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Abstract: Nowadays, passengers in urban public transport systems do not only seek a short-
time travel, but they also ask for optimizing other criteria such as cost and effort. Therefore, 
an efficient routing system should incsorporate a multiobjective analysis into its search 
process. Several algorithms have been proposed to optimally compute the set of 
nondominated journeys while going from one place to another such as the generalisation of 
the algorithm of Dijkstra. However, such approaches become less performant or even 
inapplicable when the size of the network becomes very large or when the number of criteria 
considered is very important. Therefore, we propose in this paper an advanced heuristic 
approach whereby a Genetic Algorithm (GA) is combined with a Variable Neighbourhood 
Search (VNS) to solve the Multicriteria Shortest Path Problem (MSPP) in multimodal 
networks. As transportation modes, we focus on railway, bus, tram and pedestrian. As 
optimization criteria, we consider travel time, monetary cost, number of transfers and the total 
walking time. The proposed approach is compared with the exact algorithm of Dijkstra, as 
well as, with a standard GA and a pure VNS. Experimental results have been assessed by 
solving real life itinerary problems defined on the transport network of the city of Paris and its 
suburbs. Results indicate that the proposed combination GA-VNS represents the best 
approach in terms of computational time and solutions quality for a real world routing system.  

Keywords: Multimodal networks; multicriteria analysis, genetic algorithms; variable 
neighbourhood search; hybrid metaheuristic; modelling & solving; real-world application. 
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1 Introduction 

 

With the dawn of history, people had the "walking" as their only transport mode. Hence, the 
transportation system consisted of networks and routes only. However, with people discovering the 
possibility to use animals as a mean to travel or transfer goods from one place to another, a new mode of 
transport has been added to the whole system. Later on, different types of vehicles were added 
simultaneously. Thus, we started talking about a "Multimodal Transportation System (MTS)" in which 
nodes and terminals have been added to the components of the initial transportation system.    

The transport network always comprises a set of routes where a route represents a single path 
between two points. Nodes and terminals are the contact or exchange points where it is possible for people 
to change from one mode to another. 

In fact, a MTS, also called combined transport system, can be also seen as a combination of all 
traveller modes and kinds of transportation systems operated through various systems (SteadieSeifi et al. 
2014). In another term, it is a set of choices of transport modes that travellers can use simultaneously 
according to their needs and preferences in order to reach their destinations. 

The MTS originally gained its importance from the fact that combining several modes of transport 
into one large system would maximize users' profits. Since each mode has both its pros and cons, the system 
tends to combine the advantages of several modes in an attempt to overcome the drawbacks of each mode. 
For instance, a bike's capacity in terms of travelled distance remains limited due to the limited speed and the 
associated physical effort.  However, it is cheap, environmentally friendly, and can take its rider even 
through narrow roads. On the other hand, public transport such as a bus or a metro can be used for long-
distance journeys, but at the same time, its direction is scheduled and its stations might be somehow distant. 

Furthermore, multimodal transport can save passengers’ time. For example, to go from one place to 
another, a passenger can only take a bus but the journey’s travel time will be one hour. However, by 
combining several transportation modes, the passenger can take one bus to the subway station, then a metro 
to reach his/her destination; the trip will finally take half an hour. 

Nowadays, according to (Liu 2011) the human mobility within urban areas always happens in a 
multimodal transportation network. People are more prone to use more than one mode of transport to reach 
their destinations. However, the transport system has become more and more complex; the number of 
passengers is increasing and new modes of transportation and infrastructures enter the system day after day. 

As a result, the multi-modal transportation system may not always be user-friendly. Users usually 
find themselves more confused with having several possibilities to go from one place to another. 
Consequently, for the sake of helping people to efficiently find their best routes through the complex 
transportation scheme, route planning in multimodal transport system is gaining more and more importance. 

 As in real life, commuters do not only seek short time travels. However, they tend to consider other 
elements into their journeys such as monetary cost, comfort (quality of mode) and effort (walking distance, 
number of transfers, waiting time…). Therefore, there is a real need to develop a seamless routing 
application that provides passengers with efficient itineraries according to their needs and preferences.  

Routing applications whether they arise in transportation area or other domains such as 
communication networks refer for solving Shortest Path Problems (SPPs). While solving some routing 
problems can be done in a straightforward manner, computing shortest paths under certain circumstances is 
not always an easy task. For instance, solving the one-to-one SPP in static networks can be easily 
accomplished by applying the well-known algorithm of Dijkstra. On the other side, computing multicriteria 
shortest paths appears to be more difficult especially in large-scale dynamic networks.  

Computing itineraries with respect to (w.r.t) several criteria refers to the Multiobjective Shortest 
Path Problem (MSPP), a fundamental problem in the field of multiobjective optimization. Solving the 
emerging problem consists of finding the set of non-dominated journeys from which the user chooses his/her 
most preferred one.  As the Pareto dominance concept, given two journeys j1 and j2, it is said that j1 
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dominates j2 if there is at least one criterion for which j1 has a better value than j2 and there is no criterion for 
which j2 has a better value than j1. A journey j is then called Pareto-optimal if it is not dominated by any 
other journey.  

The main difficulty in multiobjective contexts stems from the fact that, in many optimization 
problems, determining the entire set of nondominated solutions is a tedious task since one problem may have 
a huge number of nondominated solutions (even in case of two objectives). Additionally, and in contrast to 
single criteria search, one cannot abort the search after finding a first optimal solution. Indeed, even after 
finding all Pareto-optima, search algorithms require a substantial amount of time to guarantee that no further 
solutions exist. Therefore, in many optimization problems, especially those requiring real time answers, the 
main focus is not on finding the optimal Pareto solution set. Rather, most approaches lies in using heuristics 
methods whereby near optimal solutions are computed in reasonable computational time.   

The main aim of this paper is to propose a new approach for solving the MSPP. A new combination 
process is introduced in which a Variable Neighbourhood Search is coupled with a Genetic Algorithm in 
order to solve the MSSP in multimodal networks. As transportation modes, the following networks are used: 
railway, metro, tram, bus and pedestrian mean. As criteria, the total travel time, monetary cost, number of 
transfers, and walking time are considered. Assessing the proposed approach has been done by solving a 
wide range of real life itinerary planning problems based on the real data of the French region Il-de-France 
that includes the city of Paris and its suburbs. The introduced approach has been also compared with an 
exact approach based on the algorithm of Dijkstra, which computes the whole set of Pareto solutions. 
Comparison is performed regarding the quality of solutions found and the computational time.  

The main motivation behind using metaheuristics instead of other methods stems from their ability 
to provide near optimal solutions in reasonable computational time. Meta-heuristics also offer high 
performance and flexibilities to support several categories of optimization (single criteria, multi-criteria) 
whether in static, dynamic or even stochastic graphs.  

Among several metaheuristics GAs have been chosen since they are adaptive heuristic search 
algorithms, which are premised on the evolutionary ideas in natural selection and gene types.  Additionally, 
they were essentially designed to simulate process in natural system necessary for evolution, specifically 
those that follow the principles of survival of the fittest. Therefore, and in contrast to traditional search 
techniques, GAs are capable of avoiding randomness search by intelligently exploiting historical information 
that guide the search process towards regions of better performance within the solution space.  

Since GAs are primarily based on blind operators (crossover and mutation), the search process may 
converge prematurely. Therefore, to enhance the efficiency of the method, we have chosen to combine it 
with another metaheuristic. That is, the drawbacks of the traditional GAs are overcomed by applying another 
metaheuristic inside its search procedure. To do so, the single solution metaheuristic VNS is chosen.  

