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Abstract. We address the problem of discovering contexts that lead
well-distinguished collections of individuals to change their pairwise agree-
ment w.r.t. to their usual one. For instance, in the European parliament,
while in overall, a strong disagreement is witnessed between deputies
of the far-right French party Front National and deputies of the left
party Front de Gauche, a strong agreement is observed between these
deputies in votes related to the thematic: Fxternal relations with the
union. We devise the method DSC (Discovering Similarities Changes)
which relies on exceptional model mining to uncover three-set patterns
that identify contexts and two collections of individuals where an unex-
pected strengthening or weakening of pairwise agreement is observed. To
efficiently explore the search space, we define some closure operators and
pruning techniques using upper bounds on the quality measure. In addi-
tion of handling usual attributes (e.g. numerical, nominal), we propose
a novel pattern domain which involves hierarchical multi-tag attributes
that are present in many datasets. A thorough empirical study on two
real-world datasets (i.e., European parliament votes and collaborative
movie reviews) demonstrates the efficiency and the effectiveness of our
approach as well as the interest and the actionability of the patterns.

Keywords: Exceptional model mining; Subgroup discovery

1 Introduction

The last decade has witnessed a huge growth in the collection of rating (e.g.,
Amazon, IMDb, Yelp, Foursquare ) or vote (e.g., Parltrack, Voteview) data. Such
data depict the opinion (i.e., review, or vote) of people (e.g., IMDb users, Euro-
pean parliament member) on an item (e.g., movie, restaurant, ballot) and need
to be analyzed by leveraging contextual information to discover new actionable
insights that cannot be obtained otherwise. There has been a rapid rise in the
analysis of such data in many applications such as fact checking or lead finding
in political journalism, and collaborative rating analysis.

Fact checking has become increasingly common in political journalism. It
contributes to the quality of news provided by media®. For instance, Truth-O-
Meter* was extensively used during the 2016 US presidential debate. Delving

3 “increasing quality of journalism will lead to better decisions by citizens...”[16]

“http:/ /www.politifact.com /truth-o-meter/



deeply into the votes sessions makes it possible to enlighten some claims about
consensus between politicians or finding some flashpoints (i.e., contexts that lead
to strong disagreement). Average rating is not enough for an item. While some
individuals are in agreement on many items, they can be in strong disagreement
for certain types of items. Such information can directly be used for recommen-
dation. For example, in Movielens dataset, while usually middle-aged women
users are in agreement with middle-aged men users w.r.t. their overall ratings,
these collections are in disagreement for Comedy movies released in 1998.

The discovery of descriptions that distinguish a group of objects given a tar-
get (class) has been widely studied in data mining and machine learning com-
munity under several vocables (subgroup discovery, emerging patterns, contrast
sets) [14]. We consider here the well-established framework of subgroup discov-
ery (SD)[22]. Given a set of objects taking a vector of attributes (of Boolean,
nominal, or numerical type) as description, and a class label as a target, the goal
is to efficiently discover subgroups of objects for which there is a high difference
between the label distribution within the group compared to the distribution
within the whole dataset. SD has been extended to a richer framework that han-
dles more complicated target concepts, the so-called Exceptional Model Mining
(EMM)[17]. A model is built over the labels from the objects in the subgroup and
is compared to the model of the whole dataset using a quality measure. The more
different is the model, the more exceptional is the subgroup. Many models have
been investigated in the last decade [21,8,7,13,6]. However, no model in the
EMM framework makes it possible to characterize collection of individuals whose
pairwise agreement exceptionally deviates according to a subset of objects.

In this paper, we introduce the problem of discovering collections of individu-
als and particular contexts where their pairwise agreement exceptionally differs
from their usual one as an instance of EMM. Fig. 1 gives an overview of our
approach. Based on an aggregation level set a priori, the method begins by con-
stituting collections of individuals (1). Bi-sets of individuals are identified by a
description (2) and their global pairwise behavior is computed (3). The method
eventually aims to identify subset of reviewed items (4) for which the related
pairwise behavior (5) substantially differs from the global one (6). To discover
such patterns, we have to simultaneously explore the search space associated
to the reviewed items and the search space associated to the reviewers. To this
end, we devise the method DSC' (Discovering Similarities Changes) to discover
three-set patterns (context, collectiony, collections) that identify a context and
two collections of individuals where an unexpected strengthening or weakening
of pairwise agreement is observed. We define some closure operators and some
effective pruning techniques based on the computation of tight upper bounds
on the quality measure to efficiently explore the search space. DSC' is able to
handle numerical, nominal attributes and also hierarchical multi-tag attributes.
The main contributions of this paper are manifold:

Problem formulation. We define the novel problem of exceptional pairwise be-
havior discovery in the EMM framework. This formulation makes it possible to
consider several similarity measures to assess the pairwise agreement.
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Fig. 1: Overview of DSC

Algorithm and analysis. We propose a branch-and-bound algorithm that effi-
ciently exploits tight upper bounds and closure operators.
FEvaluation. We report a thorough empirical study on real-world datasets that
demonstrates the efficiency and the effectiveness of DSC.

The rest of the paper is organized as follows. Section 2 gives the formal defi-
nition of the exceptional pairwise behavior discovery problem. Section 3 presents
the algorithms. Section 4 provides experimental results. Section 5 reviews the
related work. Section 6 concludes and provides future directions.

