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NEARLY FINITE CHACON TRANSFORMATION

ELISE JANVRESSE, EMMANUEL ROY AND THIERRY DE LA RUE

ABSTRACT. We construct an infinite-measure preserving version of Chacon
transformation, and prove that it has a property similar to Minimal Self-
Joinings in finite measure: its Cartesian powers have as few invariant Radon
measures as possible.
Keywords: Chacon infinite measure preserving transformation, rank-one
transformation, joinings.
MSC classification: 37A40, 37A05.

This is a preliminary version. Additional figures and comments will be provided
in a later version.

1. INTRODUCTION

1.1. Motivations. Our purpose is to investigate what the analog of the Minimal
Self-Joinings (MSJ) property could be in the setting of infinite-measure preserving
transformations. We thus want to construct an infinite-measure preserving trans-
formation whose Cartesian powers have as few invariant measures as possible.

A first natural attempt was to consider the so-called infinite Chacon transfor-
mation [1], since the classical Chacon transformation has the MSJ property [3].
This was the object of our previous work [5], but in the case of this transformation,
some kind of weird invariant measures appear, even with the restriction that the
marginals are absolutely continuous with respect to the original measure [2].

We propose here another rank-one transformation, which we call the nearly finite
Chacon transformation. Its construction mimics as much as possible the classical
Chacon transformation, yet it preserves an infinite measure. The behaviour of
orbits in the nearly finite Chacon transformation is so close to what happens in
the classical Chacon transformation that no weird measure appears (see our main
result, Theorem 2.10).

1.2. Construction of the nearly finite Chacon transformation. For peda-
gogical reasons, we start by defining the nearly finite Chacon transformation by the
cutting-and-stacking method on R, equipped with the Lebesgue measure. Then
we will turn to a more convenient model for our purposes.

Construction on Ry. As previously explained, this transformation is designed to
mimic the classical finite measure preserving Chacon transformation as much as
possible, yet it must preserve an infinite measure. The construction will make use
of two predefined increasing sequences of integers: 1 < nj K ng K -+ K ny K -+ -
and fp =1 < ] € ly € -+ € < ---, satisfying some growth conditions to
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be precised later (see below conditions (1) and (2)). For each £ > 1, there exists a
unique integer k > 0 such that £ < £ < 11, and we denote this integer by k(¢).

In the first step we consider the interval [0, 1), which is cut into three subintervals
of equal length. We take the extra interval [1,4/3) and stack it above the middle
piece. Then we stack all these intervals left under right, getting a tower of height
hy1 := 4. The transformation 7" maps each point to the point exactly above it in
the tower. At this step T is yet undefined on the top of the tower.

After step n we have a tower of height h,,, called tower n, the levels of which are
intervals of length 1/3™. These intervals are closed to the left and open to the right.
At step (n 4+ 1), tower n is cut into three subcolumns of equal width. If n ¢ {n, :
¢ > 1}, we do as in the standard finite measure preserving Chacon transformation:
we add an extra interval of length 1/3"*! above the middle subcolumn, and we
stack the three subcolumns left under right to get tower n + 1 of height h,41 =
3hp, + 1. If n = ny for some /£, we add h,_j) extra intervals above each of
the three subcolumns, and a further extra interval above the second subcolumn.
Then we stack the three subcolumns left under right and get tower n 4 1 of height
hpy1 = 3hy + 3hn—k(€) + 1. (See Figure 1.)

At each step, we pick the extra intervals successively by taking the leftmost
interval of desired length in the unused part of R;. Extra intervals used at step
n+ 1 are called (n + 1)-spacers.

We want the Lebesgue measure of tower n to increase to infinity, which is easily
satisfied provided the sequence ¢}, grows sufficiently fast. Indeed, for each n > 1 we
have hy+1 < 6h,, +1 < Th,,, whence h,,/h,+1 > 1/7. Tt follows that for each k > 0
and each £ < € < ff 1,

Leb(tower ny + 1) > Leb(tower ny) (1 + h;”’“) > (1+ 7—k) .

ne

Therefore it is enough for example to assume that for each k£ > 0,
(1) (14 77F) 7% > g,

Under this assumption, we get at the end a rank-one transformation defined on R
which preserves the Lebesgue measure.
We will also assume that for each ¢,

(2) N(e—1) < ny — 2.

Construction on a set of sequences. For technical reasons, it will be more convenient
to consider a model of the nearly finite Chacon transformation in which the ambient
space is a totally disconnected non compact metric space, and each level of each
tower is a compact clopen set.

Consider the countable alphabet A := {x} UN. To each t € R, we associate the
sequence ¢(t) = (jn(t)), -, € AV defined by

o (f) = x if ¢ ¢ tower n,
It = j iftisin level j of tower n (0 < j < hy).

By condition (1), Ry = {J,, tower n, and for each n, tower n C tower n + 1. Hence
for each t € Ry,

Ing > 0:Vn < ng, jn(t) =*, and Yn > ng, jn(t) € {0,..., h, — 1}.
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F1GURE 1. Construction of the nearly finite Chacon transforma-
tion by cutting and stacking.

Moreover, each level of tower n+1 is either completely outside tower n or completely
inside a single level of tower n. Let us introduce, for each n > 1, the map p, :
{0,...,hpy1 —1,%x} = {0,..., h, — 1, %} defined by
o (%) 1= x,
o Vj € {0,...,hnt1 — 1}, pn(j) := = if level j of tower n + 1 is completely
outside tower n, and p,(j) := 7' € {0,...,h, — 1} if level j of tower n + 1
is completely inside level j’ of tower n.

Then the sequence (jn(t))n>0 satisfies the following compatibility condition.

Vn >0, jn(t) = pn(dnti(t))-
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In particular, j,(t) completely determines j,,(t) for each 0 < m < n. We also
observe that p,, satisfies the following property:

(3) If pn(j) € {0,...,h,—2}, then j € {0,..., hpt1—2} and p,(j+1) = pn(j)+1.

Now we can define our space X, to which belongs ¢(t) for each t € Ry:
X = {(jn)nz0 € AV :¥n >0, jin = pn(in+1) and Ino, jng # *} -

X inherits its topology from the product topology of AN. In particular it is a totally
disconnected metrizable space, but it is not compact (in fact X is not closed in AN,
as the infinite sequence (x,*,...) is in X \ X).

For each n > 0 and each = € X, we denote by j,(x) the n-th coordinate of x.
For each j € {0,...,h, — 1}, we define the subset of X

L, ={x € X : ju(z) = j}.

Then LJ is compact and clopen in X. Moreover the family of sets (L7) form a
basis of the topology on X.
To define the transformation 7" on X, we need the following easy lemma.

Lemma 1.1. For each © = (j,)n>0 € X, there exists T such that, for each n > 7,
Jn €4{0,..., hy — 2}

Proof. Remember that at each step ny + 1, some spacers are added on the last
subcolumn of tower n,. Hence, jn,4+1 = hn,+1 — 1 implies j,, = *. Now take ¢ large
enough so that j,, # *. Then j,,4+1 < hn,+1 — 1, and (3) shows by an immediate
induction that j,, < h,, — 1 for each m > ny + 1. O

We define the measurable transformation 7' : X — X as follows: for =z =
(Jn)n>0 € X, we consider the smallest integer 7 satisfying the property given
in Lemma 1.1. Then we set T'(z) := (j},)n>0, where j,, = j, + 1 if n > 7@, and
the finite sequence (51,75, ..., j%_;) is determined by the value of j~ and the com-
patibility conditions j;, = pn(j;,,1), 1 < n < 7. Note that T is one-to-one, and
T(X) = X\ {0}, where 0 := (0,0,...).

For each n > 1 and each 0 < j < h,, — 1, T(LJ) = LJ*!, hence (LY,..., Lhn~1)
is a Rokhlin tower for T'. By construction, the family of Rokhlin towers we get in
this way has the same structure as the family of Rokhlin towers we constructed
by cutting-and-stacking on R;. From now on, “tower n” will rather designate the
Rokhlin tower (L,...,L"»~1) in X. The main advantage that we get compared
to the construction on R is the following elementary fact.

Remark 1.2. If (Li)

such that Lf{j:f is always included in LI (equivalently, j, = pp(jn+1)), then (), Lir
is always a singleton

>7 18 a sequence of levels in the successive Rokhlin towers,

(Note that such an intersection can be empty in the construction on R;.)
Let p be the pushforward of the Lebesgue measure on Ry by ¢. Then p is an
infinite, o-finite and T-invariant measure on X, and it satisfies

Vn >0, Vj€{0,... h, — 1}, p(Li)=3""
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Additional notations. For each n > 0, we denote by C,, the subset of X formed by
the union of all the levels of tower n. Note that for each n > 0, C,, C Cp, 41, and
that X = J,,~, Cn. For x € C,, note that j,(z) indicates the level of tower n to
which x belongs.

We also define a function ¢, on Cy,, taking values in {1, 2,3}, which indicates for
each point whether it belongs to the first, the second, or the third subcolumn of
tower n. We thus have for z € C,, and n ¢ {ny: ¢ > 1}

Jn(x) if tn(x) =1,
(4) jn+1($) = ]n(aj) + hn if tn(x) =2,
Jn(x) +2h, +1  ift,(z) = 3.

In the case where n = n, for some £ > 1, we have to replace hy, by hn, + by, k()
in the above formula. In particular, we always have

Consider two integers 0 < n < m. By construction, tower n is subdivised into
3™~ " subcolumns which appear as bundles of h,, consecutive levels in tower m: we
call them occurrences of tower n inside tower m. These occurrences are naturally
ordered, from bottom to top of tower m. For a point x in tower n, the precise
occurrence of tower n inside tower m to which z belongs is determined by the
sequence tp, (), tn41(), ..., tm—1(z). For example, z belongs to the last occurrence
of tower n inside tower m if and only if ¢, (z) = t,pr1(x) =+ = ty_1(x) = 3.

Remark 1.3. Observe that for each { > 2 and each n_1)y+1 <n <ny — 1, there
is 0 or 1 spacer between two consecutive occurrences of tower n inside tower ny.

1.3. Behaviour of u-typical points.

Lemma 1.4. There exists a p-conull subset X, of X satisfying: for each v € X,
there exists an integer {(x) such that, for all £ > {(z), for each ng_1) <n <ng—/,
x € C), but x is neither in the first hundred nor in the last hundred occurrences of
tower n inside tower ny.

Proof. If we consider =z as a random point chosen according to the normalized
p-measure on Cp,, then the random variables t,(x),t,1(x), ..., tm—1(x) are i.i.d.
and uniformly distributed in {1,2,3}. Hence the probability that z belongs to some
specified occurrence of tower n inside tower m is 1/3™~ ™.

Since the series S 1/3¢ converges, by Borel Cantelli there exists a subset X, of
full g-measure inside C,, such that, for each x € X,,, there is only a finite number of
integers £ such that x belongs to the first hundred or to the last hundred occurrences
of tower (n; — £) inside tower ny.

Setting

Xoo =X\ J(Cn\ Xn),

we get a conull subset of X, and for each z € X, there exists an integer ¢(x)
such that, for all ¢ > f(x), x € Cni_yy C Cpy—g, but z is neither in the first
hundred nor in the last hundred occurrence of tower (n, — ¢) inside tower ny. If
ne—1y < n < ng — £, the first (respectively last) hundred occurrences of tower n
inside tower n; are included in the first (respectively last) hundred occurrences of
tower (ny — ¢) inside tower ng, and this concludes the proof. ]
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Remark 1.5. In particular, for each x € Xoo, if n > ny(,), then x does not belong
to the first level of tower n. And since 0 is in the first level of tower n for each n,
we have 0 ¢ X .

Remark 1.6. As n_1) +£ < ng — £ by (2), we may also assume that for each
x € Xoo and each ¢ > £(x), x is neither in the first hundred nor in the last hundred
occurrences of tower n(,_y) inside tower ny — {.

2. ERGODIC INVARIANT MEASURES FOR CARTESIAN POWERS OF THE NEARLY
FINITE CHACON TRANSFORMATION

We fix a natural integer d > 1, and we study the action of the Cartesian power
T*% on X<, Recall that a measure o on X% is a Radon measure if it is finite on
each compact subset of X9 (equivalently, if ¢(C%) < oo for each n). In particular,
a Radon measure on X% is o-finite (but the converse is not true).

