
HAL Id: hal-01586794
https://hal.science/hal-01586794

Preprint submitted on 13 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Area anomaly and generalized drift of iterated sums for
hidden Markov walks

Olga Lopusanschi, Damien Simon

To cite this version:
Olga Lopusanschi, Damien Simon. Area anomaly and generalized drift of iterated sums for hidden
Markov walks. 2017. �hal-01586794�

https://hal.science/hal-01586794
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Area anomaly and generalized drift of iterated
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Olga Lopusanschi & Damien Simon

September 13, 2017

Abstract
Following our result from [13], we study the convergence in rough path

topology of a certain class of discrete processes, the hidden Markov walks,
to a Brownian motion with an area anomaly. This area anomaly, which
is a new object keeps track of the time-correlation of the discrete models
and brings into light the question of embeddings of discrete processes into
continuous time. We also identify an underlying combinatorial structure
in the hidden Markov walks, which turns out to be a generalization of
the occupation time from the classical ergodic theorem in the spirit of
rough paths. Finally, we construct a rough path out of iterated sums of
a hidden Markov walk, compare it to the classical canonical lift of the
piecewise linear interpolation of the process and analyse its convergence
to a non-geometric rough path.

Contents
1 Introduction 2

1.1 On the importance of discrete models in the rough paths theory. 2
1.2 Structure of the article and notations. . . . . . . . . . . . . . . . 5

2 Main results and map of the paper 6
2.1 Rough paths models from microscopic models. . . . . . . . . . . 6

2.1.1 Main theorems: rough paths from hidden Markov walks. . 6
2.1.2 An easy example: the diamond and round-point models. . 12

2.2 Combinatorial structure behind the iterated sums of HMW. . . . 14
2.2.1 Iterated sums and non-geometric rough paths. . . . . . . 14
2.2.2 Iterated occupation times of HMW as underlying combi-

natorial structures of rough paths. . . . . . . . . . . . . . 16

3 From Hidden Markov Walks to rough paths 20
3.1 Theory of pseudo-excursions for hidden Markov walks. . . . . . . 20
3.2 Elements of rough paths theory . . . . . . . . . . . . . . . . . . . 22
3.3 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Getting back to theorem 2.3 . . . . . . . . . . . . . . . . . . . . . 28

1



4 Iterated structures behind discrete time and discrete space
Markov chains. 35
4.1 Shuffle and quasi-shuffle products. . . . . . . . . . . . . . . . . . 35
4.2 From geometric to non-geometric rough paths through hidden

Markov walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Geometric rough paths and shuffle products. . . . . . . . 37
4.2.2 A discrete construction for non-geometric rough paths. . . 38

4.3 Getting back to proposition 2.1. . . . . . . . . . . . . . . . . . . . 38

5 Open questions 43

1 Introduction
1.1 On the importance of discrete models in the rough

paths theory.
From continuous to discrete setting. Rough paths theory was introduced
by T. Lyons in 1997 (see, for example, [15]) in order to provide a deterministic
setting to stochastic differential equations (SDEs) of the type

𝑑𝑦𝑠 = 𝑓(𝑦𝑠)[𝑑𝑥𝑠] (1)

where (𝑦𝑠)𝑠 is a path in R𝑑′ , (𝑥𝑠)𝑠 is a path in of R𝑑 of Hölder regularity 𝛼 < 1
(which is often the case for stochastic processes) and 𝑓 : R𝑑′ → 𝐸𝑛𝑑(R𝑑,R𝑑′).
Whenever the classical Young integration [16] fails (which is the case for 𝛼 < 1/2),
paths may be lifted (in a non-unique way) to a larger, more abstract, space,
the space of rough paths, for which existence and uniqueness of a solution map
become easier to prove.

The idea behind this theory relies on the Taylor expansion: if we want
to suitably approach (1), the trajectory level is not enough to register all the
relevant information when passing to the limit. Thus, we have first to make an
"expansion" of the path (𝑥𝑡)𝑡 by constructing, on the grounds of certain rules,
the associated rough path (x𝑡)𝑡, which is a continuous path in 𝑉 ⊕ . . . ⊕ 𝑉 ⌊1/𝛼⌋

and then to suitably approach it.
A particularity of the rough paths theory is that it has been developed in a

continuous setting (we approximate continuous processes by other continuous
processes that are smoother). Since the main goal of the rough paths theory
is giving a general method for solving SDEs, the exploration of the discrete
setting may seem irrelevant other than for SDE approximation (see [3]). And
yet, new directions of research can be found in this domain as it appears, for
example, in [12], where the authors study discrete rough integrals. We believe
that developing a theory of discrete models in the rough path setting can enrich
the classical stochastic calculus with new tools and results. The present paper
concentrates on two issues related to this field: the ways of constructing a rough
path out of a discrete model and the explicit construction of new objects arising
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at the limit in rough path topology, as well as the role they may play in classical
stochastic calculus.

Analysing rough paths issues through discrete models. A finite-variation
path 𝛾 : [0, 𝑇 ] → 𝑉 can be canonically lifted to a rough path using the sequence
of iterated integrals:

𝑆𝛾,𝑛(𝑡) =
∫︁

0<𝑠1<𝑠2<...<𝑠𝑛<𝑡

𝑑𝛾(𝑠1)⊗𝑑𝛾(𝑠2)⊗. . .⊗𝑑𝛾(𝑠𝑛) ∈ 𝑉 ⊗𝑛, 𝑡 ∈ [0, 𝑇 ] (2)

For any 𝑁 ≥ 2, the corresponding canonical lift coincides with the step-N
signature of 𝛾 given by

𝑆𝑁 (𝛾)0,𝑡 = (1, 𝑆𝛾,1(𝑡), . . . , 𝑆𝛾,𝑁 (𝑡)) ∈ 𝑇
(𝑁)
1 (𝑉 ), 𝑡 ∈ [0, 𝑇 ] (3)

where 𝑇
(𝑁)
1 (𝑉 ) = {(𝑎0, . . . , 𝑎𝑁 ∈

⨁︀𝑁
𝑘=0 𝑉 ⊗𝑘|𝑎0 = 1} with the convention 𝑉 ⊗0 =

R.
For 𝛼-Hölder paths with 𝛼 < 1, such integrals may not be well-defined and

some of the values of the vectors 𝑆𝛾,𝑛(𝑡) may be postulated provided that they
satisfy certain algebraic relations. The absence of a canonical lift of Hölder paths
to a larger space leads to some natural questions at the basis of the present
paper.

The first one, answered since the very beginning of rough paths theory, deals
with how classical stochastic integrals (Itô and Stratonovitch) fit within this
theory. The set of rough paths is separated in two categories, one for each type
of integration:

∙ geometric rough paths, whose components satisfy the chain rule, for
Stratonovich integration;

∙ non-geometric rough paths, whose components do not satisfy it, for Itô
integration.

Based on discrete sequences we give explicit constructions for both types of
integrals as limit processes and discuss the link with geometric and non-geometric
rough paths. In particular, we will see how discrete constructions can give rise
to non-geometric rough paths as limit processes.

The second issue consists in understanding the nature of the non-trivial
objects in the space of rough paths; for example, two-dimensional area bubbles
[11] obtained as the limit of the paths:

𝛾(𝑛)(𝑡) =
(︂

1√
𝑛

cos(𝑛𝑡), 1√
𝑛

sin(𝑛𝑡)
)︂

have a well-defined rough path limit different from the constant path 𝛾(𝑡) = (0, 0)
(which would be the limit in the uniform topology). In this case, 𝑆𝛾,1(𝑡) = 0 but
𝑆𝛾,2(𝑡) = 1

2 𝑡𝑒1 ∧ 𝑒2, with 𝑒1 and 𝑒2 vectors of the canonical basis of R2.
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The third (and central) question is to ask whether such non-trivial limits
can coexist with the classical structure of stochastic integrals. We can give a
positive answer to this question by studying well-chosen discrete models with
suitable time correlations. In [13], we have constructed a class of processes on
a finite-dimensional vector space 𝑉 (Markov chains on periodic graphs) that
converge, under certain conditions, in rough path topology (see section 3.2 for
details) to

(𝑆𝐵,1(𝑡), 𝑆𝐵,2(𝑡) + Γ𝑡)𝑡∈[0,1] (4)

where (𝐵𝑡)𝑡 if a standard Brownian motion on the vector space 𝑉 and Γ a
deterministic antisymmetric matrix called the area anomaly. While 𝑆𝐵,1(𝑡) and
𝑆𝐵,2(𝑡) are obtained with classical stochastic calculus, Γ is a new object.

The present paper provides a much more general construction of such limits.
The main idea relies on the following: if one wants to be able to control Γ in a
limit of the type (4), one has to modify the underlying discrete models in the
following way:

∙ one may try to create area-bubble-like corrections to the trajectories;

∙ these corrections have to remain small so that 𝑆𝐵,1 does not change;

∙ the corrected trajectories have to satisfy the Markov property.

Our solution consists in

∙ introducing time-correlations in the discrete processes, tuned so that they
affect only 𝑆𝐵,2 after renormalization, through the framework of the hidden
Markov walks, of which the Markov chains on periodic graphs are an
example, and

∙ showing how the area anomaly depends on the way we embed the discrete
paths in the set of continuous paths.

This last point brings into light the difference played by embeddings in the
uniform and rough paths topologies. In the first case, it is merely a way to
make sense of the convergence of a discrete path and one uses usually linear
interpolation by default. In the second case, it is a mean to influence and even
change the nature of the limit through the non-trivial object which is the area
anomaly.

We also show how the convergence of any embedding can be studied through
the convergence of a discrete sequence in 𝑇

(2)
1 (𝑉 ) (more precisely, in one of its

sub-groups: 𝐺2(𝑉 )). This allows, in particular, to make a classification of the
embeddings of a given discrete process based on the Γ they provide at the limit.

Another important question concerns the combinatorial structures that can
be derived from rough paths built out of hidden Markov walks. While the
algebraic structure of rough paths, based on shuffle products, provides nice
combinatorial interpretations of iterated integrals, the iterated sums have more
intricate multiplication rules, which can be interpreted using the quasi-shuffle
products. This subject will be discussed in section 4.
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1.2 Structure of the article and notations.
General structure of the article. The present article is divided into five
main sections. The first two sections give a general presentation of our work as
follows:

∙ in the present section 1, we describe the motivations and the main goals of
our work;

∙ in section 2, we state our main results and give some additional comments
and illustrations to them.

The next two sections are more technical:

∙ section 3 is dedicated to the convergence of rough paths constructed out
of hidden Markov walks: we give a detailed description of the framework
and a proof of our main theorem (3.4);

∙ in section 4, we explore the combinatorial properties of hidden Markov
chains and the associated rough paths through iterated occupation times
and their link with shuffle and quasi-shuffle products.

The last section 5 is dedicated to further research perspectives and open questions.

Notations. Throughout this paper, the following objects will often appear.

∙ 𝒞1−𝑣𝑎𝑟([0, 𝑇 ], 𝐵) is the space of functions valued in a Banach space 𝐵 with
bounded variations.

∙ 𝑉 denotes a finite-dimensional vector space.

∙ 𝐸 denotes a finite state space (for Markov chains).

∙ 𝑇
(𝑘)
1 (𝑉 ) is the graded vector space:

𝑇
(𝑘)
1 (𝑉 ) = 𝑉 ⊕ . . . ⊕ 𝑉 ⊗𝑘

and 𝐺2(𝑉 ) a subgroup of 𝑇
(2)
1 (𝑉 ) defined by:

∀(𝑎, 𝑏) ∈ 𝐺2(𝑉 ), Sym(𝑏) = 1
2(𝑎 ⊗ 𝑎) (5)

(the symmetrical part of the level 𝑉 ⊗ 𝑉 depends entirely on the level 𝑉
of the object).

∙ Instead of (1, 𝑎1, . . . , 𝑎𝑘) ∈ 𝑇
(𝑘)
1 (𝑉 ), we will write (𝑎1, . . . , 𝑎𝑘) ∈

⨁︀𝑘
𝑙=1 𝑉 ⊗𝑙.
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∙ The operator "⊗" can denote:

- a tensor product of two elements in 𝑉 (in the formula 𝑉 ⊗ 𝑉 , for
example);

- an operation on 𝑇
(2)
1 (𝑉 ): (𝑎, 𝑏) ⊗ (𝑎′, 𝑏′) = (𝑎 + 𝑎′, 𝑏 + 𝑏′ + 𝑎 ⊗ 𝑎′),

where the operation 𝑎 ⊗ 𝑎′ is in the sense of a tensor product.

∙ The operator "∧" is an antisymmetric law on 𝐺2(𝑉 ): (𝑎, 𝑏) ∧ (𝑎′, 𝑏′) =
(𝑎 + 𝑎′, 𝑏 + 𝑏′ + 1

2(𝑎 ⊗ 𝑎′ − 𝑎′ ⊗ 𝑎));

∙ 𝛿𝜖: the standard dilatation operator on 𝐺2(𝑉 ): 𝛿𝜖(𝑎, 𝑏) = (𝜖𝑎, 𝜖2𝑏).

2 Main results and map of the paper
2.1 Rough paths models from microscopic models.
2.1.1 Main theorems: rough paths from hidden Markov walks.

Definition of hidden Markov walks. The Donsker theorem, generalized to
rough paths theory in [2], shows that random walks do not leave any room for
area anomaly: area bubbles are killed by the independence between random
variables at each time step. Following [13], we introduce the framework of hidden
Markov walks (HMW) whose time-correlations, as it has already been mentioned,
allow additional area accumulation on the second level of the corresponding
rough paths.

We first give a definition of hidden Markov chains (HMC), which are the
"bricks" from which hidden Markov walks are constructed:

Definition 2.1 (the hidden Markov chain). Let 𝐸 be a finite state space and 𝑉
a finite-dimensional vector space. A hidden Markov chain is a discrete process
(𝑅𝑛, 𝐹𝑛)𝑛 on 𝐸 × 𝑉 such that 𝑅 = (𝑅𝑛)𝑛 is a Markov chain on 𝐸 and under
the conditional law P (·|𝜎(𝑅)) the variables 𝐹𝑛 are independent and

∀𝑘 ≥ 1, ∀𝑢 ∈ 𝐸, P (𝐹𝑘|𝑅𝑘 = 𝑢) = P (𝐹1|𝑅1 = 𝑢)

Hidden Markov walks are constructed out of hidden Markov chains just as
simple random walks can be constructed as sums of i.i.d. variables:

Definition 2.2 (the hidden Markov walk). Let 𝐸 be a finite state space and
𝑉 a finite-dimensional vector space and (𝑅𝑛, 𝐹𝑛)𝑛 a hidden Markov chain on
𝐸 × 𝑉 . For all 𝑛 ≥ 1, set 𝑋𝑛 =

∑︀𝑛
𝑘=1 𝐹𝑘. The discrete process (𝑅𝑛, 𝑋𝑛)𝑛 on

𝐸 × 𝑉 is called a hidden Markov walk.

Remarks.

∙ Throughout the paper, the transition matrix of the process (𝑅𝑛) will be
written 𝑄 and the conditional law of 𝐹𝑘 = 𝑋𝑘 −𝑋𝑘−1 knowing 𝑅𝑘 = 𝑢 ∈ 𝐸
will be written 𝜈(∙|𝑢) and expectations under this law E𝜈 [∙|𝑢].
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∙ The process (𝑋𝑛)𝑛 may take values in a more general space than 𝑉 (and
we will encounter such examples throughout the paper). The only thing
that changes in this case is the definition of the increments of the process
(see property 3.1).

A Donsker-type result. The following theorem is a result on convergence of
rough paths constructed by piecewise linear interpolation (like in the classical
Donsker theorem) out of HMW. It is a generalization of our result from [13] to
a larger class of processes.

We define the excursion times of the process (𝑅𝑘)𝑘 as:

𝑇0 = 0 (6)
∀𝑛 ≥ 1, 𝑇𝑛 = inf{𝑘 > 𝑇𝑛−1 : 𝑅𝑘 = 𝑅0} (7)

Theorem 2.1. Let (𝑅𝑛, 𝑋𝑛)𝑛 be a hidden Markov walk on 𝐸 × 𝑉 such that
(𝑅𝑛)𝑛 is irreducible and the increments of (𝑋𝑛)𝑛 are a.s. uniformly bounded,
i.e.