Selecting VNS originated from the fact that it can explore distant neighborhoods of the current 
incumbent solution. VNS can also move from one solution to another by repeatedly applying local search 
improvements in order to reach local optima. Once a local optimum is detected, VNS is able to jump out of 
it and eventually find better solutions by dynamically changing the neighborhood‘s structures. Therefore, 
VNS is more likely to prevent the optimization process from rapidly falling into local optima.  

Unlike traditional single-search based meta-heuristics such as Tabu Search (TS) and Simulated 
Annealing (SA), VNS algorithm’s structure is very simple and does not require tuning many parameters. For 
instance, in TS, one have to tune several parameters that will largely affect the performance of the method 
such as  the tabu object , the tabu list, tabu length and candidate solution, aspiration criterion, tabu 
frequency, stopping Criterion. Moreover, in SA, many parameters have also to be tuned in order to achieve 
the best performance such as the state generated function, the state accepted function, the temperature update 
function, the inner loop termination criterion,  the outer loop termination criterion, the initial temperature 
etc. In contrast to such approaches, VNS does not require many parameters. The neighboring structures and 
the moving strategy would be enough to efficiently use the method. Besides VNS is more general and the 
freedom is large which can be designed in various forms for particular problems. Its idea is also simple and 
easy to implement, and the algorithm structure is independent of the problem, so VNS is suitable for all 
kinds of optimization problems. What is more is that VNS can be easily embedded into other approaches 
such as population-based metaheuristics. 
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The remaining of this paper is structured as follows: in next section, some related works are 
presented. In Section 3, the way the multimodal network has been represented is explained. Section 4 is 
devoted to introduce the proposed GA-VNS. Experimental results are presented in Section 5. Finally, 
Section 6 gives some comments and outlines future works. 

2 Literature Review  

Routing is a widely studied topic in transport systems, mainly because of its relevance to real world 
applications in a wide range of fields such as energy, military and communication networks. The major 
research effort on this problem relates to two things: modelling a transport network and solving routing 
issues. While the former consists of defining how to adequately represent a transport system, the latter deals 
with developing efficient strategies to support routing issues faced by passengers and transport operators.  

In terms of modelling, (Pyrga et al. 2007; Delling et al. 2009; Dib et al. 2015) have done extensive 
works to incorporate the multimodality aspect into their models. (Liu et al. 2009) proposed a switch point 
approach to model multimodal transport networks. (Van Nes 2002) conducted several researches for 
efficiently designing multimodal transport networks. (Ayed and Khadraoui 2008) proposed also a transfer 
graph approach for multimodal transport problems. (Zhang et al. 2011) introduced a generic method to 
construct a multimodal transport network representation by using transfer links, which is inspired by the so-
called super-network concept. (Pyrga et al. 2004) has also done relevant works to generalize a time-
expanded model that deals with realistic transfers. (Bast et al. 2010) also handled multimodal networks by 
incorporating predefined transfer arcs between nearby stations. 

When it comes to routing algorithms, several approaches have been proposed for solving basic and 
advanced routing problems. For instance, (Pajor 2009) adapted the algorithm of Dijkstra to take into account 
the time dependency and the multimodality aspect of the transport system. (Zografos et al. 2009) described 
an algorithm for itinerary planning based on dynamic programming. (Wang 2008) did a study on handling 
times and fares in a routing algorithm for public transport. (Pyrga et al. 2008) solved the earliest arrival 
problem on the time-expanded model in a straightforward manner by using a modified version of the 
algorithm of Dijkstra.  

Computing Multicriteria Shortest Paths has been also studied recently. For instance, (Hamacher et 
al. 2006) proposed a backward label-setting algorithm for identifying important solutions for the all to one 
multiple criteria time-dependent shortest path. (Modesti et al.1998) also used a linear utility function that 
incorporates travel time, ticket cost, and “inconvenience” of transfers. Moreover, other label setting 
algorithms such as (Martins 1984; Corley and Moon 1985) and label correcting algorithms such as (Skriver 
and Andersen, 2000) have been modified for solving the MSPP.  

Although the above-mentioned works on handling multicriteria using straightforward approaches are 
very significant, however, they have some drawbacks. From one side, they usually handle the multicriteria 
problem by transforming it to a simple single criterion problem. Thus, the decision maker will surely loose 
some interesting solutions. From another side, such approaches may cause exponential running time during 
the resolution phase of the problem. That is, classical approaches may suffer from a high computational 
time, which make them unusable within real world routing system where passengers seek real time answers. 

To overcome such drawbacks, several works have focused on applying heuristic approaches such as 
metaheuristics to provide high quality solutions within reasonable computational time. Metaheuristics usage 
is not only limited to the transportation field but it can also be found in various areas such as networking, 
scheduling and logistics.  

For instance, (Baswana et al. 2009; Doerr et al. 2011) worked with evolutionary algorithms to 
compute single source shortest paths using single-objective fitness. (Dib et al. 2015) introduced an advanced 
hybrid metaheuristic for route planning in road networks. (Rakesh et al. 2012) also proposed a novel GA to 
find shortest paths in computer networks. (Behzadi et al. 2008; Kumar el al. 2010) also worked with GAs to 
find shortest paths in data networks. (Gen et al. 1997) proposed a priority-based encoding method to 
represent all possible paths in a graph. (Delavar et al. 2001) proposed a GA with a part of an arterial road 
regarded as a virus to select route to a given destination on an actual map under a static environment. 
Moreover, (Davies and Lingras 2003) presented a GA based strategy to find the shortest path in a dynamic 



5 
 

network, which adapted to the changing network information by rerouting during the course of its execution. 
(Chakraborty 2004, 2005) proposed a GA based algorithm with a novel fitness function for simultaneous 
multiple routes searching for car navigation to avoid overlap. In the work of (Huang et al. 2004), a GA was 
introduced for determining the weights of different criteria, which eventually achieve a series value of each 
criterion and sum the up as the final cost. (Hochmair 2008) used GA for Pareto Optimal route set searching 
in order to reduce the number of route selection criteria. The GA based solution for multimodal shortest path 
problem presented by (Abbaspour and Samadzadegan 2009; Dib et al. 2015) showed the robustness of this 
approach through empirical studies and concluded that GA based approaches can efficiently explore the 
search space in order to find very good multimodal paths.  

Other advanced Evolutionary algorithms have been proposed such as (Deb et al. 2002). In the 
latter’s work, the so-called NSGAII (Nondominated Sorting Genetic algorithm II) has been introduced. The 
main motivation behind introducing this algorithm is to alleviate the difficulties of the traditional 
Multiobjective Evolutionary Algorithms (EAs) that use nondominating sorting and sharing. Such traditional 
approaches were suffering from three main drawbacks: 1) High computational complexity of nondominated 
sorting 2) Lack of elitism 3) Need for specifying the sharing parameter σshare. To overcome such 
drawbacks, NSGAII integrated a 1) fast-nondominated sorting approach 2) a fast crowded distance 
estimation procedure and 3) a simple crowded comparison operator. Experimental results have found that 
NSGAII outperforms most traditional approaches when solving several kind of optimization problems. 
There are several differences between the proposed algorithm and the standard scheme of NSGAII. Firstly, 
in the proposed algorithm the fast-non-dominated-sort that computes the set of all non-dominated fronts is 
not performed. Although, this operation maintains best non-dominated solutions, however, it may be costly 
for some applications that require very rapid answers such as the problem we are dealing with. The second 
difference lies in the selection operator. While in NSGAII, the tournament selection is used to select 
individuals for recombination, the proposed algorithm uses roulette wheel selection. Furthermore, the 
selection in NSGAII is based on a crowding-comparison operator, which requires having the nondomination 
rank and the crowding distance of individuals. In the proposed algorithm, the Average Weighted Rank is 
used as a selection criterion. Finally, ensuring the diversity among solutions in NSGAII is done using the 
selection operator itself since it integrates the crowding distance into the comparison between solutions. In 
the proposed algorithm, the diversity is maintained by the selection operator that may give chances with 
different probabilities to all individuals to pass their genes to the next generation, as well as with the 
mutation operator that is based on VNS approach.  