Our purpose is to describe all Radon measures on X¢ which are T*%invariant
and whose marginals are absolutely continuous with respect to .

2.1. Basic facts about Radon measures on X?. We call n-boz a subset of C¢
which is a Cartesian product LJ! x - - - x LJ¢, where each LJi is a level of the Rokhlin
tower C,,. A box is a subset which is an n-box for some n > 0. The family of all
boxes form a basis of compact clopen sets of the topology of X¢.

We consider the following ring of subsets of X¢

#:={BcC X?%: 3n>0, Bis a finite union of n-boxes}.

Proposition 2.1. Any finitely additive functional o : Z — Ry can be extended to
a unique measure on the Borel o-algebra %(X?), which is Radon.

Proof. Using Theorems F p. 39 and A p. 54 (Caratheodory’s extension theorem)
in [4], we only have to prove that, if (Ry)r>1 is a decreasing sequence in Z# such
that limy_,oc | o(Rg) > 0, then (), Ri # 0. But this is obvious since, under this
assumption, each Ry is a compact nonempty set. ([

In particular, to define a Radon measure o on X%, we only have to define o(B)
for each box B, with the compatibility condition that, if B is an n-box for some
n >0, then o(B) = Y 5 - g 0(B’), where the sum ranges over the 3¢ (n+ 1)-boxes
which are contained in B.

We call n-diagonal a Rokhlin tower for 7% which is of the form

(B, T*UB),...,(T*")~1(B)),

where each (T*%)/(B) is an n-box, and which is maximal in the following sense:
B has one projection which is the bottom level L of tower n, (T*4)"~1 B has one
projection which is the top level L1 of tower n, and the projections of each
(T*%)7B, 1 < j <r — 2 are neither the bottom level nor the top level of tower n.

Lemma 2.2. Set X¢ := {x = (21,...,24) € X% : 3i,x; = 0}. Let o be a Radon
measure on X¢. Then o is T*?-invariant if and only if the following two conditions
hold:
(1) o (X§) =0.
(2) for each n, all the n-boxes lying on an n-diagonal always have the same
measure.
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Proof. Assume first that o is a T*%invariant Radon measure on X¢. Recalling
that 0 has no preimage by T, we see that (T*¢)~1(Xd) = (), whence o (Xg) =0.
Moreover, since n-boxes on an n-diagonal are levels of a T*%-Rokhlin tower, the
second condition obviously holds. Reciprocally, assume that the two conditions
given in the statement of the lemma hold. For each n, let €, be the subset of C¢
constituted of all n-boxes of the form LJ! x --- x LJ4 where for each i j; # 0. Then
the second condition implies that o and (T%¢), () coincide on €2, for each n. But

U @ =X\ X¢.
n>0
On the other hand, we have (T%),(0)(X§) = o ((T*%)~*(X§)) = o(0) = 0. With

the first condition we see that o and (7*%), (o) also coincide on X¢, hence they are
equal. O

Definition 2.3 (Convergence of Radon measures on X%). We say that a sequence
(0x) of Radon measures on X¢ converges to the nonzero Radon measure o if, for
each n large enough so that o(C%) > 0, we have

e 01,(C%) > 0 for all large enough k,
e for each n-box B,
or(B) o(B)
O'k(Cg) k—o0 U(Cg) ’
Observe that, when a sequence of Radon measures converges in the above sense,
then its limit is unique up to a multiplicative positive constant. Observe also that

the convergence is unchanged if we multiply each measure o, by a positive real
number (which may vary with k).

Remark 2.4. If the sequence (o) of Radon measures on X< converges to the
nonzero Radon measure o, then for n such that o(C%) > 0 and for each m > n, for
each m-box B C C%, we also have

ok (B) o(B)

0, (C) kooo o(C4)

Consequently, the above holds also when B € % is included in C¢.

Indeed, as C¢ is a finite union of m-boxes, we have
or(Cy) a(Cy)
O'k(Cgl) k—o00 J(Cgl)
Then we can write, for an m-box B C C¢,

or(B) _ on(B) ok(Cy) o(B) o(Cy) _ o(B)

or(Cd) — ou(Ch) or(C) koo 0(CH) o(C) — o(Cl)

Proposition 2.5. Let (0}) be a sequence of Radon measures on X%, and assume
that there exists some n > 0 satisfying

e 0y (C’g) > 0 for all large enough k,
e for each n > n, the sequence (ak (Cﬁ)/ak(Cg))k is bounded.

Then there is a subsequence (k;) and a nonzero Radon measure o on X% such that
(ok,) converges to o.
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Proof. Multiplying each o), by a positive real number if necessary, we may assume
that for all large enough k, 01(C%?) = 1. Then the second assumption ensures
that for each box B, the sequence (0% (B)), is bounded. By a standard diagonal
procedure, we can find a subsequence (k;) such that for each box B, oy, (B) has a
limit which we denote by o(B). Then o defines a finitely additive functional on the
ring Z of finite unions of boxes, with values in R;. By Proposition 2.1, ¢ can be
extended to a Radon measure on %(X?), which is nonzero since o(C%) = 1. And

we obviously have the convergence of (o) to o. (]

Proposition 2.6. Let (0}) and () be two sequences of Radon measures on X<,
and assume there exist two nonzero Radon measures o and v, an integer n > 1 and
a real number 6 > 0 such that

® 0, — 0,
k—o0
® YV —— 7,
k— o0
o Vk, v < op
e Vn > n, for all large enough k (depending on n), v (C%) > 0o (C4).

Then v < 0.

Proof. Let m > n > n, and let B be an m-box. For all large enough k, we have by
assumption

w(B) _ ok(B)

W (C) ~ 0ox(Cih)

But by Remark 2.4, we have

Yk(B) v(B) and or(B) o(B)
V(Ch) k=00 Y(CF)’ 0r(Cqp) koo a(Cf)
It follows that
WB) _ o(B)

1(C) ~ 0a(C)
The above inequality extends to each B € % contained in C¢, and then to each
B € %(X) contained in C¢. In particular, if B C C¢ is Borel measurable and
satisfies 0(B) = 0, then we also have v(B) = 0. And since X = (J,, C¢, this

concludes the proof. O

Remark 2.7. All the above results hold if the assumptions are satisfied only when
n is an integer of the form ny for some ¢ > 1.

2.2. Dissipative case.

Lemma 2.8. For each x = (z1,...,74) € X%, for £ > max{{(x;) : i = 1,...,d},
we have

#5 >0 (T (2) € CF 11} = oo,

Proof. If ¢ > max{{(x;) : i =1,...,d}, we know by Lemma 1.4 that each coordinate
x; is in Cyp,4+1, but is not in the last occurrence of tower (n, + 1) inside tower
n(e41)- Moreover by Remark 1.5, x; is not in the first level of tower (n, + 1).
The next occurrence of tower (n, + 1) inside tower n.y1) appears after 0 or 1
spacer by Remark 1.3. As the height of tower (ng + 1) is h(n,41), T+ () s
either in the same level of tower (ny + 1) as x;, or in the level immediately below.
Thus T"¢e+1) (2;) € C,,11. But the same applies to any ¢ > /£, and we get that
Tho+0 (;) is either in the same level of tower (ny + 1) as z;, or in the level
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immediately below. Since these two levels are both included in C,,,+1 we get that
T (2;) € Cryyr. 0

Proposition 2.9. There is no Radon, T*?-invariant and totally dissipative mea-
sure for which X& is a conull set. In particular, there is no Radon, T*%-invariant
and totally dissipative measure whose marginals are absolutely continuous with
respect to .

Proof. Suppose that o is such a measure. Let W be a wandering set for o, with

o | X\ J@yw | =o.
jEZ
As X< is a conull set, we may assume that W C XZ. By the previous lemma,
W =,, Wy, where

W, = {x EW :#{j>0: (TN (z) e Cl} = oo}.

Hence there exists some n with o(W,,) > 0. The ergodic decomposition of o writes

o= /W Z(S(Txd)j(x) dO‘(JJ),

jEL
so we get 0(C%) = oo, which contradicts the fact that o is Radon. O

2.3. Main result. An obvious example of a T*?-invariant Radon measure on X
is the product measure u®?. Another example is what we call a graph measure
arising from powers of T: this is a measure ¢ of the form

(6) O'(Al X X Ad) ZOé/J,(Al ﬂT_e2A2ﬂ-~'ﬁT_edAd),

for some integers es, ..., eq and some fixed positive real number «. Such a measure
is concentrated on the subset

{(ml,...,xd)GXd::clv:Teixl foralli:Q,...,d}.

Theorem 2.10. For each d > 1, the infinite measure preserving dynamical system
(X4, 12 T*4) is conservative ergodic.

Moreover, if o is a nonzero, Radon, T*?-invariant and ergodic measure on X%,
such that

(7) o (XT\X5) =0,

then there exists a partition of {1,...,d} into r subsets Di,...,D,, such that
0=0P"®---®cPr, where oPi is a graph measure on X i arising from powers
of T.

Corollary 2.11. If ¢ is a nonzero, Radon, T*?-invariant measure on X¢, whose
marginals are absolutely continuous with respect to u, then o decomposes as a
sum of countably many ergodic components, which are all of the form described in
Theorem 2.10.

To prove Theorem 2.10 in the case d = 1, we even do not need assumption (7) as
we can show that p is, up to a multiplicative constant, the only T-invariant, Radon
measure on X (the proof is the same as for the Chacon infinite transformation, see
Proposition 2.4 in [5]).
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We also note that, if we have proved the second part of the theorem for some
d > 2, then the first one follows immediately. Indeed, if u®? were not ergodic, then
almost all its ergodic components would satisfy (7), hence would be a product of
graph measures different from p®?. But this would mean that for y®?-almost all
x € X%, there exist at least two coordinates of x lying on the same T-orbit, which
of course is absurd. Hence u®? is ergodic, and by Proposition 2.9, it is conservative.

The remainder of this paper is devoted to the proof by induction of the second
part of Theorem 2.10. So we now assume that for some d > 2, the statement is true
up to d — 1. We consider a nonzero, Radon, T*%invariant and ergodic measure o
on X% satisfying (7).

We will show that either ¢ is a graph measure arising from powers of 7', or it can
be decomposed into a product of two measures o, X o3, 0; being a T>*%-invariant
Radon measure on X% for some 1 < d; < d, di +ds = d. In this latter case we can
apply the induction hypothesis to each g;, which yields the announced result.

2.4. Choice of a o-typical point. By Proposition 2.9, the system (X%, o, T*%) is
conservative ergodic. By Hopf’s ergodic theorem, if B ¢ C C X9 with 0 < ¢(C) <
00, we have for o-almost every point z = (z1,...,24) € X?

ZjeJ]lB((TXd)jx) o(B)
> jes Le((T*M)iz) |1j»e0 o(C)

where the sums in the above expression range over a set J of consecutive integers
containing 0.

We say that x € X9 is typical if, for all n large enough so that o(C%) > 0,
Property (8) holds whenever B is an n-box and C is C¢. We know that o-almost
every © € X% is typical. Therefore, there exists a point x = (1, ..., 24) such that

(8)

(9) For each j € Z, (T*%)Jz is typical.

Since there are only countably many boxes, we may also assume that
(10) For each box B, z € B= o(B) > 0.

Moreover, by (7), we can further assume that

(11) Vi=1,...,d, = € Xoo.

From now on, we fix a point = (x1,...,24) satisfying the above assumptions (9),
(10) and (11). We will derive properties of ¢ from the observations made on the
orbit of this point z.

By an interval, we mean in this paper a finite set of consecutive integers. We
will need the following key notion in our argument.

Definition 2.12. We call n-crossing a maximal interval J C Z with the following
properties:

o (T*%)iz € C4 for each j € J,

e foreach 1 <i <d, j+ t,(T7x;) is constant on J.
An n-crossing is said to be synchronized if t,(T7x1) = --- = t,,(Tx,) for each j in
this n-crossing.
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Note that an n-crossing has at most h,, elements. If j is the smallest (respectively
the largest) element of an n-crossing, then there exists 1 < i < d such that T7x;
is in the first (respectively the last) level of tower n. Observe also that when j
runs over an n-crossing, (T*%)7z successively passes through each n-box of some
n-diagonal.