2 Problem definition

Data describing individuals outcomes about items are numerous, ranging from
vote data to collaborative ratings through social-media platforms. We model
such data as a triple (F,U, R) where E is a collection of objects (e.g., ballots,
items, restaurants) and Agp = {ey,...,e,} depicts the schema of the studied
objects described by n attributes. U identifies the individuals (e.g., social network
users, parliament members) described by m attributes over the schema Ay =
{u1, ..., um }. Eventually, R represents the reviews (e.g., opinions, votes, ratings)
of individuals over the objects. Each element of R is a triple r = (e, u,0) where
o € O is the outcome of a user u € U over an item e € E. The function o(e, u)
returns the outcome o of u over an item e.

A description ¢ over E defines a set of restrictions over the domains of the
attributes Ag. Such a description gives a context and identifies a subgroup of E
denoted FE. which is a collection of objects that fulfill the restrictions of ¢. We
use the symbol * to refer to the context that covers all the objects, therefore
FE,. = E. Similarly, a description g over U, which is a set of restrictions over the
domains of the attributes Ay, identifies a collection of individuals denoted Uy.



We aim to discover a context ¢ and collections of individuals Uy, C U,
Uy C U (labeled respectively by their descriptions ¢, g’ over the attributes of U)
such that their pairwise agreement (similarities) differs exceptionally from the
observed pairwise agreement over the whole objects. In other terms, we want
to identify patterns (c,g’,¢"’) that suggest an important change in pairwise be-
havior between Uy and Uy within a context c. To this end, the outcomes of
Uy and Uy have to be compared. Therefore, we need to define a similarity
function between individuals over a given subgroup of objects. However, ratings
data are generally sparse which limits the set of objects that have been rated
by a pair of individuals. To overcome this issue, we have to consider aggregates
of individuals and their aggregated outcome. The operator 7y builds a parti-
tion of U according to their values on the attributes L C Ay . For instance, if
U represents deputies affiliated to national parties depicted by the attribute np,
Yinpy(U) = {G1,Go, ...} is a partition of U where each G represents a set of
individuals affiliated to the same party.

We define an aggregated outcome operator 6 : Ex2Y — O which maps an ag-
gregate of individuals G C U to its aggregated outcome w.r.t. an object e. For
example, when dealing with movie ratings, aggregated outcome 6(e, G) can be de-
fined as the mean of ratings given by some individuals of G to a movie e. We can
compare the similarity between two sets of individuals based on their aggregated
outcomes. The similarity measure is thus defined as: sim : 28 x2V x2V — [0, 1].

Our method relies on an EMM vision. Thus, we first need to determine a
model class and a quality measure ¢ over this model class. We use a similar-
ity matrix as a model to capture the pairwise agreement between pairs of user
collections (Uy, Uyr). Note that, contrary to common EMM approaches, there
is no unique base model on the whole data but a model is related to a pair of
descriptions (¢, ¢"”) identifying collections of individuals. The base model de-

’ "
noted M{ Y | which represents the usual observed pairwise agreement over the

whole objects between the candidate subgroups Uy, Uy, is defined as: Mf,’g” =

(sim (Es,,7) )(i,j)E'yL(Ug/)X'YL(Ugu)' The model built for a context ¢ depicting a

subgroup of objects B, is: M¢"9" = (sim (i, j) )(i,j)evL(Uq/)xu(Uq,,)'

The quality measure ¢ aims to quantify how much the model induced by the
subgroup is different from the base model, i.e., how much the pairwise agreement
observed over the whole objects differs from the one observed in a particular
context between Uy and Uy . Several quality measures can be defined according
to the use case. For example, if we are interested in finding controversial contexts,
we define @g;ssent that captures the average similarity weakening between pairs

of yr.(Uy) X yL(Ugr):

Paissent (¢, g") = (e W) xvp U,,,) maw(sim(Bx i.0)—sim(Be,i,),0)
resenti g RIACMINRTACHD)

To find patterns (c,g’,g”) that suggest an unexpected change of pairwise
agreement, we rely on a well-known task, i.e, the discovery of Top-k patterns
that fulfill a minimum quality threshold constraint o,. Additional constraints
can be taken into account (e.g. (|E.| > og, |Uy| > ou, |Ugs| > ou)).



3 Discovery of exceptional pairwise behaviors

In this section, we describe the enumeration principle based on closure operators,
especially in the case of attributes whose domain is defined as a hierarchy. We
then present different aggregates and similarities as well as the quality measures
and their related tight upper and lower bounds. We eventually describe the
algorithms to discover exceptional pairwise behaviors.

3.1 Candidate descriptions enumeration

Description language. Let G be a generic collection of tuples which can be
either F or U, and Ag = (a1, ag, ..., a,) its schema defined over n attributes. We
denote by dom(a;) the domain of an attribute a;. A description d = (r1, 7, ...,7y)
is a conjunction of restrictions over the attributes domains, where each restric-
tion r; corresponds to the attribute a;. The restriction definition depends on the
attribute type. If an attribute a; is nominal then the corresponding restriction
r; is assimilated to a membership into a subset of dom(a;). Otherwise, if an a;
is numeric then the corresponding restriction r; refers to a membership into an
interval. The set of all possible descriptions is denoted D. A description d € D
defines by intent a subgroup (extent) G4 C G which contains the tuples of G ver-
ifying the restrictions of d. In order to bind the descriptions of D to subgroups
in G, we define a mapping function § : G — D that maps each tuple g € G to its
description in D. To define this mapping function, we rely on the corresponding
mappings &, : dom(a;) — D,, that maps the values of an attribute a; to its cor-
responding restriction r; € D,,. Given a tuple g, an attribute a; and its value a
in g, if a; is numeric, the restriction is an interval d,, (af) = [af, a?]. Otherwise, if
a; is nominal, the restriction is a singleton d,,(a) = {a?}. Finally, with the for-
mer definitions, for a tuple g = (af, ..., a%) we have 6(g) = (d4, (a), ..., da, (a%)).

