BOST, Marion, POUYA, Ahmad, GUEDON, Sylvine, MARTINEAU, François, 2010, Avancées en mécanique des roches expérimentales : étude expérimentale de la propagation des fissures sous l'action du gel dans les massifs calcaires, CFMR - Avancées en mécanique des roches expérimentales, LYON, FRANCE, 2010-06-10, Comité Français de Mécanique des Roches - CFMR, 37 p. Disponible en ligne : http://www.cfmr-roches.org/manifestations-pass%C3%A9es/manifestations-du-cfmr

Gorges du Loup, avril 2005

Avancées en mécanique des roches expérimentales :

Étude expérimentale de la propagation des fissures sous l'action du gel dans les massifs calcaires

Marion Bost, Ahmad Pouya, Sylvine Guédon, François Martineau

Enjeux du gel dans les roches

Sensibilité au gel des pierres de construction

Calcaire en carrière

 Aléa « chutes de pierres et de blocs rocheux » en région montagneuse

Route d'accès au Mont Blanc, mars 2007

CFMR, jeudi 10 juin 2010, "Avancées en mécanique des roches expérimentales"

Les Grands Goulets,

Choix de l'étude : effet du gel dans un massif fissuré

Problématique

février 2003 CFMR, jeudi 10 juin 2010, "Avancées en mécanique des roches expérimentales"

Modèle théorique ?

Modèle du système fermé = action seule de la dilatation volumique lors du changement de phase de l'eau

			Méthode	Pression générée MPa
caractéristiques	GLACE (Lliboutry 1964)	CALCAIRE (Larrys)	Lliboutry 1964 Dégagement de l'air dissous dans l'eau	979
Module d'Young (MPa)	9000	64900	Bertouille 1975: Loi de Hooke	838
Coefficient de Poisson	0.36	0.34	Pouya 1991 Convergence d'une sphère creuse	729

- \Rightarrow Valeurs trop élevées (changement d'état de la glace...)
- ⇒ Difficulté pour établir un modèle théorique en système ouvert car transferts thermique et de liquide dépendants
 - \Rightarrow Développement d'un modèle empirique

Reproduction du phénomène en laboratoire

« Études de faisabilité »

Un nouvel essai de résistance au gel

Échantillons de calcaire surcarottés testés

Un échantillon fissuré

Comparaisons entre la norme EN 12371 et l'essai de résistance au gel proposé

Calcaire	Initiation de la fissuration	Rupture complète	EN12371
	Nombre de cycles	Nombre de cycles	
Courville	70	>80	Gélif
Farges	75	>80	Peu gélif
Pierre de Lens	23	>64	Non gélif
Roquemaillère	/	50	Non gélif
Urgonien	1	8	Non gélif
Vilhonneur-bed 2	4	/	Non gélif
Vilhonneur-bed 7	4	/	Gélif
Vilhonneur-bed12	1	/	Non gélif
Larrys-Bief	8	>64	Gélif
Larrys-Moulin d'Arlot	1	12	Gélif
Tournaisis-Vaulx&Chercq	/	2	Peu gélif
Tournaisis-Pont-à-Rieu	1	>26	Non gélif
Tournaisis-Allain	1	>26	Gélif
Mareuil	8	20	Peu gélif
Chamesson	18	>19	Peu gélif

Première procédure d'essai...

CFMR, jeudi 10 juin 2010, "Avancées en mécanique des roches expérimentales"

Une propagation de la fissure en deux temps...

Propagation d'une fissuration dans le prolongement de l'entaille

Ouverture de l'entaille en fonction du cycle (F=gel; T=dégel)

Observations microscopiques

Un chemin de rupture préférentiel se dessine dès le premier cycle dans le prolongement de l'entaille existante

1cm

Contournement d'une oolithe...

« Points de contact » et rupture

Un modèle mécanique à caractériser à l'échelle microscopique

- Propriétés mécaniques du calcaire évaluées à l'échelle macroscopique inappropriées pour étudier ce processus d'altération
- Un modèle de la propagation de la fissuration :

 $k_n = f(quantité de points de contact)$

avec k_n: raideur normale du joint

Goodman et al. (1968): $\sigma_n = k_n u_n$

Dispositif et protocole expérimentaux

Instrumentation

Installation expérimentale

Position des capteurs de pression dans l'entaille

Reproduction d'un cycle de gel-dégel

- Contraintes:
 - fidélité par rapport aux conditions naturelles
 - problème de la durée de l'expérimentation
- Variations de température choisies:
 - Gel à $-5^{\circ}C$
 - Dégel à 20°C
- Gestion de l'humidité :
 - Éprouvette saturée à l'eau sous vide
 - Éprouvette placée dans un fond d'eau
- Durée des phases choisie et adaptée afin d'atteindre l'équilibre thermique de l'éprouvette

Choix des calcaires d'étude :

Résultats

Observation effective d'une fissuration progressive au cours des cycles successifs mais...