2.5. Characterizations of graph measures arising from powers of 7.

Lemma 2.13. The following assertions are equivalent:

(i) o is a graph measure arising from powers of T’;
(ii) Jea,...,eq € Z: x; =T xy for each i =2,...,d;

(iii) In:Vn > n, t,(z1) =+ = ty(xq);

(iv) 3j,3n:YVn > n, t,(T721) = - = t, (T xg).

Proof. Let us first prove that (i) = (ii). If o is a graph measure arising from
powers of T, then there exist a positive real number « and integers es, ..., eq4 such
that for all measurable subsets Aj,..., Ag of X, (6) holds. Observe that, if ¢ is
large enough so that hy,, ) > max{|es|,...,|eq|}, then for each i = 2,...,d and

each 7,5 € {0,..., hy, — 1},

Li nTeLi, = {% = ve

0 otherwise.
It follows that the only ny-boxes that may be charged by ¢ are of the form L{}Z X
Livte2 x ... x LJte for some ji. By assumption (10), it follows that for each
i=2,...,d, jn,(x;) = jn,(x1) + €;. Since this is true for all large enough ¢, this in
turn implies that for each i = 2,...,d, z; = T ;.

Conversely, if (ii) holds, the same argument shows that if ¢ is large enough so
that hy,_p) > max{|es|,...,|eq|}, then the only n,-boxes that can contain x are
the ng-boxes of the form L} x Liite2 x ... x Lii*+e for some j;. Note that the
ng-boxes of this form constitute an n,-diagonal, which we denote by D. But (ii) is
also valid for each (T*9)Jx, j € Z hence the argument also applies to each (T*9)7z.
Thus, if B is an ng-box which is not on D, then (T*%)7x ¢ B for each j € Z. Now,
remembering that x is typical for o, we have for each ng-box B = LIt x --- x L¢

o(B) ~ lim kagjgk]lB((TXd)jx)
a(Cd)  k—oo kagjgkﬂcgé((TXd)jx).

The above limit is 0 if B is not on D. Moreover, note that each time the orbit
of x passes through C? o (T*%)Ix successively passes through each ny-box on D.
Hence if B is on D, the limit is equal to the inverse of the number of n, boxes on
D. In particular the limit is proportional to u (L%le NT==LiN---N T_edeﬁ).
The coefficient of proportionality depends a prior: on ¢, but since each ng-box is a
union of disjoint nyy1-boxes, we see that in fact this coefficient does not depend on
¢. Finally, this gives (6) in the case of an ny-box for each large enough ¢, and this is
enough to conclude that (6) holds for each measurable set of the form A; x---x Ag.
We have so far proved the equivalence of (i) and (ii).

Now let us turn to the proof of (ii) = (iii). Since x1 € X, we have j,(z1) — 00
and h, — jn(x1) = 00 as n — oo. If (ii) holds, we then have j,(z;) = jn(z1) + €;
for each i = 1,...,d and each n large enough so that min{j,(x1), hn, — jn(z1)} >
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max{|es|,...,|eq|}. But then for such an n we also have t,(z;) = t,(x1) for each
i=1,....d

The implication (iii) == (iv) is obvious.

Assume now that (iv) holds with j = 0 (i.e. that, in fact, (iii) holds). For
i =2,...,d, we then have by an easy induction that j, (z;)—jn(x1) = jn(2:)—jn(x1)
for each n > n. Setting e; := j,(x;) — jn(z1) for i = 2,...,d, we get that z; = T% 1,
and we have (ii). Now if (iv) holds with some j € Z, we get (ii) for (T*%)/z, which
is clearly equivalent to (ii) for x. Thus we have proved that (iv) = (ii) and this
concludes the proof of the lemma. O

For the remainder of the paper, we also fix a real number 0 < n < 1, small

enough so that n < —&. In particular we will need the inequality (1 — n)2 > 1/2.
g N < 1004 p q y n

Definition 2.14. For each n, let I, := {—|h,/2|,...,—|hn/2] + hy, — 1} be the
interval of length h, and centered at 0. For each n > 0, we call substantial n-
crossing any n-crossing whose intersection with I,, countains at least nh,, elements.

Lemma 2.15. If n = n,_y) for some large enough ¢, then substantial n-crossings
cover a proportion at least (1 — (d 4+ 2)n) of I,,. In particular, there exists at least
one substantial n-crossing. Moreover, if all substantial n-crossings are synchronized,
then each substantial n-crossing is of size at least (1 — (d + 2)n)h,,, and there are
at most two of them.

Proof. Let us start by considering the case of an integer n which is of the form
n = n(—1) for some £ > max; £(z;). We also assume that ¢ is large enough so that

1 n
k(1) < 2d°

We set n' := n_1) — k(£ — 1), and we observe that the above assumption ensures
that

hp +1 n

12 =.

(12) <4
We know by Lemma 1.4 that z € C¢ = (C9 and that the interval

Ne—1)
{=100A(n, ¢y, - - -+ 100R ()}

is contained in a single my-crossing. A fortiori, I, is contained in a single m-
crossing. Therefore, if a coordinate TV x; reaches the top of tower n and comes back
to C}, on the interval I,,, then the two passages in C,, are separated by at most
h, + 1. Moreover, this can happen at most once on the interval I,, for each i. It
follows that the set of integers j € I,, such that (7*%)7z ¢ C? is constituted of at
most d pieces, and its cardinality is bounded above by nh, by (12). Then there
exist at most (d + 1) n-crossings intersecting I, and they cover a proportion at
least (1 — 1) of I,,. Now the proportion of I,, covered by n-crossings which are not
substantial is less than (d + 1)n, hence the proportion of I,, covered by substantial
n-crossings is at least (1 — (d + 2)n). This proves the first part of the lemma

Let us assume now that all substantial n-crossings are synchronized. If we have
only one substantial n-crossing, then this n-crossing is of size at least (1—(d+2)n)h.,,
and we have for j in this n-crossing

(13) in(T7@i,) = (T 23,)| < (d + 2)1hn.
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If we have at least two substantial n-crossings, note that between two of them, there
is at least one coordinate passing through the top of tower n, and for which ¢,, has
increased by 1 mod 3. Since the t,,(T7x;), i = 1,...,d are supposed to be equal on
each substantial n-crossing, we deduce that each coordinate passes through the top
of tower n between two substantial n-crossings. As this happens at most once for
each coordinate on I, we see that there are at most two substantial n-crossings.
Finally, from the first part of the lemma it follows that two consecutive substantial
n-crossings are separated by at most (d + 2)nh,, points. We deduce that, on any
substantial n-crossing, (13) holds, hence each substantial n-crossing is of size at
least (1 — (d+ 2)n)hy,. O

Remark 2.16. The preceding lemma extends easily to the case whenn_1) <n <
ne — {. Indeed, when ny_1) +1 < n < ng — £ the proof is even simpler, as two
successive passages in C), are now separated by at most one.

Proposition 2.17. The measure o is a graph measure arising from powers of T' if
and only if for each large enough n, all substantial n-crossings are synchronized.

Proof. First assume that o is a graph measure arising from powers of T'. Then
by Lemma 2.13, we know that there exists es,...,eq € Z such that x; = T%x;
for each ¢« = 2,...,d. Take n large enough so that max{|es|,...,leq|} < nhn.
Let J be a substantial n-crossing. In particular the size of J is at least nh,,.
Hence there exists j € J such that nh, < j,(T7z1) < (1 — n)h,. We deduce
that j,(T7x;) = jn(T7x1) + e; for each i = 2,...,d. But we also have nh, <
Jni1(T721) < (1—n)h, and this ensures that j,, 41 (T7x;) = joa1(T721)+e€;. By (4),
the equality jni1(T72;) — jne1(T721) = ju(T72;) — jpo(T721) implies t,(T7x;) =
to(T721). Finally, as j + t,(T7x;) is constant on the n-crossing .J, we see that .J
is synchronized.

Conversely, assume that there exists n such that for each n > n, all substantial
n-crossings are synchronized. Without loss of generality, we may assume that n is of
the form n,_y), for some ¢ large enough to apply Lemma 2.15. Then we know that
there exists at least one substantial n-crossing J,,, of size at least (1 — (d + 2)n)h,.
For j € J, and for each i = 2,...,d, |jo(T72;) — jn(T921)| < (d + 2)nh,. Let
us prove by induction that for each n > n, there exists a substantial n-crossing
Jn, of size at least (1 — (d + 2)n)h,, and containing .J,. We already know that
this property is true for n. Assume it is true up to n for some n > n. Then, the
n-crossing J,, extends to a unique (n + 1)-crossing J, 1. As J,, intersects I,, and
is of size at most h,,, J, C I,41. It follows that

|1 N Lya] > [Jn] > (1= (d+2)n)hy > nhpya,

which proves that J,1 is a substantial (n + 1)-crossing. Moreover, since the size
of J, is at least (1 — (d + 2)n)h,, we have for j € J, and each i = 2,...,d
ljn(TP2;) — ju(T921)| < (d+ 2)nhy,. But J, is synchronized, hence by (4), we have
for j € J,

|jn+1(Tj1’i) - jn+1(zj1)‘ = |.7n(T]172) - jn(zjl)‘ < (d+2)nhy < (d+ 2)nhn41.
This equality extends to j € J,41 since the difference is constant on an (n + 1)-
crossing. This proves that the size of J,41 is at least (1 — (d + 2)n)hp41. Now if

we take any j € J,, we have j € J, for each n > n, and since we assumed that
each substantial n-crossing is synchronized, we have t,(T7z;) = --- = t,,(T7z,),
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i.e. we have (iv) of Lemma 2.13. This proves that o is a graph measure arising
from powers of T'. ([

Remark 2.18. In the preceding proof, the induction provides in fact a stronger
inequality for the sizes of the substantial n-crossings (Jy,): |Jn| > hy — (d + 2)nhy,.

3. COMBINATORICS OF SOME SETS OF INTEGERS

The purpose of this section is to establish Proposition 3.1 on the combinatorics
of the set of integers j such that (7*%)7z € C? for a given large n.

Proposition 3.1. There exist constants K1 > 0 and Ko > 0 such that, for any
large enough integer ¢, and any integer 1 < ¢ < h,,,, the following holds: if I C Z
is an interval contained in an ngy)-crossing for some £ > 1, and if the length of T
is at least nh then

N(et+e—1)7

e the proportion of integers j € I such that (T*%)7xz € C¢ is at least (1—n)%;

e among all the integers j € I such that (T*%)x € Cgl, the proportion of
those belonging to an n,-crossing of size < c is bounded above by

Cc K2
Ki—+—.
Y, 3L
For this we will introduce a hierarchy of more and more complex subsets of Z,
prove by induction some combinatorial results on abstract sets in this hierarchy,
and finally show how to apply these results in the particular case we are interested
in.

3.1. A hierarchy of subsets of Z. This part of the argument is completely ab-
stract and independent of the rest of the paper, but we keep the notations d (an
integer, d > 2) and 7 (a positive real number between 0 and 1). We set

142
Kl = 1 .
L=
We fix two sequences of positive integers (c¢),~; and (s¢),s,, satisfying
se 1 1

14 ve>1, LTy
(14) - ) dn+1 1
and

Ce n
15 ves1, Lo
(15) T am Ky

Let FF C Z, and let I C Z be an interval. We call piece of F NI any maximal
interval included in F'N I, and we call hole of F'N I any maximal interval included
in I'\ F. (Thus, I is the disjoint union of the pieces and the holes of F' N I, which
alternate.)

We say that F' is of order 1 inside the interval I if

e each hole of FFN 1 is of size < s,
e two consecutive holes of F' N I are always separated by a piece of size at
least cq.

Recursively, we say that F' is of order ¢ > 2 inside the interval I if there exists
a subset F’ C Z such that

e 'CF,
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< s < s

— . O
T N7

> ¢ > C1
Fl—
7 \2102 \ Ztcz /

< s

FIGURE 2. A set F of order 2 inside an interval I.

e cach hole of F' N1 is of size < sy,
e two consecutive holes of F’ NI are always separated by a piece of size at

least ¢y,
e for each piece I’ of F' N1, F is of order (¢ — 1) inside I'.

(See Figure 2.) Note that, if F' is of order ¢ inside the interval I, then F' is of order
¢ inside each subinterval J C I.

