definitions which we will use all along the paper. Let us start by the definition of the Conditional Value-at-Risk (CVaR for short). Definition 2.1. Let X be a real-valued integrable random variable. Let the function Q X be the càdlàg inverse of x → P(X > x). The Conditional Value-at-Risk is defined by

QX (u) := u -1 u 0 Q X (s)ds for any u ∈ ]0 , 1]. (2.1)
Let us now recall the definition of the Legendre transform of a convex function.

Definition 2.2. Let

φ : [0 , ∞[ → [0 , ∞[ be a convex, nondecreasing and càdlàg function such that φ(0) = 0. The Legendre transform φ * of the func- tion φ is defined by φ * (λ) := sup{λt -φ(t) : t > 0} for any λ ≥ 0.
(

The inverse function of φ * admits the following variational expression (see, for instance, Rio [START_REF] Rio | Asymptotic theory of weakly dependent random processes[END_REF]Lemma A.2]). φ * -1 (x) = inf{t -1 (φ(t) + x) : t > 0} for any x ≥ 0.

(2.3)

A particular function φ satisfying conditions in Definition 2.2 is the log-Laplace transform of a random variable: Notation 2.3. Let X be a real-valued integrable random variable with a finite Laplace transform on a right neighborhood of 0. The log-Laplace transform of X, denoted by X , is defined by

X (t) := log E[exp(tX)] for any t ≥ 0. (2.4)
The function Q X and the CVaR satisfy the following elementary properties, which are given and proved in Pinelis [START_REF] Pinelis | An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality[END_REF]Theorem 3.4]. Proposition 2.4. Let X and Y be real-valued and integrable random variables. Then, for any u ∈ ]0 , 1],

(i) P(X > Q X (u)) ≤ u, (ii) Q X (u) ≤ QX (u), (iii) QX+Y (u) ≤ QX (u) + QY (u).
(iv) Assume that X has a finite Laplace transform on a right neighborhood of 0. Then QX (u) ≤ * -1 X (log(1/u)). Remark 2.5. Since we use different notation from that in Pinelis [START_REF] Pinelis | An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality[END_REF], let us mention that his notation Q 0 (X; u), Q 1 (X; u) and Q ∞ (X; u) correspond respectively to Q X (u), QX (u) and * -1 X (log(1/u)). We now recall comparison inequalities which will be used in the proof of the main result. Let us first give a notation for a family of distribution probability.

Notation 2.6. Let α, β be two reals such that α < β. We say that a random variable θ follows a Bernoulli distribution if it assumes exactly two values and we write θ ∼ B m (α, β) if

P(θ = β) = 1 -P(θ = α) ∈ ]0 , 1[, and E[θ] = m.
(2.5)

Notice that Var(θ) = (m -α)(β -m). ( 2.6) 
The following classical convex comparison inequality between a bounded random variable X and a Bernoulli random variable with values of the bounds of X was first proved by Hoeffding (see Inequalities (4.1) and (4.2) in [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]); it straight follows by the property of convexity. In particular, since

E[θ] = m, Var(X) ≤ Var(θ) = (a + m)(b -m).
Next, Bentkus (see Lemmas 4.4 and 4.5 in [3]) proved that a martingale with bounded from above increments is more concentrate with respect to a certain class of convex functions than a sum of independent and identically distributed Bernoulli random variables. Proposition 2.8. Let b, s 2 1 , . . . , s 2 n be positive reals. Let M n := n k=1 X k be a martingale with respect to a nondecreasing filtration (F k ) such that M 0 = 0,

X k ≤ b, and E[X 2 k | F k-1 ] ≤ s 2 k a.s. (2.7)
Let s 2 := n -1 (s 2 1 + . . . + s 2 n ) and S n := ϑ 1 + . . . + ϑ n be a sum of n independent copies of a random variable ϑ with distribution B 0 (-s 2 /b, b). Then, for any convex nondecreasing function ϕ : R → R, differentiable and with convex derivative,

E[ϕ(M n )] ≤ E[ϕ(S n )].
Remark 2.9. Actually Bentkus obtains the above inequality in a smaller class of functions. This generalization is due to Pinelis (see Corollary 5.8 in [START_REF] Pinelis | Convex cones of generalized multiply monotone functions and the dual cones[END_REF]).