∃𝐾 > 0, ∀𝑗 ∈ N, |𝐹𝑗 |𝑉 ≤ 𝐾 𝑎.𝑠. (8)
Set 𝛽 = E [𝑇1]. Under the conditions E [𝑋𝑇1 ] = 0 and E

[︀
𝑋⊗2

𝑇1

]︀
= 𝐶𝐼𝑑

for a certain 𝐶 > 0, the rough path of the piecewise linear interpolation of
(𝑋𝑘)𝑘≤𝑁 , renormalized by 𝛿(𝛽−1𝑁𝐶)−1/2 , converges in the rough path topology
𝒞𝛼([0, 1], 𝐺2(𝑉 )) for 𝛼 < 1/2 to a rough path whose levels are given by:

𝑆𝐵,1(𝑡) = 𝐵𝑡

𝑆𝐵,2(𝑡) =
∫︁

0<𝑠1<𝑠2<𝑡

∘𝑑𝐵𝑠1 ⊗ ∘𝑑𝐵𝑠2 + Γ𝑡

where (𝐵𝑡)𝑡 is a standard 𝑑-dimensional Brownian motion and Γ is a determin-
istic antisymmetric matrix, the area anomaly, given by

Γ = 𝐶−1 1
2E

⎡⎣ ∑︁
1≤𝑘1<𝑘2≤𝑇1

𝐹𝑘1 ⊗ 𝐹𝑘2 − 𝐹𝑘2 ⊗ 𝐹𝑘1

⎤⎦ (9)

Remarks.

∙ The condition (8) requires a.s. uniform bound for 𝐹𝑗s, whereas the classical
Donsker theorem (and the its rough path variant from [2]) requires a
uniform bound for the moments. On one hand, most of the concrete
models we can apply theorem 2.1 to satisfy (8); on the other hand, as we
will see further on, the variables whose role is equivalent to the ones of
i.i.d.r.v. from the classical Donsker theorem are, in our case, the pseudo-
excursions.

∙ The definition of 𝛽 implies that it may depend on the initial law of (𝑅𝑛)𝑛,
whereas the limit does not. The reason for this is simple: 𝛽 registered the
slowing down in time of the limit process which, as we will see, depends
on the length of an excursion of (𝑅𝑛)𝑛.
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∙ We can actually always suppose the covariance matrix of X(1)
𝑇1

to be equal
to 𝐶𝐼𝑑 for a certain 𝐶 > 0 in theorem 2.3 (idem for the covariance matrix
of 𝑋𝑇1 in theorems 2.1 and 2.2). The reasons for this are similar to those
explained in the remark that follows immediately corollary 2.1 from [13]:
we can embed the process X(1)

𝑇1
in a smaller space than 𝑉 , and afterwards

use a linear transformation to get the identity matrix modulo a constant.

∙ We can still get a result similar to theorem 2.1 if the covariance matrix
of 𝑋𝑇1 is not diagonal. The difference is that (𝐵𝑡)𝑡 will have a covariance
matrix depending on 𝑋𝑇1 and will not be a standard Brownian motion
anymore (see proposition 2.1).

∙ The second-level drift is actually the stochastic area of an excursion modulo
a multiplicative constant, i.e. Γ = 𝐶−1E [𝐴𝑇1(𝑋)].

∙ 𝑆𝐵,2(𝑡) and can be decomposed into a symmetric part, given by 1/2(𝐵𝑡 ⊗
𝐵𝑡), and an antisymmetric part, given by 𝒜𝑡 + Γ𝑡, where (𝒜𝑡)𝑡 is the Lévy
area of (𝐵𝑡)𝑡, i.e.

𝒜𝑡 = 1
2

∫︁
0<𝑠1<𝑠2<𝑡

𝑑𝐵𝑠1 ⊗ 𝑑𝐵𝑠2 − 𝑑𝐵𝑠2 ⊗ 𝑑𝐵𝑠1

This decomposition highlights the fact that (𝑆𝐵,1(𝑡), 𝑆𝐵,2(𝑡))𝑡 is a geometric
rough path. Note that the Lévy area does not depend on the choice of
integration (Itô or Stratonovich). If we endow the space of rough paths
with the antisymmetric tensor product ∧ instead of the ordinary one ⊗,
the 𝑆𝐵,2(𝑡) will only keep track of the antisymmetric part of the limit: this
is the approach we have adopted in our previous article [13].

Examples to which theorem 2.1 applies.

∙ In case of a simple random walk (𝐸 = {0}) with a piecewise linear embed-
ding, we get the Donsker theorem for rough paths from [2] (in particular,
Γ = 0), with slightly different moment conditions.

∙ A less trivial example is the sum of rotating Bernoulli i.i.d.r.v. which has
been presented in our previous article [13]: 𝑋𝑛 =

∑︀𝑛
𝑘=1 𝑖𝑘𝑈𝑘, where the

𝑈𝑘s are i.i.d. Bernoulli variables. In this case, 𝐸 = {1, 2, 3, 4} and Γ ̸= 0.

∙ More generally, theorem 2.1 applies to any Markov chain on periodic graphs
as the ones described in [13].

The question of embeddings. If we want to build a rough path associated
to a sequence (𝑥𝑛)𝑛 ∈ 𝑉 N, we first need to associate to (𝑥𝑛)𝑛 ∈ 𝑉 N a continuous
path in 𝑉 for which building a rough path makes sense. In other words, we need
to embed the discrete sequence in the space of continuous, sufficiently regular
paths in 𝑉 .

8



Definition 2.3. We define an embedding of (𝑥𝑛)𝑛 ∈ 𝑉 N as a sequence 𝜌 = (𝜌𝑁 )𝑁

of continuous paths in 𝑉 such that

∙ ∀𝑁 ≥ 1, 𝜌𝑁 : [0, 𝑁 ] → 𝑉 ;

∙ ∀𝑁 ≥ 1, ∀𝑖 ∈ {1, . . . , 𝑁}, 𝜌𝑁 (𝑖) = 𝑥𝑖;

∙ ∀𝑘 < 𝑁 , ∀𝑡 ∈ [0, 𝑘], 𝜌𝑘(𝑡) = 𝜌𝑁 (𝑡).

We can construct an embedding by curve concatenation in the following way:
we start by connecting, for all 𝑛 ∈ N, 𝑥𝑛 and 𝑥𝑛+1 by a continuous curve 𝛽𝑛

such that:
𝛽𝑛 : [0, 1] → 𝑉, 𝛽𝑛(0) = 𝑥𝑛, 𝛽𝑛(1) = 𝑥𝑛+1 (10)

The embedding is then given by

𝜌𝑁 = 𝛽1 · . . . · 𝛽𝑁 (11)

where · is the operation of path concatenation in 𝑉 . In order to pass to the
limit, we define 𝚤𝑁 : [0, 1] → 𝑉 as 𝚤𝑁 (𝑡) = 𝑓(𝑁)𝜌𝑁 (𝑁𝑡), where 𝑓 : N → R+ is
the renormalization function (for details on embeddings see section 3.3).

In theorem 2.1 we have used the piecewise linear embedding, i.e. we have
connected two consecutive points by linear interpolation. While this is the
most common embedding, it is not unique. In order to define a more general
embedding for a hidden Markov walk, we proceed as follows.

Lemma 2.1 (construction of an embedding for HMW). Consider a Markov
chain (𝑅𝑛, 𝐹𝑛)𝑛 on 𝐸 × 𝑉 . We construct a sequence of processes (𝜌𝑁 )𝑁 as
follows:

∙ for any 𝑢 ∈ 𝐸, denote by 𝑉𝑢 ⊂ 𝑉 the set of all possible realizations of 𝐹1
under the law P (∙|𝑅1 = 𝑢);

∙ for 𝑢 ∈ 𝐸, to every 𝑦 ∈ 𝑉𝑢 we associate in a measurable way, for the usual
Borel 𝜎-algebras, a curve 𝑓𝑦 : [0, 1] → 𝑉 with bounded variation and we
denote the set of these curves by ℬ𝑢;

∙ for all 𝑘 ≥ 1, we associate to 𝐹𝑘 a random variable 𝛽𝑘 in the sense that,
for a 𝑢 ∈ 𝐸 and under the law P (∙|𝑅𝑘 = 𝑢), 𝛽𝑘 gives for every realization
𝑦 of 𝐹𝑘 from 𝑉𝑢 the corresponding element 𝑓𝑦 from ℬ𝑢;

∙ for all 𝑁 ≥ 1, we set 𝜌𝑁 = 𝛽1 · . . . · 𝛽𝑁 .

Then (𝜌𝑁 )𝑁 is an embedding of (𝑋𝑛)𝑛 in the sense of definition 3.4.

Remark. Lemma 2.1 relies on the following idea: we can then "enlarge" a
hidden Markov chain (𝑅𝑛, 𝐹𝑛)𝑛 in 𝐸 ×𝑉 to the sequence of triplets (𝑅𝑛, 𝐹𝑛, 𝛽𝑛)𝑛

in 𝐸 × 𝑉 × 𝒞1−𝑣𝑎𝑟([0, 1], 𝑉 ), and construct an embedding (𝜌𝑁 )𝑁 out of (𝛽𝑘)𝑘 as
in (11).

This leads to the following generalization of theorem 2.1:
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Theorem 2.2. Let (𝑅𝑛, 𝐹𝑛)𝑛 be a hidden Markov chain on 𝐸 × 𝑉 such that
(𝑅𝑛)𝑛 is irreducible and condition (8) is satisfied, and denote by (𝑅𝑛, 𝑋𝑛)𝑛 the
corresponding Markov walk. Denote by 𝜌 = (𝜌𝑛)𝑛 an embedding for (𝑋𝑛)𝑛 with
bounded variation constructed as in lemma 2.1.

Set 𝛽 = E [𝑇1]. Under the conditions E [𝑋𝑇1 ] = 0 and E
[︀
𝑋⊗2

𝑇1

]︀
= 𝐶𝐼𝑑 for a

certain 𝐶 > 0, the rough path canonically constructed out of 𝜌𝑁 , renormalized
through the dilation operator 𝛿(𝛽−1𝑁𝐶)−1/2 , converges in the rough path topology
𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )) with 𝛼 < 1/2 to a rough path given by:

𝑆𝐵,1(𝑡) = 𝐵𝑡

𝑆𝐵,2(𝑡) =
∫︁

0<𝑠1<𝑠2<𝑡

∘𝑑𝐵𝑠1 ⊗ ∘𝑑𝐵𝑠2 + Γ𝜌𝑡

where (𝐵𝑡)𝑡 is a standard 𝑑-dimensional Brownian motion and Γ𝜌 is an antisym-
metric deterministic matrix depending on 𝜌 as follows:

Γ𝜌 = E
[︂

1
2

∫︁
0<𝑠1<𝑠2<𝑇1

𝑑𝜌𝑇1(𝑠1) ⊗ 𝑑𝜌𝑇1(𝑠2) − 𝑑𝜌𝑇1(𝑠2) ⊗ 𝑑𝜌𝑇1(𝑠1)
]︂

(12)

Remarks.

∙ Γ𝜌 is the stochastic area of the curve 𝜌𝑇1 between the times 0 and 𝑇1.

∙ For the 𝜌-embedding, we have chosen curves of finite variation. This is a
sufficient but not a necessary condition for the result of theorem 2.1 to be
true. We maintain it for commodity reason, a generalisation to a weaker
condition on the embedding (for example, curves of finite 𝑝-variation with
a suitable 𝑝) being a question of some additional computations.

Examples to which theorem 2.2 applies: All the models to which theorem
2.1 applies and for which we connect consecutive points by curves of finite
variation: the round-point model (see figure 2), models for traffic with road
intersections, random walks on deformed networks and deformed periodic graphs
etc.

The general theorem. In both theorems 2.1 and 2.2, we have lifted paths
in 𝑉 to geometric paths in 𝐺2(𝑉 ). As we will see in section 3.3 (proposition
3.3), any sufficiently regular embedding 𝜌 of a sequence in 𝑉 can be encoded in
a rough path in 𝐺2(𝑉 ), so that we can start directly with a sequence in 𝐺2(𝑉 )
and associate to it a rough path, i.e. a sufficiently regular embedding in 𝐺2(𝑉 ).

The embeddings for sequences in 𝐺2(𝑉 ) can be defined by analogy with the
ones on 𝑉 (see the remark after definition 2.3). In particular, since 𝐺2(𝑉 ) is a
geodesic space (see the comment after definition 34), we can define for sequences
valued in 𝐺2(𝑉 ) the geodesic embedding, i.e. the embedding that connects two
consecutive points by a curve whose length equals to the distance between them.

10



In figure 1, examples of geodesic curves corresponding to different elements of
𝐺2(R2) are presented. In the case of R𝑑, the geodesic embedding corresponds to
the linear interpolation.

Remark. The geodesic embedding of a sequence in 𝐺2(𝑉 ) can be represented
using the increments of the sequence, just like the linear interpolation of a
sequence in R𝑑.

Figure 1: Examples of geodesic curves corresponding to elements of 𝐺2(𝑉 ).

Thus, theorem 2.2 becomes a corollary of the following, more abstract, result:

Theorem 2.3. Let (𝑅𝑛)𝑛 be an irreducible Markov chain on 𝐸 and (𝑅𝑛,X𝑛)𝑛

a hidden Markov walk on 𝐸 × 𝐺2(𝑉 ) such that

∃𝐾 > 0, ∀𝑗 ∈ N,
⃒⃒⃒⃒
X−1

𝑗 ⊗ X𝑗+1
⃒⃒⃒⃒

< 𝐾 𝑎.𝑠. (13)

We denote by X(1) the first component of X and set 𝛽 = E [𝑇1]. Let 𝜌 = (𝜌𝑁 )𝑁

be an embedding that can be encoded by the sequence (X𝑛)𝑛 (as in proposition
3.3).

Under the conditions E
[︁
X(1)

𝑇1

]︁
= 0 and E

[︁
(X(1)

𝑇1
)⊗2
]︁

= 𝐶𝐼𝑑, the geodesic
embedding of (X𝑘)𝑘≤𝑁 , renormalized through the dilation 𝛿(𝛽−1𝑁𝐶)−1/2 , converges
in the rough path topology 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )) with 𝛼 < 1/2 to the rough path
given by:

𝑆𝐵,1(𝑡) = 𝐵𝑡

𝑆𝐵,2(𝑡) =
∫︁

0<𝑠1<𝑠2<𝑡

∘𝑑𝐵𝑠1 ⊗ ∘𝑑𝐵𝑠2 + Γ𝜌𝑡

where (𝐵𝑡)𝑡 is a 𝑑−dimensional Brownian motion and Γ𝜌 is a deterministic
antisymmetric matrix defined as in (12).

Proof. See section 3.4. Since theorems 2.1 and 2.2 are particular cases of theorem
2.3, we shall not prove them separately.

11



Remarks.

∙ Setting

F𝑗 =
(︂

𝐹𝑗 ,

∫︁∫︁
0<𝑠1<𝑠2<1

𝑑𝛽𝑗(𝑠1) ⊗ 𝑑𝛽𝑗(𝑠2)
)︂

where the 𝛽𝑖s the curves that define 𝜌 as in (11), we have X𝑛 =
⨂︀𝑛

𝑗=1 F𝑗 ,
and condition (13) becomes similar to (8):

∃𝐾 > 0, ∀𝑗 ∈ N, ||F𝑗 || < 𝐾 𝑎.𝑠.

∙ Γ𝜌 can be decomposed in two parts: the first one is the Γ that emerges
from applying theorem 2.1 to the HMW (𝑅𝑛,X(1)

𝑛 )𝑛, the second one comes
from applying the law of large numbers to (X(2)

𝑛 )𝑛 (see section 3.4).

∙ If we endow the space of rough paths with the antisymmetric tensor product
∧, we can state an antisymmetric version of theorem 2.3.

2.1.2 An easy example: the diamond and round-point models.

Let us now see an example that shows what kind of processes correspond to each
of the three theorems.

Consider the irreducible Markov chain (𝑅𝑛)𝑛 on 𝐸 = {1, 2, . . . , 8} as rep-
resented in figure 2. The stochastic matrix 𝑄 corresponding to it is given
by

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑝 0 1 − 𝑝 0 0 0 0
𝑝 0 0 0 0 1 − 𝑝 0 0
0 𝑝 0 1 − 𝑝 0 0 0 0
0 0 0 0 1 − 𝑝 0 𝑝 0
𝑝 0 0 0 0 1 − 𝑝 0 0
0 0 1 − 𝑝 0 0 0 0 𝑝
0 0 1 − 𝑝 0 0 0 0 𝑝
0 0 0 0 1 − 𝑝 0 𝑝 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)

By associating to each state of 𝐸 a vector of R2 as in the same figure, we define
a HMC (𝑅𝑛, 𝐹𝑛)𝑛, out of which we can eventually construct a HMW (𝑅𝑛, 𝑋𝑛)𝑛.