Lemma 3.2. Let F,..., Fy bed subsets of Z, and let I C Z be an interval. Assume
that for some £ > 1, F; is of order £ inside I for each i = 1,...,d, and that the size
of I is at least ncy. Set F := ﬂ?zl F;. Then

e the density of F inside I satisfies
|F NI >
1]
e for a given integer ¢, 1 < ¢ < hy, the proportion of integers in F'N I lying
in pieces of F' NI with size < ¢ is bounded above by

c ¢ 1 Co—1 1
K (=+=2 - ooyt -
R e TR (=),

Proof. Let us first establish the result for £ = 1. We assume that each F; is of
order 1 inside I, and that |I| > ney. For each ¢ = 1,...,d, let k; be the number
of holes of F; N 1. Then by definition of order 1, there are at least k; — 1 pieces of
F; N I with size at least ¢1, whence ¢;(k; — 1) < |I|, and

Since each hole of F; NI has size < s1, we deduce that the cardinality of I\ F; is
bounded by s1(]7]/c1 4+ 1). This yields by the inequality 1 < %% and (14):

(16) (1%,

1
I\ F| < dsy(I)/er +1) < d (1 + n) sill/er < I

We thus get |[FNI|/|I| >1—n > (1—n)?, which is the first point. Moreover, the
number k of holes of F NI satisfies k < ky + --- + kg < d|I|/c1 + d, whence the
number m of pieces of F' N I satisfies

2
m < dI|jey+d+1<d|I|/c;+2d<d <1+ ) \1]/c1.
n
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It follows that the number r of points of F'N I lying in a piece of size < ¢ satisfies

2
r<mc<d<1+> |I|£
n a
As we already know that |[F'NI| > (1 —n)|I|, we get by definition of K;

2
d <(1+5)d£—KC
|FNI| = 1-n ¢ Yol

which establishes the second point for ¢ = 1.

Now we assume by induction that the result is true up to £ — 1 for some ¢ > 2
and we consider a family (F;)1<i<q of subsets of Z, which are of order ¢ inside an
interval I satisfying |I| > ncy. By definition of order ¢, for each i there exists a
subset F] C Z satisfying

[ ] Fz - F,L/,

e cach hole of F/ NI is of size < sy,

e two consecutive holes of F/ NI are always separated by a piece of size at
least ¢y,

e for each piece I’ of F/ NI, F] is of order (¢ — 1) inside I’.

Since |I| > ncg, the argument developped for order 1 applies for F’ := 0?21 F/
(with (eg—1, ce, s¢) in place of (¢, c1,1)). We thus get

(17) [F'0 I = (1= n)],

and denoting by 7’/ the number of points of F’ N I lying in pieces of F' N I of size
< ¢¢—1, we have (using also (15))

7 Co—1
— <K, =<
ol = e S

Let G stand for the union of all pieces of F' NI of size > ¢,_1. The above inequality
can be rewritten as

(18)

G|
P 1]

Let J be an arbitrary piece of G. Since for each i, F; is of order £ — 1 inside J, and
by definition of G, |J| > ¢;—1 > nce—1, the induction hypothesis gives

|FnJ| >
|71
Summing over all pieces of G we get, using also (19) and (17)

(20) [FNI > |[FNG| 2 (1-n)* %G = (1—n)*|1],

(19) > (1—n).

(1—m)*2

which is the first point at order /.
Moreover, if r; denotes the number of points of F'NJ lying in pieces of FFNJ of
size smaller than ¢, then

Ty c c1 1 Co—o 1
<K (42— 4. 4222~ ),
P S ( R T (1n>2“>

Now let us denote by r the number of points of F' N I lying in pieces of F NI of
size smaller than c¢. The contribution to 7 of points in G is ) ;7 (where the sum
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ranges over all pieces J of G), and by the previous inequality, it satisfies

c c1 1 Cor—9 1
ry <K <++-~+> FNG
D Vo v cos (1 =z ) NG

C C1 1 Cp—2 1
<k (S48 - %2 0 ) RN
—1(q+@u7m+ +wAquQ' |

The contribution to 7 of points in F'\ G is clearly at most |F' \ G|, which can be
bounded above as follows

[(FNID)\G|<|(FFnI)\G| (because F C F')
=7 (by definition of G and ')
co—1

Ce

Schﬂ\I\
Cy

< K17m (by (20))

Summing the two contributions and using the above inequalities, we get

T§K1<

SKi——[F'nlIl  (by (18))

c C1 1 Cp—2 1 Co—1 1 )

— 4= L + Fnli|,

I T L ) e i ey

which is the second point at order £. (I

3.2. Application to the structure of n-crossings. We want now to apply the
preceding lemma in order to obtain some statistical results on long range of succes-
sive n-crossings. We fix some integer £, large enough to satisfy some conditions to
be precised later, and we set k := k(£) We define the sequences (¢;),~; and (s¢),>,
as follows. B B
o ci:=hy,,
® 51 = h(ng—&) +1,
e in general, ¢ := hy,, , , and s; = hn(£+271)_k(£+g_1) + 1.
Using the fact that we always have h,/h, 11 < 1/3, we observe that for each
(>1, withk:=k({+/¢-1),
se _ P y-rt1 hngye -k _ 2
— = <2 <z
Ce Pngesey h 3t
Hence (14) is satisfied if £ is large enough. The fact that (15) holds if £ is large
enough follows from the following easy consequence of (2):

h’I’L( < hn(z{+1) - (E + 1) 1
h h 3+ o
We can therefore assume that £ is large enough so that both (14) and (15) hold.
We want to apply Lemma 3.2 to the subsets F; (i =1,...,d) defined by
Fp={j€Z: Tz €Cy,}.

Let I C Z be an interval, n > 1 and i € {1,...,d}. We say that x; climbs into
tower n along I if for each j € I, T9x; € C,, and there is no j € I such that
j+1el, Tiz; € Lhn=1 and T9H1z; € L. Note that I is included in an n-crossing
if and only if each coordinate z; climbs into tower n along I.

IN

2
@ .

T (L+e—1)

MNe41 N(e+1)
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Lemma 3.3. For each interval I C 7Z and each i € {1,...,d}, if x; climbs into
tower n(g4¢) along I, then F; is of order { inside I.

Proof. By construction of the Nearly Finite Chacon Transformation, two successive
occurrences of tower ng inside tower n(. 1) are separated either by h,, x or by
hn,—k + 1 spacers. Hence, if z; climbs into tower n) along I, F; is of order 1
inside I. This proves the lemma in the case £ = 1.

Assume that the statement of the lemma is true up to £ — 1 for some £ > 2. We
consider

F:={jeZ: Tz €C,

We clearly have F; C F.

Two successive occurrences of tower n,y,_1) inside tower n(s) are separated
either by hn(£+671),k or by hn(é#»l—l)*k + 1 spacers, where k is determined by £; <
£+ —1 < {ypy1. Hence, if z; climbs into tower n(s¢) along I, each hole of F} N[
is of size < hn(£+271)_k + 1 = sy, and two consecutive holes of F/ NI are separated
by a piece of F/ NI of size Pno_1y = ce- Moreover, along each piece of F/NI, x;
climbs into tower n(g¢_1). Therefore the property for £ — 1 ensures that F; is of
order ¢ — 1 inside each piece of F} N 1. It follows that F; is of order ¢ inside I, and
the lemma is proved by induction. O

(£+2—1>} :

Proof of Proposition 3.1. With the subsets F; defined as above, we see that

Fi= () Fi= {j €Z: (T*Yz ¢ cgﬁ}.
1<i<d

Observe that the pieces of F' are precisely the ny-crossings.

Assume that the interval I C Z is included in an T(g4-¢)-CTOSSING for some ¢ > 1
(remember that this is equivalent to: each coordinate z; climbs into tower 1y
along I). Then, putting together Lemma 3.2 and Lemma 3.3, and provided that
the length of I be at least nc, = nh we get:

e the proportion of j € I such that (T*%)iz € CZ, is at least (1 — )2,
e foreach 1 < c < hy,,, the proportion of j € FNI belonging to an n,-crossing
of size < ¢ is bounded above by

& hng 1 hn(zufz) 1
21 K| — L 4. £ .
(21) 1<hn[+h 1777)44- +h =)

T (e+1) ( (L+e—1)

N(ete—1))

Let us estimate the general term of the above sum, using the inequality hy,,/h <

1/3%+1, and the assumption (1 —n)? > 1/2.
hneye s 1 < 1 1
h 1— n)% 3(¢+¢-1) (1 _ n)z@
1 1
BEERICETID

1 2\*
<30 \3) -
& KQ

It follows that there exist a constant K5 such that (21)< K 13— + 5 O
ng =

T(e+1)

N (e42-1) (
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3.3. Measure of the edge of CY. For each n > 0, we say that an n-box Li1 x
- x Ll4 is on the edge of CZ if there exists i € {1,...,d} such that j; = 0 or
ji = hy, — 1. We denote by dC¢ the union of all such n-boxes.
As a first application of Proposition 3.1, we have the following result.

Corollary 3.4.
_ o(9C)

(n) = o (CH) mo.

sketch of proof. This is a direct consequence of the following facts:

e Since z is typical for o, the quotient §(n) can be estimated by the ratio

Yier Loca(T*4)
>jer Loa(T* )iz

for a large interval I containing 0.

e The subset of j € Z such that (T*¢)/x € C? is partitioned into n-crossings,
and in each n-crossing J there are exactly two integers j (the minimum and
the maximum of J) such that (T*%)7z € 9C2.

e By Proposition 3.1, most n-crossings are large if n is large.

4. CONVERGENCE OF SEQUENCES OF EMPIRICAL MEASURES

For each finite subset J C Z, we denote by ~; the empirical measure

YJ = Z&(Txd)jr.

Jjel

The validity of Property (8) whenever B is an n-box and C is C¢ (remember that

2 has been chosen as a typical point) means that, if (J,,) is a sequence of intervals

containing 0, with |.J,,| —— oo, then we have the convergence ~v;, —— o.
n—oo n—

Our purpose in this section is to extend this convergence to the caseosvhere the
intervals .J,, do not necessarily contain 0, but are not too far from 0. We will also
treat the case where the subsets J,, are no longer intervals, but union of intervals
with a sufficiently regular structure.

We fix a real number & > 0, small enough so that (1 —&)? > 1 — 7. Then we
consider an integer ¢ > 1, large enough so that Czl >1—e.

In Sections 4.1 and 4.2, we consider a fixed integer £, large enough so that the
result of Proposition 3.1 holds. We can also assume that

Ko

C
22 Ki— + 22 <e.
(22) T T

We are going to estimate the behaviour of empirical measures with respect to n,-
boxes. The following lemmas are devoted to the control of

1 (Ch) =D Loy (T74) (@)
JjeI B

for particular intervals I.
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4.1. Consecutive n-intervals. For n > 1, we call n-interval any interval I =
{j,j+1,...,5 + hp, — 1} of length h,, and such that j is a multiple of h,. (The
second condition is completely artificial, it is only useful to define canonically a
cutting of any interval into intervals of length h,,.)

Lemma 4.1. Let p; be the smallest integer such that 3P* > 2d + 1 and p; > d.
There exists a constant 0 < 61 < 1 (depending only on n and d) for which the
following holds.

Let £ > £+ 1, and let n be such that ng_1) — k(¢ —1) +p1 <n < ng. Whenever
I, and I, are two consecutive n-intervals, both contained in the same ny-crossing,
we have

1
017]1 (C7dl£) < 7I2 (Cg,ﬁ) < a’yll (C’rdlg)
Proof. We divide the proof into two cases.

Case 1: ne-1y+1 < n < ny. Set j1 := minl; and jy := minly = j; + hy.
Proposition 3.1 applies to I;, and this ensures that, among the vy, (Cff Z) integers j
such that (%) Tz € C¢,, a proportion at least (1 — ) (by (22)) belong to an
ng-crossing of size at least c. Then, among those belonging to an n,-crossing of size
at least ¢, a proportion at least <% are not the minimum of their ng-crossing. By
the choice of € and ¢, we get the partial following result: a proportion at least 1 —5
of integers j € {0,...,h, — 1} are such that, for each i = 1,...,d, T"" "z, € C,,,
but 771 z; is not in the bottom level of tower ny. Let us consider such an integer
j. Observe that, since I is in the same ny-crossing as I, the coordinate T71 7z,
cannot be in the last occurrence of tower n inside tower ny. Hence it will pass
through zero or one spacer before coming back to C,,. Then we can use a similar
argument as in the proof of Lemma 2.8: according to whether coordinate i sees
a spacer or not, T72Tig, = Ti1tithag, ig either in the same level of tower n as
T3 +ig;, or in the level immediately below. And the same applies if we consider
the levels of tower ny. Hence T72%ix; € C,,,.