Main results

Let us first introduce one more notation. We denote for any k = 1, . . . , n the expectations

E k := E sup f ∈F P k (f ). (3.1)
The main result of the paper is the following theorem:

Theorem 3.1. Let F be a countable class of measurable functions from X into [-1, 1] such that P (f ) = 0 for all f ∈ F . Let Z be defined by (1.

1).

For any f ∈ F , let f and F be the functions defined by

f (t) := log P (e tf ) and F (t) := sup f ∈F f (t) for any t ≥ 0. (3.2) Denote Ēn := n -1 (E 1 + . . . + E n ) and define v n := Ēn 2 1 - Ēn 2 . ( 3.3) 
Let θ (n) be a Bernoulli random variable with distribution B 0 (-v n , 1). We denote by vn the log-Laplace transform of θ (n) . Then, for any x ≥ 0,

n -1 QZ-E[Z] (e -nx ) ≤ * -1 F (x) + 2 * -1 vn (x). (a)
Consequently, for any x ≥ 0,

P(Z -E[Z] > n( * -1 F (x) + 2 * -1 vn (x))) ≤ e -nx . (b)
The inverse function of * vn cannot be explicitly computed. For this reason we provide below a tractable bound. Corollary 3.2. Let ψ be the function defined by ψ(0) = 0 and for any positive x by

ψ(x) := √ 2x + 4x/3 log(1 + x/3 + √ 2x) -1. (3.4) Then * -1 vn (x) ≤ v n ψ x v n for any x ≥ 0. (a)
Consequently, for any x ≥ 0,

P Z -E[Z] > n * -1 F (x) + 2 v n ψ x v n ≤ e -nx . (b) Remark 3.3. If the class F is a weak Glivenko-Cantelli class, that is sup f ∈F |P n (f )
| converges to 0 in probability, then E n decreases to 0 (see, for instance, Section 2.4 of van der Vaart and Wellner [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF]) and so v n also decreases to 0 (we recall that Ēn ≤ 1). Consequently, recalling that

vn (t) = log(v n e t + e -tvn ) -log(1 + v n ), we assert by the variational formula (2.3) that lim n→∞ * -1 vn (x) = 0 for all x ≥ 0. (3.5) Therefrom 2 * -1 vn (x)
is just a correctional term. Moreover, note that ψ(x)/x tends to 0 as x tends to infinity and thus, [START_REF] Bercu | Concentration inequalities for sums and martingales[END_REF] gives that * vn (x)

lim n→∞ v n ψ x v n = 0 for all x ≥ 0. ( 3 
≥ x 2 /ϕ(v n ) where ϕ(v) = (1-v 2 )/| log(v)| for any v ∈ ]0 , 1[ (recall that v n ≤ 1/4). Hence, this yields the upper bound * -1 vn (x) ≤ xϕ(v n ) for any x ≥ 0. (3.8) Notice that xϕ(v n ) ≤ v n ψ(x/v n ) only for large values of x.
Remark 3.5 (On the large deviations on the left). Assume that F is a Glivenko-Cantelli class and that the identically zero function belongs to F . Then E[Z] is small with respect to n and Z ≥ 0. Thus for any x > 0,

P(Z -E[Z] ≤ -nx) = 0 for n large enough.
Remark 3.6 (Explicit bound for v n ). In view of (3.3), since the function x → x(1 -x) is increasing between 0 and 1/2, in order to provide a more explicit bound for v n , we only have to provide a bound for Ēn (which is lower than 1 and tends to 0 as n tends to infinity). To this end, we shall use the recent results of Baraud [START_REF] Baraud | Bounding the expectation of the supremum of an empirical process over a (weak) VC-major class[END_REF] who provides (see his Theorems 2.1 and 2.2) upper bounds with explicit constants for the expectations of suprema of empirical processes, under the hypothesis that F is a weak VC-major class. Assume then that F is a weak VC-major class with dimension d. Let σ 2 := sup f ∈F P (f 2 ) denote the wimpy variance. Then Inequality (2.8) in [START_REF] Baraud | Bounding the expectation of the supremum of an empirical process over a (weak) VC-major class[END_REF] implies the following proposition (the proof is postponed to Section 5).