If we apply the piecewise linear embedding to (𝑋𝑛)𝑛, we get the diamond
model which is in the left lower corner of figure 2. It is obvious that theorem 2.1
applies to this model.

We can obtain a round-point model by applying to (𝑋𝑛)𝑛 an embedding of
round-arched openings (right lower corner of figure 2). This model can thus be
derived from the diamond model by a change of embedding.

We will now rewrite both models in the rough path setting, to which theorem
2.3 applies. Since in both cases we construct piecewise smooth embeddings, the
rough path resulting from the canonical lift is a geometric rough path, and thus
taking values in 𝐺2(𝑉 ). For commodity reasons, we choose to endow the set
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Figure 2: Construction of diamond model and round-point model out of the
same HMC (𝑅𝑛, 𝐹𝑛)𝑛.

𝐺2(𝑉 ) with the antisymmetric law ∧, so that we keep only the antisymmetric
part (the signed area) of the second-level component. In the case of the diamond
model, the use of the piecewise linear (geodesic) embedding together with the
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condition (5) for 𝐺2(𝑉 ) elements imply that (X𝑛)𝑛 is composed as

X𝑁 =
𝑁⋀︁

𝑘=1
(𝐹𝑘, 0)

In the case of the round-point model, for 𝑘 ≥ 1, each round-arched opening can
be encoded in an element 𝐹𝑘 and a certain 𝑎𝑘 ∈ R, where the 𝑎𝑘s are the signed
areas added by the round-arched openings when passing from the piecewise
linear embedding of the diamond model to the new embedding. In particular,
the 𝑎𝑘s are the antisymmetric part of the second-level component. The sequence
(X𝑛)𝑛 is then defined as

X𝑁 =
𝑁⋀︁

𝑘=1
(𝐹𝑘, 𝑎𝑘)

(𝑅𝑛, (𝐹𝑛, 𝑎𝑛))𝑛 is a hidden Markov chain on 𝐸 × 𝐺2(𝑉 ), with the 𝑎𝑛s given by
the signed areas of the corresponding arches of circle.

In order to take the limit, we then construct a rough path by applying the
geodesic embedding to (X𝑛)𝑛.

2.2 Combinatorial structure behind the iterated sums of
HMW.

2.2.1 Iterated sums and non-geometric rough paths.

From iterated integrals to iterated sums. We have already see that it-
erated integrals of type 𝑆𝛾,𝑘 from (2) (or algebraic objects satisfying their
properties) are what rough paths are composed of.

Let us now pass from continuous objects to discrete ones by analogy. For a
sequence 𝑥 = (𝑥𝑛)𝑛 in 𝑉 , we define the iterated sums as

𝑆𝑥,𝑙(𝑁) =
∑︁

1≤𝑗1<...<𝑗𝑙≤𝑁

Δ𝑥𝑗1 ⊗ . . . ⊗ Δ𝑥𝑗𝑙
(15)

where Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, and these objects can be interpreted as a discrete
analogue of the iterated integrals. We will compare some algebraic properties
of iterated sums 𝑆𝑥,𝑙 with those of iterated integrals 𝑆𝜌,𝑙, where 𝜌 = (𝜌𝑁 )𝑁 is
an embedding of 𝑥, and see how the discrete setting of iterated sums allows to
isolate a particular combinatorial structure, the iterated occupation times.

Moreover, using the iterated sums 𝑆𝑥,𝑙(𝑁), we can construct for the sequence
𝑥 a discrete analogue of the step-𝑙 signature 𝑆𝑙(𝜌𝑁 ) of 𝜌𝑁 constructed as in (3)
using iterated integrals.
Definition 2.4. For a sequence (𝑥𝑘)𝑘 in 𝑉 , we define the step-𝑙 discrete signature
as

𝑆𝑙(𝑥)1,𝑁 =
(︀
𝑆𝑥,1(𝑁), . . . , 𝑆𝑥,𝑙(𝑁)

)︀
∈ 𝑇

(𝑙)
1 (𝑉 ) (16)

One may wonder what the relation between (𝑆𝑙(𝜌𝑁 ))𝑁 and (𝑆𝑙(𝑥)1,𝑁 )𝑁 is
and what a study on its convergence may reveal. We will partially try to answer
these questions hereunder in the setting of HMW.
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Non-geometric paths as limits of iterated sums of HMW. Consider a
HMW (𝑅𝑛, 𝑋𝑛)𝑛 on 𝐸 × 𝑉 and set

Y𝑛 = 𝑆2(𝑋)1,𝑁 =

⎛⎝𝑋𝑛,
∑︁

1≤𝑘1<𝑘2≤𝑛

𝐹𝑘1 ⊗ 𝐹𝑘2

⎞⎠ ∈ 𝑇
(2)
1 (𝑉 ) (17)

The following proposition shows that (Y𝑛)𝑛 converges in rough path topology to
a non-geometric rough path with a second-level deterministic drift.

Proposition 2.1. Let (𝑅𝑛, 𝑋𝑛)𝑛 be a HMW on 𝐸 × 𝑉 such that the corre-
sponding 𝐹𝑘s satisfy (8). Choose (𝑋(𝑁)

𝑡 )𝑡 to be the piecewise linear embedding
of (𝑋𝑛)𝑛, i.e.

∀𝑁 ∈ N*, ∀𝑡 ∈ [0, 1], 𝑋
(𝑁)
𝑡 =

⌊𝑁𝑡⌋∑︁
𝑘=1

𝑋𝑘 + (𝑁𝑡 − ⌊𝑁𝑡⌋)𝐹⌊𝑁𝑡⌋+1

and suppose 𝑋0 = 0 a.s. Consider the geodesic embedding of 𝑍𝑘 =
∑︀𝑘

𝑗=1 𝐹 ⊗2
𝑗

given by

∀𝑁 ∈ N*, ∀𝑡 ∈ [0, 1], 𝑍
(𝑁)
𝑡 =

⌊𝑁𝑡⌋∑︁
𝑘=1

𝐹 ⊗2
𝑘 + (𝑁𝑡 − ⌊𝑁𝑡⌋)𝐹 ⊗2

⌊𝑁𝑡⌋+1

and set

∀𝑁 ∈ N*, ∀𝑡 ∈ [0, 1], Y(𝑁)
𝑡 = (0, 𝑍

(𝑁)
𝑡 )−1 ⊗ 𝑆2(𝑋(𝑁))0,𝑡

Suppose in addition that E [𝑋𝑇1 ] = 0, where 𝑇1 is as in (6), and that the
covariance matrix E

[︀
𝑋⊗2

𝑇1

]︀
is equal to 𝐶𝐼𝑑 for some 𝐶 > 0. We also set

𝛽 = E [𝑇1].
Then (Y(𝑁)

𝑡 )𝑡 is a well-defined embedding for (Y𝑛)𝑛 and we have the following
convergence in the 𝒞𝛼−Höl([0, 1], 𝑇

(2)
1 (𝑉 )) topology for 𝛼 < 1/2:(︁

𝛿(𝑁𝐶𝛽−1)−1/2Y(𝑁)
𝑡

)︁
𝑡∈[0,1]

−→
𝑁→∞

(︀
BItô

𝑡 ⊗ (0, 𝑀𝑡)
)︀

𝑡∈[0,1]

where (BItô
𝑡 )𝑡 is the standard Brownian motion on 𝑉 enhanced with iterated

integrals in the Itô sense and 𝑀 is a deterministic matrix given by

𝑀 = 𝐶−1E

⎡⎣ ∑︁
1≤𝑘1<𝑘2≤𝑇1

𝐹𝑘1 ⊗ 𝐹𝑘2

⎤⎦ (18)

In particular, (BItô
𝑡 ⊗ (0, 𝑀𝑡))𝑡 is a non-geometric rough path.

Proof. The proof can be found in section 4.2.
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2.2.2 Iterated occupation times of HMW as underlying combinato-
rial structures of rough paths.

Definition and combinatorial nature of iterated occupation times. In
the case of a HMW (𝑅𝑛, 𝑋𝑛)𝑛 on 𝐸 × 𝑉 ((𝑅𝑛)𝑛 is irreducible as before), the
conditional measure 𝜈(∙|𝑢) is important for determining the trajectory on 𝑉 .
However, when it comes to algebraic properties, it actually plays only a small
role; most of the algebraic properties of rough paths are already present at the
level of the discrete Markov chain (𝑅𝑛)𝑛. They are concentrated in combinatorial
objects contained in the HMW, the iterated occupation times.

The definition of a HMW implies that

E [𝑋𝑛|𝜎(𝑅)] =
∑︁
𝑢∈𝐸

𝑓(𝑢)
𝑛∑︁

𝑘=1
1𝑅𝑘=𝑢 (19)

where 𝑅 = (𝑅𝑛)𝑛 and 𝑓(𝑢) = E𝜈 [𝑋1 − 𝑋0|𝑢]. The occupation time of 𝑢 by
(𝑅𝑛)𝑛 up to time 𝑛

𝐿𝑢;𝑛(𝑟) =
𝑛∑︁

𝑘=1
1𝑟𝑘=𝑢 (20)

is a natural r.v. at the heart of ergodic-type theorems. We can generalize the
notion of occupation time (20) as follows.

Definition 2.5 (iterated occupation times). Let (𝑅𝑛)𝑛 be an irreducible Markov
chain on 𝐸. For any 𝑘 ∈ N* and any elements (𝑢1, . . . , 𝑢𝑘) ∈ 𝐸𝑘, the iterated
occupation time of (𝑢1, . . . , 𝑢𝑘) by (𝑅𝑛)𝑛 at time 𝑛 ∈ N is defined as:

𝐿𝑢1,...,𝑢𝑘;𝑛(𝑅) = card {(𝑛1, . . . , 𝑛𝑘) ∈ Δ𝑘(𝑛); 𝑅𝑛1 = 𝑢1, . . . , 𝑅𝑛𝑘
= 𝑢𝑘} (21)

where Δ𝑘(𝑛) is the set

Δ𝑘(𝑛) =
{︀

(𝑛1, . . . , 𝑛𝑘) ∈ N𝑘; 0 ≤ 𝑛1 < 𝑛2 < . . . < 𝑛𝑘 ≤ 𝑛
}︀

(22)

This cardinal can be written as an iterated sum of products of indicator functions

𝐿𝑢1,...,𝑢𝑘;𝑁 (𝑅) =
∑︁

1≤𝑙1<...<𝑙𝑘≤𝑁

1𝑅𝑙1 =𝑢1 . . . 1𝑅𝑙𝑘
=𝑢𝑘

(23)

Further on, we can easily generalize relation (19) through the following
decomposition.

Property 2.1.

E
[︀
𝑆𝑋,𝑙(𝑁)

⃒⃒
𝜎(𝑅)

]︀
= E

⎡⎣ ∑︁
1≤𝑗1<...<𝑗𝑙≤𝑁

Δ𝑋𝑗1 ⊗ . . . ⊗ Δ𝑋𝑗𝑙

⃒⃒⃒⃒
⃒⃒𝜎(𝑅)

⎤⎦
=

∑︁
(𝑢1,...,𝑢𝑙)∈𝐸𝑙

(𝑓(𝑢1) ⊗ . . . ⊗ 𝑓(𝑢𝑙))𝐿𝑢1,...,𝑢𝑙;𝑁 (𝑅) (24)

where 𝑅 = (𝑅𝑛)𝑛, 𝑋 = (𝑋𝑛)𝑛 and 𝑓(𝑢) = E𝜈 [𝑋1 − 𝑋0|𝑢] as before.
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Remark. Formula 24 tells us that, considering under the law P (∙|𝜎(𝑅)), the
expectations of iterated sums of a HMW are linear combinations of occupation
times of the underlying Markov chain. Conversely, an iterated sum of the type∑︁

(𝑢1,...,𝑢𝑙)∈𝐸𝑙

𝑣𝐿𝑢1,...,𝑢𝑙;𝑁 (𝑅)

with 𝑣 ∈ 𝑉 ⊗𝑙 corresponds (under the same probability law) to the expectation
of an iterated sum of order 𝑙 of a certain HMW depending on (𝑅𝑛)𝑛.

From shuffle to quasi-shuffle products. A particularity of the Stratonovich
iterated integrals is that they satisfy the chain rule; for example, the product of
two components of the first levels satisfies:

𝑆𝛾,1(𝑡)𝑖 ⊗ 𝑆𝛾,1(𝑡)𝑗 = 𝑆𝛾,2(𝑡)𝑖𝑗 + 𝑆𝛾,2(𝑡)𝑗𝑖 (25)

where 𝑥𝑖 is the 𝑖-th coordinate of a vector 𝑥 ∈ 𝑉 . Formula 25 is actually an
illustration of the fact that the multiplication of Stratonovich iterated integrals
is a shuffle product introduced in [4]. This product can be identified with a
particular set of permutations giving all the ways of interlacing two ordered sets
while preserving the original order of components of each of them.

In the case of Itô integrals and iterated sums. We have seen that the
combinatorial properties of the latter concentrate in the iterated occupation
times, which may themselves be understood, through formula (23), as basis
vectors of R𝐸 . This formal identification establishes a relation between iterated
integrals/sums of rough paths with the present iterated occupation time. In
particular, one checks easily for any elements 𝑢 ̸= 𝑣

𝐿𝑢(𝑛)𝐿𝑣(𝑛) = 𝐿𝑢,𝑣(𝑛) + 𝐿𝑣,𝑢(𝑛) (26)

which is very reminiscent of (25). However, for 𝑢 = 𝑣, the formula is modified
to:

𝐿𝑢(𝑛)𝐿𝑢(𝑛) = 2𝐿𝑢,𝑢(𝑛) + 𝐿𝑢(𝑛) (27)

The emergence of the last term is due to the discrete nature of the sums (in
the context of stochastic iterated integrals, it is due to the extra-drift of the Itô
integral). This extra-term implies that we need a more general product than
the shuffle product to characterize the multiplication of combinatorial structures
behind HMW.

Property 2.2. The product of two iterated sums/occupation times of a HMW
can be identified with a quasi-shuffle product, where the quasi-shuffle product is
as in definition 4.1 from section (27).

The quasi-shuffle products, introduced in [8] and extended, for example, in
[9], are a generalization of the shuffle product: while the latter supposes that
components from two different sets can never coincide when interlacing the sets,
the former allows for sets to overlap (following certain rules).
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Remark: Given a HMW on 𝐸×𝑉 and an embedding for it, the structure given
by the shuffle product to the space of the corresponding (Stratonovich) iterated
integrals, on one hand, and the one given to the space of the corresponding
iterated sums/occupation times by the quasi-shuffle product on the other gives
rise to an interesting illustration of the formal algebraic definitions given in [7]
for the geometric and non-geometric rough paths.

Asymptotics of the combinatorial structure of HMW. Whereas the
convergence of iterated sums of a HMW (𝑅𝑛, 𝑋𝑛)𝑛 on 𝐸 × 𝑉 can not be directly
expressed through the convergence of their combinatorial structure, there is an
interesting link between both of them.

Following theorem 2.1 and the classical ergodic theorem, we want to study
the large time values and dynamics of 𝐿𝑢1,...,𝑢𝑘;𝑛(𝑅) using the results presented
above. We provide two types of estimates: almost sure limits of renormalized
iterated occupation times and convergence in law to anomalous Brownian motion
in the rough path topology for corrections to the almost sure limits.

First, the iterated occupation times satisfy the following scaling limit.

Proposition 2.2 (almost sure convergence). Let (𝑅𝑛)𝑛∈N be an irreducible
Markov chain on a finite set 𝐸 and 𝐿𝑢1,...,𝑢𝑘;𝑛(𝑅) as in definition 2.5. Then,
for any 𝑘 ∈ N, the following convergence holds almost surely:

𝐿𝑢1,...,𝑢𝑘;⌊𝑁𝑡⌋(𝑅)
𝑁𝑘

𝑁→∞−−−−→ (1/𝑘!)𝑡𝑘𝜋(𝑢1) . . . 𝜋(𝑢𝑘) (28)

where 𝜋 is the invariant measure for (𝑅𝑛)𝑛.