This proves that vy, (C’;‘fﬁ) > (1—=n)vi, (C’f,l!). But we can do a similar reasoning
starting from I, and going backwards, and we get the announced inequalities for
any 0 <601 <(1—mn).

Case 2: ng_1)y —k(l —1) +p1 < n < ng_qy. To simplify the notations, we set
n' :=n_1) — k(£ —1). The reason why we cannot do the same reasoning as in the
previous case is the following: when for some j the coordinate T7x; leaves tower n,
it will come back to C,, after 0, 1, h,s or h, + 1 spacers. Because of this huge
number of spacers that might separate two climbings into tower n, we cannot be
sure that 79"z, will be in Ch,. To circumvent this difficulty, we introduce what
we call the fake tower n': it is the Rokhlin tower of height h,s whose levels are the
hy spacers placed on top of tower n_y) in the construction. Let us denote by

i%,, cee z/ZTL/_l its consecutive levels. We note that this fake tower n’ is disjoint

from Cn( vy O Jortiori it is disjoint from Cy,,. However we can construct a fake C,,,

inside the fake tower n’ by mimicking the structure of C,, inside tower n’. More
precisely, we set

CN’n£ = |_| Ei,, and 6,% = C,, UCh,.
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If we consider 5@ instead of Cy,,, then everything happens as if the n-intervals were
both contained in a single n,_1)-crossing. Hence we can use Case 1 with (£ —1) in
place of ¢, which yields

1 —d

(23) (L= )1, (Ch,) <7 (Ch,) < T @)

It remains now to compare (6(5”) with ~ (C’;‘f@) for I =1 or I = I>.

For this we will consider n’-intervals intersecting I. Let J be such an n/-interval.
We say that it is suspect if there exists 1 < i < d and j € J such that T7x; ¢ Cr_yy-
Note that, by definition of a suspect interval, if J C I is an n/-interval which is not

suspect, then ~; (C’ffz) =7 (éil). Observe also that, when T7z; leaves Cng_yys
then it comes back after at most h, + 1 spacers (remember that everything takes
place inside an ng-crossing, therefore the coordinates do not leave C,,,). Moreover,
when it comes back to Cyp,_,, it stays in Cy,_, for a time > hy,, ,, > hy.
Since |I| = h,,, each coordinate 1 < ¢ < d is responsible for at most 2 suspect
n/-intervals intersecting I, and we conclude that there exist at most 2d suspect
n/-intervals intersecting I. Moreover, since we assumed that n > n’ + p;, we have
hn/hn > 3PY > 2d + 1, and this ensures that there exists at least one n’-interval
contained in I which is not suspect.

Now if J' is a suspect interval intersecting I, we can find a chain J' = J§, Ji, ..., J!
J of consecutive n/-intervals, where J{, ..., J,_; are suspect (hence r < 2d), J = J/
is not suspect and contained in I. Applying Case 1 r < 2d times (with n’ in place

of n and ¢ — 1 in place of ¢ gives
1(Ch) 2 7(C8,) =1 (Cr,) 2 =0 (C,) = (1 =)™ ().

Since only suspect intervals can contribute to vy (C’;‘f Z), and since there are at most
2d of them, summing the preceding inequality over all suspect intervals J’ inter-
secting [ yields

2dy; (C) > (1= n)**y,(C).

In other words,

~ 2d
VI (Cgl) < m’ﬂ (Cg£)~

Adding v; (C’gﬁ) on both sides, we get

—d 2d d
VI (On£) S ((1 _ 77)2d + 1) VI (Ong)
Inserting the above inequality for I = I; in (23), we get

— 1
71(Ch,) <m(Ch) < g (C)

with

91;(177)((1_2‘?7)%“)1.

But we can exchange the roles of I; and I and this gives the annouced result. [
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Remark 4.2. Let ¢ and n be as in Lemma 4.1. Assume that I; and I, are consec-
utive n-intervals, but only I is supposed to be contained in some ny crossing J.
Then we get the inequality

1
VIng (Cff&) < g, (Cﬁé) :

Indeed, we can always change what happens on I \ J to do as if both I; and I
were included in the same ny-crossing.

4.2. Contribution of substantial subintervals.

Lemma 4.3. Let po be the smallest integer such that 3%2 < %77. For each M > 0,
there exists a real number 0 < 03(M) < 1 (depending also on n and d) for which
the following holds.

Let £ > £+ 1, and Ilet n be such that

(24) Nee—1) — k(f - 1) +p1 +p2 < n < ng.

For each interval I of length |I| < Mh, contained in an ny-crossing, for each
subinterval J C I with |J| > nh,,, we have

1(CL) 2 65(M) 31 (CL).

Remark 4.4. Note that if  is large enough, we have ng_1y — k(£ —1) +p1 +p2 <
n(—1), hence the above is valid in particular for ng_1y < n < ny.

Proof. Under the assumptions of the lemma, we have
ng < -1y —k(l —1)+p1 <n—py < ny.

We consider the (n — py)-intervals included in I, and we will apply Lemma 4.1 to
them. Remember that h,_p, > =h,. Hence the number of (n — po)-intervals
contained in I is at most 7P2M. Moreover their length h,_,, satisfies h,_p, <
s2-hn < £|J|. Hence there is at least one (n — ps)-interval included in J. Let us
call it J'. Now, if I’ is another (n — ps)-interval contained in I, a repeated use of

Lemma 4.1 yields
1(C1) 270 (Ch) 2 67" M (C).

There might also exist two (n — ps) intervals intersecting I at its extremities but
not contained in I, hence not necessarily contained in the ny-crossing. If I’ is such
an interval, we use Remark 4.2 and get the same inequality (with v;/n; instead of
vr/). Summing over all the (n — py)-intervals intersecting I, we get

(772 M +2) 7., (Cs,) = 07 MA(Cl,).
This gives the annouced result, with 0y(M) := 67*M / (7P2 M + 2). O

4.3. How to apply Proposition 2.5. Here we want to provide some conditions
so that Proposition 2.5 applies to a sequence of empirical measures (fy Jm) for some
sequence of intervals (J,,). We make the following assumptions.

(25) For each m, there exists an integer ¢, with ¢,, — oo as m — oo, such that
Jm is contained in some ny, -crossing,
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and

(26) For each m, there exists an integer n(m) satisfying

o n, —1) — k(L — 1) +p1+2p2 <n(m) < ny

m?

Note that, as soon as £ is large enough so that Proposition 3.1 applies, the first
point of this proposition ensures that v (C’g l) > 0 for m large enough, which is
the first assumption needed to apply Proposition 2.5.

. . d d

It remains, for some fixed £ and ¢, to control the ratio v, (Cn(£+lf)) /7, (C4 . ),

which is the purpose of the following lemma.

Lemma 4.5. Let £ be large enough so that Proposition 3.1 applies and (22) holds.
Assume also that

1
(27) (K1 + Kz)@ <.
Let £ > 1, and let (J,,) be a sequence of intervals satisfying (25) and (26). Then
for each m large enough

V5, (C) = (1= n)*F102(T)ys, (Coty. )

N (L+e)

Proof. We first consider the case where n(m) > n(, _1). Then we can apply
Proposition 3.1 (with £ + ¢ in place of £) to show that, if ¢,, > £+ ¢+ 1, the
proportion of integers in {j € J, : (T*%)Jz € C? 1} belonging to an n(sys)-

n(e+e)
crossing of size less than h is bounded above by

N(e4+£-1)
hn, K
Ky —E 2 < (K 4 Ky) = < 1)
' hgeren e+t = 2)3§+e !
Now, if I C Jp, is an ngq-crossing with |I| > Pneyysyy» another application of

Proposition 3.1 proves that the proportion of integers j € I such that (T*)7z € Cffe
is at least (1 — n)2*. We finally get in this case

(28) Vm (Cﬁi) > (1—n)**1y,, (C,‘f(£+z>).

Now we consider the case where n, 1) —k(lm —1)+p1+2p2 < n(m) < ne,, —1)-
Let n be the largest integer, n < n(m), such that h, < |Jp|. If n < n(m), then
we have hpy1 > |Jim| > Nhy(my. But on the other hand, hy,41 < hn(m)/3"(m)_”_1.
Taking into account the definition of ps (Lemma 4.3), we get that n(m) —n < pa,
and finally that n satisfies

Nty —1) = k(b — 1) +p1 +p2 <n <ng,, 1.

we observe that each coordinate can leave Cy,, _,  only

Since |J,| < hn(("ﬁl),
once on J,,, and when it does so, it stays outside annﬁn on an interval of length

< hn(Zm—l)_k(ém,_l) + 1. Since there are d coordinates, the set of integers j € J,,
such that (T*4)z € C? is cut into at most (d 4 1) pieces, and its cardinality

T (lm—1)
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is at least

d
|Jm| —d (hn(em—n—k(fm—l) + 1) = |Jm| T 3pitp2 M

d
> [Jml (1 - 31’1“’“)

S

Therefore, there exists at least one subinterval Jm C Jm, with size

7 ||
J| > ————— >nh
‘m‘_z(d+1)_77na

and which is contained in a single n(,  _1)-crossing. Since ne, o) <n < ng,, —1),
the estimation (28) is valid for .J,,, in place of J,,, i.e.

(29) 5, (CR,) = (L=m)** 1y (Ch,.,)-

Note that, if n < n(m), then by definition of n we have |J,,| < hpt1 < Thy. If
n=n(m), |Jm| = hy@m) = hn. Hence in all cases we have nh,, < | Tn| < [Ton| < Thi.
So we can also apply Lemma 4.3 with I := J,,, J := J,,,, and £ + ¢ in place of £.
This yields

(30) 15, (Cot i) = 0217, (Crr )
Combining (29) and (30), we get
5, (Cn) 293, (C,)
> (1L=m)**y; (Chy)
> (1=m)**102(7) 7, (Criyr))-

O

With the above lemma, we see that all the conditions needed to apply Proposi-
tion 2.5 are satisfied, and this gives the following result.

Lemma 4.6. Let (J,,) be a sequence of intervals satistying (25) and (26). Then
there is a subsequence (7 ij) which converges to some nonzero Radon measure.

4.4. Convergence of sequences of empirical measures.

Proposition 4.7. Let (I,,) and (J,,) be two sequences of intervals, with Jp, C Ip,.
Assume that there exist two sequences of integers ({,,) and (n(m)), and a real
number M > 0 such that

Ly — 00,

N, —1) — k(£ — 1) 4+ p1 + 2p2 < n(m) < ng
I,, is contained in some ny,, -crossing,
Nhomy < |Iml < hpgmy,

|| < M by ().

If y;,, — o, we also have v;, — 0.
m—ro0 m— o0

m?
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Proof. The assumptions (25) and (26) are satisfied for the sequence of intervals
(Jm), hence Lemma 4.6 applies to the sequence of measures ('y Jm). Therefore, it
is enough to prove that, if v; converges to some nonzero Radon measure «y, then
~v = o up to some multiplicative constant. So, let us assume that v — ~. Since
Jm C Iy, we have v; < 7. We can also apply Lemma 4.3 which shows that, for
each large enough integer ¢, we have as soon as n(m) > ng; + 1

79, (Ch) 2 02(M) 71, (Cr)-

Then Proposition 2.6 ensures that v < 0. Now by ergodicity of (X9, o, T*9), it
only remains to show that v is 7% %-invariant. For this we want to apply Lemma 2.2.
Since X¢ € X4\ X2, we have o(X¢) = 0 hence v(X{) = 0 by absolute continuity.
Finally, observe that if for some fixed integer n, B and B’ are two n-boxes contained
in the same n-diagonal, then for any m, as J,, is an interval,

72,,(B) = 74,,(B)] < 1.

Indeed, the times j when the orbit of x falls in B alternate with the times when the
orbit of z fall in B’. On the other hand the first point of Proposition 3.1 ensures
that
d
Y (Cn) 5 o0

and it follows that y(B) = «v(B’). Lemma 2.2 now proves that 7 is T*%-invariant.
O

Remark 4.8. Note that the condition v;,, — o is automatically satisfied if
m— o0

0 € I,,, for each m, since we took x as a typical point for o.