Proposition 3.7. Assume that n ≥ d. Then Ēn ≤ 2 √ 2 σ log(e/σ)n -1/2 C 1 (d) + C 2 (n, d) + 8 n -1 C 1 (d) + C 2 (n, d) , (a) where C 1 (d) := log(2) d k=1 (1 + 1/k) and C 2 (n, d) := (d/2) log n + 1/2 d + 1/2 log 4 e 2 d 2 (n + 1/2)(d + 1/2) .
As n tends to infinity, the right-hand side of (a) admits the following behavior

2 √ 2 σ log(e/σ)n -1/2 log(n) + 4 d n -1 log 2 (n). (b) 
We end this section by giving a simple example where the function F is explicit.

Example 3.8. Let S be a countable class of sets. Let ε 1 , . . . , ε n be a sequence of independent Rademacher random variables and independent of X 1 , . . . , X n . Define

Z := sup S∈S n k=1 ε k 1 S (X k ).
(3.9)

For any S ∈ S and any k = 1, . . . , n, we get by a straightforward calculation

S (t) := log E[e tε k 1 S (X k ) ] = log(1+P (S)(cosh(t)-1)) for any t ≥ 0. (3.10)
Clearly the right-hand side is increasing with respect to P (S). Then

S (t) := sup S∈S S (t) = log(1 + p(cosh(t) -1)) for any t ≥ 0, (3.11) 
where p := sup{P (S) : S ∈ S }. By (2.3), * -1

S

is then given by the variational formula * -1

S (x) = inf t>0 t -1 x + log(1 + p(cosh(t) -1))
for any x ≥ 0. (3.12)

We also refer the reader to Bennett [START_REF] Bennett | On the probability of large deviations from the expectation for sums of bounded, independent random variables[END_REF], p. 532, for an explicit formula of * S .

4 About the rate function * F

Comments on Large Deviation Principle

In this subsection we explain how the rate function * F arises in the large deviations theory for suprema of bounded empirical processes.

Throughout this section, we assume that for all f ∈ F , 0 ≤ f ≤ 1. We denote by l ∞ (F ) the space of all bounded real functions on F equipped with the norm

F F := sup f ∈F |F (f )|, making (l ∞ (F ), . ∞ ) a Banach space.
For each finite measure ν on (X , F) corresponds to an element ν F ∈ l ∞ (F ) defined by ν F (f ) := ν(f ) = f dν for any f ∈ F . With a slight abuse of notation, we will keep the notation ν instead of ν F . Wu [START_REF] Wu | Large deviations, moderate deviations and LIL for empirical processes[END_REF] gives necessary and sufficient conditions with respect to F which ensure that P n satisfies the Large Deviation Principle (LDP for short) in l ∞ (F ). We refer the reader to the paper of Wu for these conditions (for example, if F is a Donsker class then the required conditions are satisfied). The (good) rate function is given by

h F (F ) := inf{H(ν | P ) : ν is a probability and ν = F on F }, (4.1) 
where H(ν | P ) is the relative entropy of ν with respect to P given, as soon as ν is absolutely continuous with respect to P , by 

Lemma 4.1. J(y) = inf f ∈F * f (y)
, where f (t) := log P (e tf ) for any t ≥ 0. The important remark is that if we can invert the infimum and the supremum in inf f ∈F sup t>0 {tyf (y)}, we get that inf f ∈F * f (y) = * F (y). It seems not possible to invert the infimum and the supremum in general. However, note that we always have the inequality inf f ∈F * f (y) ≥ * F (y). In the following proposition, we describe a particular case in which the inversion is valid, which then simplifies the calculation of * F . Since it directly follows from a minimax theorem (see, for instance, Corollary 3.3 in Sion [START_REF] Sion | On general minimax theorems[END_REF]), we omit the proof. Proposition 4.2. Let X be a random variable valued in (X , F) with distribution P . Let F be a countable class of measurable functions from X into [-1 , 1] such that P (f ) = 0 for all f ∈ F . Let Θ be a convex compact subset of a vector space. Let {µ θ : θ ∈ Θ} be a family of probability distribution on [-1 , 1] such that, for any t ≥ 0, θ → µ θ (t) := log e tz µ θ (dz) is concave and upper semi-continuous. We assume that for all f ∈ F , there exists θ ∈ Θ such that f (X) has the distribution µ θ . Then, *