Proof. We give only the main idea of the proof: using the theory of pseudo-
excursions, we prove that 𝐿𝑢1,...,𝑢𝑘;⌊𝑁𝑡⌋(𝑅) can be approximated by a polynomial
of degree 𝑁𝑘, and show that the coefficient corresponding to this degree is given
by the following a.s. convergence obtained by applying the classical ergodic
theorem:

𝑁−𝑘

(︂
𝑁

𝑘

)︂
𝐿𝑢1(𝑅) . . . 𝐿𝑢𝑘

(𝑅) 𝑁→∞−−−−→ (1/𝑘!)𝜋(𝑢1) . . . 𝜋(𝑢𝑘)

Remarks.

∙ Proposition 2.2 can as a generalized version of the classical ergodic theorem
which is also proved using a decomposition into excursions (see, for example,
[10]).

∙ The stochastic matrix 𝑄 of (𝑅𝑛)𝑛 appears here through the invariant
measure 𝜋.
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We now present the results on the convergence in law. We set 𝐿𝑛(𝑟) =
(𝐿𝑢;𝑛(𝑟))𝑢∈𝐸 . In this case, we get the integer-valued vector 𝐿𝑛(𝑟) ∈ N𝐶𝑎𝑟𝑑(𝐸).
We then have the following result which brings into light a universality class of
convergence for the HMW:
Proposition 2.3. Let (𝑅𝑛)𝑛 be an irreducible Markov chain on the finite state
space 𝐸. For 𝑛 ≥ 1, set �̃�𝑛(𝑅) = (𝐿𝑢;𝑛(𝑅) − 𝑛𝜋(𝑢))𝑢∈𝐸 ∈ R𝐶𝑎𝑟𝑑(𝐸), where 𝜋
is the invariant probability measure of (𝑅𝑛)𝑛. Then, modulo the appropriate
renormalization and a multiplicative constant, the piecewise linear embedding
from proposition 4.3 of (�̃�𝑛(𝑅))𝑛 and the associated iterated integrals 𝑆�̃�𝑛(𝑅),𝑘(𝑡)
with 𝑘 ≥ 2 converge in rough path topology of 𝒞𝛼−Höl([0, 1], 𝑇

(2)
1 (𝑉 )) with 𝛼 < 1/2

towards

𝑆𝐵,1(𝑡) = 𝐵𝑡,

𝑆𝐵,2(𝑡) =
∫︁

0<𝑠1<𝑠2<𝑡

𝑑𝐵𝑠1 ⊗ 𝑑𝐵𝑠2 + 𝑀𝑡

where (𝐵𝑡)𝑡 is a 𝐶𝑎𝑟𝑑(𝐸)-dimensional Brownian motion and 𝑀 is a deterministic
matrix defined as in (18).
Proof. Follows directly from proposition 2.1.

Remark. Notice that the Brownian motion is not standard here. This comes
from the fact that the covariance matrix of an excursion here is not diagonal.

We have the following immediate corollary, which can be viewed as a kind of
central limit the theorem for iterated sums:
Corollary 2.1. Let (𝑅𝑛)𝑛 be an irreducible Markov chain on the finite state
space 𝐸. For any 𝑢, 𝑣 ∈ 𝐸, set

�̃�𝑢,𝑣;𝑁 (𝑅) =
∑︁

1≤𝑙1<𝑙2≤𝑁

(1𝑅𝑙1 =𝑢 − 𝜋(𝑢))(1𝑅𝑙2 =𝑣 − 𝜋(𝑣))

where for 𝑤 ∈ 𝐸 𝑐𝑤 is as in proposition 2.3. Then for any 𝑢, 𝑣 ∈ 𝐸, we have the
following convergence in law in the uniform topology:

𝑁−1�̃�𝑢,𝑣;𝑁 (𝑅) −→
𝑁→∞

∫︁
0<𝑠1<𝑠2<1

𝑑𝐵(𝑢)
𝑠1

𝑑𝐵(𝑣)
𝑠2

+ 𝑀𝑢,𝑣

where 𝐵 is a 𝐶𝑎𝑟𝑑(𝐸)-dimensional Brownian motion and the matrix 𝑀𝑢,𝑣 is
the (𝑢, 𝑣) entrance of the 𝐶𝑎𝑟𝑑(𝐸) × 𝐶𝑎𝑟𝑑(𝐸) matrix 𝑀 from proposition 2.3.

Remark. We can generalize the result of corollary 2.1 for iteration times of
higher order by setting, for any 𝑢1, . . . , 𝑢𝑘 ∈ 𝐸,

�̃�𝑢1,...,𝑢𝑘;𝑁 (𝑅) =
∑︁

1≤𝑙1<...<𝑙𝑘≤𝑁

(1𝑅𝑙1 =𝑢1 − 𝜋(𝑢1)) . . . (1𝑅𝑙𝑘
=𝑢𝑘

− 𝜋(𝑢𝑘))

However, in this case the additional terms at the limit (all the terms aside the
iterated integral of Brownian motion) are more difficult to express explicitly,
even if they depend on 𝑀 and (𝐵𝑡)𝑡.
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3 From Hidden Markov Walks to rough paths
3.1 Theory of pseudo-excursions for hidden Markov walks.
Another definition of HMW. Definitions 2.1 and 2.2 can be summed up in
the following definition-property, which includes also the HMW taking values in
𝐸 × 𝐺2(𝑉 ), where 𝐺2(𝑉 ) is as defined in notations of section 1.2 or in definition
3.3.

Property 3.1. A process (𝑅𝑛, 𝑋𝑛)𝑛 is a hidden Markov walk on 𝐸 × 𝑉 (resp.
on 𝐸 × 𝐺2(𝑉 )) in the sense of definition 2.2 if and only if there exists a sequence
of r.v. (𝐹𝑛)𝑛 with values in 𝑉 (resp. 𝐺2(𝑉 )) such that

∙ under P (∙|𝜎(𝑅)), with 𝑅 = (𝑅𝑛)𝑛, (𝐹𝑛)𝑛 is a sequence of independent
r.v.;

∙ the distribution of 𝐹𝑛 knowing 𝑅𝑛 = 𝑢 is 𝜈(∙|𝑢) for all 𝑛 ∈ N*;

∙ ∀𝑛 ∈ N*, 𝑋𝑛 =
∑︀𝑛

𝑘=1 𝐹𝑘 (resp. 𝑋𝑛 =
⨂︀𝑛

𝑘=1 𝐹𝑘 in 𝐺2(𝑉 )).

In particular, we have 𝐹𝑘 = 𝑋𝑘 − 𝑋𝑘−1 (resp. 𝐹𝑘 = 𝑋−1
𝑘−1 ⊗ 𝑋𝑘 in 𝐺2(𝑉 )).

Theory of pseudo-excursions. As it has already been mentioned in the
introduction, HMW are a way of generalizing simple random walks: instead of
being i.i.d. variables, the increments are variables depending on a Markov chain
on a finite state space 𝐸: to each state 𝑢 ∈ 𝐸 we associate a supplementary
object (a vector, a curve etc.) which gives the increment. However, we can
derive a sum of i.i.d.r.v. from a HMW using the theory of pseudo-excursions.
For commodity reasons, we state it for HMW on 𝐸 × 𝑉 , but it is equally valid
for those on 𝐸 × 𝐺2(𝑉 ).

If (𝑅𝑛)𝑛 is an irreducible Markov chain on a finite state space 𝐸, we can
apply to it all the excursion theory we have for Markov chains. Thus, even if
the hidden Markov walk (𝑅𝑛, 𝑋𝑛)𝑛 may not even be a Markov chain, we can
construct a theory of pseudo-excursions for it based on the results we have for
(𝑅𝑛)𝑛.

We start by defining a sequence of stopping times for the Markov chain (𝑅𝑛)𝑛

as in (6). We then have the following definition, which is a property at the same
time.

Definition 3.1 (pseudo-excursions). Let (𝑅𝑛, 𝑋𝑛)𝑛 be a HMW on 𝐸 × 𝑉 and
the sequence (𝑇𝑘)𝑘 as defined in (6). We call (𝑋𝑇𝑘+1, . . . , 𝑋𝑇𝑘+1) the 𝑘-th pseudo-
excursion of (𝑋𝑛)𝑛 and 𝑋𝑇𝑘+1 − 𝑋𝑇𝑘

the 𝑘-th pseudo-excursion increment.

Property 3.2. We have the following basic properties for pseudo-excursions:

∙ The variables 𝑋𝑇𝑘+1 − 𝑋𝑇𝑘
are i.i.d. random variables.

∙ For 𝑖 ̸= 𝑗, the trajectories (𝑋𝑇𝑖+1, . . . , 𝑋𝑇𝑖+1) and (𝑋𝑇𝑗+1, . . . , 𝑋𝑇𝑗+1) are
independent and have the same law.
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Proof. Let 𝑘 ̸= 𝑚. The pseudo-excursions 𝑋𝑇𝑘+1 − 𝑋𝑇𝑘
and 𝑋𝑇𝑚+1 − 𝑋𝑇𝑚 are

independent knowing (𝑅𝑇𝑘+1, . . . , 𝑅𝑇𝑘+1) and (𝑅𝑇𝑚+1, . . . , 𝑅𝑇𝑚+1) respectively
(this follows from property 3.1). Since 𝑘 ̸= 𝑚, the excursions (𝑅𝑇𝑘+1, . . . , 𝑅𝑇𝑘+1)
and (𝑅𝑇𝑚+1, . . . , 𝑅𝑇𝑚+1) are i.i.d., and thus 𝑋𝑇𝑘+1 − 𝑋𝑇𝑘

and 𝑋𝑇𝑚+1 − 𝑋𝑇𝑚
are

independent and have the same law.

Remark. Let us briefly justify the choice of the term "pseudo-excursions".
The excursion part comes from the fact that 𝑋𝑇𝑘+1 − 𝑋𝑇𝑘

depends on the
excursion (𝑅𝑇𝑘+1, . . . , 𝑅𝑇𝑘+1). Why "pseudo"? Because an ordinary excursion
is the trajectory of a process before returning to its starting point, and the
increments 𝑋𝑇𝑘+1 − 𝑋𝑇𝑘

are non-trivial, i.e. we do not return to our starting
point.

The pseudo-excursions are particularly interesting when it comes to conver-
gence of a hidden Markov walk, as they tell us that it can be studied almost as
the convergence of a sum of well-chosen i.i.d.r.v.
Proposition 3.1. Let (𝑅𝑛, 𝑋𝑛)𝑛 be a hidden Markov walk as in definition 2.2.
Suppose that there exists 𝑀 > 0 such that |𝑋𝑛+1 − 𝑋𝑛| ≤ 𝑀 a.s. There exists a
sequence (𝑉𝑛)𝑛 of i.i.d.r.v. such that, setting, for all 𝑛 ≥ 1,

𝑆𝑛 =
⌊𝑛E[𝑇1]−1⌋∑︁

𝑘=1
𝑉𝑘

we have
∀𝜖 > 0, P (|𝑋𝑛 − 𝑆𝑛| > 𝜖) → 0

Proof. Let 𝜅(𝑛) be an integer such that 𝑇𝜅(𝑛) ≤ 𝑛 < 𝑇𝜅(𝑛)+1. We decompose

𝑋𝑛 =
𝜅(𝑛)∑︁
𝑖=1

(𝑋𝑇𝑖 − 𝑋𝑇𝑖−1) +
𝑛∑︁

𝑖=𝑇𝜅(𝑛)+1
(𝑋𝑖 − 𝑋𝑖−1)

The first sum contains 𝜅(𝑛) i.i.d. variables, and moreover 𝜅(𝑛)/𝑛 −→
𝑛→∞

E [𝑇1]−1

a.s. by the ergodic theorem.
We will now prove that the second sum converges to zero in probability. For

𝜖 > 0, we have:

P

⎛⎝|
𝑛∑︁

𝑖=𝑇𝜅(𝑛)+1
𝑋𝑖 − 𝑋𝑖−1| > 𝜖

⎞⎠ ≤ P

⎛⎝ 𝑇𝜅(𝑛)+1∑︁
𝑖=𝑇𝜅(𝑛)+1

|𝑋𝑖 − 𝑋𝑖−1| > 𝜖

⎞⎠
≤ P

(︀
𝑀(𝑇𝜅(𝑛)+1 − 𝑇𝜅(𝑛)) > 𝜖

)︀
≤ 𝑀𝜖−1E [𝑇1] → 0

We then obtain the desired result by applying Slutsky’s theorem (for reference,
see [1], theorem 3.1).

Proposition 3.1 is very useful in the sense that it allows to adopt the con-
vergence theorems we have for sums of i.i.d. random variables to the class of
hidden Markov walks.
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3.2 Elements of rough paths theory
The reader who is well familiar with rough paths may skip this part, and those
who would like a more detailed study may refer, for example, to [6] or to [5].

Some definitions. In general, a rough path is defined as a continuous path
on 𝑇

(𝑁)
1 (𝑉 ) for 𝑁 ≥ 1. When we want to associate a rough path to a 𝑉 -valued

path 𝛾 of regularity 𝛼 < 1, we choose 𝑁 = ⌊1/𝛼⌋ and fill each level following
some rules.

Remark. The way of lifting a path in 𝑉 to a rough path is not unique.
In particular, the regularity of the rough path has to be coherent with the

regularity of the initial path (for details on the regularity issues, see, for example,
[14] or [6]). Throughout this article, we are interested in rough paths that
convergence towards the Brownian motion whose regularity is 1/2−, so the rough
paths we operate correspond to the following definition.

Definition 3.2. Let 1/3 < 𝛼 < 1/2. An 𝛼-Hölder rough path (x𝑡)𝑡 is an element
of 𝒞𝛼−Höl([0, 1], 𝑇

(2)
1 (𝑉 )). Moreover, if (x𝑡)𝑡 is an element of 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )),

it is an 𝛼-Hölder geometric rough path.

A more informal way to state definition 3.2 is the following:

∙ a geometric rough path on 𝐺2(𝑉 ) endowed with the law ⊗ inherited from
𝑇

(2)
1 (𝑉 ): (𝑎, 𝑏) ⊗ (𝑎′, 𝑏′) = (𝑎 + 𝑎′, 𝑏 + 𝑏′ + 𝑎 ⊗ 𝑎′);

∙ a geometric rough path on 𝐺2(𝑉 ) endowed with the antisymmetric law
∧, which eliminates the symmetric part of the second level (it is seen as
redundant since it depends entirely on the first level): (𝑎, 𝑏) ∧ (𝑎′, 𝑏′) =
(𝑎 + 𝑎′, 𝑏 + 𝑏′ + 1

2𝑎 ⊗ 𝑎′ − 𝑎′ ⊗ 𝑎);

∙ a non-geometric rough path on 𝑇
(2)
1 (𝑉 ) endowed with the law ⊗ (we do not

consider the antisymmetric law ∧ since the symmetric part of the second
level contains elements that do not depend on the first level).

An important property of rough paths is that they satisfy Chen’s relation,
i.e.

∀ 0 ≤ 𝑠 < 𝑢 < 𝑡 ≤ 1, x𝑠,𝑢 ⊗ x𝑢,𝑡 = x𝑠,𝑡 (29)

or, alternatively, in the antisymmetric setting (for 𝐺2(𝑉 )),

∀ 0 ≤ 𝑠 < 𝑢 < 𝑡 ≤ 1, x𝑠,𝑢 ∧ x𝑢,𝑡 = x𝑠,𝑡 (30)

where ∀ 0 ≤ 𝑠 < 𝑢, x𝑠,𝑢 = x−1
𝑢 ⊗ x𝑠. This reflects, in particular, the fact that

x𝑡 can be decomposed into a "sum" of increments of x.
The Brownian motion rough path is the most important practical example of

rough path in the probabilistic setting. Since stochastic calculus allows us to
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define integrals with respect to the Brownian motion (Itô or Stratonovich), we
can directly construct the rough path as:

B𝑠,𝑡 = (𝐵𝑡 − 𝐵𝑠,

∫︁
𝑠<𝑢<𝑣<𝑡

∘𝑑𝐵𝑢 ⊗ ∘𝑑𝐵𝑣) (31)

In the antisymmetric setting of 𝐺2(𝑉 ), we only keep the antisymmetric part of
(31) and we obtain the enhanced Brownian motion:

B𝑠,𝑡 = (𝐵𝑡 − 𝐵𝑠, 𝒜𝑠,𝑡) (32)

where 𝒜 is the stochastic signed area of 𝐵, called the Lévy area. The enhanced
Brownian motion is a Brownian motion on 𝐺2(𝑉 ).