Now we want to extend Proposition 4.7 to the case where (J,;,) is no longer a
sequence of intervals, but J,, is a subset of I,,, with a sufficiently regular structure.

Proposition 4.9. Let (I,,,) and (J,,) be two sequences of finite subsets of Z, and
let M > 0. We assume that the following conditions are satisfied.

e J, C I, for each m.

e There exists a sequence of integers ({,,) with £,, — 00 as m — 00, such
that for each m, I, is an interval contained in some ny,, -crossing.

e There exists a sequence of integers (n(m)) with

N, —1) — k(fm - 1) +p1+2p2 < n(m) <ng,,,

such that for each m, J,, is a disjoint union of intervals of common size
s(m), where nhy(my < s(m) < hpemy, and Ip, \ Jp does not contain an
interval of size greater than Mhy ().

If y;,, — o, then we also have v;, —— 0.
m—o0

m
m—o0

Proof. We just have to justify that the same arguments as in the proof of Propo-
sition 4.7 apply also in this case. First, we want to prove that the conclusion of
Lemma 4.6 holds for (J,,). For this, it is enough to observe that all the pieces of
Jm satisfy assumptions (25) and (26). Hence the estimation given in Lemma 4.5 is
valid for each piece of J,,, and then it is also valid for .J,, itself.

Now, let £ be a large enough integer, and take m large enough so that n(m) >
ng +1. Let J be any piece of .J,,, (in particular we have |.J| = s(m) > nhy(y,)), and
let I be the interval constituted of J and the two adjacent pieces of I,,, \ Jy,. Then
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we have |I| < 40hy, () + s(m) < 100hy, (1), and we can apply Lemma 4.3 to I and
J to get

v (CL) = 071 (CL).
Summing over all pieces J of J,,, we get

Vdm (Cffé) > 0271, (Cs£)7
which is the second key step in the proof of Proposition 4.7. This ensures that, if
v, — 7, then v < o.

Finally, we have to see that v is T*%invariant, and it is enough for that to
show that, if for some fixed n we consider two n-boxes B and B’ on the same
n-diagonal, then v(B) = v(B’). But for each m and each piece J of J,,,, we have
|v7(B) —vs(B’)] <1, whereas by the first point of Proposition 3.1, we know that

. d
min Ct) —— o0.
J piece of J,, ny( nﬁ) m—oo

O

5. TWISTING TRANSFORMATIONS AND DECOMPOSITION OF ¢ AS A PRODUCT

The purpose of this section is to provide a criterion ensuring that o can be
decomposed into the product of two measures o, x o9, 0; being a T>*%-invariant
Radon measure on X% for some 1 < d; < d, di + ds = d. We will need for that to
introduce the following type of transformation of X¢.

Definition 5.1. The transformation S : X% — X? is said to be a twisting transfor-
mation if there exists a partition {1,...,d} = Go U G into two nonempty subsets
such that for each (yi,...,yq) € X%,

Ty, ifie G,

Sy, .., = (z1,...,24), where z; := o
(y1 Ya) = (21 ) {yz ifi € Gy

The reason why we introduce those twisting transformations is that, if we are
able to prove that ¢ is invariant by some twisting transformation then o can be
decomposed as a product of two measures. More precisely, by Theorem A.1 in [5]
we have the following result.

Proposition 5.2. Assume that o is invariant by some twisting transformation S,
and let {1,...,d} = Go U Gy be the partition associated with S. Then there exist
Radon measures o and o1 on X%° and X1 respectively, such that
e 0 =09 07;
e cach o, is T*!%l invariant (a = 0,1), and the system (X% T*I%l ¢,) is
conservative ergodic.

Thus, if the assumption of the above proposition is satisfied, we can write o as
the product of two measures which are invariant by some smaller Cartesian power
of T, and to which we can apply the induction hypothesis to finish the proof of
Theorem 2.10. We want now to give a condition under which we are able to prove
that o is indeed invariant by some twisting transformation.

In the next proposition, we use again the notation €2,, which was introduced in
the proof of Lemma 2.2: recall that €, is the union of all n-boxes of the form
Ll x -+ x Li2 where for all i = 1,...,d, j; # 0. We observe that, if B is an n-box
contained in €, and if S is a twisting transformation, then S™!B is also an n-box
(but not necessarily contained in §2,,). Note also that €2,, C Q41 for each n.
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Proposition 5.3. Assume that there exist (o),), (o), two sequences of Radon
measures on X%, and a sequence (S,,) of twisting transformations satisfying

e 0, —— o0,

n—oo

oo, — 0,

n—oo
e For each m > 0, and for n large enough (depending on m), for each m-box
B C Q, 0/(S;1B) = 0,(B).
Then there exists a twisting transformation S such that o is S-invariant. In par-

ticular, o is a product measure as in Proposition 5.2.

Proof. Note that, d being fixed here, there exist only finitely many twisting trans-
formations. Therefore, considering subsequences if necessary, we may assume that
there exist a twisting transformation .S such that S,, = S for each n.

Now, let m > 0 be large enough so that d(m) < 1/2 (see Corollary 3.4). In
particular, o(C%) > 0. Let m’ > m. Then, for each n large enough (depending
on m’), if B is an m/-box contained in Q,,, then B C ,,, and we know that
0! (S7'B) = 0,(B). By Remark 2.4, the assumptions of the lemma also yield

ol (S71B) a(S7!B)

o, (CF) o o(CF)

But the left-hand side of the above formula is equal to
O’;’L(SilB) _ on(B) Un(c;in)
o, (Ch)  on(CR) an(CR)

where

on(B) a(B)
on(C) nooe o(CR)
It remains to control the ratio 0,,(C%) /ol (C%). For this, we write

0 (Cp) = 01 (S71 Q) + 07, (C \ S™1m),

and
00 (CL) = 00 (Un) + 00 (CE\ Q).

We observe that the first terms o/, (S71€,,) and 0,(£2,,) are equal. Moreover, as

C4\ Q,, and C% \ S71€,, are included in C? , we have by Corollary 3.4
on(2m) o(Qm)
on(Cf) nooe o(CF)

m

>1-49(m)

and

ol (S71Q,,) a(S71Qm)
i >1-4
7Ch) wow o) o0
where 6(m) — 0 as n — oo. In particular, o, (Q,) and o/,(S71Q,,) are positive if
d(m) < 1/2 and n is large enough. Hence we can write

Tn (Cg \Qm) o (Ca\2m)

Jn(cgl) _ 1 + n (Q2m) 1 + a(2m)
rcdy T (CENS1Qm) nooo a(CENS Q)
Un(Cm) 1+ O';L(S_lﬂm) - 1+ o (S—10,)
This yields
d
1+ o (Cr \m)
1 _ o (Qm)
o(ST'B) = U(B)1 AT

o(571Qm)
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But the above argument is also valid if, at the beginning, we start with m’ instead
of m (and keep the same m’-box B.) This gives

a(CL Q)
M (20)

(CENST1Q,,) "

o(S7'B) = o(B) -
L+ — =10

Moreover, as o(C%) > 0, we can choose the m’-box B in such a way that o(B) > 0,
and comparing the last two equalities, we get

o (CIN\m) o(CA\DR,,.)
L+ =26 I (o)
o(CANS—1Q,) o(CLNS-1Q,,.)"
U B (N

But the ratio on the right-hand side can be made arbitrarily close to 1 by choosing
m' large enough, hence it is equal to 1. This proves that, for any m’ > m and any
m/-box B C ,,, 0(S71B) = o(B). We thus get as in the proof of Lemma 2.2 that
o and S, (o) coincide on {J,, 2, = X \ X¢. And since both measures are equal to
0 on X{, this concludes the proof. O

The first two assumptions in Proposition 5.3 will be given by applications of
Proposition 4.7 and Proposition 4.9. The following simple example presents the
main ideas of how to construct sequences of measures (0,,) and (0},) satisfying the
third requirement of Proposition 5.3.

Example 5.4. Let n ¢ {ng : £ > 1}. Let J be an interval contained in an n-
crossing, set J' := J + h,, assume that J' Is also contained in an n-crossing.
Finally, assume that, for each j € J, {tn(zji) i=1,.. .,d} ={1,2}.

Define o, := vy, and o), := ;.. For an arbitrary j € J, consider the partition
{1,...,d} = Gy UGy into two nonempty subsets, where Go := {z e {1,...,d}:
tn(T92;) = 1}, and Gy := {i € {1,...,d} : t,(T?z;) = 2}. Note that, since J is
contained in an n-crossing, this partition does not depend on the choice of j € J.
Let S,, be the twisting transformation associated with (Go,G1). Then for each
m < n and each m-box B C Q,,, we have o},(S;,!B) = 0,,(B).

Indeed, consider first i € Go. Then, for j € J, TV (x;) is in the first subcolumn
of tower n, hence when the orbit of x; reaches the top of tower n, it will see no
spacer before coming back to C,,. We thus have j, (Tt z;) = j,(T7x;), and in
fact we have the equality j,,(T7 1" x;) = j.(T7x;) for each m < n (remember that
Jjn determines j,, for m <mn).

On the other hand, if i € Gy, the orbit of x; will pass through the spacer above
the middle subcolumn before coming back to C,,, and we have, for each m < n,
Jm (TP 2;) = jin (TT2;) — 1 (provided jom (T7;) # 0).

Now, if B C ,,, is an m-box for some m < n, the above argument shows that,
for each j € J, (T*%)x € B <= (T*%)i*thny € S71B.

6. END OF THE PROOF OF THE MAIN RESULT

Now we come back to the last part of the proof of Theorem 2.10. We interpret
Proposition 2.17 as follows:
e either o is a graph measure arising from powers of T,
e or there exist infinitely many integers n such that there exists at least one
substantial n-crossing which is not synchronized.
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It only remains to show how this latter property implies that o can be decomposed
as a product measure, as explained in Section 2.3 and with the tools of Section 5.

From now on, we thus assume that for infinitely many integers n, there exists
at least one substantial n-crossing which is not synchronized. We have to study
different cases, according to the relative positions of these integers n with respect
to the sequence (ny).

6.1. The case ne—1) <n<nyg — /(. Here we first assume that there exist infinitely
many integers n for which
e there exists at least one substantial n-crossing which is not synchronized.
° Elézn(g_l) <n<mny—V~.
Let us consider such an n. To unify the treatments of the cases n = n_;) and
ne—1) <n < ng— L, we set

n

P by + hoe—1)—re—1)  ifn=mne 1),

hn if N1y <n < ng— £.
In this way, as long as we stay inside the interval [—100h,,,100h,] (which is con-
tained in a single ny-crossing as n < ny — £), if j is in some n-crossing and
Jn(T72;) > 0, we have

~ ]n (zji) if tn(zji) = 1,
o (T7P0:) = § o (T92) = 1 if £, (TV2;) = 2,
one or other of the above values if ¢,(T7x;) = 3.

Let J be a substantial n-crossing which is not synchronized. Then for j € J,
{to(T7z;) :i=1,...,d} contains at least two different values (which do not depend
on the choice of j € J since j + t,(T?x;) is constant on an n-crossing).

We first assume that {1,2} C {t,(T7x;) : i = 1,...,d}. Then, by the above
formula, for j € J \ minJ, the difference j, (iji) — Jn (TjJrh"mi) takes both
values 0 and 1 as ¢ runs over {1,...,d}. Set, for a = 0,1

Go = {z *Jn (zji) — Jn (THﬁ"aci) = a}.
Then we can define a twisting transformation \5,, with this partition. We also define
the interval J' := J 4 h,,, and the two measures o, := vy, o, := Y.

As explained in Example 5.4, if for some B is an m-box for some m < n with
B C Q,,, we then have

(31) o (B) = o (S, (B)).

Let us explain how we construct S,, o, and o/, when {2,3} = {t,(T7z;) : i =
1,...,d} for j € J. Then, for j € J\ {maxJ}, the difference j, (Tj_;‘"xi) -
Jn (zji) takes both values 0 and 1 as ¢ runs over {1,...,d}. In this case we define
the partition by

Ga = {2 i (Tﬂ‘—flnmi) — o (TV2;) = a}, a=0,1,

and the corresponding twisting transformation S,. We consider J' := J — h,,
on =y and o), := vy, and we get (31) for any m-box B C Q,,, m < n.