 The application of metaheuristics is not only limited to EAs; other methods were also used such as 
VNS, Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO). Examples of works done using 
such approaches can be found here (Hansen et al. 2014; Civicioglu et al. 2013; Böhm and Katinka 2016).  

Several researches have focused in recent years on combining several metaheuristic to solve one 
single optimization problem. The main motivation for the hybridization process is to achieve better 
performance by exploiting and combining advantages of the individual pure strategies (Talbi 2013). We 
introduce in this paper a new hybridization approach in which the local search procedure VNS is used inside 
the population-based meta-heuristic GA.  The hybridization process done between single solution and 
population-based meta-heuristics refers nowadays to the term memetic algorithm (MA) (Cotta and Carlos 
2012). The term (MA) is inspired by both Darwinian principles of natural evolution and Dawkins' notion of 
a meme. MAs were first invented to reflect the fact that coupling genetic algorithms (GAs) with individual 
learning procedure may perform local refinements. Nowadays, MAs refer to a hybridization process done 
between population-based meta-heuristics such as GAs and single-point search or local search procedures 
such as Simulated Annealing (SA) (Aarts et al. 2014) and Tabu Search (TS) (Glover and Manuel 2013). 
MAs have proved to be effective in solving a wide range of optimization problems such as graph coloring, 
scheduling etc. 

After giving an introduction about the studied problem, as well as, expressing the primal motivation 
behind the work and the idea behind the combination between two metaheuristics GA and VNS, the 
modeling approach adopted to represent a public transit network is introduced in the next section.  

http://en.wikipedia.org/wiki/Richard_Dawkins
http://en.wikipedia.org/wiki/Meme
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3 Modeling Approach 

This section considers modelling a multimodal transportation network. It should be clarified that the 
term multimodal is used in the sense of multiple fixed scheduled transport services.   A key difference to 
static networks is that public transit networks are inherently time-dependent, since certain segments of the 
network can only be traversed at specific, discrete points in time. As such, the first challenge concerns 
appropriately modelling the timetable in order to enable the computation of journeys.  

Roughly speaking, a timetable consists of a set of stops (such as bus or train platforms), a set of 
routes (such as bus or train lines), and a set of trips. Trips correspond to individual vehicles that visit the 
stops along a certain route at a specific time of the day. Trips can be further subdivided into sequences of 
elementary connections, each given as a pair of (origin/destination) stops and (departure/arrival) times 
between which the vehicle travels without stopping.  

The key modelling in this approach is to represent each transportation mode as a separate directed 
graph. An additional work is then done to integrate all sub-graphs into one larger graph. As a first step of 
modelling, three types of nodes are introduced; nodes correspond to stations, platforms and departure events.  

Although in real life, a station may have several access points, it is assumed in this paper that each 
station has one and only one entrance area. A station also comprises a set of platforms where passengers 
wait for vehicles. An edge is then inserted between a platform and its parent station; its weight represents the 
minimal time required to access that platform from the entrance point of the station. 

 It is worth mentioning that most of representations in the literature disregard platforms. Instead, 
they only focus on vehicles. However, platforms are essential since transfers inside stations are made 
between platforms. Moreover, in some routing issues such as evacuations, platforms play an essential role 
since they give ideas about the capacity of vehicles or even the saturation of the transport system. As a 
result, we decided to integrate platforms into the proposed modelling scheme.  

A platform in the proposed representation cannot belong to more than one station; however, a station 
can contain one or several platforms. Each platform has also a type (Bus, railway, tram...) to differentiate 
between modes.  This information can be used by routing algorithms that deal with the preferences of users 
(i.e. a user may prefer to only take the bus along his/her journey). 

 

Figure1: Example of modeling 3 stations, 5 platforms, 9 events 
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Since a timetable consists of time-dependent events (e.g., a vehicle departing at a stop) that happen 
at discrete points in time, a space-time graph has been built to unroll time. Roughly speaking, a vertex is 
created for every event in the timetable that consists of vehicle departing from a platform p at dt (departure 
time) and arrives to another platform q at at (arrival time). Timestamps are inserted into event nodes to 
account for the departure and arrival times. Event nodes are ordered in the way that a higher-level node 
refers to an earlier event. 

In addition, waiting, boarding and alighting edges are inserted between event nodes and platforms. 
Additionally, to account for transfers between and inside stations, transfer edges associated with transfer 
times have been inserted. It is worth mentioning that most of the representations in the literature assume that 
one station has a fixed transfer time. Thereby, transferring between any two platforms inside a station takes 
the same time. However, such assumption usually yield incorrect results when applying the routing 
algorithm. Therefore, in this work, it is considered that each station has a variable transfer time. We present 
in Figure 1, the scheme of a small multimodal network, which consists of 3 station, 5 platforms and 9 
departure events.  

It is worth to clarify that this model can also be elaborated further to handle additional information 
such as the capacity of vehicles. For instance, an event node can store an information about the maximum 
and current capacity of its current vehicle. This information is crucial when dealing with evacuation 
situations that require rerouting of passengers from one vehicle/mode to another.  

4 Proposed approach: Hybrid metaheuristic GA-VNS 

As aforementioned, the main contribution of this paper is to adapt and apply a heuristic method, 
which is based on a collaboration between two meta-heuristics, for solving the MSPP. The meta-heuristics 
used are GA that belongs to the population-based algorithms and VNS that belongs to the single point search 
algorithm.  

The proposed method proceeds with a population of solutions as standards GAs works. However, in 
the proposed approach, initial solutions are generated using a double search algorithm that is able to provide 
a set of feasible paths between any two nodes. The details of this algorithm is described later in this article.  

Once a population of solutions (feasible paths) are successfully generated, an enhancement operation 
is accomplished over the first population. That is, a VNS is applied over individuals belonging to the first 
population. It is decided to improve initial solutions since their quality would possibly help the algorithm in 
approaching from the optimal region within the search space. More details about the VNS adaptation to the 
problem will be discussed later. Once the VNS is performed, individuals are sent to an evaluation process. 
To evaluate an individual, a fitness function is computed using the Weighted Average Ranking (WAR) 
technique.    

After the improving phase, several genetic operations are performed (selection, crossover and 
mutation) in the goal of increasing the algorithm’s chance to find better solutions. To begin with, a roulette 
wheel selection has been used as a selection operator. A selection probability is computed according to the 
WAR associated with each individual. After that, the crossover operation is performed. In this operation, 
two individual are chosen according to the selection operator in order to form new individuals (offsprings). 
By doing so, a new population is produced having twice the size of the current population. The best half 
individuals are then selected for the next generation and the rest are ignored.  Duplicated individuals are 
replaced with newly generated chromosomes to avoid reprocessing the same individual. Single point 
crossover technique has been used in order to produce offsprings. An intersection node between two 
individuals is selected to be the crossover point. Current individuals exchange then part of genes with each 
other before or after the crossover point to generate offsprings.  

After that phase, a new population of solutions is created. Thus, new paths between the origin and 
the destination point have been probably detected. Therefore, re-applying the VNS procedure to the new 
population will possibly enhance the paths’ qualities. That is, the algorithm performs a special mutation 
operation based on VNS method over each individual (path) in the population. Thanks to this technique, the 
algorithm will have more chances to exploit and explore new regions of the search space. The whole process 
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is repeated until the algorithm reaches the predefined stopping criteria. The following scheme represents the 
algorithms’ steps that will discussed in more details in next paragraphs. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Steps of the proposed algorithm 
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departure event. This latter represents the first departing vehicle at the departure platform with respect to the 
arrival time at the departure platform.  