The group 𝐺2(𝑉 ): alternative definition and topology. Since our main
theorems of convergence (2.1, 2.2, 2.3) are dealing with geometric rough paths,
we give more details about the group 𝐺2(𝑉 ).

In the introduction, we have stated that 𝐺2(𝑉 ) is a subgroup of 𝑇
(2)
1 (𝑉 )

whose elements satisfy condition (5) (i.e. the symmetrical part of the second
level depends entirely on the first level). We will now give an alternative, more
analytical definition.

Definition 3.3. The free nilpotent group 𝐺2(𝑉 ) is defined as:

𝐺2(𝑉 ) = {𝑆2(𝛾)0,1 : 𝛾 ∈ 𝒞1−𝑣𝑎𝑟([0, 1], 𝑉 )}

where 𝑆2(𝛾)0,1 is as in (3).

The topology of 𝐺2(𝑉 ) is induced by the Carnot-Caratheodory norm, which
gives the length of the shortest path corresponding to a given signature:

∀𝑔 ∈ 𝐺2(𝑉 ), ||𝑔|| := inf
{︂∫︁ 1

0
|𝑑𝑥| : 𝑥 ∈ 𝒞1−𝑣𝑎𝑟([0, 1], 𝑉 ) and 𝑆2(𝛾)0,1 = 𝑔

}︂
(33)

where | · |𝑉 is a restriction to 𝑉 of the Euclidean norm. The norm thus defined
is homogeneous (||𝛿𝜆𝑔|| = |𝜆| ||𝑔|| for 𝜆 ∈ R), symmetric (||𝑔|| =

⃒⃒⃒⃒
𝑔−1

⃒⃒⃒⃒
) and

sub-additive (||𝑔 ⊗ ℎ|| ≤ ||𝑔|| + ||ℎ||), it induces a continuous metric d on 𝐺2(𝑉 )
through the application

d : 𝐺2(𝑉 ) × 𝐺2(𝑉 ) → R+
(𝑔, ℎ) ↦→

⃒⃒⃒⃒
𝑔−1 ⊗ ℎ

⃒⃒⃒⃒ (34)

In this case, (𝐺2(𝑉 ), d) is a geodesic space (in the sense of definition 5.19 from
[6]) and a Polish space.

Another useful norm on 𝐺2(𝑉 ), homogeneous but neither symmetric nor
sub-additive, is given by:

∀(𝑎, 𝑏) ∈ 𝐺2(𝑉 ), |||(𝑎, 𝑏)||| = max{|𝑎|𝑉 , |𝑏|1/2
𝑉 ⊗𝑉 }

Since all homogeneous norms are equivalent on 𝐺2(𝑉 ), this new norm gives us a
rather easy way to get an estimate of the Carnot-Caratheodory norm:
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Property 3.3. There exist two positive constants 𝑐1 and 𝑐2 such that

∀(𝑎, 𝑏) ∈ 𝐺2(𝑉 ), 𝑐1|||(𝑎, 𝑏)||| ≤ ||(𝑎, 𝑏)|| ≤ 𝑐2|||(𝑎, 𝑏)||| (35)

A convergence criterion for rough paths. We usually prove the conver-
gence of a sequence of rough paths using pointwise convergence plus a tightness
criterion. However, for some cases, we can also use the following result, deduced
from exercise 2.9 in [5]:

Proposition 3.2. Consider a sequence of rough paths (X(𝑁))𝑁 which takes
values in 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )) with 𝛼 < 1/2 such that we have the uniform
bound

sup
𝑁

E

⎡⎣sup
�̸�=𝑡

⃒⃒⃒⃒⃒⃒
X(𝑁)

𝑠,𝑡

⃒⃒⃒⃒⃒⃒
|𝑡 − 𝑠|1/2

⎤⎦ < ∞

and the pointwise convergence (in probability)

∀𝑡 ∈ [0, 1], X(𝑁)
0,𝑡 −→

𝑁→∞
X0,𝑡

for a certain rough path X in 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )).
Then X(𝑁) converges in probability to X in the 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )) topology

with 𝛼 < 1/2.

3.3 Embeddings
Definition and equivalence classes in the case of a finite-dimensional
vector space. In order to study the limit of a discrete process, we need to
properly define this convergence in the continuous space, where the limit process
lives. This is when embeddings come on the scene.

In the introduction, we have given a general definition 2.3 of an embedding
and a way of constructing an embedding for a given sequence of points (11).
The following property highlights the fact that the method is consistent with
the definition:

Definition 3.4. Let (𝑥𝑛)𝑛 be a sequence with values in a finite-dimensional
vector space 𝑉 . Consider a sequence (𝛽𝑛)𝑛 of continuous paths 𝛽𝑛 : [0, 1] → 𝑉
and such that 𝛽𝑛(0) = 𝑥𝑛 and 𝛽𝑛(1) = 𝑥𝑛+1. Let · be the operator of path
concatenation given by

∀𝛾 : [𝑠, 𝑡] → 𝑉, ∀𝛾′ : [𝑠′, 𝑡′] → 𝑉, ∀𝑢 ∈ [𝑠, 𝑡 + 𝑡′ − 𝑠′],

(𝛾 · 𝛾′)(𝑢) =
{︃

𝛾(𝑢) if 𝑢 ∈ [𝑠, 𝑡]
𝛾′(𝑢 − 𝑡 + 𝑠′) if 𝑢 ∈ [𝑡, 𝑡 + 𝑡′ − 𝑠′]

(36)

Then the sequence 𝜌𝑁 = 𝛽1 · . . . · 𝛽𝑁 is an embedding of (𝑥𝑛)𝑛.
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The most common embedding is the geodesic embedding, i.e. the one that
connects two consecutive points (in a geodesic space) by a curve minimizing
the distance between them (in R𝑑, it consists in simply connecting consecutive
points of (𝑥𝑛)𝑛 by straight lines). The advantage of this term is that it can be
applied to embeddings in 𝑉 as well as in 𝐺2(𝑉 ).

In some cases, we can study the convergence of the embedding thus obtained
by shrinking the space scale of the paths, i.e. by rescaling the embedding. We
then have the following definition:

Definition 3.5. Let 𝑉 be a finite-dimensional vector space. Consider a 𝑉 -valued
embedding 𝜌𝑁 = 𝛽1 · . . . · 𝛽𝑁 as defined in 3.4. Let 𝑓 : N → R+ be an increasing
function. The sequence 𝚤𝑁 = 𝑓(𝑁)𝜌𝑁 defines a rescaled embedding.

Even if, for a given discrete process, we have a large choice of embeddings,
we should be aware of the fact that the limit we get depends of the embedding
we adopt (some embeddings may not even admit a limit). For a sequence (𝑥𝑛)𝑛

with values in a vector space 𝑉 , we can define a way of dividing the embeddings
into equivalence classes by building rough paths out of our embeddings (when
possible) and considering the convergence in the rough path topology:

Definition 3.6. Let (𝑥𝑛)𝑛 be a sequence with values in a (finite-dimensional)
vector space 𝑉 . We say that two embeddings 𝜌 = (𝜌𝑁 )𝑁 and 𝜌′ = (𝜌′

𝑁 )𝑁 of (𝑥𝑛)𝑛

are equivalent (in the rough path sense) if there exists a function 𝑓 : N → R+ such
that the rough paths 𝚤𝑁𝚤𝑁𝚤𝑁 and 𝚤′

𝑁𝚤
′
𝑁𝚤
′
𝑁 corresponding to 𝚤𝑁 = 𝑓(𝑁)𝜌𝑁 and 𝚤′

𝑁 = 𝑓(𝑁)𝜌′
𝑁

respectively converge in distribution to the same limit 𝑙𝑙𝑙 in the rough path topology.

We shall now see how this definition is important for generalizing the conver-
gence of HMW in rough path topology.

From sequences in 𝐺2(𝑉 ) to rough paths. For 𝑛 ∈ N, we consider a
sequence (𝑔𝑘)𝑘 = (𝑔(1)

𝑘 , 𝑔
(2)
𝑘 )𝑘 in 𝐺2(𝑉 ). As in the case of a sequence in 𝑉 , we

can pass to the continuous framework by associating a set of embeddings to
(𝑔𝑘)𝑘 as follows:

Definition 3.7. Consider a sequence (𝑔𝑘)𝑘 ∈ 𝐺2(𝑉 )N. Consider a sequence of
rough paths (𝜌𝜌𝜌𝑁 )𝑁 such that 𝜌𝜌𝜌𝑁 : [0, 𝑁 ] → 𝐺2(𝑉 ) which satisfy

∀1 ≤ 𝑘 ≤ 𝑁, 𝜌𝜌𝜌𝑁 (𝑘 − 1)−1 ⊗ 𝜌𝜌𝜌𝑁 (𝑘) = 𝑔𝑘

We say that (𝜌𝜌𝜌𝑁 )𝑁 is an embedding for (𝑔𝑘)𝑘.

Just like in the case of a vector space 𝑉 , a particularly important embedding
is the geodesic embedding, which, in this case, consists in connecting the elements
of a sequence by geodesic curves minimizing the distance between them:

Definition 3.8 (the geodesic embedding in 𝐺2(𝑉 )). Consider a sequence (𝑔𝑘)𝑘 ∈
𝐺2(𝑉 )N. We call geodesic embedding of (𝑔𝑘)𝑘 the sequence of rough paths

𝜚𝜚𝜚𝑁 : [0, 𝑁 ] → 𝐺2(𝑉 )
𝑡 ↦→

⨂︀⌊𝑡⌋
𝑘=1 𝑔𝑘 ⊗ 𝛿𝑡−⌊𝑡⌋(𝑔⌊𝑡⌋+1)

(37)
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The universality of the geodesic embedding in 𝐺2(𝑉 ) for HMW. We
can now explain what we mean by the universality of the geodesic embedding.
The geodesic embedding on 𝐺2(𝑉 ) allows us to describe further beyond the
equivalence classes the convergence of different embeddings of a hidden Markov
walk. More precisely, the limit of all the embeddings that are equivalent in
the rough path sense is the same as the limit of the geodesic embedding of a
well-chosen sequence in 𝐺2(𝑉 ):
Proposition 3.3. Consider a process (𝑋𝑛)𝑛 on 𝑉 and suppose that there ex-
ists (𝜌𝑁 )𝑁 an embedding of (𝑋𝑛)𝑛 with bounded variation (constructed, for
example, as in lemma 2.1) and such that (𝑁−1/2𝜌𝑁 (𝑁𝑡))𝑡∈[0,1] converges in
law in 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )) topology for 𝛼 < 1/2. Then there exists a sequence
𝑔𝑛 = (𝑔(1)

𝑛 , 𝑔
(2)
𝑛 )𝑛 ∈ 𝐺2(𝑉 ) such that its geodesic embedding rescaled by the oper-

ator 𝛿𝑁−1/2 converges to the same limit in 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )) topology as any
embedding equivalent to 𝜌𝑁 in the sense of definition 3.6.
Proof. Denote by 𝜌𝜌𝜌𝑁 the geometric rough path corresponding to 𝜌𝑁 . Set

∀𝑘 ≥ 1, 𝑔𝑘 = 𝜌𝜌𝜌𝑘(𝑘 − 1)−1 ⊗ 𝜌𝜌𝜌𝑘(𝑘)

By definition of the embedding 3.4, this means that

∀𝑘 ≥ 1, ∀𝑁 ≥ 𝑘, 𝑔𝑘 = 𝜌𝜌𝜌𝑁 (𝑘 − 1)−1 ⊗ 𝜌𝜌𝜌𝑁 (𝑘)

The geodesic embedding for the sequence (𝑔𝑘)𝑘 is given by

∀𝑡 ∈ [0, 1], 𝜚𝜚𝜚𝑁 (𝑁𝑡) =
⌊𝑁𝑡⌋⨂︁
𝑘=1

𝑔𝑘 ⊗ 𝛿𝑁𝑡−⌊𝑁𝑡⌋(𝑔⌊𝑁𝑡⌋+1)

= 𝜌𝜌𝜌𝑁 (⌊𝑁𝑡⌋) ⊗ 𝛿𝑁𝑡−⌊𝑁𝑡⌋(𝜌𝜌𝜌𝑁 (⌊𝑁𝑡⌋)−1 ⊗ 𝜌𝜌𝜌𝑁 (⌊𝑁𝑡⌋ + 1))

it is now left to prove that (𝛿𝑁−1/2𝜚𝜚𝜚𝑁 (𝑁𝑡))𝑡∈[0,1] and (𝛿𝑁−1/2𝜌𝜌𝜌𝑁 (𝑁𝑡))𝑡∈[0,1]
converge towards the same limit in rough path topology.

As before, we denote by ||·|| the Carnot-Caratheodory norm defined in (33).
Since 𝜌𝑁 is 𝛼-Hölder, the equivalence of norms (35) tells us that there exists
𝑐 > 0 such that

∀𝑛 ≥ 1, ∀0 ≤ 𝑢 < 𝑣 ≤ 𝑁,
⃒⃒⃒⃒

𝜌𝑁𝜌𝑁𝜌𝑁 (𝑢)−1 ⊗ 𝜌𝑁𝜌𝑁𝜌𝑁 (𝑣)
⃒⃒⃒⃒

≤ 𝑐|𝑣 − 𝑢|𝛼

Consequently, we have

sup
𝑡∈[0,1]

⃒⃒⃒⃒
𝛿𝑁−1/2𝜌𝜌𝜌𝑁 (𝑁𝑡)−1 ⊗ 𝛿𝑁−1/2𝜚𝜚𝜚𝑁 (𝑁𝑡)

⃒⃒⃒⃒
≤ 𝑁−1/2

(︃
sup

𝑡∈[0,1]

⃒⃒⃒⃒
𝜌𝜌𝜌𝑁 (𝑁𝑡)−1 ⊗ 𝜌𝜌𝜌𝑁 (⌊𝑁𝑡⌋)

⃒⃒⃒⃒
+ sup

𝑡∈[0,1]

⃒⃒⃒⃒
𝛿𝑁𝑡−⌊𝑁𝑡⌋(𝜌𝜌𝜌𝑁 (⌊𝑁𝑡⌋)−1 ⊗ 𝜌𝜌𝜌𝑁 (⌊𝑁𝑡⌋ + 1))

⃒⃒⃒⃒)︃

≤ 𝑁−1/2

(︃
sup

𝑡∈[0,1]
(𝑁𝑡 − ⌊𝑁𝑡⌋)𝛼 + sup

𝑡∈[0,1]
(𝑁𝑡 − ⌊𝑁𝑡⌋)

)︃
−→

𝑁→∞
0
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which achieves the proof.

Proposition 3.3 shows the interest of theorem 2.3: rather than operating with
concatenation of continuous paths in each particular case, we can manipulate
a more general object in 𝐺2(𝑉 ). The advantage is a general result for an
equivalence class and a more convenient setting for computations.

Embeddings for differential and difference equations. As it has already
been mentioned, given a differential equation 𝑑𝑌𝑡 = 𝑓(𝑌𝑡)𝑑𝑋𝑡, its solution map
𝜉(𝑌0, 𝑋) = 𝑌 is not always continuous in uniform topology, which means that we
have to choose an appropriate sequence of continuous paths (𝑋(𝑛))𝑛 approaching
𝑋 in order for 𝜉(𝑌0, 𝑋(𝑛)) = 𝑌 (𝑛) to suitably approach 𝑌 . The rough paths
theory gives us a universal recipe for making this choice: a suitable sequence
(𝑋(𝑛))𝑛 is such that the corresponding sequence of rough paths (X(𝑛))𝑛 converges
to the rough path Y of 𝑌 in the rough path topology.

Even if the rough paths theory deals only with continuous objects, the above
statement has surprising and important consequences in the discrete setting. A
crucial difference is that, in the continuous case, the limit is given, and we have
to find a suitable sequence that convergence towards it. On the contrary, if we
have a sequence of difference equations, the limit is not known a priori and thus
will be function of the embedding. Otherwise said, in the first case we have a
given limit and several possible approximations, whereas in the second one we
have a given discretization and several possible limits.

Let us now see how this fact applies to the analysis of the discrete analogue
of differential equations, the difference equations. While solving these equations
directly can have useful applications, it is also of great interest to consider their
convergence after renormalization, i.e. the convergence of

Δ𝑌𝑛 = 𝜖

𝑑∑︁
𝑖=1

𝑓 (𝑖)(𝑌𝑛−1)(Δ𝑋𝑛)(𝑖) (38)

such that 𝜖 → 0. This is where that the embedding comes on the scene.