Finally we consider the case when {1,3} = {t,,(TVz;) :i = 1,...,d} for j € J.
Then, for j € J\ {min J}, there are two options:
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e cither there exists i € {1,...,d} with ¢,(TYz;) = 3, and j, (T92;) —
In (Tj"’ﬁ"a:i) = 1 (we see one spacer above the third column for at least

one coordinate),
e or for each i € {1,...,d} such that ¢,(T7z;) = 3, we have j, (T7z;) —

Jn (TjJrE" :z:l) = 0 (we see no spacer above the third column).

In the first option, we do the same construction as in the case {1,2} C {t,(T7x;) :
i=1,...,d}. In the second option, we observe that

. o 1 ift,(TVa) =1,
i (D) = gy (920} = oL ()
0 ift,(T7z;) =3.

We then set J’ := J + 2h,,, and construct Sy, o,, and ol as before.

Since we assume that there are infinitely many integers n with these properties,
we can apply Proposition 4.7 to prove that ¢, — ¢ and ¢/, — o. Indeed, J and
J' are both contained in {—5h,,...,5h,} which is contained in an mg-crossing.
Since J is a substantial n-crossing, we have nh, < |J| = |J'| < hy,, and we have
V{=5hn,....5hn} m o. Then Proposition 5.3 shows that ¢ can be decomposed as

a product of two Radon measures to which we can apply the induction hypothesis.

We are now reduced to study the case where, for each ¢ large enough and each
ne—1 < n < ng — £, all substantial n-crossings are synchronized, but still there
exist infinitely many integers n for which at least one substantial n-crossing is not
synchronized.

6.2. The case ny—{ < n < nyg—k(¢). This case cannot be treated as the preceding
one since, for such an n, we are not sure any more that an interval around 0 and
of size of order h,, is completely contained in an ng-crossing. Hence on such an
interval, when the orbit of some z; leaves C,,, it may stay out of C,, for a long time
(up to hy, k() + 1, which may be much larger than h,,).

The following lemma is introduced to remedy this problem.

Lemma 6.1. For each large enough ¢, there exists an integer
Ngood(£) € {ne — k(€) +p1 +2p2,...,ng — k(€) + p1 + 2p2 + d}
such that {hy,,,.(0)s - - s 2hn,,.(0)} 1S contained in an n,-crossing.

Proof. Assume that ¢ > max; ¢(x;), and that ny — k(£) + p1 + 2p2 + d < ny. We say
that the coordinate ¢ € {1,...,d} is bad for n if there exists some j € {hy,...,2h,}
such that TVz; ¢ C,,,. We observe that if {h,,...,2h,} is not contained in an n,-
crossing, then at least one coordinate is bad for n. To prove the lemma, it is
sufficient to show that for each i = 1,...,d, there is at most one n € {n, — k(¢) +
p1+2pa, ... ,ne—k(€)+p1+2ps +d} for which i is bad. So assume that 7 is bad for
some n in this interval, and let j € {hy,...,2h,} such that T7x; ¢ C,,. The orbit
of x; comes back to Cy, before j + h,, ) + 1, then stays in Cy, on an interval of
length hy,,. But we have j+hy, gy +1 < hpt1 and j+hn, > 20y, g0y 1p,+2ps+ds
hence ¢ cannot be bad for any n’ > n in the interval {n, — k(¢) + p1 + 2p2, ..., ne —
kE(£) + p1 + 2p2 + d}. O

Remark 6.2. It follows from Proposition 4.7 that we have the following conver-
gence:

— O.
T Prgpq() 5+ 2R g (0) } o0
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Indeed, this proposition applies where ¢ plays the role of ¢,,, — 1, ngooa(£) is n(m),
{hngoud(g), ey thgood(g)} is Jm, and {0, ey 2hng00d(5)} is Im

We will also need the following result, which will also be useful in the next
section. We consider here an integer n such that n, — £ < n < ny — k(¢) for some
¢, and we set n’ :=ng — k(¢). As in the proof of Lemma 4.1 we introduce the fake
n/-tower, and the fake n-tower that mimicks the structure of tower n inside tower
n’. (Note that this is possible as long as n < n'.) C,, is the union of the levels of
the fake n-tower, and C,, := C,, U C,.. Recall that jn indicates the level of tower n
to which a point in C,, belongs. We extend this definition to points in C,: In
indicates the level of tower n (possibly fake) to which a point in C),, belongs.

Lemma 6.3. For each large enough ¢, for each n such that ny — € <n < ng — k({),
for each integer r such that |rh,| < 10h,,, for each i =1,...,d, we have

e 1, € C, and 4° < j,(x;) < hp — 1 — 4%

o Trhng, € C,,

o jn(xi) —4° < j, (T a;) < jn(x;) + 4%

Proof. If £ — 1 > max; {(x;) (¢f. Lemma 1.J), we have z; € Cny_y C Oy fori =
1,...,d. Moreover, z; is not in the first hundred occurrences of tower n¢_1)—(£—1)
inside tower n,_1). Hence, as ng/{ — oo as £ — oo, and remembering (5), we have
for ¢ large enough

(@) = gy (1) = 100k, —(e—1) > 100 x 3"=0=E"1) > 700 x 3"¢=2 > 47,

By a symmetric argument, we also get for ¢ large enough j,(x;) < h,, — 1 — 4%.
We observe that, since |rh,| < 10hy,,, {—|rhyl|,...,|rhys|} is contained in an
n(e+1)-crossing. Hence when the orbit of some coordinate leaves C;, on this interval,
it comes back after 0, 1, h,  or h,  + 1 iterations of the transformation. If we
consider the enlarged tower C,, instead of C,,, then T7x; comes back to C,, after
0 or 1 iteration of the transformation. Hence j, (T x;) € {jn(2i) — 1, jn(2i)},
and by a simple induction we get j, (T""z;) € {jn(z:) = |r|,-. ., jn(x:) + |r[}.
The result then follows from the fact that |r| < 4¢ (indeed, by hypothesis we have
n > ny — £, hence h,, > 10h,,,/4° for ¢ large enough). O

Remark 6.4. If, as in the case we are currently studying, we have the strict in-
equality n < ny — k(¢), then the number of occurrences of the fake n-tower inside
the fake n’-tower is a multiple of 3. So we can extend the function t, to a function
t,, defined on C,, in such a way that, for each r such that |rh,| < h,, and each
i=1,....d

tn (TTh“;vi) = t,(x;) + r mod 3.

We consider now an integer n with ny — ¢ < n < ny — k(¢) for some ¢, where ¢ is
large enough to apply the preceding lemmas, and we assume that there is at least
one substantial n-crossing which is not synchronized. With the assumption stated
at the end of Section 6.1, we can also assume that for each n_;) <m <n—1, all
substantial m-crossings are synchronized. Then, as in the second part of the proof
of Proposition 2.17, we can construct inductively a family (Jm)n(g,l)gmgn where

o J is a substantial n-crossing of length > (1 — (d + 2)n)h

n(e-1) n(e-1)’
e for each m > n(_y), J, is a substantial m-crossing extending J,,,—1 and of

size || > hm — (d + 2)nhy,,_,, (see Remark 2.18).
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In particular, the size of the n-crossing J,, satisfies |J,,| > hn—(d+2)nhn(471>, and we
can assume that £ is large enough so that this implies |J,,| > (1—n/100)h,,. Since we
assume that there is at least one substantial n-crossing which is not synchronized,
this ensures that J,, itself is not synchronized.

Moreover, by Remark 1.6, the (n, — £)-crossing containing 0 covers the interval
{=100hn,_,,---,100hy,_,,}. In particular, it contains J,_1y hence it is Ji,,,—¢).-
As J,, extends J(,,_¢), this proves that J,, contains 0.

Consider the set

R = {T >1:J,+rh, C {hngood(g), .. .,thgood(g)}}

Since 2N 00a(6) < hn,, Lemma 6.3 applies to each » € R. In particular, for each
r € Randeachi =1,...,dwehave T""z; € C,,. But by choice of Ngood (£), we also
know that T""»z; € C,,,. Since C,,, is disjoint from the fake n’-tower, 77" x; ¢ Ch,
and finally 77" z; € C,,. Let J, be the interval obtained by removing the first 4¢
elements of the n-crossing J,. Then, by Lemma 6.3, we have 0 € Jy, and for
each r € R, J + rhy, is contained in an n-crossing. Note that the size of J, is
> (1 —n/100)h, —4° > (1 = n)hs,.

By Remark 6.4, for each 7 € R and each i = 1,...,d, we have t,(T""z;) =
tn(x;)+r mod 3. In particular, as J,, is not synchronized, for each r € R, t,,(T""»x;)
takes at least 2 values as ¢ varies. We define

ro :=min{r € R: tn (T z;) takes both values 1 and 2 as i =1,..., d}.

We have min R < ryg < min R + 2.
Now let us consider r such that both » and r+1 are in R. For j € Jp, we want to
compare the position in tower n of T9+t7n g, and T7+(+Dhn 2. for each coordinate.

e If i is such that ¢,(T""»x;) = 1, the orbit of x; will not pass through a
spacer between jn + rh, and jn + (r + 1)h,. Hence in this case we have
G (TTF R y) — iy (TIH DR g) = 0.

e If i is such that t,(T"" x;) = 2, the orbit of x; will pass through one
spacer between jn + rh, and jn + (r + 1)h,. Hence in this case we have
(T4 y) = (TIF TRy = 1.

e Ifiis such that t,,(T""x;) = 3, we have j, (T n ;) — j, (TIHT+HDRn gy €
{0,1}, depending on the position of T""z; in the subsequent towers.

More precisely, in every case the value of j, (77" ;) —jn(Tj"’("“‘l)h“mi) is deter-
mined as follows: let m be the smallest integer, m > 0, such that tn+m(Trhnxi) £ 3.
Note that n+m < ny since J,, +rh, and J,, + (r 4+ 1)h,, are contained in the same
nyg-crossing. Then we have

0 if tyypm(T™hm2;) =0,
1.

32 :n T]+rhn$1 _ b’I’L T]+(T+1)hnxl =
(82)  jal ) = dn Y5V it (17 =

The difficulty which arises here is that, when ¢, (x;) = 3, the value of this differ-
ence may vary with r. This is why we need the following lemma.

Lemma 6.5. There exists an integer s, 0 < s < 34!, such that

e s =0mod 3,
e for each i = 1,...,d, there exists a smaller integer m;, 0 < m; < d — 2,
satisfying ty, o, (TT0T)n ) £ 3,
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Proof. We first remark that for each ¢ = 1,...,d and each m > 0, the map r €
R+ tyim (T ;) has a very regular behaviour. Indeed, it is constant on intervals
of length 3™, and if both r and r 4+ 3™ are in R, we have
(33) b (T3 gy = ¢ (T 2) + 1 mod 3.

If {z e {l,....d} : t,(Trolng;) = 3} = (), we just have to set s := 0 and we get
the result with m; = 0 for each i. Otherwise, we consider

i1:=min{i € {1,...,d} : t,(T"" ;) = 3}.
Then we choose s1 € {0,1,2} such that t,, (T30 g, ) =1, which is possible
by (33). We note that replacing ro by (rg + 3s1) does not affect the values of the
tn (T a;). Now, if {i € {1,...,d} : tyqy (Tro+3s0 gy = 3} = 0, we have the
result with s = 3s1. Otherwise, we set
ig r=minf{i € {1,...,d} : typq (TroT3s0 g,y =31
(Note that i > 41.) Then we choose so € {0,1,2} such that
tn+2(T(7‘0+381+982)hn$i2) — 1.

Again, replacing (ro + 3s1) by (ro + 3s1 + 9s2) does not affect the values of the
tnam (T as), m =0, 1.
We continue in this way until we have found sq,..., s € {0, 1,2} such that, for
each i = 1,...,d, there exists m, 0 < m < k such that
tn+m(T(TO+381+"'+3ksk)h"xi) ?é 3.