To efficiently identified the first departure event at a platform w.r.t a departure time, event nodes are 
ordered w.r.t their departure times during the generation phase of the model. In addition, event nodes are 
stored in sub-categories according to predefined periods (e.g. the list of departing nodes from 8:00 to 9:00). 
Thanks to such implementation tricks, identifying the appropriate departure event would be very efficient 
and would also ensure the feasibility of encoding paths.   

Since different solutions may represent different routes, the size of chromosomes is not static; it 
varies with the number of nodes constructing the route. Finally, a special node is inserted to deal with 
transferring from one mode to another.   This special node plays an important role since it stores information 
related to the transfer (walking time, state of the transfer links ...). Thus, the computations of the different 
criteria especially those related to the number of transfers and walking time would be impacted by such 
transfer nodes. Furthermore, inserting a special node for transfers would help to efficiently identify 
crossover points as well as, to visualize the details of itineraries resulting from the algorithm.  

We show in Figure 3 a solution for a routing request between the departure station S and the arrival 
station T. The encoded solution consists of using three modes: railway, metro and bus. 

 

 

 Railway  Metro  Bus  Exchange 

 
Figure 3. Example of encoding an individual 

4.2. Evaluating an Individual 

Several approaches can be used for computing the fitness function of a multiobjective optimization 
problem. The classical approach is to assign a weight wi to each normalized objective function oi(x) so that 
the problem is converted to a single objective problem with a scalar objective function. While using this 
approach may largely enhance the computational time to solve the problem, it has the drawback of only 
providing one single solution. Therefore, if multiple solutions are desired, the problem should be solved 
multiple times with different weight combinations. In addition, selecting weight vector for each run remains 
a difficult issue for users.  Furthermore, in such classic approach, there might be a good chance for losing 
some interesting solutions after solving the problem. Such solutions may be the best combination of many 
passengers. Therefore, such standard approaches are not used in in this work.  

Evaluating individuals in this work has been done using the Weighted Average Ranking (WAR) 
technique.  Unlike traditional techniques, which are based on a simple scalar value, WAR consists of 
assigning each individual (route) with a rank that depends on the value of objectives fi (route). This rank 
represents the average value of all ranks determined by sorting the current population in a separated manner 
according to each fi (route).  

It is worth mentioning that by using this evaluation technique, the algorithm is prevented from 
normalizing all objectives. The normalization phase is not an easy task in the studied problem case since 
ranges of objectives are not known in advance. In addition, the normalization will surely consume additional 
computational time. Therefore, using WAR instead of traditional evaluation approaches represents an 
advantage for the proposed algorithm.  

More precisely, the evaluation is performed as follows. The population is sorted ʎ times according to each 
objective (where ʎ is the number of objectives considered). At each sorting operation, each individual is 
assigned a rank value Ri according to its position in the current population. At the end of this operation, each 
individual will have ʎ ranks. The global rank GR value will be then average of all ranks associated with an 
individual.  

S 1 2 12  9 14 22  11 7 8 21 T 
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In Table 3 below, the above-explained technique is applied to evaluate seven individuals; two criteria are 
considered in a minimization problem. As can be seen from the table, the global average rank of individuals 
I2 and I5 is the smallest average (6/2). This property reflects very well that I2 and I5 are dominated by I4. 
Since I4 represents the individual that dominates the maximum number of individuals in the current 
populations, the WAR strategy results in a high GR for I4.  
Table 3. Example of evaluating individuals 

Individual f1 score f2 score Rank according to 

f1 

Rank according to 

f2 

Global rank 

I1 5 1 1 6 7/2 
I2 4 2 2 4 6/2 
I3 3.5 1.5 3 5 8/2 
I4 2 1.5 5 5 10/2 
I5 3 4 4 2 6/2 
I6 2 3 5 3 8/2 
I7 1 5 6 1 7/2 

 

4.3. Generating Initial Solutions 

Generating initial solutions for meta-heuristics is not always straightforward. Usually, good initial 
solutions might rapidly guide the search process towards important regions in the search space. Initial 
solutions in the proposed work are a set of feasible paths generated using a double search algorithm. A 
double search process that simultaneously run a forward search from the origin point s and a backward 
search from the destination point t has been used in order to get a set of feasible paths between a pair of 
nodes. 

The algorithm works as follows:  

 It initially defines two queues: one for the forward search fq and another for the backward bq. The 
source and target nodes s and t are then added to fq and bq respectively.  

 After initialization, the algorithms starts repeatedly taking the element at the head of fq; adding its 
adjacent nodes to fq; removing it from fq. The same process is also done from the backward search.  

 To keep a history of the search processes, nodes visited from the forward search are assigned an “F” 
flag and nodes visited from the backward search are assigned a “B” flag. Moreover, we store the incoming 
edges that allow the algorithm to reach each forward node and the adjacent edge of each backward node.   

 Once the algorithm is about to add in fq a node that has already been visited from the backward 
search, it means that a path between s and t has been detected. Therefore, the procedure of constructing that 
path starts. The same process is also performed from the backward search.  

 To reconstruct a path found, the historical information stored in each node object are used.  

 The algorithm terminates if one of the queues fq and bq becomes empty. It has been remarked also 
that in some graph instances the proposed algorithm may provide too many initial paths. Therefore the 
maximal number of generated paths has been added as another termination criterion for this case. By doing 
so, the size of the first population is can be controlled. 

It is worth to mention that as the algorithm performs, there is a chance that two identical paths are 
found between s and t. To tackle such problem, the algorithm keeps a history about the intersection edges 
found during the execution. It then ignores a path if the intersection edge has been already added to the list. 

Finally, as can be easily noticed, the process of computing initial solutions mimics the search 
process used in bidirectional Dijkstra algorithm (Ikeda et al. 1994). However, using the bi-directional 
Dijkstra in its standard form is not possible since the exact arrival time at the destination node is not known 
a priori due to the time dependency property of the network. To overcome this issue, a search process is 
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launched from the destination node with ignoring the exact arrival at the destination node. As a result, a set 
of feasible paths are obtained with no guarantees about their qualities. Therefore, one can see the proposed 
algorithm to compute initial solutions as a modification of the bidirectional Dijkstra where the exact arrival 
time at the destination node is ignored and the stopping criterion to get many feasible solutions is adjusted.  

4.4. Enhancing Initial Solutions Using VNS 

Since the quality of initial solutions may affect the performance of meta-heuristics, we decide to enhance 
initial solutions.  To do so, a VNS method is used as an enhancement operator. Indeed, a VNS method is 
applied over the individuals in the first population. 

  
This technique will increase the diversity level of the initial population, as well as, establish a good 

repartition of solutions within the search space.   Consequently, the algorithm’s chance to find better 
solutions will also increase. In the following, the adaptation of the VNS method to deal with the studied 
problem is explained. Indeed, one of the major challenges addressed in VNS is the construction of the 
neighborhood structures. To deal with that issue, the proposed algorithm performs a preprocessing operation 
during the generation phase of the network.  

 
The idea is to examine each edge in the graph and check if its starting and ending nodes share a common 

node. Two nodes A and B have a common node if and only if the end point of one adjacent edge of A is the 
same as the starting point of an incoming edge of B. After doing that, we will end up with two neighboring 
structures that we will use when applying VNS. 

 
In the graph below, if we take the edge (AC), it can be noticed that the node B is shared between the 

adjacent edge (AB) of A and the incoming edge (BC) of the node C. Hence, one can deduce that an 
alternative path can be found to reach the node C from A, which is in this case the path (AB, BC).   