Property 3.4. Consider a difference equation as in (38) and suppose that (𝑋𝑛)𝑛

allows two different embeddings of finite variation 𝜌𝑁 and 𝜌′
𝑁 . Then, if 𝜌𝑁 and

𝜌′
𝑁 are equivalent in the rough path sense, they define the same limit equation in

the rough path topology (if it exists).

In particular, is means that, in the case of rough paths in 𝐺2(𝑉 ), the
difference between the corresponding limit equations will depend on the second-
level component of the rough path, which contains the area anomaly and the
square bracket of the process. Let us now see how this translates in the setting
of the classical stochastic calculus in the case where (𝑋𝑛)𝑛 is a hidden Markov
walk.

In our article [13], we have discussed the convergence of a difference equation
driven by the sum of the Bernoulli "turning" variables. In that example, we have
implicitly supposed a piecewise linear, geodesic embedding. What happens if
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we change it? The additional term we obtain at the limit by choosing a hidden
Markov walk as driving process is a drift consisting of two components. The first
one, featuring the constant 𝐾, depends on the square bracket of the process, i.e.
is a common term in stochastic calculus. The second one, containing the area
anomaly Γ, is a new term that can only be brought up by means of rough path
analysis. However, both of them depend on the embedding: the first one due to
the construction of the square bracket as a limit, the second one due to the fact
that different embeddings may generate different stochastic area anomalies at
the limit, as it has been mentioned earlier. Thus, the choice of an embedding
is a problem that has consequences on the classical stochastic calculus even
independently of the rough paths theory.

3.4 Getting back to theorem 2.3
Notations: For 𝑔 ∈ 𝐺2(𝑉 ), we denote by 𝑔(1) its first level component and by
𝑔(2) the second-level one. We denote by 𝛿 is the standard dilatation operator on
𝐺2(𝑉 ) (i.e. 𝛿𝜖(𝑔(1), 𝑔(2)) = (𝜖𝑔(1), 𝜖2𝑔(2))).

We start with two preliminary lemmas.

Lemma 3.1. Let (𝜉𝑛)𝑛 be a sequence of i.i.d. 𝐺2(𝑉 )-valued centred random
variables with bounded moments of all orders, i.e.

∀𝑝 ≥ 1, E
[︁
|𝜉(1)

𝑛 |𝑝
]︁

< ∞

Furthermore, let (𝑘𝑛)𝑛 be a sequence of N-valued r.v. such that

∙ 𝑘0 = 0 a.s.

∙ P (∀𝑛 ≥ 0, 𝑘𝑛+1 ∈ {𝑘𝑛, 𝑘𝑛 + 1}) = 1

∙ 𝑘𝑛

𝑛
→

𝑛→∞
𝑎 ∈ R*

+ a.s.

Set Ξ𝑛 =
⨂︀𝑘𝑛

𝑘=1 𝜉𝑘 and for 𝑡 ∈ [0, 1], Ξ𝑛
𝑡 = Ξ⌊𝑛𝑡⌋ ⊗ 𝛿𝑛𝑡−⌊𝑛𝑡⌋(𝜉𝑘⌊𝑛𝑡⌋+1). We then

have the following convergence:(︀
𝛿(𝑛𝜎2)−1/2(Ξ𝑛

𝑡 )
)︀

𝑡∈[0,1]
(𝑑)−→

𝑛→∞
(B𝑡)𝑡∈[0,1]

where (B𝑡)𝑡∈[0,1] is the enhanced Brownian motion, and 𝜎2 = E
[︁
|𝜉(1)

0 |2
]︁
.

Remark. The difference with the Donsker-type theorem from [2] is that the
sums of i.i.d. r.v. are a function of 𝑘𝑛 and not simply of 𝑛.

Proof. We will proceed by the classical method, proving first the convergence of
the finite-dimensional marginals of the process and then its tightness.

For the first part, we use the result from in [2], which states that a (renor-
malized) sum of i.i.d.r.v. in 𝐺2(𝑉 ) converges in law to the Brownian rough path.
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Since 𝑘𝑛/𝑛 converges a.s. and that, moreover, (𝑘𝑛)𝑛 is increasing a.s., a sum
of 𝑘𝑛 i.i.d.r.v. yields the same type of convergence, but with a change in time
depending on 𝑎. Otherwise said, for 𝑡 ∈ [0, 1], we have

𝛿(𝜎2𝑛)−1/2Ξ𝑛
𝑡 = 𝛿(𝑘𝑛/𝑛)1/2𝛿(𝜎2𝑘𝑛)−1/2Ξ𝑛

𝑡

(𝑑)−→
𝑛→∞

√
𝑎B𝑡

and we can then generalize this convergence to any finite-dimensional marginals
using the independence of the variables and Slutsky’s theorem (theorem 3.1 in
[1]) as in the classical Donsker theorem.

In order to prove the tightness of the process in 𝒞𝛼([0, 1], 𝐺2(𝑉 )) for 𝛼 < 1/2,
we can use the Kolmogorov’s criterion (as already exposed in the proof oh
theorem 1.1 from [13]), i.e. we have to prove that, for any 𝑝 > 1, there exists
𝑐 > 0 such that

E
[︁
𝑛−2𝑝d (Ξ𝑛

𝑡 , Ξ𝑛
𝑠 )4𝑝

]︁
≤ 𝑐|𝑡 − 𝑠|2𝑝

for any 𝑠, 𝑡 ∈ [0, 1]. The definition of d (·, ·) implies that

d (Ξ𝑛
𝑡 , Ξ𝑛

𝑠 ) =
⃒⃒⃒⃒⃒⃒

𝛿𝑛𝑠−⌊𝑛𝑠⌋𝜉−1
𝑘⌊𝑛𝑠⌋+1

⊗ Ξ−1
⌊𝑛𝑠⌋ ⊗ Ξ⌊𝑛𝑡⌋ ⊗ 𝛿𝑛𝑡−⌊𝑛𝑡⌋𝜉𝑘⌊𝑛𝑡⌋+1

⃒⃒⃒⃒⃒⃒
(39)

If 𝑠, 𝑡 ∈ [𝑘/𝑛, (𝑘 + 1)/𝑛[, then this expression becomes

d (Ξ𝑛
𝑡 , Ξ𝑛

𝑠 ) = 𝑛(𝑡 − 𝑠)
⃒⃒⃒⃒

𝜉𝑘⌊𝑛𝑠⌋+1

⃒⃒⃒⃒
which further on gives us

E
[︁
𝑛−2𝑝d (Ξ𝑛

𝑡 , Ξ𝑛
𝑠 )4𝑝

]︁
≤ 𝑀𝑝𝑛2𝑝|𝑡 − 𝑠|4𝑝 ≤ 𝑀𝑝|𝑡 − 𝑠|2𝑝

where 𝑀𝑝 is such that E
[︁
||𝜉0||4𝑝

]︁
≤ 𝑀𝑝.

If 𝑠 ∈ [𝑖/𝑛, (𝑖 + 1)/𝑛[ and 𝑡 ∈ [(𝑖 + 1)/𝑛, (𝑖 + 2)/𝑛[, the expression (39)
becomes:

d (Ξ𝑛
𝑡 , Ξ𝑛

𝑠 ) =
⃒⃒⃒⃒⃒⃒

𝛿𝑛𝑠−⌊𝑛𝑠⌋𝜉−1
𝑘⌊𝑛𝑠⌋+1

⊗ Ξ⌊𝑛𝑠⌋+1 ⊗ 𝛿𝑛𝑡−⌊𝑛𝑡⌋𝜉𝑘⌊𝑛𝑡⌋+1

⃒⃒⃒⃒⃒⃒
=
⃒⃒⃒⃒

𝛿1−(𝑛𝑠−⌊𝑛𝑠⌋)𝜉𝑘⌊𝑛𝑠⌋+1 ⊗ 𝛿𝑛𝑡−⌊𝑛𝑡⌋𝜉𝑘⌊𝑛𝑡⌋+1

⃒⃒⃒⃒
= (⌊𝑛𝑡⌋ − 𝑛𝑠)

⃒⃒⃒⃒
𝜉𝑘⌊𝑛𝑠⌋+1

⃒⃒⃒⃒
+ (𝑛𝑡 − ⌊𝑛𝑡⌋)

⃒⃒⃒⃒
𝜉𝑘⌊𝑛𝑡⌋+1

⃒⃒⃒⃒
≤ 2𝑛(𝑡 − 𝑠)(

⃒⃒⃒⃒
𝜉𝑘⌊𝑛𝑠⌋+1

⃒⃒⃒⃒
and we can conclude as in the first case.

Finally, for 𝑠 ∈ [𝑖/𝑛, (𝑖 + 1)/𝑛[ and 𝑡 ∈ [(𝑖 + 𝑙)/𝑛, (𝑖 + 𝑙 + 1)/𝑛[ with 𝑙 ≥ 2,
we use the properties of d (·, ·) to get

d (Ξ𝑛
𝑡 , Ξ𝑛

𝑠 )4𝑝 ≤ 24𝑝

⎛⎜⎝⃒⃒⃒⃒𝛿1−(𝑛𝑠−⌊𝑛𝑠⌋)𝜉𝑘⌊𝑛𝑠⌋+1

⃒⃒⃒⃒4𝑝 +

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒ 𝑘⌊𝑛𝑡⌋⨂︁
𝑗=𝑘⌊𝑛𝑠⌋+2

𝜉𝑗

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
4𝑝

+
⃒⃒⃒⃒

𝛿𝑛𝑡−⌊𝑛𝑡⌋𝜉𝑘⌊𝑛𝑡⌋+1

⃒⃒⃒⃒4𝑝

⎞⎟⎠
29



and consequently

E
[︁
𝑛−2𝑝d (Ξ𝑛

𝑡 , Ξ𝑛
𝑠 )4𝑝

]︁
≤ 24𝑝

⎛⎜⎝2E
[︁
𝑛−2𝑝 ||𝜉0||4𝑝

]︁
+ E

⎡⎢⎣
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝑛−2𝑝

𝑘⌊𝑛𝑡⌋⨂︁
𝑗=𝑘⌊𝑛𝑠⌋+2

𝜉𝑗

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
4𝑝
⎤⎥⎦
⎞⎟⎠

The first part of the right-hand side inequality can be bounded using the fact
that there exists 𝑀𝑝 > 0 such that E

[︁
𝑛−2𝑝 ||𝜉0||4𝑝

]︁
≤ 𝑀𝑝𝑛−2𝑝 ≤ 𝑀𝑝|𝑡 − 𝑠|2𝑝, as

|𝑡 − 𝑠| > 1/𝑛. We transform the second one using the independence of variables,
and then what is left to prove is that there exists 𝑐′ > 0 such that

E

⎡⎢⎣𝑛−2𝑝

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒ 𝑘⌊𝑛𝑡⌋⨂︁
𝑗=𝑘⌊𝑛𝑠⌋+2

𝜉𝑘

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
4𝑝
⎤⎥⎦ = E

⎡⎢⎣𝑛−2𝑝

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝑘⌊𝑛𝑡⌋−𝑘⌊𝑛𝑠⌋−1⨂︁

𝑗=1
𝜉𝑗

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
4𝑝
⎤⎥⎦

≤ 𝑐′|𝑡 − 𝑠|2𝑝

We use the result E
[︀⃒⃒⃒⃒⨂︀𝑚

𝑘=1 𝜉4𝑝
⃒⃒⃒⃒]︀

= 𝑂(𝑚2𝑝) proven in [2] and the inequality
𝑘𝑗+𝑙 − 𝑘𝑗 ≤ 𝑙 to get:

E

⎡⎢⎣
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝑘⌊𝑛𝑡⌋−𝑘⌊𝑛𝑠⌋−1⨂︁

𝑗=1
𝜉𝑗

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
4𝑝
⎤⎥⎦ = E

⎡⎢⎣
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝑘𝑖+𝑙−𝑘𝑖−1⨂︁

𝑗=1
𝜉𝑗

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
4𝑝
⎤⎥⎦

= 𝑂((𝑘𝑖+𝑙 − 𝑘𝑖)2𝑝) = 𝑂((𝑙 − 1)2𝑝) = 𝑂((𝑛|𝑡 − 𝑠|)2𝑝)

We thus get a uniform bound, which achieves the proof.

Lemma 3.2. Consider (𝑘𝑛)𝑛 a sequence of r.v. as the one in lemma 3.1. Let
((0, 𝐶𝑛))𝑛 be a sequence of uniformly bounded r.v. taking values in the centre of
the group 𝐺2(𝑉 ) and such that we have the following a.s. convergence for any
𝑡 ∈ [0, 1]:

𝛿𝑛−1/2

𝑘⌊𝑛𝑡⌋⨂︁
𝑖=1

(0, 𝐶𝑖) −→
𝑛→∞

(0, 𝑎𝑡𝑀) (40)

where 𝑀 is a deterministic matrix and 𝑎 ∈ R*
+ is as in lemma 3.1. Then we

have the following convergence in probability⎛⎝𝛿𝑛−1/2

𝑘⌊𝑛𝑡⌋⨂︁
𝑖=1

(0, 𝐶𝑖)

⎞⎠
𝑡∈[0,1]

−→
𝑛→∞

(0, 𝑎𝑡𝑀)𝑡∈[0,1]

in the rough path topology 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )) for 𝛼 < 1/2.

Proof. We will use here proposition 3.2. The pointwise convergence is here a
hypothesis of the lemma, so what is left to prove is the uniform bound for the
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Carnot-Caratheodory norm. On one hand, the upper bound for the Carnot-
Caratheodory norm deduced from the norm equivalence (35) implies that

∀(0, 𝑦) ∈ 𝐺2(𝑉 ), ||(0, 𝑦)|| ≤ |𝑦|1/2
𝑉 ⊗𝑉

Using the fact that the sequence (𝑘𝑛)𝑛 is such that, for 𝑚 ≤ 𝑛, 𝑘𝑛 − 𝑘𝑚 ≤ 𝑛 − 𝑚,
we obtain⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒ 𝑘⌊𝑛𝑡⌋⨂︁
𝑖=𝑘⌊𝑛𝑠⌋+1

(0, 𝐶𝑖)

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒(0,

𝑘⌊𝑛𝑡⌋∑︁
𝑖=𝑘⌊𝑛𝑠⌋+1

𝐶𝑖)

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
2

≤

⃒⃒⃒⃒
⃒⃒ 𝑘⌊𝑛𝑡⌋∑︁
𝑖=𝑘⌊𝑛𝑠⌋+1

𝐶𝑖

⃒⃒⃒⃒
⃒⃒
𝑉 ⊗𝑉

≤ (⌊𝑛𝑡⌋−⌊𝑛𝑠⌋)𝜉

where 𝜉 is such that for all 𝑖 ∈ N, |𝐶𝑖|𝑉 ⊗𝑉 ≤ 𝜉. We then have:

∀𝑛 ≥ 1, E

⎡⎣sup
�̸�=𝑡

⃒⃒⃒⃒⃒⃒
𝛿𝑛−1/2

⨂︀𝑘⌊𝑛𝑡⌋
𝑖=𝑘⌊𝑛𝑠⌋+1(0, 𝐶𝑖)

⃒⃒⃒⃒⃒⃒
|𝑡 − 𝑠|1/2

⎤⎦ ≤ E

[︃
sup
�̸�=𝑡

(⌊𝑛𝑡⌋ − ⌊𝑛𝑠⌋)1/2𝜉1/2

(𝑛|𝑡 − 𝑠|)1/2

]︃

which is uniformly bounded as the (0, 𝐶𝑖)s are supposed to be uniformly bounded.

We will now give the proof of theorem 2.3. Before doing so, we will give
a slightly different formulation of it and explain why we do so. As before, 𝐸
denotes a finite state space and 𝑉 a finite-dimensional vector space.

Theorem (theorem 2.3 for non-centred variables). Let (𝑅𝑛,X𝑛)𝑛 be a hidden
Markov walk on 𝐸 × 𝐺2(𝑉 ) that satisfies condition (13). As in property 3.1, we
can decompose

∀𝑛 ≥ 1, X𝑛 =
𝑛⨂︁

𝑘=1
𝐹𝑘

where 𝐹𝑘 = X−1
𝑘−1 ⊗ X𝑘.