Description space structure. To enumerate candidate descriptions (or candi-
date subgroups by extent), we traverse the search space D in a bottom-up fashion.
This search space is commonly depicted as a meet-semi lattice structured by an
infimum operator denoted by M [10] which simply allows to get the lowest com-
mon description of two given descriptions. The infimum operator definition relies
on the n infimum operator M,, corresponding each to the type of the attribute
a;. Let a be a numeric attribute, the corresponding infimum operator M, com-
putes the minimum interval enclosing two intervals. In the other hand, if a is
nominal, the corresponding infimum operator M, is represented by a set union
operator. Thus the meet-semi lattice (D, M) is the result of the cartesian product
of the meet-semi lattices (D,,M,) each corresponding to an attribute a € Ag.
The infimum operator allows us to define a partial order denoted by C between
descriptions. Given two descriptions ¢ and d, we have cC d < clMd = c.

Specialization and neighborhood relations. Let ¢ = (¢1,q2, ...,qn) and d =
(ri,72,...,;7n) be two descriptions of D, r; and ¢; are two restrictions on the
attribute a;. r; is a specialization of ¢; iff r; = ¢; which is equivalent to ¢; T
Ti < qi Mo, 75 = ¢;- A description d is a specialization of ¢ (denoted ¢ C d) iff



Vi € [1.m] : ¢ € r;. Obviously, ¢ C d < G4 C G, with G4 (resp. G.) the
subgroup covered by d (resp. ¢). When traversing the search space we extend a
description to more complex descriptions by atomic refinements. Thus, we define
the neighborhood relationship <. We have ¢ < d iff cCd AN Pe €D : cCeC d
and d is said to be an upper neighbor of ¢. To get the neighbors of a candi-
date description ¢ = (g1, gz, ..., qn), we rely on a similar neighborhood concept
between restrictions. If a restriction ¢ is over a nominal attribute a which is ma-
terialized by a subset s, C dom(a) membership, neighbors of ¢ are candidates
r which correspond to singletons of s,. Similarly for a numeric attribute, candi-
date neighbors of a restriction r are the intervals ¢ resulting from a left-minimal
change or a right-minimal change on the interval bounds corresponding to r [12].
With these tools, we can easily define a refinement operator  : D — 2P which
maps to each description d its neighbors in D and we have:

n(e) ={d €D :d=(ri,...,mn) = c=(q1,..,qn)}
={deD:3Jje[l.n]|r;>qg andVic[l.n]|i#j=>1i=q}

(1)

Additionally we define ny that computes the neighbors of a given description ¢
by refining the f* restriction corresponding to the f** attribute as follows:

nie)={deD :ry>=qrandVie[l.n||i# f=r,=q} (2)

Closed descriptions. We rely on the concept of closed descriptions to signif-
icantly decrease the number of explored descriptions by avoiding redundancy.
A description c¢ is said to be closed iff for every specialization d (i.e. ¢ C d)
there is at least one object in G covered by ¢ but not by d. More formally,
Vd € D : ¢cC d= Gg € G.. Two descriptions ¢ and d are considered as
equivalent (denoted ¢ = d) iff G. = G4. We can adapt the CbO (Close-by-One)
algorithm [15] for our use in DSC.

To define the closure operator of a description d of D, we need to introduce
two derivation operators that create a Galois connection between 29 and D:
Given S C G, the description SZ € D covering the subgroup S is:

S7 1= Myesd(9) = (Mgesa (af), -, Ngesda, (af)
Given a description d, the subgroup d” covered by d is:

Gy=d?={geG|dCd(g)}

(.)P™ is a closure operator and for every d € D d7F is a closed description.

Canonicity test. An important aspect in CbO enumeration is the canonic-
ity test, which allows to determine if a description after closure was already
generated and discard it, if appropriate. The canonicity test relies on a linear
order < between descriptions of D. Given an arbitrary order between attributes
Ag ={a1,a9,...,a,},if d = (r1,...,7,) comes from a closure after a refinement of
the ft" restriction of ¢ = (g1, ..., ¢,) then we have: c<;d < Vi € [l..f—1] | ¢; =
Ti A qf <q,7s. Note that, in our case, the test part gy <4, ry is always valid when
the f*" attribute is numeric or nominal. Although, the latter need to be assessed
when the attribute is rather complex, such as for HMT attributes introduced in
the next section.



3.2 Hierarchical multi-tag attribute (HMT)

Several votes and reviews datasets contain multi-tagged objects where each tag
is a part of a hierarchical structure. For instance, the ballots in the European
parliament can have multiple tags (e.g., the ballot Gender mainstreaming in
the work of the European Parliament is tagged by 4.10.04-Gender equality and
8.40.01-Furopean Parliament. Tag 4.10.04 itself identifies a hierarchy where tag
4.10 depicts Social policy which is a specialization of tag 4 that covers the ballots
related to Economic, social and territorial cohesion). Let G be a set of tagged
objects. For the sake of simplicity, each object g is described by a unique attribute
tags which is a set of tags. Tags form a tree noted T.