 
 
 
 
 
 

 
Figure 4. Constructing neighboring structures 

 
Once such common nodes are found, constructing neighboring structures can be done as follows. If the 

path represented by the edge (AC) is dominated by the path (AB, BC), thus, whenever the edge (AC) is met, 
it should be replaced by the path (AB, BC).  That case makes the first neighboring structure. That is, the first 
neighboring structure is a list containing replacement paths formed by two edges for each edge.  

 
A second scenario may arise if the path (AB, BC) is dominated by the path (AC), thus, the path (AB, BC) 

can be always replaced by the edge (AC) in any path. The second neighboring structure is then a list 
containing an edge that will replace a path formed by two edges.  

 
In the case that (AC) and (AB, BC) are non-dominated, the replacement list of any of them should include 

the path itself and the other path. By doing so, the solution itself and a non-dominated solution belonging to 
the list of the neighborhood solutions are maintained. 

Figure 5 shows a graph with 13 edges and 8 nodes. Only one single criterion is used to facilitate the 
illustration. An example of the replacements included in the first neighboring structure is to substitute the 
edge (SC) with the 2-edges path (SA, AC). Replacing the 2-edges path (BD, DT) by the edge (BT) is an 
example of an instance existed in the second replacement structure.  

 
 

C 
 

A 

B 
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Figure 5. Performing VNS over an individual 

After performing the preprocessing operation over the graph above, the algorithm ends up with two 
replacement lists that illustrate neighboring structures. 

Table 1.  Items in the first replacement list 

Edge Replacements 
(SC) (SA, AC) 
(AB) (AC, CB) 
(CD) (CB, BD) 
(ET) (EF, FT) 
(DT) (DE, EF, FT) 

 
Table 2. Items from the second replacement list 

Path Replacements 
(BD, DT) (BT) 
(DE, ET) (DT) 

 
After carefully examining the two replacement lists, it has been realized that the performance of our VNS 

can be improved by applying some enhancement operations. More specifically, we try to enhance the quality 
of solutions that can be found by applying the first structure using information from the two replacements 
list. For instance, the path (DE, ET) included in the second list can be replaced by the edge (DT).  However, 
if one carefully scrutinizes, it can be noticed that the edge (ET) is included in the first structure and the 
length of its replacement path added to the length of (DE) is shorter than the length of (DT). Therefore, a 
new element can be added to the first structure and it will contain the substitution of (DT) by the path (DE, 

EF, FT). This strategy is only applied in the case that it produces a new dominated solution. 
The quality of elements in the first list can also be improved by using the list itself. For instance, let us 

imagine that the edge (ET) has a weight of 5. The first list will then contain a row containing the 
replacement of (DT) by (DE, ET). However, (ET) is also in the list. Hence, (DT) can be replaced by (DE, 

EF, FT).After the enhancement operations, the algorithm gets the chance to find better solutions and thereby 
its performance will increase. By taking the path P= (SC, CD, DE, ET) which is a solution to go from s to t, 
the neighbor solutions of P using the first neighborhood structure are: 

 
P11 SA AC CD DE ET 
P12 SC CB BD DE ET 
P13 SC CD DE EF FT 

 
The neighbor solutions of P after applying the second neighborhood structure are: 
 

P21 SC CD DT 
 
After defining the two neighboring structures, the mechanism that we adopted to move from one solution 

to another is explained. As shown in Figure 6, the VNS method takes as input a set of neighboring structures 
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and a single initial solution and it performs then some operations in order to enhance its initial solution. 
Although the VNS approach is very popular for its easy adaptation, it turns out that its usage in a 

multicriteria environment is not an easy task.    The difficulty steems from the fact that one solution may not 
only have one single better solution among all elements in the list of neighborhood solutions. However, a 
solution may have several dominated or non-dominated solutions in the list of neighborhood solutions. It is 
therefore very important for the efficiency of the method to define a strategy whereby the algorithm moves 
from one solution to a neighbor one during the search process.  

To overcome all those difficulties, the VNS is adapted as follows. The VNS proceeds with the first 
neighboring structure. It examines then all the neighbors’ solutions belonging to the current solution. The 
algorithm then selects the best neighbor among all neighbors according to the fitness.  

To define which neighbor solution is the best one, all neighborhood solutions are evaluated according to a 
Weighted Average Ranking (WAR) that we will define in the next section. More the rank is higher, more the 
solution is better.  VNS then compares the best-selected neighbor with the current solution; it moves to the 
best neighbor if its fitness is better than the current solution. If not, VNS changes the neighboring structure. 
The process is repeated while the current solution can be enhanced by using any of the neighboring 
structures.  

 
Input: 
Two neighboring structures nk, (k={1,2}); 
An individual (solution) x; 
Iteration 
While stopping rule is not satisfied do 
           k=1; 
           While k<=2 do 
                  Exploration of neighborhood: find the best neighbor x’ of x (x’∊ Nk (x)) 
                  Move or Not: 
                 If f(x’) < f(x) then 
                      x ← x’, k ← 1; 
                 else 
                      k ← k+1; 
                 end if 
            end while 
end while 
return the best solution 
Figure 6. Variable Neighborhood Search 
 
Assuming that the path x = (SC, CB, BD, DT) in Figure 5 is an initial solution to the VNS method with 

length 15. To apply VNS, the algorithm performs as follows: 
It uses firstly the neighboring structure; it then calculates all the neighbors solutions; it then selects the 

best neighbor. Neighbor solutions of x using the first neighboring structure are: 
  

x11 SA AC CB BD DT Fitness=14 
 

x12 SC CB BD DE EF FT Fitness=11 
 
Neighbor solutions of x using the second neighboring structure are: 
 

x21 SC CB BT Fitness=14 
The best neighbor of x using the first neighborhood structure is x12. The algorithm will then move to x12 

since its fitness is better than x. The same process is repeated over x12. The best neighbor of x12 using the first 
neighborhood structure is the path x*= (SA, AC, CB, BD, DE, EF, FT) with length 10. The algorithm moves 
to x* since its fitness is strictly better than x12.The same process is repeated over x*. However, x* cannot be 
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enhanced either by using the first neighboring structure or the second one. Therefore, the algorithm stops 
and return x*.  

Finally, the VNS method is based on two-neighboring structures. At each time the proposed algorithm 
gets stuck at a local minimum, the structure of the neighborhood is changed. By following this technique, 
the algorithm will exploit and explore wide regions of the search space. Adding more than two neighboring 
structures will probably enhance the chance of the algorithm to find better solutions. However, that might 
increase the time to accomplish the preprocessing operation as well as the time to perform the VNS itself.  

The strategy have adopted to move from one solution to another is the best enhancing neighbor. Other 
techniques can be used such as “The first/best/least enhancing neighbor”. Such techniques may provide 
better results and extensive researches are conducting nowadays to decide which technique is the most 
performant. To study the impact of such techniques on the performance of the VNS approach, we measure in 
Section 5 the quality of solutions obtained and the rate of convergence after varying the strategy to select the 
next solution from the neighborhoods list of the VNS approach. In addition, in this work, the first structure 
neighborhood is applied before the second one. In fact, deciding which neighboring structure should be 
applied at which order has been always an issue for the VNS method. Further works will be done in near 
future to study if the order of neighboring structure will affect the performance of the proposed approach. 

4.5. Parent Selection 

Generally speaking, the surviving probability of an individual is related to its efficiency in comparison 
with the other individuals in the population. In evolutionary algorithms and like in the natural selection 
phenomenon, a stochastic character is introduced in the probability of selection. The most famous stochastic 
techniques to accomplish the selection process are roulette wheel and rank selection. In the former, a roulette 
wheel is used where are placed all chromosomes in the population, every has its place big accordingly to its 
fitness function. Therefore, the better the chromosomes are, the more chances to be selected they have. Rank 
selection consists however, of ranking the population and then every chromosome receives fitness from this 
ranking. The worst will have fitness 1, second worst 2 etc. and the best will have fitness N (number of 
chromosomes in population). The roulette wheel is used in this work as a selection operator. For each 
individual, a selection probability is computed by dividing the WAR of the individual over the sum of 
finesses of all the individuals in the population.  