Furthermore, set 𝛽 = E [𝑇1], 𝑣 = 𝛿𝛽−1

(︁
E
[︁
X(1)

𝑇1

]︁
, 0
)︁

, 𝐹𝑘 = 𝑣−1 ⊗ 𝐹𝑘 and
X̃𝑛 =

⨂︀𝑛
𝑘=1 𝐹𝑘.

In this case, the geodesic embedding of (X̃𝑛)𝑛 in 𝐺2(𝑉 ) will be

∀𝑡 ∈ [0, 1], X̃𝑛
𝑡 =

⌊𝑛𝑡⌋⨂︁
𝑘=1

𝐹𝑘 ⊗ 𝛿𝑛𝑡−⌊𝑛𝑡⌋𝐹⌊𝑛𝑡⌋+1

Let 𝜌 = 𝜌𝑁 𝑁 be an embedding encoded by (X̃𝑛)𝑛 as in proposition 3.3. If X(1)
𝑇1

is non-degenerate, we can suppose the covariance matrix of X(1)
𝑇1

is 𝐶𝐼𝑑 without
loss of generality and we have the following convergence in 𝒞𝛼([0, 1], 𝐺2(𝑉 )) for
𝛼 < 1/2: (︀

𝛿(𝑛𝐶𝛽−1)−1/2X̃𝑛
𝑡

)︀
𝑡∈[0,1]

(𝑑)−→
𝑛→∞

(︀
B𝑆𝑡𝑟𝑎𝑡

𝑡 ⊗ (0, 𝑡Γ𝜌)
)︀

𝑡∈[0,1]
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where B𝑆𝑡𝑟𝑎𝑡 is the Brownian motion enhanced with second-level Stratonovich in-
tegrals, i.e. as the second-level limit from theorem 2.3, and Γ𝜌 is the deterministic
antisymmetric matrix from theorem 2.3.

Alternatively, Γ𝜌 can be represented as

Γ𝜌 = E

⎡⎣1
2

∑︁
1≤𝑝<𝑚≤𝑇1

𝐹 (1)
𝑝 ⊗ 𝐹 (1)

𝑚 − 𝐹 (1)
𝑚 ⊗ 𝐹 (1)

𝑝

⎤⎦+ E

[︃
𝑇1∑︁

𝑝=1
𝑎𝑝

]︃
(41)

Remarks.

∙ (𝑅𝑛, X̃𝑛)𝑛 is a HMW in the sense of definition 2.2, and it satisfies the
conditions from theorem 2.3: in particular, E

[︁
X̃(1)

𝑇1

]︁
= 0. Thus, the interest

of the present version of theorem 2.3 resides in the fact that it allows to treat
the case of more general HMW on 𝐺2(𝑉 ) by recentring their excursions.

∙ If we compare the statement of the theorem 2.2 given in the introduction
to the present one, a fundamental difference is that the first one was more
analytic, whereas the present one is more algebraic. We have avoided
the "heavy" rough path formulation in the introduction as the rough path
setting appears only further in the paper (section 3.2).

∙ In particular, instead of presenting the first and second level as random
processes in the uniform topology (𝑆𝐵,𝑖(𝑡)), the limit is presented here as
the rough path process

(︀
B𝑆𝑡𝑟𝑎𝑡

𝑡 ⊗ (0, 𝑡Γ𝜌)
)︀

𝑡∈[0,1]. By doing so, we stress
the area anomaly obtained at the limit and given by (0, 𝑡Γ𝜌).

Proof. Since the 𝐹𝑘s are in 𝐺2(𝑉 ), the particular form of the elements from this
group stated in (5) gives the decomposition:

∀𝑘 ≥ 1, 𝐹
(2)
𝑘 = 1

2𝐹
(1)
𝑘 ⊗ 𝐹

(1)
𝑘 + 𝑎𝑘 (42)

where 𝑎𝑘 is the antisymmetric part of 𝐹
(2)
𝑘 , 𝐴𝑛𝑡𝑖(𝐹 (2)

𝑘 ).
Thus, using (42), we have the following decomposition for the 𝐹𝑘s:

∀𝑘 ≥ 1, 𝐹𝑘 = (𝐹 (1)
𝑘 ,

1
2𝐹

(1)
𝑘 ⊗ 𝐹

(1)
𝑘 ) ⊗ (0, 𝑎𝑘) (43)

where (𝐹 (1)
𝑘 ,

1
2𝐹

(1)
𝑘 ⊗ 𝐹

(1)
𝑘 ) ∈ 𝐺2(𝑉 ) is an element with a symmetric second

component and (0, 𝑎𝑘) ∈ 𝐺2(𝑉 ) is a "pure area" element (i.e. such that the first
component equal to zero and the second component antisymmetric) and is in
the centre of the group.

We denote by 𝜅(𝑛) the rank of the excursion to which 𝑛 belongs, i.e. the
unique integer such that 𝑇𝜅(𝑛) ≤ 𝑛 < 𝑇𝜅(𝑛)+1, where the 𝑇𝑖s are as defined
in (6). Based on the fact that the elements of type (0, 𝑎) ∈ 𝐺2(𝑉 ) are in the
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centre of the group and thus commute with all the others, we have the following
decomposition of X̃𝑛

𝑡 :

X̃𝑛
𝑡 =

⌊𝑛𝑡⌋⨂︁
𝑘=1

(︂
(𝐹 (1)

𝑘 ,
1
2𝐹

(1)
𝑘 ⊗ 𝐹

(1)
𝑘 ) ⊗ (0, 𝑎𝑘)

)︂⨂︁
𝛿𝑛𝑡−⌊𝑛𝑡⌋𝐹⌊𝑛𝑡⌋+1

=
𝜅(⌊𝑛𝑡)⌋⨂︁

𝑘=1

⎛⎝ 𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝐹 (1)
𝑝 ,

1
2

𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝐹 (1)
𝑝 ⊗ 𝐹 (1)

𝑝 +
∑︁

𝑇𝑘−1+1≤𝑝<𝑚≤𝑇𝑘

𝐹 (1)
𝑝 ⊗ 𝐹 (1)

𝑚

⎞⎠
⨂︁⎛⎝𝜅(⌊𝑛𝑡)⌋⨂︁

𝑘=1
(0,

𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝑎𝑝)

⎞⎠⨂︁⎛⎝ ⌊𝑛𝑡⌋⨂︁
𝑘=𝑇𝜅(⌊𝑛𝑡⌋)+1

𝐹𝑘

⎞⎠⨂︁ 𝛿𝑛𝑡−⌊𝑛𝑡⌋𝐹⌊𝑛𝑡⌋+1

=
𝜅(⌊𝑛𝑡)⌋⨂︁

𝑘=1

⎛⎝ 𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝐹 (1)
𝑝 ,

1
2(

𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝐹 (1)
𝑝 )⊗2

⎞⎠
⨂︁⎛⎝𝜅(⌊𝑛𝑡)⌋⨂︁

𝑘=1
(0,

1
2

∑︁
𝑇𝑘−1+1≤𝑝<𝑚≤𝑇𝑘

𝐹 (1)
𝑝 ⊗ 𝐹 (1)

𝑚 − 𝐹 (1)
𝑚 ⊗ 𝐹 (1)

𝑝 +
𝑇𝑘∑︁

𝑝=𝑇𝑘−1+1
𝑎𝑝)

⎞⎠
⨂︁⎛⎝ ⌊𝑛𝑡⌋⨂︁

𝑘=𝑇𝜅(⌊𝑛𝑡⌋)+1
𝐹𝑘

⎞⎠⨂︁ 𝛿𝑛𝑡−⌊𝑛𝑡⌋𝐹⌊𝑛𝑡⌋+1

= 𝒫𝑛
𝑡 ⊗ 𝒜𝑛

𝑡 ⊗ ℛ𝑛
𝑡

where

𝒫𝑛
𝑡 =

𝜅(⌊𝑛𝑡)⌋⨂︁
𝑘=1

⎛⎝ 𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝐹 (1)
𝑝 ,

1
2(

𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝐹 (1)
𝑝 )⊗2

⎞⎠
is the term that concatenates the excursions,

𝒜𝑛
𝑡 =

⨂︁⎛⎝𝜅(⌊𝑛𝑡)⌋⨂︁
𝑘=1

(0,
1
2

∑︁
𝑇𝑘−1+1≤𝑝<𝑚≤𝑇𝑘

𝐹 (1)
𝑝 ⊗ 𝐹 (1)

𝑚 − 𝐹 (1)
𝑚 ⊗ 𝐹 (1)

𝑝 +
𝑇𝑘∑︁

𝑝=𝑇𝑘−1+1
𝑎𝑝)

⎞⎠
is a "pure area" process that takes into consideration the antisymmetric part of
the 𝐹

(2)
𝑘 s, as well as the stochastic areas of the pseudo-excursions, and

ℛ𝑛
𝑡 =

⎛⎝ ⌊𝑛𝑡⌋⨂︁
𝑘=𝑇𝜅(⌊𝑛𝑡⌋)+1

𝐹𝑘

⎞⎠⨂︁ 𝛿𝑛𝑡−⌊𝑛𝑡⌋𝐹⌊𝑛𝑡⌋+1

is the rest left from the geodesic embedding.
We will now compute separately the limit of each of the three terms. Let us

first consider the term (𝛿𝑛−1/2𝒫𝑛
𝑡 )𝑡∈[0,1]. By construction, the variables⎛⎝ 𝑇𝑘∑︁

𝑝=𝑇𝑘−1

𝐹 (1)
𝑝 ,

1
2(

𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝐹 (1)
𝑝 )⊗2

⎞⎠
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are i.i.d. and centred. Moreover, 𝜅(⌊𝑛𝑡⌋)/𝑛 →
𝑛→∞

𝑡𝛽−1 a.s., since 𝜅(𝑛) is the
number of full excursions accomplished until time 𝑛. Thus, since the function 𝜅
satisfies the conditions of lemma 3.1, we can deduce that:

⎛⎝𝛿(𝑛𝐶𝛽−1)−1/2

𝜅(⌊𝑛𝑡⌋)⨂︁
𝑘=1

(
𝑇𝑘∑︁

𝑝=𝑇𝑘−1

𝐹 (1)
𝑝 ,

1
2(

𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝐹 (1)
𝑝 )⊗2)

⎞⎠
𝑡∈[0,1]

(𝑑)−→
𝑛→∞

(︀
B𝑆𝑡𝑟𝑎𝑡

𝑡

)︀
𝑡∈[0,1]

in the rough path topology.
We now have to study the convergence of (𝛿𝑛−1/2𝒜𝑛

𝑡 )𝑡∈[0,1]. We notice that
the two tensor products containing 𝜅(⌊𝑛𝑡⌋) terms are "sums" of i.i.d.r.v., since
each term depends entirely on a different excursion. The law of large numbers
thus applies to both of them, and we get that, a.s., for 𝑡 ∈ [0, 1] fixed:

𝛿(𝑛𝛽−1)−1/2

𝜅(⌊𝑛𝑡⌋)⨂︁
𝑘=1

⎛⎝0,
1
2

∑︁
𝑇𝑘−1+1≤𝑝<𝑚≤𝑇𝑘

𝐹 (1)
𝑝 ⊗ 𝐹 (1)

𝑚 − 𝐹 (1)
𝑚 ⊗ 𝐹 (1)

𝑝

⎞⎠ →
𝑛→∞

(0, 𝑡Γ)

where

Γ = E

⎡⎣1
2

∑︁
1≤𝑝<𝑚≤𝑇1

𝐹 (1)
𝑝 ⊗ 𝐹 (1)

𝑚 − 𝐹 (1)
𝑚 ⊗ 𝐹 (1)

𝑝

⎤⎦
is the area anomaly we recover.

For the second part of the sum, we have, for 𝑡 ∈ [0, 1] fixed:

𝛿(𝑛𝛽−1)−1/2

𝜅(⌊𝑛𝑡⌋)⨂︁
𝑘=1

(0,

𝑇𝑘∑︁
𝑝=𝑇𝑘−1+1

𝑎𝑝) →
𝑛→∞

(0, 𝑡Γ0)

where

Γ0 = E

[︃
𝑇1∑︁

𝑝=1
𝑎𝑝

]︃
is generated by the antisymmetric part of the second-level components of the
𝐹𝑘s.

Since 𝜅 is as the function from lemma 3.2, the functions 𝐹𝑝 are a.s. uniformly
bounded under condition (13) and 𝑇1 has finite moments of all order, the
conditions of lemma 3.2 are satisfied, and we deduce the following convergence
in probability in rough path topology:

(𝛿𝑛−1/2𝒜𝑛
𝑡 )𝑡∈[0,1] −→

𝑛→∞
(0, 𝑡𝛽−1Γ𝜌)𝑡∈[0,1] (44)

where Γ𝜌 = Γ + Γ0.
We have the residue (𝛿𝑛−1/2ℛ𝑛

𝑡 )𝑡∈[0,1] left to deal with. Its first part contains
⌊𝑛𝑡⌋ − 𝑇𝜅(⌊𝑛𝑡⌋) ≤ (𝑇𝜅(⌊𝑛𝑡⌋)+1 − 1) − 𝑇𝜅(⌊𝑛𝑡⌋) terms, and

⃒⃒⃒⃒
𝛿𝑛𝑡−⌊𝑛𝑡⌋𝐹⌊𝑛𝑡⌋+1

⃒⃒⃒⃒
≤
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⃒⃒⃒⃒
𝐹⌊𝑛𝑡⌋+1

⃒⃒⃒⃒
adds one more term. Moreover, since by (13) the 𝐹𝑘s are uniformly

bounded, there exists 𝐾 > 0 such that sup
𝑘

⃒⃒⃒⃒
𝐹𝑘

⃒⃒⃒⃒
< 𝐾. Therefore, we get:

E

[︃
sup
�̸�=𝑡

⃒⃒⃒⃒
𝛿𝑛−1/2((ℛ𝑛

𝑠 )−1 ⊗ ℛ𝑛
𝑡 )
⃒⃒⃒⃒

|𝑡 − 𝑠|1/2

]︃
≤ 𝐾E

[︃
sup
�̸�=𝑡

𝑇𝜅(⌊𝑛𝑡⌋) − 𝑇𝜅(⌊𝑛𝑠⌋) + ⌊𝑛𝑡⌋ − ⌊𝑛𝑠⌋
(𝑛|𝑡 − 𝑠|)1/2

]︃

This quantity is bounded since ⌊𝑛𝑡⌋ = ⌊𝑛𝑠⌋ for 𝑠, 𝑡 ∈ [𝑖/𝑛, (𝑖 + 1)/𝑛] for any
𝑖 = 1, . . . , 𝑛 − 1. We also have the convergence in probability

∀𝑡 ∈ [0, 1], 𝛿𝑛−1/2(ℛ𝑛
𝑡 ) −→

𝑛→∞
0

We can thus use once again proposition 3.2 to conclude to the following conver-
gence in probability in rough path topology:

(𝛿𝑛−1/2(ℛ𝑛
𝑡 ))𝑡∈[0,1] −→

𝑛→∞
0

Finally, putting altogether the convergences of (𝛿𝑛−1/2𝒫𝑛
𝑡 )𝑡∈[0,1], of (𝛿𝑛−1/2𝒜𝑛

𝑡 )𝑡∈[0,1]
and of (𝛿𝑛−1/2ℛ𝑛

𝑡 )𝑡∈[0,1], our result follows from Slutsky’s theorem:(︀
𝛿(𝑛𝐶𝛽−1)−1/2𝒫𝑛

𝑡 ⊗ 𝒜𝑛
𝑡 ⊗ ℛ𝑛

𝑡

)︀
𝑡∈[0,1]

(𝑑)−→
𝑛→∞

(︀
B𝑆𝑡𝑟𝑎𝑡

𝑡 ⊗ (0, 𝑡Γ𝜌)
)︀

𝑡∈[0,1]

4 Iterated structures behind discrete time and
discrete space Markov chains.

In this section we study more thoroughly the algebraic properties of HMW
through the corresponding iterated occupation times.

4.1 Shuffle and quasi-shuffle products.
The definitions and properties from this section are mainly inspired from [9].

Definitions.

Definition 4.1 (the quasi-shuffle product). Let (𝐴, ·) be an algebra, 𝑎, 𝑏 ∈ 𝐴,
and 𝑥, 𝑦 obtained by concatenation of a finite number of elements from 𝐴. Then
the quasi-shuffle product * is defined recursively by:

𝑎𝑥 * 𝑏𝑦 = [𝑎, 𝑏](𝑥 * 𝑦) + 𝑎(𝑥 * 𝑏𝑦) + 𝑏(𝑎𝑥 * 𝑦)

where [·, ·] is a commutative operation on 𝐴.