We can define the partial order < between tags as the same usual partial
order in a tree structure where the tree root is the minimum (e.g. * < 1 < 1.20).
This allows us to define the ascendants (resp. descendants) operator 1 (resp. |)
ofatagt € T. We have 1t = {u € T|u <t} and |t = {u € T|u > t}. Let ¢ and
u be two tags, t is a lower neighbor of u denoted t < u iff le € T' |t < e < u.
Thus ¢ is a parent of u denoted as t = p(u).

A restriction over an HMT attribute is assimilated as a membership in a set
of tags {t1,...,tn }. We denote the description domain by D which is a subset of
2T, Each object g € G is mapped by §(g) to its corresponding description in D.
Obviously if 6(g) = {t1,t2}, the object g is tagged explicitly by the tags ¢; and
to but also implicitly by all their generalization 1¢; and 1¢5 as shown in Fig. 2.

To handle this attribute among the other attributes in the complex search
space defined previously, we need to define the infimum operator My, between
two descriptions of D. Let ¢ = {t1,...,t,} and d = {uq, ..., um } be two descrip-
tions of D, we define My as: ¢ Mypr d = max(Ugee TN Uyeqg Tu) where
maz : 27 — 27 is a function that maps each subset of tags s C T to the leafs of
the sub-tree compound of the tags of s: max(s) ={t € s | ({t\ {t}) Ns =0}

Intuitively ¢ My 7 d depicts the set of the maximum explicit or implicit tags
shared by the two descriptions. For instance, if ¢ = {1.10, 2} and d = {1.20,2.10},
¢ Mumr d = {1,2}. A description d is said to be a specialization of ¢ denoted
¢ Cdiff ¢Mypyrd=c which means Vt € ¢ Ju € d | u € |t. A description c is
considered as a lower neighbor of d denoted ¢ < d iff:

A (tu)eexd: t<uAV e(c\t)I ed : ¢ = it |d|=|¢|
ViecTued:t=unI(t,u) € cxd I €Tt plu)=p(t) |d|=]c|+1

[ [tags * 1 1.10 1.20 2 2.10 3
g1]{1.20,2.10} g1 X X X X X

X
I > 3 g2|{1,3} g2 X X X
1] g3 }1.10}2.10,3} gz X X X X X
ga|{2.10 ga X X X
95|{1.20} 95 X X X

Fig. 2: A tags tree (left), a collection of tagged items (middle) and a vector represen-
tation (right)



Basically d is an upper neighbor of ¢, if either only one tag of d is refined in
¢ by the neighborhood relation between tags or by adding a new tag in d that
share parent with a tag in ¢ or with one of its ascendants. The linear order
between two conjunctions of tags ¢ = {t1,....,t,} and d = {uy, ..., Upn, ..., U }
given that d comes from a closure after refinement of the f** tag of c is defined
asic<yd<=Vie[l.f—1] : t; =u; A ty < uy. The lincar order between
tags can be provided by the depth first search on T

Based on the definitions of My, neighborhood relation between two sets of
tags and the linear order between them, the attribute HMT can be easily handled
with the aforementioned attributes (numeric and nominal) in the complex search
space dealing with n attributes.

3.3 Aggregations, Similarities and Quality measures

An important aspect in DSC is the similarity measure between aggregates of
individuals. Given L C Ay a set of individuals attributes on which we com-
pute aggregates of individuals, a collection of individuals U, C U labeled by
a description g, v.(Uy) = {Gl,GQ,...,Gk} is a partition of U,. The aggre-
gate outcome 6 is defined according to the application domain. For example,
the outcome of an aggregate of reviewers who give scores is defined as such:
Oreview(e,G) = \GI > wec o(e,u). The outcome of an aggregate G' of European

parliament members w.r.t a ballot is given by the vote of the majority® as
Ovotes(e, G) = argmax,co{count (v, {o(e,u) | u € G}) }.

[x] Review score Reviewed object
8 oM I

A X:E % Y{color} :’8 i A \: Compute aggregate xg
Group over Head E& %\g\ é ," outcomes . ‘ﬁ %
é u/ n ﬁ colors foe el oo Red Blue

reviewers reviewers

Individuals described by (color, shapes)

Fig. 3: Aggregates outcomes over one reviewed object

In this paper, we consider similarities that convey the average agreement
proportion between two aggregates G;, G; based on their pairwise similarity
simobj over each object. We define such similarities over 27 x 2V x 2U:

sim(E,G;, G;) Zszmob] (E, G, Gj) (3)
I |e€E

Indeed, the measure simobj which is defined over E x 2V x 2V is adapted
on the application domain. For example, if we want to compare deputies where
vote decision can be either a for, against or abstain. we define:

5The same measure is used by votewatch to observe the voting behavior of deputies



1 if O(e,G;) = 0(e, Gy)

0 else

SimOijotes (67 Giv G]) = { (4)
For ratings ranging from 1 to 5, the similarity simobj is defined by how much
the scores given by the two aggregates are close:

$iMOobjreview (e, Gi, Gj) =1 — i|0(e, G;) —0(e, Gj)| (5)

To discover interpretable patterns (¢, ¢, g”'), we define the two following qual-
ity measures Qconsent,; Pdissent Py relying on the defined similarities. @eonsent
makes it possible to consider a pattern as “interesting” if there is an important
strengthening of similarities between individuals corresponding to ¢’ and individ-
uals corresponding to g” for the context ¢. @gissent aims to assess the weakening
of similarities between individuals. We assume that the attributes L C Ay used
to build partitions of individuals are given:

B (c.d ,,)_Z(i,j)en(ugmxmwymm“””(Sim(Ec’i’j)’Sim(E*’i’j)’o)
Pconsent\C, 9,9 )= YL (Ug)] v (Ugr)]

— Pdi (e,g',9") = Ziiyevn W) xag (U,,) MAE(IM(Ew i j)-sim(Ee.i,7),0)
issent\& Y |’YL(Ug')"|’YL(Ug”)I

3.4 Upper bounds on quality measures

To early discard unpromising descriptions, we follow a branch-and-bound ap-
proach in which an upper bound on the quality measure ¢ is computed for a
candidate description. We first define a generic upper bound UBg;,, and a lower
bound LBy;,, on sim. Given a threshold og that fix the minimum threshold on
objects subgroup size, G; and G; two aggregates of individuals, we have:

(E7 Gi7 G]) = max ((TE_lE'(l_‘%m(E’Gi’GJ)) , 0

1
B LBsim or

- LB?, (E,G;,G;) = ésmallest({simobj(e,Gi7Gj) le € B}, oF)
UBL,,,(E,Gi,G2) = min (W 1)

sim oE )

UBZ%,.(E,G;,G;) = élargest({simobj(e,Gi,Gj) |e € E},oF)

where smallest(S,n) (resp. largest(S,n)) computes the sum of the n mini-
mum (resp. mazimum) of given set S of real values. LB, = (resp. UBL, ) is equiv-

sim sim
alent to LB, (resp. UBZ,,,) when simobj gives binary results such as simobjyotes-

Given a description (c, ¢, g"), we define the following upper bounds® on the
quality measure of every specialization d of ¢ (Vd | ¢ C d):

Soconsent (da 9/79//) S UBconsent (C, g/a g//) A @dissent (da g/’gll) S UBdissent (07 g/a g//)
Z(iy.f)E’YL(Ug/)X’YL(Ug//) mam(UBSim(EC’i’j)fsim(E*1i7j)50)

ooy
UBconsent(Cug g ) - WL(UQ/)H’,YL(UQH,)L o
_ UBy, (c g' g”) _ Z(i,j)ewL(Ug/)x"rL(Uy//) maz(sim(E+,i,5) = LBsim (Ee,i,5),0)
issent\Cy g [v£(Ug )] Ive (Ugr)l

where UB consent (reSp~ UBdissent) corresponds to Pconsent (resp. @dissent)

SProofs of upperbounds are available in goo.gl/viQxhi
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3.5 Algorithms

Algorithm 1 called EnumCC (Enumerate Closed Candidates) describes the ex-
ploration of the search space over a collection of objects G defined by the at-
tributes Ag = {a1, ..., an}. EnumCC enumerates the closed descriptions c that
verify the constraint og on the size of its corresponding subgroup starting from
a description d. Given a description d, EnumCC' computes its corresponding
subgroup S, if its size exceeds the threshold, the closure ¢ of d is computed
and the linear order between them is verified. If so ¢ is returned as a valid can-
didate. The algorithm then generates the neighbors by refining the attributes
{af,...,a,}. The flag f determines the attribute that was refined to generate
the description d. Finally, a recursive call is done to explore the lattice structure
formed by d in a DFS fashion. The parameter cnt is a Boolean that allows to
prune the search space based on the computation of the upper bound on the
quality of a candidate description. EnumCC' is depicted as a generator.

Algorithm 1: EnumCC(G,d,og, f,cnt)

1 Se« d”

2 if |S;| > og then

3 |« ST

4 |if d <y c then

5 cnt_c < copy(cnt)

6 yield (¢, Sc,cent_c) ; // yield the results and wait for the next call

7 if cnt_c then

8 foreach j € [f,n] do

9 foreach ngh € n;(c) do
10 foreach (cngh, Sngh, cntngn) € EnumCC(S.,ngh,og, j,cnt-c) do
11 ‘yield (Cnghs Sngh, cnitngn)

Algorithm 2: DSC(E,Uy,Us, L,0¢, 00,04, k)

current

105 +— oy

2 topk + []

3 foreach (¢',U, ,conty ) € EnumCC(Un, *,0u,,0,True) do

4 |foreach (¢",U,,contyr) € EnumCC(Us, *,0u,,0, True) do

5 foreach (c, E., cont.) € EnumCC(E,*,0¢,0,True) do

6 UB < UBugissent(c,9',9") ; // resp. UBconsent
7 if UB < 05"""*™ then

8 ‘comﬁC <+ False

9 else
10 quality < Yaissent(¢,9',9") ; // Tesp. QYconsent
11 if quality > 03" then
12 pattern < (¢, g’,g")
13 update topk by (pattern, quality) limits by k
14 if |topk| = k then
15 05,“"8"’5 <+ min_quality(topk)
16 output topk
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Algorithm 2 depicts DSC method based on the use of the closure operator and a
branch and bound exploration. It is related to the task of finding topk patterns
with a minimum quality threshold o,. The algorithm first generates the candi-
date pattern (¢, ¢’, g"), subsequently the upper bound of the candidate pattern is
computed. If it does not exceed the threshold o, the search space is pruned. Oth-
erwise the quality measure of the candidate is computed. If its quality exceeds the
same threshold o, then the topk set is updated. Subsequently, if the size of topk
exceeds k, the worst pattern found w.r.t. ¢ is discarded and o, is dynamically
updated with the minimal quality of the current topk set. Note that E defines
the objects on which individuals U; and Uy (two subsets of U) gives outcomes.
L determines the attributes on which the individuals are aggregated. Finally,
0,0y determines the thresholds of subgroups sizes of respectively E and U.