Propagation de la fissuration au cours des cycles successifs

15 cm

mais...

... sensibilité au gel différente selon le calcaire

Évolution spatio-temporelle de la contrainte lors du gel : cas d'une roche peu poreuse, le Larrys

Augmentation simultanée de la pression dans l'entaille

Pression uniforme en dessous d'une profondeur à chaque instant

Évolution spatio-temporelle de la contrainte lors du gel : cas d'une roche poreuse, la Pierre de Lens

Décalage dans le temps de l'augmentation de la contrainte

- Augmentation non-simultanée de la pression dans l'entaille
- Pression non-uniforme en profondeur dans l'entaille

Milieu ouvert = mouvements d'eau

CFMR, jeudi 10 juin 2010, "Avancées en mécanique des roches expérimentales"

Analyse et modèle phénoménologique

Influence de la porosité

- Plus une roche est poreuse, plus le gel de l'eau liquide qu'elle contient sera long.
- Conflit entre la cinétique de gel dans l'entaille et celle dans la roche
 => confinement latéral

Confinement de l'eau liquide dans l'entaille, fonction de la porosité de la roche

CFMR, jeudi 10 juin 2010, "Avancées en mécanique des roches expérimentales"

- Valeur-limite de la contrainte maximale linéairement corrélée à la perméabilité
- Confinement généré par la propagation du front de gel, limité par la perméabilité

Modèle physique de la propagation du gel dans une fissure

Modèle empirique de la contrainte générée

Dispositif expérimental

Tube reconstitué : surcarottage

Entaille

Collage des jauges

Principe de l'analyse inverse

Modèle mathématique de l'allure de la contrainte le long de l'entaille

$$\boldsymbol{\sigma}(x,t) = \boldsymbol{a}(x) \left[1 - \exp^{-\boldsymbol{b}(x)t} \right] \left[1 - \exp^{-\boldsymbol{c}(x)t^3} \right]$$

Contrainte en fonction du temps : théorie/expérience

Modèle mathématique de l'allure de la contrainte le long de l'entaille

$$\sigma(x,t) = a(x) \left[1 - \exp^{-b(x)t} \right] \left[1 - \exp^{-c(x)t^3} \right]$$

Où:

$$a(x) = a_1 \left[1 - \exp^{-\frac{x^2}{a_2}} \right]$$

'Allure maximale de la contrainte le long de l'entaille'

= contrainte à retenir en terme de gestion du risque

$$b(x) = \frac{b_1}{x}$$

$$c(x) = \frac{c_1}{x^2}$$
Fonctions positives

Étude de l'influence de la géométrie sur la contrainte générée par le gel

- e : épaisseur de l'entaille
- L : profondeur de l'entaille
- x : profondeur de mesure

La contrainte maximale dépend de la géométrie de l'entaille

⇒ contrainte maximale proportionnelle à la quantité d'eau sus-jacente jusqu'à une valeur-limite

CFMR, jeudi 10 juin 2010, "Avancées en mécanique des roches expérimentales"

Modèle de l'allure de la contrainte

et comparaison avec résultats expérimentaux (cubes entaillés de 15 cm de côté)

=> a₁ et a₂ entièrement paramétrés par la géométrie de l'entaille et les caractéristiques du réseau poreux

CFMR, jeudi 10 juin 2010, "Avancées en mécanique des roches expérimentales"

Conclusions et perspectives

Intérêts de ces dispositifs expérimentaux

- Le gel de l'eau dans un réseau de fissures d'un massif calcaire suffit à expliquer la propagation des fissures
 - Sollicitation due au gel, fonction de la compétition entre :
 - la cinétique d'écoulement des fluides dans le réseau poreux environnant de la roche (rôle de la perméabilité de la roche)
 - la cinétique de progression du front de gel dans la fissure (rôle de la porosité de la roche)
 - Contrainte générée par le gel dans une fissure de l'ordre de quelques MPa
- Perspectives d'évolution de ces dispositifs
 - Tenir compte de la perméabilité du réseau de fissures à l'échelle du massif
 - Tenir compte de l'état réel des fissures (remplissage, tortuosité...)
 - Influence de l'action chimique de l'eau dans l'altération des roches sous températures négatives

Merci de votre attention...

Gorges du Loup, avril 2005

Marion Bost, Ahmad Pouya, Sylvine Guédon, François Martineau