Considering the example below (Table 4, Figure 7), solutions have practically, equivalent portions except 
for the individual I4. This latter has the high probability selection since it is the fittest individual in the 
population. Therefore, its chance to survive and pass its genes to the next generation will be higher than the 
other individuals.  
Table 4. Example of evaluating individuals 

 

I GR P(xi) 

I1 3,5 0,13 
I2 3 0,11 
I3 4 0,15 
I4 5 0,19 
I5 3 0,11 
I6 4 0,15 
I7 3,5 0,13 

 

                                                                       Figure 7. Roulette wheel selection 
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4.6. Crossover 

After the selection and during the reproduction operation, individuals will be modified in order to generate 
new individuals (offspring) for the next generation. The two prominent operators to accomplish this 
operation are crossover and mutation.  

The crossover consists of exchanging elements between two individuals initially selected in the goal of 
producing one or two new individuals.  This operator is usually applied with certain probability (usually 
high) and may be accomplished in several ways depending on the structure of the problem itself.  

When using the binary representation, the single and multiple point are the most used techniques to 
perform the crossover. In the former, one crossover point is selected, binary strings from the beginning of 
the chromosome to the crossover point are copied from one parent, and the rest is copied from the second 
parent. In the latter such as the two-point crossover, two crossover points are selected, binary strings from 
beginning of chromosome to the first crossover point is copied from one parent, the part from the first to the 
second crossover point are copied from the second parent and the rest is copied from the first parent.  

The single point crossover has been used as a crossover operator. The crossover point is chosen to be any 
exchange node that is shared between parents. After selecting two individuals from the current population 
according to the selection operator, new individuals (offsprings) are produced w.r.t the crossover point. By 
doing so, a new population having twice the size of the current population is produced. The best half 
individuals are then selected for the next generation and the rest are ignored. The goodness of an individual 
is measured according to its weighted average rank. More the individual’s WAR is high, more its chance to 
pass its genes to the next generation would be high. It is also worth to mention that the best solution at each 
generation is copied as it is to the next generation in order to avoid losing the elite solution. Since there is a 
chance that the same individual is duplicated in the population as the generations go on, duplicated 
individuals are therefore replaced with newly generated chromosomes. This process will undoubtedly 
increase the diversity within the population.  

 In the next figure, an example is given to illustrate the crossover operation. Two parents P1 and P2 have 
been selected according to their fitness.  The two offsprings O1 and O2 have been generated after exchanging 
parts between P1 and P2 w.r.t the crossover point.  

 
 

P1 S 1 3 5 8  3 5 2 1 6 T 

 
P2 S 4 9 11 2 7  3 6 2 T 

         
O1 S 1 3 5 8  3 6 2 T 

 
O2 S 4 9 11 2 7  3 5 2 1 6 T 

 

Figure 8. Single Point Crossover 
 
One point worth mentioning is that after the crossover operations used in this method, the algorithm does 

not care about the feasibility of the new generated path. The algorithm will always end up with a feasible 
path from the source to the destination. Therefore,   the algorithm does not lose time to check the validity of 
the offspring nor to perform some additional operations to repair the infeasible solutions.  

 
Finally, experimental results show that using more than one crossover point might increase the diversity of 

the proposed approach. Therefore, the algorithm’s chance to find better solutions will also increase. 
However, that may be at the expense of additional computational efforts. It is decided therefore to only use 
the simple crossover technique.  

 Bus  Train  Exchange 

Parents 

Offsprings 
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4.7. Mutation 

Crossover operation may produce degenerate population. The algorithm may therefore get trapped at local 
minima. To overcome this issue, we perform the mutation operation.  

The VNS has been used as a special mutation operator. That is, a VNS is applied over the population’s 
individuals. By doing so, the algorithm is guided towards new regions within our solution space. The 
algorithm’s chance to find better solutions will therefore increase.  

Furthermore, applying VNS will ensure that the genetic algorithm maintains a sufficient diversity level 
that prevents premature convergence. The mutation operation has been applied at each time we perform the 
crossover. The conventional mutation operation used in GAs is usually applied with low probability. 
However, in the proposed hybrid approach, the mutation is always applied after crossover. The purpose of 
doing that is to allow the algorithm to avoid local minima by preventing the population of chromosomes 
from becoming too similar to each other, thus slowing or even stopping evolution. 

Other mutation techniques have been applied such as order changing, but it has been realized that the 
mutation becomes less performant and it may provide invalid paths. An additional process should therefore 
be applied to reform infeasible paths. As a result, the mutation computational time will increase. It is decided 
thereby against using such traditional mutation techniques.      

In the next figure, the scheme of the mutation operation is presented. As input, the VNS approach that is 
used to perform the mutation, takes a population of individuals. After performing the VNS after each 
individual in the population, the output of the mutation would be a set of better individuals in terms of 
quality and diversification level.     

        
 
 
 
 
 
 
 
 
 

 
Figure 9. Mutation Scheme 

4.8. Terminating Condition 

Heuristic approaches do not guarantee finding the optimal Pareto front set. They do not therefore have the 
ability to automatically stop performing when a set of solutions is detected. Additional terminating 
conditions should then be introduced in order to allow the convergence of the algorithm. 

Maximum number of generations, fixed execution time, and no modifications in population elements can 
be considered as algorithm stopping criteria.  Two stopping criteria have been used in this study. Firstly, the 
algorithm stops when it fails to find interesting solutions during several continuous steps. An interesting 
solution is a new generated individual that is not dominated by any of the individuals in the current 
population P or is a solution that at least dominates one individual in P.  100 generations is used as a number 
to ensure a fixed state in the population. Another stopping criterion is until the algorithms reaches the 
maximum number (500) of generations. It has been noticed after some experimentations that the algorithm 
visits wide range of the search space rapidly. Thus, there is a big chance that the algorithm converges after 
few generations. That explains the small number of generations used as stopping criteria. 

5 Experimental Results 

To assess the performance of the proposed work, we have developed an advanced web-based routing 
application based on the real data of the French region Île-de-France that includes the city of Paris and its 
suburbs. Data are provided by the transport organization authority that controls the Paris public transport 

Population P1 Diverse population P’1 Mutation (VNS) 

Perform local refinements over each individual in the 
population 
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network and coordinates the different transport companies operating in Île-de-France, mainly the RATP, the 
SNCF and Optile.  

Data comprise geographical information, as well as, timetable information for four transport modes 
(Bus, Metro, Railway, and Tram). More precisely, data encompass 17950 stations; 41047 platforms; 195000 
transfers; 303000 trips and 6800000 events for one day. For more information about the geographical 
perimeter of this study, we show in Figure 10 a screenshot taken from Google Maps API for the French 
region of Ile-de-France that include the city of Paris and its suburbs.  

Before analysing results, it is worth to clarify that several models from the literature suffer from high 
computational effort when reading and compiling data. However, in the proposed modelling approach, the 
generation and integration of the different sub-networks take less than 12 seconds. This validates the 
efficiency of the proposed model, as well as, the appropriateness of the data structures used during the 
implementation phase. For instance, an event node with its associated edges corresponding to a) waiting and 
boarding and b) alighting are not represented as three separated entities during the implementation. In 
contrast, they do belong to the same object. Information are then added inside one object to refer to that 
information. Thanks to such implementation tricks, we succeeded at reducing the computational space to 
store all the model’s components. Therefore, the size of the network resulting from the modelling phase does 
not constitute a bottleneck for the proposed approach to be integrated in real world routing system.  