4 Empirical study

In this section we report on both quantitative and qualitative experiments over
the implemented algorithms. The algorithms were implemented in Python. The
experiments were carried on an Intel Core i7-6700HQ 2.60 GHz machine with 16
GB RAM and were run by PyPy 5.4.1 For reproducibility purpose, the source
code and the data are made available in our companion page’. These experiments
aim to answer the following questions: Q1 - Is the closure over an HMT attribute
more effective than mining closed itemsets? Q2 - Are the closing operator and
the tights upper bounds effective and efficient? Q& - Does our algorithm scale
w.r.t. different parameters? Q4 - Does DSC provide actionable patterns?

Experiments were carried out on two real-world datasets: a movie review
dataset Movielens® and the European parliament dataset EPD?. The main char-
acteristics of these datasets are reported in Table 1. In Movielens, 18 movie genres
are organized through a flat hierarchy.

4.1 Performance study

Q1 - We aim to study the performance of the closure operator in the presence
of an HMT attribute. To this end, we compare it against the closure over item-

Characteristics Movielens EPD

F#objects 1.681 movies 2.471 Ballots

#individuals 943 778

#outcomes 99.991 1.639.199

Ag 1 HMT (18 tags), 1 Numeric 1 HMT (311 tags), 1 Numeric, 1 Nominal
Au 3 Nominal 3 Nominal

Table 1: Characteristics of the datasets

"https://github.com/Adnene93/DiscoveringSimilarityChanges
Shttps://grouplens.org/datasets/movielens/100k/
“http://parltrack.euwiki.org/
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sets (i.e., scaling) as illustrated in Fig. 2. A tree of tags is characterized by its
height and its branching factor (k-ary tree). A dataset of multi-tagged object is
described by the maximum number of tags (maztags) that an object can have
and also its size. Fig. 4 reports the runtime and the number of explored candi-
dates of the two closure operators when varying the branching factor, the tree
height, the number of tags and the dataset size. For these experiments, we set
the default values of these characteristics respectively to: 5, 3, 3 (hierarchy of 125
tags) and 5000 objects. HMTClosure exploits the structure of the tree and avoids
exploring semantically equivalent descriptions (i.e : {3,3.10.05} is semantically
equivalent to {3.10.05}) whereas ISClosure explores them. In all configurations,
HMT Closure outperforms ISClosure on both the execution time and the number
of explored candidates. These experiments demonstrate that taking into account
hierarchical relations makes the closure operator more efficient and effective.

=4 ISClosure = HMTClosure

25 9. 25 12, 60 350, 7 50,
0 8 = ) 300 @6 <
<2.0 22.0 108 250 P 40
£ =R 8 5 £ao 2503 g5 3
515 5 % S 1.5 x 5 200 % ©4 30 x
S 1.0 43§10 s &% 1508 83 208
El 35 57 4 5 520 s 5 S
Zos ke § s 3 1008 g2 109
20 s 200 2 5 %10 50 5 1 3

0.0 o* 0.0 o * 0 o * o o *

0.5 1.0 1.5 2.010.0 T 2 3 4 73 4 5 2 3 4 5 8 10

#objects x 10°3 #maxtags height k_ary

Fig. 4: Behavior of enumeration algorithms considering two closure operators for HMT
attributes w.r.t. the number of objects, the height of the hierarchy, the number of tags
and the branching factor which are set by default to respectively 5, 3, 3, 5000.

Q2 - A baseline algorithm is obtained by deactivating the pruning techniques
based on upper-bound and the closure operators . Thus, the baseline only pushes
monotonic constraints. We compare DSC with the baseline and also with closed
which is DSC without an upper bound computation on both Movielens and EPD.
Notice that in EPD UBéissent and UBgissent are equivalent for the considered
similarity. Therefore, we only report UBJ;...,;- We interrupt a method if its
execution time exceeds one hour.

Figures 5 and 6 report the behavior (i.e., execution time and number of
explored candidates) of the different methods when varying the characteristics
of the datasets Movielens and EPD. Obviously, these experiments give evidence
that each of the different optimizations of DSC are effective. For Movielens
dataset, DSC' is the most efficient when using UB2 . instead of UB}

dissen dissent*
Indeed, UBZ,...,.; is more costly to compute than UBJ,...,., but much tighter.
The differences between the baseline and DSC are much more important on EPD
because the HMT attribute is more complex than in Movielens. The experiments
also demonstrate that the number of attributes used in a description of an object
or a user heavily impacts the performance of the method as it increases the size

of the search space.
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Fig. 5: Effectivness of DSC (Top-5) according to Movielens dataset characteristics
which are set by default to |E| = 1681, |U| = 943, #attropjects = 2, #attTindividuals =
2. The default thresholds are op = oy =5, 0, =0, |[L| = 1.
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Fig. 6: Effectivness of DSC (Top-5) according to EPD dataset characteristics which
are set by default to |E| = 2471, |U| = 778, #attropjects = 3, #attTindividuals = 2. The
default thresholds are g = oy =15, 0, =0, |L| = 1.