F (x) ≥ inf θ∈Θ * µ θ (x) for any x ≥ 0.
Example 4.3 (Set-indexed empirical processes). Let X be a random variable valued in (X , F) with distribution P and let S be a countable class of measurable sets of X . We consider the class of functions F := {1 S -P (S) : S ∈ S }. Define p := sup{P (S) : S ∈ S } and assume that p < 1/2. For any θ ∈ [0 , p], let us define the function θ (t) := log(1 + θ(e t -1)) -θt for any t ≥ 0. Then Proposition 4.2 yields *

F (x) ≥ inf θ∈[0,p] * θ (x) for any x ≥ 0. (4.4)
The computation of the right-hand side of (4.4) is performed by Rio (see p. 175 in [START_REF] Rio | Inégalités de concentration pour les processus empiriques de classes de parties[END_REF]): for any x ≤ 1 -2p, 

Furthermore, for any

x ≥ 1 -2p, inf θ∈[0,p] * θ (x) ≥ * p (1 -2p) + x 1-2p ( * (1-y)/2 ) (y)dy = 2(1 + x) log (1 + x) + 2(1 -x) log(1 -x) -(1 + 2p) log(2p) -(3 -2p) log(2 -2p). (4.6)
Remark 4.4. Proceeding as in the proof of Theorem 4.2 in Rio [START_REF] Rio | Inégalités de concentration pour les processus empiriques de classes de parties[END_REF], one can derive from Theorem 6.3 in Bousquet [START_REF] Bousquet | Concentration inequalities for sub-additive functions using the entropy method[END_REF] that, if p 0 := p + E n satisfies p 0 < 1/2, then for any t > 0 such that p 0 < (te t -e t + 1)(e t -1) -2 ,

n -1 log E[exp(t(Z -E[Z]))] ≤ log(1 + p 0 (e t -1)) -tp 0 . (4.7)
Now (4.7) and the usual Cramér-Chernoff calculation, imply that P(Z -

E[Z] ≥ nx) ≤ exp(-n * p 0 (x)), for any x > 0 such that x ≤ (x + p 0 )(1 -x -p 0 ) log (1 -p 0 ) p 0 (t + p 0 ) (1 -t -p 0 ) . (4.8)
Bousquet [START_REF] Bousquet | Concentration inequalities for sub-additive functions using the entropy method[END_REF] tells without proof that (4.8) holds for any x ≤ (3/4)(1 -2p 0 ).

If x = x 0 := 1 -2p 0 , (4.8) is equivalent to p 0 (1 -p 0 ) ≥ (1 -2p 0 )/2 log(1/p 0 -1),
which is wrong (see Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] p. [START_REF] Rio | Une inégalité de Bennett pour les maxima de processus empiriques[END_REF]. Recall now that Bousquet's results are derived from the entropy method introduced by Ledoux [13] on the context of concentration inequalities. It appears here that this method does not provide the exact rate function for large values of x, including x = 1 -2p 0 .

The case of nondecreasing 1-Lipschitz functions

Here we study the special case of F included in the set of nondecreasing 1-Lipschitz functions. We can then bound above * -1 F by a more tractable quantity.

Corollary 4.5. Let X be a random variable valued in (X , F) with distribution P and X 1 , . . . , X n be n independent copies of X. Let F be a countable class of measurable functions from X into [-1 , 1], nondecreasing, 1-Lipschitz and such that P (f ) = 0 for all f ∈ F . Let Z be defined by (1.1). Moreover, we assume that the distribution P satisfies that for any t ∈ R, e tx P (dx) < ∞. Then * -1

F (x) ≤ * -1 X-E[X] (x) for any x ≥ 0. (a)
Consequently, for any x ≥ 0,

P Z -E[Z] > n( * -1 X-E[X] (x) + 2 * -1 vn (x)) ≤ e -nx . (b)
Example 4.6. Let P be the uniform distribution on [-1 , 1]. Then, by (2.3), * -1 X is given by the following variational formula whose values in every point is computable: * -1

X (x) = inf t>0 1 t x + log sinh(t) t for any x ≥ 0. (4.9) 
Let us also provide a bound of * -1 X which is relevant for large values of x. Since sinh(t) ≤ e t /2 for any t > 0, one has * -1

X (x) ≤ 1 + inf t>0 1 t (x -log(2t)) for any x ≥ 0. (4.10)
Then, for each x ≥ 0, the infimum in (4.10) is reached at t x := e x+1 /2, which leads to * -1

X (x) ≤ 1 - 2 e e -x for any x ≥ 0. (4.11)
Furthermore, one can prove that * -1 X (x) is equivalent to 1 -2 e e -x as x tends to infinity.