 
Figure 10.   Case study: Ile-de-France region 

The following parameters have been used in the proposed GA-VNS and the pure GA: the initial 
population size is 5; the probability of crossover is 0.9; the mutation rate is 0.9; the population size is 5; the 
maximum number of generation is 500; The number of generations used to ensure a fixed state in the 
population is 100. Algorithms have been tested on an Intel core I5 machine of 8 GB RAM and Java is used 
as a programming language. Efficient and appropriate data structures have been used to guarantee fast access 
to information when needed and thereby improve the performance of the proposed approach. 

Since the increased time in solve route planning issues decreases the utility of the journey planning 
services, the computational effort of any routing algorithm constitutes a critical success factor for its 
integration within an online journey planning decision support system. Therefore, in this work, the 
evaluation of the proposed hybrid approach GA-VNS is done by comparing its running time with other 
approaches such as the algorithm of Dijkstra, a pure genetic algorithm and a pure VNS approach. The 
algorithm of Dijkstra has been used as a reference for comparing other approaches (GA,VNS, GA-VNS) 
since it provides the optimal set of nondominated solutions to go from one station at a certain departure time 
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to another station. Although the bidirectional Dijkstra algorithm may be seen as an advanced way to speed 
up the standard Dijkstra algorithm, however, it cannot be used in this work since the exact arrival time at the 
destination node is not known a priori. Therefore, the standard algorithm of Dijkstra has been selected for 
evaluations.  The pure GA applied has the same scheme of the proposed GA-VNS except that VNS is not 
applied neither to enhance initial solutions, nor to perform the mutation operation. Rather, a standard 
mutation that consists of taking a subpath from an individual and replacing it with a newly generated path 
using the algorithm of generating initial solutions. The mutation in this case is applied with low probability 
of 0.1. Regarding the VNS approach, the moving strategy used is the best enhancing neighbour since this 
strategy is the most efficient one for the studied problem. Moreover, the starting solution for the VNS is 
chosen arbitrary. It is worth to mention that the starting solution may affect the performance of the VNS 
approach. After empirically testing many starting solution, it has been found that the performance of the 
VNS for the studied problem is not largely impacted by the starting point. Therefore, in this work, a random 
starting solution has been given as an input solution for the VNS.  

Furthermore, since the proposed GA-VNS approach is based on two heuristic approaches, there is 
no guarantee to find the exact Pareto front set.  Therefore, another key factor to assess the performance of 
one heuristic approach is to measure the quality of solutions found w.r.t optimal solutions. To do so, we 
compute the GAP by dividing the Global Rank (GR) of each solution found by the highest GR among all 
non-dominated solutions found using the exact approach. This latter is based on the classical shortest path 
algorithm of Dijkstra, which has been generalized to compute the exact set of nondominated solutions to go 
from one station to another w.r.t some predefined criteria. Details about the algorithm can be found here 
(Bast et al. 2015).  

Finally, comparing the running time and the solutions quality of the proposed GA-VNS has been 
done by solving 10000 routing queries and w.r.t the algorithm of Dijkstra a pure GA and a pure VNS. Each 
routing request consists of a source node, a target node, and a departure time. Those parameters are 
uniformly generated at random. It is assumed in this work that requests allow all transport modes. We 
present in Figure 11 the details of the experimental process.  

Although the proposed routing method is not limited to specific criteria, experimentations are done 
w.r.t the following criteria: i) travel time ii) cost iii) number of transfers and the total walking time. One can 
add more criteria such as distance or co2 emission by charging their values on corresponding edges. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Figure 11.   Experimental Process 

Region: Ile-de-France              #transfers; 195000  
#stations:  17 950        #trips: 303000 
#platforms : 41047        #departure/arrival events : 6800000 events for one day 
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Before comparing the different approaches, it is worth to mention that the performance of the VNS 
approach may be affected by the choice of the strategy adopted to move from one solution to another. 
Several strategies can be used such as the first, best or least enhancing solution among all solutions 
belonging to the set of neighborhood list. Theoretically speaking, deciding which strategy is the most 
efficient one is very difficult task since it largely depends on the problem itself. For this seek, we have 
studied the impact of several moving strategies.  

Table 5. Impact of different moving strategies on the performance of the VNS approach. 

T: travel time   C: cost   E: number of exchanges W: total walking time 

Results in Table5 show that the moving strategy has an impact on the performance of the VNS 
approach regardless the number of criteria taken into account. While the first enhancing strategy may help to 
reduce the computational time of the VNS approach, it may decrease the quality of solutions. Furthermore, 
when using the worst enhancing strategy, it has been realized that the quality of solutions may be enhanced 
in comparison with the first enhancing technique. However, that improvement will be at the expense of 
additional computational time. Finally, using the best enhancing outperforms the other two strategies in 
terms of the quality of solutions found. However, it takes more time than the first improving strategy. 
Therefore, we decided to use the strategy that gives the best solutions since the additional time required to 
get the best enhancing neighbor is not very limiting. 

After empirically identifying the most efficient moving strategy for the VNS approach, we start 
evaluating the proposed approach by limiting the routing query to only one criteria (i.e. we start by travel 
time). That is, we want to ensure that the proposed model allows computing multimodal routes in a single 
criteria context and the proposed algorithm provides correct results. Analyzing and comparing results with 
real-world routing applications have verified the ability of the proposed model in providing correct 
itineraries when applying the routing algorithm.  

When it comes to assessing the computational performance, results in Table 6 indicate that the 
hybrid GA-VNS does not exceed the ratio of 70 milliseconds to handle a routing request. Conversely, the 
running time of the exact approach of Dijkstra increases to 160 milliseconds.  Thus, the speed column of the 
proposed GA-VNS, which is computed by dividing the running time of the algorithm of Dijkstra over the 
running time of the proposed GA-VNS, indicates a maximal gain of 2.42.  

While the exact approach guarantees finding the exact Pareto front set, the average Gap to the 
optimality of the proposed GA-VNS in a single criterion does not exceed the ratio of 3%. Results in Table 6 
show also that the running time of the other heuristic approaches GA and VNS is better than the algorithm of 
Dijkstra and the hybrid GA-VNS. This can be explained by the fact that such approaches rapidly converges 
in comparison with the proposed GA-VNS. The rapid converge of the pure GA and VNS can be also noticed 
from their average GAP w.r.t the hybrid GA-VNS. While the ~GAP of the pure GA increases to 3.45, the 
~GAP of the pure VNS may reach 5.66.  

 By analyzing the result below, it can be said that the proposed hybrid GA-VNS provide better 
solutions than the pure GA and VNS. However, that will be at the expense of additional computational time. 
It can also noticed that using a heuristic approach to solve the single criterion shortest path is not very 
attractive since the exact algorithm of Dijkstra is efficient enough to provide optimal solutions within 
reasonable computational time.  Finally, Results in Table 6 also indicate that when changing the criterion, 
the algorithm’s search space does not relatively change and so does the ultimate running time.  

Criterion Running time of the 

exact approach of 

Dijkstra (s) 

First enhancing Least enhancing Best enhancing 

Time 
(ms) 

Gap  
(%) 

Time 
(ms) 

Gap  
(%) 

Time 
(ms) 

Gap  
(%) 

T 1.6 51 5.88 58 4.44 55 4.51 
C 1.5 52 6.64 61 4.14 53 4.16 
E 1.52 51 7.14 64 5.36 51 5.31 
W 1.54 55 6.83 57 5.68 56 5.66 

T & C 2.18 75 12.23 93 8.25 81 8.15 
T & C & E 20.60 84 13.54 101 10.29 92 9.16 

T & C & E & W 190.17 99 15.45 124 13.36 110 12.90 
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Table 6. Single criterion experimentations. 

