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Abstract

The fixation of a bone implant is related to the quality of tissue in the vicinity thereof. A numerical model is relevant to improve the
understanding of mechanobiological events involved and to guide the implantation surgery. To build a robust model that integrates
a large number of biomechanical parameters that are subject to variability, uncertainty propagation is analysed. In this work, a
numerical model coupling of biochemistry and poroelasticity is proposed and it is applied to canine model. The model includes a
nondimensionalization with control of the time and a stochastic modelling. The deterministic part of the model produces the bone
density field, corresponding to the quantity of interest, at the end of the healing after several weeks. In particular, it takes into
account the influence of external mechanical excitations on the healing process. To limit the costs of computing and development,
the stochastic analysis is chosen by the non- intrusive method of probabilistic collocation with development of the polynomial
chaos. The results obtained include the effect of coupling between the different sources of uncertainty and allow the influence of
biochemical and mechanical parameters such as the applied displacement on the quality of the periprosthetic tissue healing to be
quantified.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

Orthopedic implants are currently one of the most used products in the implantable medical devices field. The
clinical longevity of these implants is primarily determined by the quality of their fixation to the surrounding bone.
Moreover, the clinical condition of the patient, the surgical technique and coupled mechanical and biochemical factors
have a crucial influence on the bone growth in the early post-operative period, for example, see [1].

A comparative study has been made between ex-vivo data from the healing of a canine implant [2] and numerical
models [3]. The biological tissue can be modelled by a multiphasic reactive medium with poromechanical and cell
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Fig. 1. Canine implant: (a) axisymmetric model, (b) implant diagram

biology characteristics. Osteoblast cells migration, growth factors diffusion and bone deposit are considered [3].
Mechanical factors coupled with the biochemical factors were studied in [4] using a poroelastic biochemical model.

The complex mechano-biochemical environment induces uncertainties that need to be predicted by considering
non linear coupling effects in the multiphysics equations. These influences have been studied on the healing of a
canine implant modelled by the biochemical porous medium model developed in [3], for several random individual
biochemical factors [5,6].

The heterogeneity of the periprosthetic tissue healing may be revealed by considering the porous medium as de-
formable [4]. This study aims to predict the bone healing process evolution induced by the variability of a mechanical
and biochemical factors. A probabilistic collocation method based on the polynomial chaos expansion is used [7–9].
Illustrations on the bone formation during the post-operative period are presented.

2. Implant poroelastic problem

A poroelastic model [4] consists of a multi phasic porous model which involves the solid osseous fraction, the
extracellular fluid phase, the osteoblastic cellular phase responsible from the bone formation and the growth factor
phase promoting the cellular activity, and the elasticity of the skeleton of the porous medium. In this work, a daily
activity is considered by applying a prescribed displacement as a function of time.

The set of conservation laws of the problem are

∂

∂t
φs = rs, (1)

∂

∂t
[(1 − φs)Cc] = divqc + rc, (2)

∂

∂t
[(1 − φs)CM] = divqM , (3)

div σσ = 0, (4)

q = div w f , (5)

where φs is the solid fraction of new formed tissue, w f is the relative fluid flow rate and σσ is the stress of the porous
medium.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.252&domain=pdf
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Dounia Moukadiria, Béatrice Faverjona,∗, David Dureisseixa, Nicole Kessissogloub, Pascal
Swiderc
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biology characteristics. Osteoblast cells migration, growth factors diffusion and bone deposit are considered [3].
Mechanical factors coupled with the biochemical factors were studied in [4] using a poroelastic biochemical model.

The complex mechano-biochemical environment induces uncertainties that need to be predicted by considering
non linear coupling effects in the multiphysics equations. These influences have been studied on the healing of a
canine implant modelled by the biochemical porous medium model developed in [3], for several random individual
biochemical factors [5,6].

The heterogeneity of the periprosthetic tissue healing may be revealed by considering the porous medium as de-
formable [4]. This study aims to predict the bone healing process evolution induced by the variability of a mechanical
and biochemical factors. A probabilistic collocation method based on the polynomial chaos expansion is used [7–9].
Illustrations on the bone formation during the post-operative period are presented.

2. Implant poroelastic problem

A poroelastic model [4] consists of a multi phasic porous model which involves the solid osseous fraction, the
extracellular fluid phase, the osteoblastic cellular phase responsible from the bone formation and the growth factor
phase promoting the cellular activity, and the elasticity of the skeleton of the porous medium. In this work, a daily
activity is considered by applying a prescribed displacement as a function of time.

The set of conservation laws of the problem are

∂

∂t
φs = rs, (1)

∂

∂t
[(1 − φs)Cc] = divqc + rc, (2)

∂

∂t
[(1 − φs)CM] = divqM , (3)

div σσ = 0, (4)

q = div w f , (5)

where φs is the solid fraction of new formed tissue, w f is the relative fluid flow rate and σσ is the stress of the porous
medium.
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qc, qM , rc, rs, σσ, q and w f are given by the constitutive laws:

qc = (1 − φs)
(
DcgradCc − hcρsCcgradφs − χcCcgradCM

)
, (6)

and qM = DM(1 − φs)gradCM +CMq f are the two convective and diffusive equations, (7)
rc = αs[(1 − φs)Cc][Ncc − (1 − φs)Cc], (8)

and rs = αs[(1 − φs)Cc][(1 − φs)CM] are the two reactive equations, (9)
σσ = Dεε − bp I is Hooke’s law, (10)

q =
1
Q

ṗ + b tr(ε̇ε) − φ̇s is the rate of fluid accumulation (11)

and w f = H Z is Darcy’s law. (12)

αs, hc, χc are respectively the coefficients of osteoid synthesis, haptotactic migration and chemotactic migration, and
are of uncertain value. The osteoblast cell proliferation is represented by its coefficient αc, its inhibition level Ncc, its
concentration Cc, its flow rate qc and its diffusion factor Dc. Similarly, CM , qM and DM are associated to the growth
factor concentration. Density of the solid phase is denoted by ρs. D represents Hooke’s operator, εε is the strain of the
porous medium, b is the Biot coefficient, p is the pore pressure and I is the identity matrix. Q is the Biot modulus and
tr(•) is the trace operator. Finally, Z is the pressure gradient given by Z = gradp and H is the permeability factor.