Q3 - Fig. 7 reports the behavior of DSC on EPD when varying the input pa-
rameters (i.e., the minimum thresholds og and oy and the quality measure).
Obviously, when the thresholds increase (i.e. become more stringent) the num-
ber of explored patterns and thus the execution time decrease. Nevertheless, we
observe that when decreasing og, DSC remains efficient thanks to its pruning
abilities based on upper-bound computations and closure operators. The exe-
cution time increases in line with the number of dimensions |L| on which are
computed the group of individuals while the number of explored descriptions
remains roughly the same. Indeed, the computation of the model is more costly.
Finally, a greater o, leads to an important reduction of the number of explored
candidates and therefore a better execution time. This demonstrates the effec-
tiveness of the pruning properties implemented in DSC'. Even if the two quality
measures behave similarly, @consent performs slightly better than ¢g;ssent as by
default the relation between the parliament’s deputies w.r.t. their voting behav-
ior is rather consensual.

S

10.0 10° 100.0

#=4 Dissent
#=4 Consent

1.0

Execution time (s)
#Explored x 1076
Execution time (s)

[

)
#Explored x 1076
Execution time (s)
#Explored x 10°6
Execution time (s)
#Explored x 10°6

4=4 DSC+UBL

& #=% DSC+UB1
10 20 30 100 300

=
S

0.1 102

1 5 25 50 100 o 1 2 3
thres_objects thres_users #attr_aggregate

Fig. 7: Effectivness of DSC (top-5) over EPD according to constraints thresholds and
quality measures. The default thresholds are ogp = oy =15, 0, =0, |[L| =1
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4.2 Qualitative results (Q4)

Table 2 describes some patterns found by DSC' when looking for contexts that
weaken the pairwise agreement between collections of reviewers identified by gen-
der and age group in Movielens. For instance, middle-aged females tend to be in
discord with their peer males for 1998 comedy movies (13 movies, e.g.: The Wed-
ding Singer) in the best pattern. This can be observed by a significant decrease
of similarity (of 35%) between the two aggregates from 86% to 51%. The diver-
sification is done over the top-100 patterns. Two patterns are considered similar
if one cover more than 50% of the reviewed objects contained in the second.

’ "

i context (c) g g [Bel [Ugrl [Ugnl ¢

1 [[Comedy’], [1998, 1998]] [['middle-age’], "F]] [[middle-age’], PM’]] 13 119 228  0.35
2 [['Horror’, 'Comedy’], [1992, 1996]] [['middle-age’], ['F’]] [Pold’], PM’]] 9 119 45 0.31
3 [['Drama’], [1949, 1950]] [Pmiddle-age’], [F’, "M’]] [['young’], ['F’, '"M’]] 5 347 508 0.3
4 [Romance’], [1998, 1998]] [['middle-age’], ['M’]] ['young’], ['F]] 11 228 134 0.3

Table 2: Diversified Top-4 patterns discovered over Movielens by grouping on agegroups

i context (c) g’ g" [Ecl [Ugrl [Ugnl ¢

1 [[’3.40.16’, ’6.10.05’, ’6.20.02, ’6.30’], [Feb. 2015, Feb. 2015]] [[PPE’]] [’S&D’]] 29 227 191  0.76

2 [[’2.40’, ’3.30.03.04’, ’3.30.05’, ’3.30.06’, ’'3.30.20’, ’3.30.25’, [[’S&D’]] [Verts/ALE’]] 13 191 51 0.75
’4.60.06°], [July. 2015, July. 2015]]

3 [['2.50.08’, '2.80’, ’'3.45.04°], [Feb.2016, Feb.2016]] [CALDE’]] ['S&D’]] s 75 191  0.71

4 [['6.40.04 [[GUE/NGL]] [['Verts/ALE’]] 10 59 51 0.67

.02], [Mar.2015, Mar.2015]]

Fig. 8: Diversified Top-4 patterns over EPD by grouping over political groups. (1)
determine the usual pairwise observed between political groups and (2,3 & 4) illutstrate
the heatmaps corresponding to the best 3 pattern found in top-k table

Fig. 8. reports the patterns discovered suggesting flash points (particular
contexts that lead European groups to important similarities weakening). These
patterns allow us to explicit the differences between groups that usually share
the same political line. For example, while PPE and S&D vote mostly the same
(76% of the cases), the top pattern (1) uncovers the ballots (contextualized by
their themes - such as 3.40.16 Raw materials and 6.10.05 Peace preservation -
and their time period - Feb. 2015) on where the two groups strongly diverge.
This is witnessed by a decrease of pairwise agreement from 76% to 0%. The
heatmaps illustrated in Fig. 8. depict the overall pairwise agreement changes
observed for the pattern (1). Such results can provide insights for both political
analysts and journalists, where the analytic tool provided by DSC allows to
help discover ideological idiosyncrasies when comparing deputies against their
peers, determining red lines between political groups or exhibiting contexts where
nations deputies coalesce against others in critical subjects.



15

5 Related work

The problem of discovering exceptional subgroups based on the definition of a
complex target model has been widely investigated in the recent years [17,21, 8,
7,18, 13]. Interestingly, de S& et al. [6] use a similar matrix model to support the
discovery of subgroups of individuals whose preference relation between ranked
objects deviates from the norm. However, in the so-called exceptional preference
mining, the dimensions of the model are fixed, i.e., the quality measure takes into
account all objects and not dynamically a subset as in DSC'. Dynamic EMM (i.e.,
EMM with a non-fixed model) has been recently investigated for different aims.
Bosc et al. [4] propose a method to handle multi-label data where the number of
labels per objects is much lower than the total number of labels which prevent
the use of usual EMM model. Other dynamic EMM approaches aim to discover
exceptional attributed sub-graphs [13, 3].