Proofs

Proofs of Section 3

Proof of Theorem 3.1. First, notice that (b) follows immediately from (a) by Proposition 2.4 (i) and (ii). Let us now prove (a). Our method is based on a martingale decomposition of Z which we now recall. We suppose that F is a finite class of functions, that is F = {f i : i ∈ {1, . . . , m}}. The results in the countable case are derived from the finite case using the monotone convergence theorem. Set F 0 := {∅, Ω} and for all k = 1, . . . , n,

F k := σ(X 1 , . . . , X k ) and F k n := σ(X 1 , . . . , X k-1 , X k+1 , . . . , X n ). Let E k (re- spectively E n ) denote the conditional expectation operator associated with F k (resp. F k n ). Set also Z k := E k [Z], Z (k) := sup{nP n (f ) -f (X k ) : f ∈ F }. (5.1) 
The sequence (Z k ) is an (F k )-adapted martingale and

Z -E[Z] = n k=1 ∆ k , where ∆ k := Z k -Z k-1 .
(

Define now the random indices τ and τ k , respectively F n -measurable and F k n -measurable, by

τ := inf{i ∈ {1, . . . , m} : nP n (f i ) = Z}, ( 5.3 
)

τ k := inf{i ∈ {1, . . . , m} : nP n (f i ) -f i (X k ) = Z (k) }. (5.4) 
Notice first that

Z (k) + f τ k (X k ) ≤ Z ≤ Z (k) + f τ (X k ).
From this, conditioning by

F k gives E k [f τ k (X k )] ≤ Z k -E k [Z (k) ] ≤ E k [f τ (X k )]. (5.5) Set now ξ k := E k [f τ k (X k )] and let ε k ≥ r k ≥ 0 be random variables such that ξ k + r k = Z k -E k [Z (k) ] and ξ k + ε k = E k [f τ (X k )].
Thus (5.5) becomes

ξ k ≤ ξ k + r k ≤ ξ k + ε k . (5.6)
Since τ k is F k n -measurable, we have by the centering assumption on the elements of F ,

E k n [f τ k (X k )] = P (f τ k ) = 0 a.s., (5.7) 
which ensures that

E k-1 [ξ k ] = 0. Moreover, E k [Z (k) ] is F k-1 -measurable.
Hence we get

∆ k = Z k -E k [Z (k) ] -E k-1 [Z k -E k [Z (k) ]] = ξ k + r k -E k-1 [r k ],
which combined with (5.2) yield the decomposition of Z -E[Z] in a sum of two martingales:

Z -E[Z] = Ξ n + R n , ( 5.8) 
where

Ξ n := n k=1 ξ k and R n := n k=1 (r k E k-1 [r k ]).
(5.9)

Now, we bound above separately the log-Laplace transforms of Ξ n and R n .

Lemma 5.1. We have

log E exp t Ξ n ≤ n F (t) for any t ≥ 0. Proof of Lemma 5.1. The F k n -measurability of τ k gives E k n [exp(tf τ k (X k ))] = P (e tfτ k ). (5.10) 
This ensures, with an application of the conditional Jensen inequality, that Proof of Lemma 5.2. Actually, the inequality follows by taking ϕ(x) = e tx with t ≥ 0 in the more general comparison inequality below:

E k-1 [e tξ k ] = E k-1 E k n [e tξ k ] ≤ E k-
Lemma 5.3. Let θ (n) 1 , . . . , θ (n)
n be a sequence of n independent copies of θ (n) with B 0 (-v n , 1) distribution. Then, for any convex nondecreasing function ϕ from R into R, differentiable and with convex derivative,