3. Stochastic modelling

In this work, the uncertainties are modelled by the stochastic response surface method [7–9]. This probabilistic
collocation method calculates the response as an expansion of stochastic orthogonal polynomials associated to the
probability law of the random inputs. As shown in [5], variation in the values of some biochemical factors χc, hc and
αs change the implant healing. The problem considered is axisymmetric as shown in Fig. 1 and verifies the plane
strains assumption. A radial displacement ua is applied on the implant and is considered as random. All inputs follow
the uniform probability distribution and are expanded in random variables ξ using the Karhunen Loeve expansion.
Three problems of two random variables each (χc and ua ; hc and ua ; αs and ua) are then considered and compared
to the analysis in [5]. The random output is the solid fraction φs(r, ξ), with ξ = {ξ1, ξ2} the random vector. φs(r, ξ) is
expanded in a truncated summation of polynomial chaoses Ψi as follows

φs(r, ξ) =
N∑

i=0

φs
i (r)Ψi(ξ) (13)

where φs
i are deterministic coefficients and N is the order of truncation equal to N = (n+ p)!/n!/p!−1 with p the order

of the polynomial chaos expansion. r is the radial coordinate of the polar frame (Fig. 1). The unknown coefficients φs
i

of the expansion are obtained from the minimization of

min
φs

i (r)

Nξ∑
k=0

φs(r, ξk) −
Nφ∑
i=0

φs
i (r)Ψi(ξk)


2

(14)

The collocation points ξk are chosen as roots of the (N+1)th order polynomials [7]. Among all the linear combinations
of the roots, the collocation points are chosen in order to capture the solution in the regions of high probability [8,9].

4. Numerical results

The results of the bone healing process are computed after 8 weeks. The radial displacement ua is a sinusoidal
function of period T = 24 hours and of magnitude a [4]. It is applied at r = ri shown in Fig. 1. Common values for
the healing patterns are Ncc = 1000 cell/mm3, αc = 1.9 × 10−10 mm3/cell.s, Dc = 2.5 × 107 mm2/s, DM = 4.8 × 10−6

mm2/s, ρs = 2.57 × 10−6 kg/mm3, and geometrical parameters δd = 0.1 mm, ri = 3.25 mm, rd = 4.1 mm, rs = 7
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Fig. 2. Random solid fraction as a function of the radius when αs and displacement a are random variables. (a) Mean ; (b) Variance. Poroelastic
model (blue solid line), Rigid model (black dashed dotted lines)

mm (Fig. 1). The magnitude a and the three biochemical factors χc, hc and αs follow a uniform law within the ranges
given in Table 1 [5]. The output φs is expanded in terms of orthogonal Legendre polynomials. Convergence in all
computations is obtained with a third order (p = 3) of the expansion, and then 16 collocation points for two random
parameters.

It was shown in [5] that variations of three biochemical factors had a different influence on the healing between the
implant surface ri and drill hole rd. The most influenceable parameter is the osteoid synthesis αs with a variation of
the healing at both the implant surface ri and drill hole rd. The chemotactic coefficient χc had also a significant impact
but mainly influenced the implant surface which determines the tissue formation. Finally, the haptotactic coefficient
hc responsible for the homogeneity of the solid fraction into the post-operative gap showed a light effect.

Figs. 2 to 4 present the random solid fraction given by its mean and variance, Results are presented for both
the poroelastic model with a random displacement presented here and a rigid porous model presented previously in
[5]. For each biochemical factor, the presence of an applied displacement slightly decreases the healing between the
implant surface ri and drill hole rd as shown by the mean of the solid fraction in Figs. 2(a) to 4(a). The variance of the
solid fraction obtained by the poroelastic model follow similar trends as for the rigid case but are increased in the gap
ri − rd, yielding the prediction of the healing harder to define in this region.

Table 1. Random parameters of the numerical model

Biochemical factors
χc (mm5.ng−1.s−1) [1, 14.5] × 10−5

hc (mm5.kg−1.s−1) [4, 80] × 10−2

αs (mm6.cell−1.ng−1.s−1) [1, 5] × 10−9

Displacement
a (mm) [0, 1.2]
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ri − rd, yielding the prediction of the healing harder to define in this region.

Table 1. Random parameters of the numerical model

Biochemical factors
χc (mm5.ng−1.s−1) [1, 14.5] × 10−5

hc (mm5.kg−1.s−1) [4, 80] × 10−2

αs (mm6.cell−1.ng−1.s−1) [1, 5] × 10−9

Displacement
a (mm) [0, 1.2]
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5. Conclusions

This paper aims to integrate uncertainties on the mechanical aspect of the mechano-biochemico bone healing after
the implantation surgery. A numerical model has been developed using an axisymmetric poroelastic biochemical
medium model and a stochastic non intrusive method. The uncertain mechanical parameter representing the daily
activity of the patient showed an increase of the uncertainty in a crucial gap radius responsible of the healing of the
bone and also of the quality of the implant fixation.
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