Thanks to open data policy, the analysis of political data has received much
attention in the past decade. Most of them use basic data mining techniques. For
instance, [11] uses clustering and PCA to identify cohesion blocs and dissimilarity
blocs of voters within the US senate. Similar work was done on the Finnish [20]
and the Ttalian [1] parliaments. An extensive tool was provided by [9] and applied
to Swiss government datasets to detect opinion change of parliamentarians based
on their expressed opinions before elections and votes cast afterwards.

Rating analysis has also received a wide interest in the last decade. In [5], the
authors tackle the problem of rating interpretation by providing two methods
(DEM, DIM). While the first one aims to discover groups of users that substan-
tially agree for a given set of items, the second addresses the discovery of groups
with an apparent inner discord. These two methods can be formalized as EMM
instances with either a quality measure that assesses the average ratings of the
identified subgroups or the average balance between positive and negative rat-
ing. While these methods consider a mono-objective measure (rating average),
a similar work has been done to tackle multi-objective groups identification in
[19]. It addresses a more complex statistical measure (rating distribution) and
additionally coverage and diversity issues. In [2], the authors aim at using rating
maps to identify subsets of reviews such that the distribution of rates observed
is similar to the desired distributions.

6 Conclusion

In this paper, we introduced the novel problem of subjective exceptional pairwise
behavior discovery in rating or vote data, rooted in the SD/EMM framework.
We defined a branch-and-bound algorithm that exploits tight upper bounds and
some closure operators to efficiently and effectively discover subgroups of inter-
est. Experiments show that both quantitative and qualitative results are very
satisfactory. We believe that this work opens new directions for future work. For
example, the interactive discovery of exceptional pairwise behavior would make
it possible to take into account prior knowledge. Such an exploration must be
supported by instant mining algorithms.



16

Aknowledgement

This work has been partially supported by the project ContentCheck ANR-15-
CE23-0025 funded by the French National Research Agency.

References

1.
2.

3.

10.
. A. Jakulin and W. Buntine. Analyzing the us senate in 2003: Similarities, networks,

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22

A. Amelio and C. Pizzuti. Analyzing voting behavior in italian parliament: Group
cohesion and evolution. In ASONAM, pages 140-146. IEEE, 2012.

S. Amer-Yahia, S. Kleisarchaki, N. K. Kolloju, L. V. Lakshmanan, and R. H.
Zamar. Exploring rated datasets with rating maps. In WWW, 2017.

A. A. Bendimerad, M. Plantevit, and C. Robardet. Unsupervised exceptional
attributed sub-graph mining in urban data. In ICDM, pages 21-30, 2016.

G. Bosc, J. Golebiowski, M. Bensafi, C. Robardet, M. Plantevit, J. Boulicaut,
and M. Kaytoue. Local subgroup discovery for eliciting and understanding new
structure-odor relationships. In DS, pages 19-34, 2016.

. M. Das, S. Amer-Yahia, G. Das, and C. Yu. Mri: Meaningful interpretations of

collaborative ratings. PVLDB, 4(11):1063-1074, 2011.

C. R. de S4, W. Duivesteijn, C. Soares, and A. Knobbe. Exceptional preferences
mining. In DS, pages 3-18. Springer, 2016.

W. Duivesteijn, A. J. Feelders, and A. Knobbe. Exceptional model mining. Data
Mining and Knowledge Discovery, 30(1):47-98, 2016.

W. Duivesteijn, A. J. Knobbe, A. Feelders, and M. van Leeuwen. Subgroup discov-
ery meets bayesian networks - an exceptional model mining approach. ICDM , 2010.
V. Etter, J. Herzen, M. Grossglauser, and P. Thiran. Mining democracy. ACM,2014.
B. Ganter and S. Kuznetsov. Pattern structures and their projections. ICCS,2001.

clusters and blocs. 2004.

M. Kaytoue, S. O. Kuznetsov, A. Napoli, and S. Duplessis. Mining gene expression
data with pattern structures in formal concept analysis. Information Sciences,
181(10):1989-2001, 2011.

M. Kaytoue, M. Plantevit, A. Zimmermann, A. Bendimerad, and C. Robardet.
Exceptional contextual subgraph mining. Machine Learning, pages 1-41, 2017.

P. Kralj Novak, N. Lavra¢, and G. I. Webb. Supervised descriptive rule discovery:
A unifying survey of contrast set, emerging pattern and subgroup mining. J. Mach.
Learn. Res., 10, 2009.

S. O. Kuznetsov. Learning of simple conceptual graphs from positive and negative
examples. In PKDD, pages 384-391. Springer, 1999.

S. Lacy and T. Rosenstiel. Defining and measuring quality journalism, 2015.

D. Leman, A. Feelders, and A. J. Knobbe. Exceptional model mining. In
ECML/PKDD, 2008.

F. Lemmerich, M. Becker, and M. Atzmueller. Generic pattern trees for exhaustive
exceptional model mining. In ECML/PKDD, pages 277292, 2012.

B. Omidvar-Tehrani, S. Amer-Yahia, P.-F. Dutot, and D. Trystram. Multi-
objective group discovery on the social web. In FCMLPKDD, 2016.

A. Pajala, A. Jakulin, and W. Buntine. Parliamentary group and individual voting
behaviour in the finnish parliament in year 2003: a group cohesion and voting
similarity analysis. 2004.

M. van Leeuwen and A. J. Knobbe. Diverse subgroup set discovery. Data Min.
Knowl. Discov., 25(2):208-242, 2012.

S. Wrobel. An algorithm for multi-relational discovery of subgroups. PKDD, 1997.