T: travel time   C: cost   E: number of exchanges W: total walking time 

After studying the performance of the proposed approaches in a single criterion environment, we 
now analyze their behaviors in a multicriteria context.  

While using the exact approach to compute routes in a single criteria context was done without any 
limitations, computing Pareto routes turns out to be more challenging. 

 Results in Table 7 have indicated that the average running time of the exact approach in two criteria 
context may reach 2.18 seconds. It, however, increases to 20.60 seconds when considering three criteria and 
to 190.17 seconds when dealing with four criteria. As can be easily noticed, using the exact approach to 
support online users’ queries is not satisfying in a real context due to its high computational time.  

It can be also noticed that the average running time of the exact approach exponentially varies with 
the number of criteria. More criteria leads to an exponential increase in the search space. Thereby an 
important increase in the running time. 

When it comes to assessing the performance of the proposed heuristic approaches when handling 
more than one criterion, results indicate that their average running is highly better than the exact approach.  
While answering a routing request may take more than 3 minutes when using the exact approach and 
considering 4 criteria, heuristic approaches provide answers within no more than 170 milliseconds.  

It can be also seen from Table 7 that the running time of the pure VNS is the best one. However, that 
decreases the quality of its provided solutions.  While the ~GAP to the optimality of the proposed GA-VNS 
reaches 3.24%, the ~GAP of the pure GA increases to 7.46% and 12.90 for the pure VNS.  

By analysing those results, we can notice that the proposed hybrid GA-VNS represents the best 
compromise in terms of running time and the quality of solutions provided. Consequently, our algorithm is 
efficient enough to replace other approaches and to be used in real world routing system.  

Table 7. Multiple criteria experimentations. 

t: travel time   c: cost   e: number of exchanges w: total walking time  Seconds: s 

As in most of metaheuristics, tuning the parameters is one of the hardest part while accomplishing 
the implementation phase. Unfortunately, there is no standard parametrization rule since parameters highly 
depend on the structure of the optimization problem itself. 

Several parameters have to be tuned for the proposed algorithms in order to achieve the best 
performance. We start with the initial population size. As previously mentioned, we limited the initial 
population size to 5. One reason for that is that, the algorithm used for generating initial feasible solutions is 
not always capable of providing as much solutions as we want. Another reason originates from the 
experimentations. Experimental results show that having less than 5 initial solutions will lead to premature 

Criterion Running time of the exact 

approach of 

Dijkstra (ms) 

(GA-VNS) GA VNS 

TIME (ms) GAP (%) SPEED GAP (%) TIME 

(ms) 

GAP (%) TIME 

(ms) 

T 160 70 2.88 2.28 3.19 62 4.51 55 

C 155 64 2.58 2.42 3.25 58 4.16 53 

E 152 63 2.69 2.41 3.45 57 5.31 51 

W 154 66 2.43 2.33 3.16 61 5.66 56 

Criterion Running time of the 

exact approach of 

DIJKSTRA (S) 

Our Algorithm  

(GA-VNS) 

GA VNS 

TIME (s) GAP (%) SPEED GAP (%) TIME 

(ms) 

GAP (%) TIME 

(ms) 

T & C 2.18 0.11 3.14 20 4.25 0.087 8.15 0.081 
T & C & E 20.60 0.14 3.19 147 5.90 0.095 9.16 0.092 

T & C & E & W 190.17 0.17 3.24 1118 7.46 0.120 12.90 0.11 
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convergence. In another word, the initial population becomes less diverse. Consequently, the algorithm 
usually converges to poor local minima very rapidly.  

On the other hand, having more than 5 initial individuals may increase the diversity in the first 
population. However, that will be at the expense of additional computational time and in most cases to the 
same quality of final computed solutions.  Thus, we have fixed the initial population size to 5. 

We have also analysed the crossover and mutation rates. As in most traditional GA schemes, the 
crossover rate is always high, while the mutation probability is very low. However, in our case the mutation 
is always applied after the crossover.  Experimental results have shown that the best crossover and mutation 
rates for our problem is 0.9. Since the crossover is a convergence operation, which is intended to pull the 
population towards a local minimum/maximum, performing the crossover over all individual will lead to 
premature convergence. On the other side, results indicate that using less than 0.9 as a crossover probability 
will affect the final quality of solutions. That is, the average Gap to the optimality will increase as the 
crossover rate decreases.  

Results have also indicated that decreasing the mutation rate will prevent the algorithm from 
converging towards interesting regions within the search space. This can be explained by the fact the 
mutation is a divergence operation and is usually intended to occasionally break one or more members of a 
population out of a local minimum/maximum space and potentially discover a better minimum/maximum 
space. On the other hand, decreasing the mutation rate to less than 0.9 will lead to premature convergence. 
Thus, the quality of final solutions found will be degraded.  

Therefore, parameters used to tune the proposed GA have been experimentally found. Using such 
parameters will lead to achieving the best performance and thus increasing the efficiency of the introduced 
GA-VNS. It is worth mentioning that other values can be used to increase the convergence rate of the 
algorithm, however, that will surely decrease the quality of solutions.   

 

Real Case Scenario  
 

To have better evaluations of the proposed work, an advanced web routing application has been 
developed. The user interface has been developed using HTML, JavaScript, JQuery. Algorithm has been 
implemented in Java. To visualize itineraries we have used the Google Maps API.  

We show in Figure 13, a real case scenario: it consists of a request to go from the station “Tour 
Eiffel” to the station “La defense”, which are both located in the region Ile-de-France. The departure time is 
“10:45”.  Criteria are travel time, monetary cost, number of transfers and walking time. Modes used are Bus, 
Railway, Tram, Metro. After applying the proposed GA, three non-dominated paths have been found. In 
Figure 12, we present the stations constructing such paths, as well as, the values of the non-dominated paths. 

We present in Figure 13, the user interface of the developed routing application and the results of the 
previously mentioned query. Three paths among many others are presented and visualized using the Google 
Maps API.  
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Figure 12: Example of three non-dominated paths found while going from the station of “tour Eiffel” to “La defense” 

Figure 13: An advanced web-based routing application developed to assess the performance of our works 
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6 Conclusion 

We have addressed in this paper the multicriteria routing issue that may arise while passengers 
accomplishing their journeys. After modelling the transportation network, a hybrid GA-VNS has been 
proposed to solve the emerging problem. We focused in this paper on four criteria: the travel time, the total 
monetary cost of a travel, the number of transfers and the total walking time. As transport modes, we used 
Railway, Bus Tram and Metro. The proposed work has been assessed by solving a wide range of real life 
itinerary planning problems defined on the Urban Public Transportation System of the French region Ile-De-
France that includes the city of Paris and its suburbs.  

Experimental results have shown that the computational time when using heuristic approaches is not 
prohibitive to integrate them within an online journey planning system. However, special attention should be 
paid to the quality of solutions that metaheuristics provide. In this work, we have proved that combining two 
metaheuristics (GA&VNS) is better than using each one solely. Therefore, we have developed an advanced 
routing system and we integrated the proposed GA-VNS into it as an advanced heuristic routing method.  

As future works, we have planned to integrate train delays and other stochastic parameters. We 
believe that metaheuristic and especially GAs and VNS are good candidates to handle such additional 
constraints. Moreover, transport systems do not only encompass public transportation modes. Other modes 
such as Bike and Car Sharing also represent efficient alternatives for many passengers. Integrating such 
modes into our model is therefore one of our future goals. We also believe that adding such modes will 
increase the search space of the proposed GA-VNS. Therefore, it may not be efficient enough in its current 
version. To overcome that, we have planned to parallelize the genetic operators so that we enhance the 
global computational time, as well as, the quality of solutions.  
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