E[ϕ(R n )] ≤ E ϕ 2 n k=1 θ (n) k . where ϑ (n) 1 , . . . , ϑ (n) n is a sequence of i.i.d. random variables such that ϑ (n) k
has the distribution B 0 (-ṽ n , 2) with ṽn := n k=1 E k (2 -E k ). Moreover, since x → x(2 -x) is concave, ṽn ≤ Ēn (2 Ēn ). Finally Hoeffding's convex comparison inequality (Proposition 2.7) yields that for any convex, nondecreasing function ϕ differentiable with convex derivative,

E ϕ n k=1 ϑ (n) k ≤ E ϕ 2 n k=1 θ (n) k , ( 5.17) 
This inequality associated with (5.16) conclude the proof of Lemma 5.3.

As mentioned at the beginning of the proof, this also concludes the proof of Lemma 5.2 by taking ϕ(x) = e tx with t ≥ 0.

Let us now complete the proof of Theorem 3.1. From (2.3) and Lemmas 5.1-5.2 we derive for any x ≥ 0, * -1 

Ξn (nx) ≤ n * -1 F (x) and * -1 Rn (nx) ≤ 2n * -1 vn (x). ( 5 

of [6]

). Therefore, for any x ≥ 0, * -1 (ii) Proof of J(y) ≥ I(y).

vn (x) ≤ * -1 Πn (x) = v n h -1 x v n , ( 5 
Since the infima may be written as the limit of a sequence of infima taken over finite subsets, it is enough to prove the inequality for a finite class of functions F . Let y ∈ [0 , 1] and t > 0. Let ν be a probability measure absolutely continuous with respect to P such that ν F = y. Let d := (dν/dP ) be the Radon-Nikodym derivative of ν with respect to P and set g f := tf -log P (e tf ) for any f ∈ F . Young's inequality (see, for instance, Equation (A.2) in Rio [START_REF] Rio | Asymptotic theory of weakly dependent random processes[END_REF]) implies that Proof of Corollary 4.5. Let X be a random variable with distribution P . Recalling that P (f ) = 0 for any f ∈ F , Lemma 2 of Bobkov [START_REF] Bobkov | Localization proof of the Bakry-Ledoux isoperimetric inequality and some applications[END_REF] states that for any convex function ϕ : R → R and for any f ∈ F ,

E[ϕ(f (X))] ≤ E[ϕ(X -E[X])].
In particular with ϕ(x) = e tx , t ≥ 0,

F (t) = sup f ∈F f (t) ≤ log E[e t(X-E[X]) ] = X-E[X] (t).
(5.32)

Thus the variational formula (2.3) implies * -1 F (x) ≤ * -1 X-E[X] (x) for all x ≥ 0. An application of Theorem 3.1 completes the proof.

Proposition 2 . 7 .

 27 Let a, b be two positive reals and let X be a bounded random variable such that -a ≤ X ≤ b and E[X] = m. Let θ ∼ B m (-a, b). Then, for any convex function ϕ : R → R, E[ϕ(X)] ≤ E[ϕ(θ)].

  inf θ∈[0,p] * θ (x) = * p (x) = (p+x) log(1+x/p)+(1-p-x) log(1-x/(1-p)). (4.5)

5. 2 Proofs of Section 4 Proof of Lemma 4 . 1 .

 2441 Throughout the proof, we use the notationI(y) = inf f ∈F * f (y). (i) Proof of J(y) ≤ I(y). Let y ∈ [0 , 1] and let ε > 0. There exists a function f ∈ F such that * f (y) ≤ I(y) + ε. Now, Cramér's Theorem ensures that lim n→∞ n -1 log P(P n (f ) ≥ y) = - * f (y).(5.27)Since P n F satisfies the LDP with rate function J and since P n (f ) ≤ P n F for all f ∈ F , we get-J(y) ≥ lim sup n→∞ n -1 log P( P n F ≥ y)≥ lim n→∞ n -1 log P(P n (f ) ≥ y) = - * f (y). (5.28)Therefrom J(y) ≤ I(y) + ε. Since ε > 0 is arbitrary, we conclude the proof by letting ε tends to 0.

  tν(f ) -log P (e tf ) = dg f dP ≤ e g f dP + (d log d -d) dP. (5.29) Since e g f dP = 1, (5.29) leads to tν(f ) -log P (e tf ) ≤ H(ν | P ). (5.30) In particular (5.30) is valid for the function f ∈ F which satisfies y = ν( f ) (recall that F is finite) and for any t > 0. Then we have * f (y) ≤ H(ν | P ), (5.31) which implies I(y) ≤ J(y) and ends the proof.