Since the algorithm also produces an strictly increasing sequence i1 < i3 < --- in
{1,...,d}, we are guaranteed that it will stop in k& < d steps. Moreover, since the
sequence i < - -+ < i} contains no i such that ¢, (77"~ z;) € {1,2}, we have in fact
k < d—2. We then get the annouced result by setting s := 3s; + --- 4+ 3Fs;, <
34-1, O

Now, with s defined in Lemma 6.5, we set
R :={reR:(r+1)€ Randr=ro+smod3? 1}
Observe that R’ # (), as R is an interval of size
[R| > |hiyooae/hn] > 37500077 > 301 > 34,
Recall that for each 0 < m < d— 2, and each ¢ = 1,...,d, the map r € R —
tnaem (T 2;) is 3¢~ 1-periodic. Hence, by (32), for each i = 1,...,d the difference
Gn(TIHTn ) — o (TIHCH D)

depends neither on j € J, nor on r € R'. By choice of 7y and s, this difference
takes both values 0 and 1 as ¢ varies. Therefore we can construct the following
partition {1,...,d} = Gy U Gy, where for a = 0,1,

G, = {z Vi€ Jo,Vr € R jn(T7 4 mgy) — g, (T7+H 0D n gy — a} ,
Then we denote by S,, the corresponding twisting transformation. We also consider
the two disjoint subsets J’ and J of {h < 2Ry, a0} defined by

MNgood (E)’ o

J = |_| Jn+rhn, and J:=J + h,.
reR’
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Then, as in Section 6.1, the measures o, := vy and o), := ~; satisfy (31) for each
m-box B C Qp, m < n.

Assuming the existence of infinitely many integers n with these properties, we can
apply Proposition 4.9 to prove that ¢,, — ¢ and ¢/, — o. Indeed, J and J’ are both
contained in {hngood(@, ey thgood(g)} which is contained in an ng-crossing. They
both have the structure required in the assumptions of this proposition, with M =

39=1. Moreover, we also know by Remark 6.2 that Vh 2h y ——— 0.
good (O 2hn, o oq 08 o

Then Proposition 5.3 shows that ¢ can be decomposed as a product of two Radon
measures to which we can apply the induction hypothesis.

We are now reduced to study the case where, for each ¢ large enough and each
ne—1 < n < ng — k(£), all substantial n-crossings are synchronized, but still there
exist infinitely many integers n for which at least one substantial n-crossing is not
synchronized.

6.3. The case n = ny—k(¢). We consider now an integer n of the form n = ny—k(¢)
for some ¢, where / is large enough. We assume that there is at least one substantial
n-crossing which is not synchronized, and also that for each ng_1) <m <n —1,
all substantial m-crossings are synchronized. Then, as in Section 6.2, we prove
that the n-crossing J,, containing 0 is of size |J,| > (1 — n/100)h,,, and it is not
synchronized. We also define J,, C J,, as in the previous section: .J,, contains 0 and
Tl 2 (1 =)l

We still work with the fake tower n, as introduced before Lemma 6.3 which is
still valid in this case. The new difficulty here is that we cannot anymore extend
t, to én.

We consider integers r with 0 < r < 10d, and we assume that ¢ is large enough
so that k(¢) > 10d, thus 10d < hy,/h, and the results of Lemma 6.3 are valid for
these integers r. In particular, for each such r, either .J,, + rh,, is contained in an
n-crossing (we then say that r corresponds to a true n-crossing), or there is one
coordinate z; such that 77"z, is in the fake tower n C'n (in this case we say that
r corresponds to a fake n-crossing). Observe that for each ¢ = 1,...,d, there is
at most one integer 7, 0 < 7 < |hy,/hy], such that T"" z; is in the fake tower n.
Indeed, as everything takes place in a single C,, +y-crossing, when the orbit of z;
leaves C,,, it comes back to C,,, after at most h,, + 1 units of time, and then stays
in Cy, for h,, units of time.

If both 77" z; and T TDhng, are in C,,, then tn(T(T‘H)h”xi) = t, (T ;) +
1 mod 3. If T"h=z; is in the fake tower n, then T ~Dhng. and T +Dhng, are in
Cy, and we have t,(T("=Drng,) = 3, and t, (T ngy) = 1.

With these facts in mind, we can prove the following lemma.

Lemma 6.6. There exist two consecutive integers, —2 < r < r + 1 < 10d, such
that

e J, + rhy, is contained in an n-crossing,

e J, + (r +1)h, is contained in an n-crossing,

o fie{l,....d}: t,(Thnay) =1} #0,

o {ie{l,....d}: t,(Thnay) =2} #0.

Proof. There is at most d integers r, 0 < r < 10d, such that Jn 4 rhy, corresponds
to a fake n-crossing (indeed, each coordinate can be responsible for only one r for
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which this property fails). Hence there is a smaller integer rg, 0 < rg < 10d — 2,
such that ro, (ro + 1), (ro +2) and (ro + 3) correspond to true n-crossings.

If ro = 0, since J,, is not synchronized, there are two coordinates z;, and z;, such
that ¢, (zi,) # ta(ziy). I {tn(2s,), ta(xi,)} = {1,2}, we just have to take r = 0. If
{tn(@i,), tn(ziy)} = {1,3}, we set r = 1, and if {t,(x;,), tn(xs,)} = {2,3}, we set
r = 2. In all these cases we get

{tn (T @,), (T iy) } = {1,2}.

If ro > 0 and the n-crossing containing rgh,, is not synchronized, then we can
proceed as in the previous case, replacing 0 by 7.

If rg > 0 and the n-crossing containing ryh,, is synchronized, then by definition
of rg, (1o —1) corresponds to a fake n-crossing, hence there is at least one coordinate
x;, such that t, (77" z; ) = 1. Since the corresponding n-crossing is assumed to
be synchronized, we have t,(T7" ;) = 1 for each i = 1,...,d. We also observe
that there exists at least one coordinate x;, such that T(“’_l)h"xiz € (). Indeed,
otherwise all coordinates would be in the fake n-tower at the same time, and this
would imply that the n-crossing J,, containing 0 is synchronized. Now we take

r := ro — 3. Then for each coordinate z; such that T(o—Dhny. e C,, we have
to(T™"x;) = 1, and for each coordinate z; such that T(o=Dhng; ¢ C,, we have
tn(Thn ;) = 2. O

Now, with r provided by Lemma 6.6, we consider the two measures oy, := 5 |,
and o}, := Y F (r+1) We can show by the same argument as in Section 6.1 that
there exists a twisting transformation S, such that (31) holds whenever B is an
m-box in €, for some m < n.

Finally, if we have infinitely many integers n to which the above arguments apply,
Proposition 4.7 shows that o, —0 and o, — o Then Proposition 5.3

shows that o can be decomposed as a product of two Radon measures to which we
can apply the induction hypothesis.

6.4. The case n; — k() < n < ng. It only remains now to study the case where,
for each ¢ large enough and each ny_1 < n < ny — k(¢), all substantial n-crossings
are synchronized, but still there exist infinitely many integers n for which at least
one substantial n-crossing is not synchronized.

We consider now an integer n with ny — k(¢) < n < ny for some large ¢, and we
assume that there is at least one substantial n-crossing which is not synchronized.
We can also assume that for each n,_1) < m < n — 1, all substantial m-crossings
are synchronized. Then, as in Section 6.2, we construct a family (J,,,) of intervals,
ng—1 < m < n, where J,, is the m-crossing containing 0, and is of size |J,,| >
hom — (d + 2)nhp,_,,. We set n’ := ny — k(£). We have |J,| > (1 —n/100)h,
provided ¢ is large enough.

As in Section 6.3, we apply Lemma 6.3 for n’. We consider all integers r > 0 such
that rh,, < 4h,: each such integer r corresponds either to a true n'-crossing (if for
eachi=1,...,d, T"" x; € C,), or to a fake n'-crossing (if there exists i such that
Trhn g, € C‘nf) If T 2; € C,, then we can consider t,(T""'z;) which evolves
according to the rules stated in Section 6.3. We can even precise a little bit more
these rules by considering also the position of 77 z; relatively to tower n: If 77" z; is
in the fake tower n’/, then T~V g, and T+ 5 are in C, € C,,, and we have
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b (T(rfl)hn/xi) _ tn(T(rfl)hn/xi) =3, and t7L/(T(T+1)h"’CCZ‘) — tn(T(rJrl)hn/xi) _

Let us first consider the case where, each 0 < r < |4h,, /h, | corresponds to a true
n/-crossing. Then the interval {0, ..., 4h,} is contained in a single n,-crossing,. We
denote by J,, the interval obtained by removing from J, its first 3 points. Then,
as in the proof of Lemma 6.3, we prove that 0 € jn, and that the intervals jn,
T+ hy, T + 2h,, J,, + 3h,, are each contained in some n-crossing. Since J,, is not
synchronized, we show by similar arguments as in the proof of Lemma 6.6 that for
some s € {0, 1,2},

{1,2} C {t,(T*"") :i=1,...,d}.

Then we construct the measures oy, :=7; |, and o7, =7 ,(s41)p, Dy similar
arguments as before, we construct a twisting transformation S,, such that (31) holds
whenever B is an m-box in €, for some m < n. If this can be done for infinitely

many integers n, then Proposition 4.7 shows that o, —— ¢ and o] —— 0.
n—oo n—oo

Then Proposition 5.3 shows that ¢ can be decomposed as a product of two Radon
measures to which we can apply the induction hypothesis.

Now we consider the case where there exists some r, 1 < r < |4h,,/hy |, which
corresponds to a fake n/-crossing. We define 7y as the smallest integer with this
property. Then we know that there exists i € {1,...,d} such that TTo" z; € Cy.
Each such i is called an outgoing coordinate. Note that for each outgoing coordinate
7, we have for each n’ < m < n tm(T(m_l)hn’xi) = 3 (indeed, the orbit of the
outgoing coordinate has to reach the top of tower m before leaving C,,,).

We also observe that since the interval {0,..., (rg — 1)h,} is contained in an
ng-crossing, we have for each i1,io € {1,...,d}, each 0 < r < rg — 1 and each
n<m<n

(34) tm(TTh",xil) - tm(Trhn/‘riz) = tm(xh) - tm(xiz)'

For n’ < m < n, the above difference vanishes. Hence, we have ¢, (T(0~ Vg, ) =
tm(T(TU*I)hn’xh) for each i1, 9. Taking into account the outgoing coordinates, we
see that for each i = 1,...,d, t,(To~Vwg;) = 3. This proves that at time
(ro — 1)hy, each coordinate is in the last occurrence of tower n’ inside tower n.

Now, since the n-crossing .J,, containing 0 is not synchronized, there exist i1, i
such that the difference in (34) does not vanish for m = n, and this implies that
there exist some i € {1,...,d} such that t, (T~ g;) # 3. In particular such
an i is not an outgoing coordinate. At time rgh,s, the orbit of a non-outgoing
coordinate is in the first occurrence of tower n’ inside tower n. Setting R :=
{ro,...,m0 + gn—n' _ 1}, we get that for each non-outgoing coordinate i, 7"’ x;,
r € R, successively belongs to successive occurrences of tower n' inside tower n,
and we have t,,/(T™"'2;) = r — rg + 1 mod 3.

On the other hand, if 7 is an outgoing coordinate, the orbit of z; falls into the
first occurrence of tower n' inside tower n only at time (rg + 1)h,. And we have,
for r € R\ {ro}, tn (T"" x;) = r — 1o mod 3.

Set Ry :={r € R:7—1r9 = 1mod 3}. Then R; # ) because n > n/, and for
r € R1, we have

1 if ¢ is an outgoing coordinate,
2 otherwise.

tn’ (T‘r-hn/mi) — {
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Let .J,,» be the interval obtained after removing the first 4¢ points from J,,/, and set
J = |_|T€R1 Jor +7hps, J' = J+hy, and let I be the smallest interval containing .J
and J’. Then J and J’ have inside I the structure required in Proposition 4.9, with
M = 3. We consider the two measures o, := 7 and o}, := ;.. Then there exists
a twisting transformation Sy, defined from the partition of {1,...,d} into outgoing
and non-outgoing coordinates, such that (31) holds whenever B is an m-box in £,
for some m < n'.

If we have infinitely many integers n for which the above construction is possible,

then Proposition 4.7 ensures that vy —— o, then Proposition 4.9 yields o,, ——
n—oo n—roo

o and o/, — o. Finally, Proposition 5.3 shows that ¢ can be decomposed as a
n—oo
product of two Radon measures to which we can apply the induction hypothesis.
This concludes the proof of Theorem 2.10.
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