  1 [P (e tfτ k )] ≤ sup

	P (e tf ),	(5.11)
	f ∈F	
	almost surely. Then Lemma 5.1 follows by an immediate induction on n.
	Lemma 5.2. We have	
	log E exp t R	

n ≤ n vn (2 t) for any t ≥ 0.

  Newton algorithm performed in Del Moral and Rio (see Appendix A.6 in[START_REF] Del Moral | Concentration inequalities for mean field particle models[END_REF]) allows to derive the bound h -1 (x) ≤ ψ(x), which concludes the proof of Corollary 3.2.

	We recall (see p. 1714 in [1]) that, for any d ≥ k, Γk (d) = log(2)(k + 1)/k
	and for any d < k,						
	Γk (d) ≤ Moreover, observe that by the concavity of x → d k log 2e k . d √ x, one has	(5.23)
				1 n	n k=1	Γk (d) ≤	1 n	k=1 n	Γk (d).	(5.24)
	Then, since Ēn = n -1 (E 1 + . . . + E n ), the previous facts together with the sub-additivity of x → √ x yield
	Ēn ≤ 2 √ 2 σ log(e/σ)n -1/2 C 1 (d) +	n k=d+1	d k	log	d 2e	k	1/2
						+ 8 n -1 C 1 (d) +	n k=d+1	d k	log	2e d	k . (5.25)
									k+1/2 k-1/2 h(x)dx.
	Summing then this inequality from d + 1 to n gives
	n k=d+1	h(k) ≤	1 2	log	n + 1/2 d + 1/2	log	4e 2 d 2 (n + 1/2)(d + 1/2) .	(5.26)
	Finally injecting (5.26) in (5.25) concludes the proof.
	Proof of Proposition 3.7. Inequality (2.8) in Baraud [1] implies that for any
	k = 1, . . . , n,	E k ≤ 2 √ 2 σ log(e/σ) Γk (d) + 8 Γk (d),	(5.21)
	where			Γk (d) := k -1 log 2	d∧k j=0	k j	.	(5.22)

.20) where h(u) := (1 + u) log(1 + u) -u for any u ≥ 0. Next, a Observe now that the function h defined by h(x) := x -1 log((2e/d)x) is convex (at least) on [d, +∞[. Thus for any integer k > d, h(k) ≤
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Proof of Lemma 5.3. We start the proof by showing that r k -E k-1 [r k ] ≤ 2, and Var(r k | F k-1 ) ≤ E n-k+1 (2 -E n-k+1 ) a.s. (5.12) The first inequality above is straightforward by (5.6) and the uniform boundedness condition on F . Let us prove now the inequality. We start by bounding above Var(r

(5.13)

Next, we prove that E k-1 [r k ] is bounded above by a deterministic constant.

Lemma 5.4. We have

Proof of Lemma 5.4. The proof is based on the following result on exchangeability of variables, proved in Marchina [START_REF] Marchina | Concentration inequalities for suprema of unbounded empirical processes[END_REF]. Since it is the fundamental tool of the paper, we give again the proof for sake of completeness.

Lemma 5.5. For any integer

Proof of Lemma 5.5. By the definition of the random index τ , for every permutation on n elements σ, τ (X 1 , . . . , X n ) = τ • σ(X 1 , . . . , X n ) almost surely.

Applying now this fact to σ = (k j) (the transposition which exchanges k and j), it suffices to use Fubini's theorem (recalling that j ≥ k) to complete the proof.

Then,

The bound E n-k+1 ≤ 1 is straightforward by the uniform boundedness condition on the elements of F , which ends the proof of Lemma 5.4.

Finally, (5.13) together with Lemma 5.4 and the fact that x → x(2 -x) is increasing between 0 and 1, imply

Now, Proposition 2.8 yields that for any convex, nondecreasing function ϕ differentiable with convex derivative, .16)