The shuffle product can be viewed as a particular case of the quasi-shuffle
product. More specifically, it is the case when 𝑎 ·𝑏 = 0 for any 𝑎, 𝑏 ∈ 𝑅. Contrary
to the shuffle product, the quasi-shuffle product is not always commutative.
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Definition 4.2 (shuffle product). Let (𝐴, ·) be an algebra, 𝑎, 𝑏 ∈ 𝐴, and 𝑥, 𝑦
obtained by concatenation of a finite number of elements from 𝐴. Then the
shuffle product is defined recursively by:

𝑎𝑥 𝑏𝑦 = 𝑎(𝑥 𝑏𝑦) + 𝑏(𝑎𝑥 𝑦)

A more informal way of putting it is as follows:

Definition 4.3 (and corollary of 4.2). Consider the set of permutation Σ𝑚,𝑛 =
{𝜎 ∈ Σ𝑚+𝑛 : 𝜎(1) < . . . < 𝜎(𝑚), 𝜎(𝑚 + 1) < . . . < 𝜎(𝑚 + 𝑛)}. For 𝑥 = 𝑥1 . . . 𝑥𝑚

and 𝑦 = 𝑦1 . . . 𝑦𝑛 with 𝑥𝑖, 𝑦𝑗 ∈ 𝐴, the shuffle product of 𝑥 and 𝑦 is given by the
sum of images of the concatenated word 𝑎𝑏 under all the permutations of 𝑆𝑚,𝑛:
𝑥 𝑦 =

∑︀
𝜎∈Σ𝑚,𝑛

𝜎(𝑥𝑦) (for example, 𝑎𝑏 𝑐 = 𝑎𝑏𝑐 + 𝑎𝑐𝑏 + 𝑐𝑎𝑏).

Quasi-shuffle structure of iterated sums. One of the main example of sets
we can endow with a shuffle product is the set of iterated integrals on a vector
space 𝑉 . Denote by en

𝑖1,...,𝑖𝑛 = 𝑒𝑖1 ⊗ . . . ⊗ 𝑒𝑖𝑛
and em

𝑗1,...,𝑗𝑚 = 𝑒𝑗1 ⊗ . . . ⊗ 𝑒𝑗𝑚

where the 𝑒𝑘s are vectors from the canonical basis of 𝑉 . We then define, for an
integrable path 𝑦 in 𝑉 ,

𝑆𝑦,𝑛;𝑖1,...,𝑖𝑛
(𝑡) =< en

𝑖1,...,𝑖𝑛 , 𝑆𝑦,𝑛(𝑡) >

=
∫︁

0<𝑡1<...<𝑡𝑛<𝑡

𝑑𝑦𝑖1
𝑡1

. . . 𝑑𝑦𝑖𝑛
𝑡𝑛

and idem for em
𝑗1,...,𝑗𝑚 , with < ·, · > the induced scalar product on 𝑉 ⊗𝑙. The

shuffle product of two iterated integrals depending both on the same path 𝑦 is
then given by:

𝑆𝑦,𝑛;𝑖1,...,𝑖𝑛
(𝑡)𝑆𝑦,𝑚;𝑗1,...,𝑗𝑚

(𝑡) = 𝑆𝑦,𝑛+𝑚;(𝑖1,...,𝑖𝑛) (𝑗1,...,𝑗𝑚)(𝑡) (45)

showing that the shuffle product of two iterated integrals is a linear combination
of iterated integrals.

If we now consider a sequence 𝑥 = (𝑥𝑛)𝑛 in 𝑉 , the components of the iterated
sum 𝑆𝑥,𝑛(𝑁) from (24) given by

𝑆𝑥,𝑛;𝑖1,...,𝑖𝑛
(𝑁) =< en

𝑖1,...,𝑖𝑛 , 𝑆𝑥,𝑛(𝑁) >

=
∑︁

1≤𝑘1<...<𝑘𝑛≤𝑁

𝑥𝑖1
𝑘1

. . . 𝑥𝑖𝑛

𝑘𝑛
(46)

are discrete versions of (45).
However, the product of two elements of this kind is not a shuffle product

anymore, as shown below.

𝑆𝑥,𝑛;𝑖1,...,𝑖𝑛
(𝑁)𝑆𝑥,𝑚;𝑗1,...,𝑗𝑚

(𝑁) = 𝑆𝑥,𝑛+𝑚;(𝑖1,...,𝑖𝑛) (𝑗1,...,𝑗𝑚)(𝑁) (47)
+ 𝑟𝑥,𝑛,𝑚;𝑖1,...,𝑖𝑛;𝑗1,...,𝑗𝑚

(𝑁)

where 𝑟𝑥,𝑛,𝑚;𝑖1,...,𝑖𝑛;𝑗1,...,𝑗𝑚
(𝑁) is a rest that comes from the fact that, when

multiplying two iterated sums, we get sets of indices that are not necessarily
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strictly ordered. Moreover, the result of the multiplication can not be in the form
of a function 𝑆 so we can not apply the new product exclusively to en

𝑖1,...,𝑖𝑛 and
em

𝑗1,...,𝑗𝑚 . We thus need a more general product, that would better keep track
of this rest. The product of two iterated sums of the type 𝑆𝑥,𝑛;𝑖1,...,𝑖𝑛

(𝑁) is a
quasi-shuffle product, as already stated in property 2.2.

4.2 From geometric to non-geometric rough paths through
hidden Markov walks

4.2.1 Geometric rough paths and shuffle products.

We know that a piecewise linear embedding of (𝑋𝑛)𝑛 is canonically represented
by a (geometric) rough path as follows:

Property 4.1. Denote by (𝑋(𝑁)
𝑡 )𝑡 a smooth embedding of (𝑋𝑛)𝑛. The canonical

rough path in 𝐺2(𝑉 ) corresponding to this embedding is given by the 2-step
signature

∀𝑡 ∈ [0, 1], 𝑆2(𝑋(𝑁))0,𝑡 = (𝑋(𝑁)
𝑡 ,

∫︁
0<𝑠1<𝑠2<𝑡

𝑑𝑋(𝑁)
𝑠1

⊗ 𝑑𝑋(𝑁)
𝑠2

)

The path 𝑡 ↦→ 𝑆2(𝑋(𝑁))0,𝑡 is in 𝒞1−𝑣𝑎𝑟([0, 1], 𝐺2(𝑉 )).
We thus obtain a sequence of geometric rough paths and can study the con-

vergence in law of (𝛿𝑁−1/2𝑆2(𝑋(𝑁))0,𝑡)𝑡 in the topology of 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 ))
for 𝛼 < 1/2. The limit (if it exists) will be a geometric 𝛼-Hölder rough path, i.e.
an element of 𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )), for 𝛼 < 1/2.

Since 𝐺2(𝑉 ) is the space in which geometric rough paths take values, an
element (𝑔(1), 𝑔(2)) ∈ 𝐺2(𝑉 ) needs to satisfy the shuffle product relation in the
sense of the following lemma.

Property 4.2. An element (𝑔(1), 𝑔(2)) ∈ 𝑇
(2)
1 (𝑉 ) is in 𝐺2(𝑉 ) if and only if it

satisfies the relation

< 𝑔(1), 𝑒𝑖 >< 𝑔(1), 𝑒𝑗 >=< 𝑔(2), 𝑒𝑖 𝑒𝑗 > (48)

where 𝑒𝑖, 𝑒𝑗 are in the canonical basis of 𝑉 and 𝑒𝑖 𝑒𝑗 = 𝑒𝑖 ⊗ 𝑒𝑗 + 𝑒𝑗 ⊗ 𝑒𝑖.
Proof. We can decompose the second component into a symmetric and an
antisymmetric part :

𝑔(2) = Sym(𝑔(2)) + Antisym(𝑔(2))

On one hand, we have

< Sym(𝑔(2)), 𝑒𝑖 𝑒𝑗 > = 1
2 < 𝑔(1) ⊗ 𝑔(1), 𝑒𝑖 ⊗ 𝑒𝑗 + 𝑒𝑗 ⊗ 𝑒𝑖 >

< 𝑔(1), 𝑒𝑖 >< 𝑔(1), 𝑒𝑗 >

On the other hand, for the antisymmetric term we get

< Antisym(𝑔(2)), 𝑒𝑖 𝑒𝑗 >=< Antisym(𝑔(2)), 𝑒𝑖 ⊗ 𝑒𝑗 > − < Antisym(𝑔(2)), 𝑒𝑗 ⊗ 𝑒𝑖 >= 0

which achieves the proof.
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Remark. The condition (48) is a version of the relation which is part of the
abstract definition of geometric rough paths given in [7].

4.2.2 A discrete construction for non-geometric rough paths.

We now present a way of constructing non-geometric rough paths out of a hidden
Markov walk (𝑅𝑛, 𝑋𝑛)𝑛. Instead of first constructing a continuous path (𝑋(𝑁)

𝑡 )𝑡

in 𝑉 and then associate a rough path to it, we will first construct a sequence
(Y𝑛)𝑛 in 𝑇

(2)
1 (𝑉 ) and then associate an embedding to it.

Let us consider the sequence (Y)𝑛 as in (17), i.e.

Y𝑛 =

⎛⎝𝑋𝑛,
∑︁

1≤𝑘1<𝑘2≤𝑛

𝐹𝑘1 ⊗ 𝐹𝑘2

⎞⎠ ∈ 𝑇
(2)
1 (𝑉 )

and explain how connect the non-geometric nature of the corresponding rough
path to the quasi-shuffle product.

In the case of the sequence (Y𝑘)𝑘, we have:

< 𝑋𝑛, 𝑒𝑖 >< 𝑋𝑛, 𝑒𝑗 > =
𝑛∑︁

𝑘1,𝑘2=1
𝐹

(𝑖)
𝑘1

𝐹
(𝑗)
𝑘2

=
∑︁

1≤𝑘1<𝑘2≤𝑛

𝐹
(𝑖)
𝑘1

𝐹
(𝑗)
𝑘2

+
∑︁

1≤𝑘2<𝑘1≤𝑛

𝐹
(𝑖)
𝑘1

𝐹
(𝑗)
𝑘2

+
𝑛∑︁

𝑘=1
𝐹

(𝑖)
𝑘 𝐹

(𝑗)
𝑘

(49)

=<
∑︁

1≤𝑘1<𝑘2≤𝑛

𝐹𝑘1 ⊗ 𝐹𝑘2 , 𝑒𝑖 𝑒𝑗 > + <

𝑛∑︁
𝑘=1

𝐹 ⊗2
𝑘 , 𝑒𝑖 ⊗ 𝑒𝑗 >

(50)

=<
∑︁

1≤𝑘1<𝑘2≤𝑛

𝐹𝑘1 ⊗ 𝐹𝑘2 + 1
2

𝑛∑︁
𝑘=1

𝐹 ⊗2
𝑘 , 𝑒𝑖 𝑒𝑗 >

Once again, we see that (50) does not coincide with (48). Moreover, if we identify
𝑒𝑖 as corresponding to the index 𝑘1 and 𝑒𝑗 as corresponding to the index 𝑘2,
the line (49) in the computation above can be identified with the quasi-shuffle
product: the sums over {𝑘1 < 𝑘2} ∪ {𝑘2 < 𝑘1} give the shuffle product part,
whereas the last sum over {𝑘1 = 𝑘2} gives the quasi-shuffle rest.

From all the above, we can draw the following conclusion:

Property 4.3. The sequence (Y𝑛)𝑛 takes values in 𝑇
(2)
1 (𝑉 ) ∖ 𝐺2(𝑉 ). In par-

ticular, any embedding (Y(𝑁)
𝑡 )𝑡 of (Y𝑛)𝑛, no matter how smooth, will be a

non-geometric rough path.

4.3 Getting back to proposition 2.1.
We want to study the convergence of (17) and the convergence of the rough
paths (Y(𝑁)

𝑡 )𝑡∈[0,1] which are obtained from the sequence (Y𝑛)𝑛 by a continuous
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embedding in the sense of definition 3.4.
The first thing we need to notice is that the sequence (Y𝑛)𝑛 is not in 𝐺2(𝑉 ).

In the present case, we have

Sym

⎛⎝ ∑︁
1≤𝑘1<𝑘2≤𝑛

𝐹𝑘1 ⊗ 𝐹𝑘2

⎞⎠ = 1
2

⎛⎝ ∑︁
1≤𝑘1<𝑘2≤𝑛

𝐹𝑘1 ⊗ 𝐹𝑘2 +
∑︁

1≤𝑘1<𝑘2≤𝑛

𝐹𝑘2 ⊗ 𝐹𝑘1

⎞⎠
= 1

2𝑋𝑛 ⊗ 𝑋𝑛 − 1
2

𝑛∑︁
𝑘=1

𝐹 ⊗2
𝑘

and thus we have an extra term that does not depend on the first level 𝑋𝑛.
In order to study the convergence of the non-geometric rough paths (Y(𝑁)

𝑡 )𝑡

associated to (Y𝑛)𝑛 in property 4.3, we need to answer the following questions:

∙ What embedding do we choose for (Y𝑛)𝑛?

∙ What is the topology to consider when studying the convergence?

∙ What will be the nature of the limit rough path (if it exists)?

We start with a few preliminary results. First, we want to show that property
4.1 can be used to construct a suitable embedding for (X𝑛)𝑛. This is a consequence
of the following lemma:

Lemma 4.1. Choose (𝑋(𝑁)
𝑡 )𝑡 to be the geodesic embedding of (𝑋𝑛)𝑛 and suppose

𝑋0 = 0 a.s. For all 𝑁 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑛, we have:

𝑆2(𝑋(𝑁))0,𝑖/𝑁 = Y𝑖 ⊗

(︃
0,

𝑖∑︁
𝑘=1

𝐹 ⊗2
𝑘

)︃

Proof. For any 𝑁 ≥ 1 and 𝑡 ∈ [0, 1], we can decompose the second component
of 𝑆2(𝑋(𝑁))0,𝑡 into a symmetric and an antisymmetric part as follows:∫︁

0<𝑠1<𝑠2<𝑡

𝑑𝑋(𝑁)
𝑠1

⊗ 𝑑𝑋(𝑁)
𝑠2

= 1
2

∫︁
0<𝑠1<𝑠2<𝑡

𝑑𝑋(𝑁)
𝑠1

⊗ 𝑑𝑋(𝑁)
𝑠2

+ 𝑑𝑋(𝑁)
𝑠2

⊗ 𝑑𝑋(𝑁)
𝑠1

+ 1
2

∫︁
0<𝑠1<𝑠2<𝑡

𝑑𝑋(𝑁)
𝑠1

⊗ 𝑑𝑋(𝑁)
𝑠2

− 𝑑𝑋(𝑁)
𝑠2

⊗ 𝑑𝑋(𝑁)
𝑠1

Since (𝑋(𝑁)
𝑡 )𝑡 is piecewise linear, the symmetric part becomes

1
2

∫︁
0<𝑠1<𝑠2<𝑡

𝑑𝑋(𝑁)
𝑠1

⊗ 𝑑𝑋(𝑁)
𝑠2

+ 𝑑𝑋(𝑁)
𝑠2

⊗ 𝑑𝑋(𝑁)
𝑠1

= (𝑋(𝑁)
𝑡 )⊗2

The antisymmetric part corresponds to the stochastic area of the process (𝑋(𝑁)
𝑡 )𝑡,

𝐴𝑖/𝑁 (𝑋(𝑁)), which, for a piecewise linear process, can be expressed by second
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iterated sums, i.e.

∀𝑖 ∈ {1, . . . , 𝑁}, 𝐴𝑖(𝑋) :=𝐴𝑖/𝑁 (𝑋(𝑁))

= 1
2

∫︁
0<𝑠1<𝑠2<𝑖/𝑁

𝑑𝑋(𝑁)
𝑠1

⊗ 𝑑𝑋(𝑁)
𝑠2

− 𝑑𝑋(𝑁)
𝑠2

⊗ 𝑑𝑋(𝑁)
𝑠1

= 1
2

∑︁
1≤𝑘1<𝑘2≤𝑖

𝐹𝑘1 ⊗ 𝐹𝑘2 − 𝐹𝑘2 ⊗ 𝐹𝑘1

Since we have

∀𝑖 ∈ {1, . . . , 𝑁},
∑︁

1≤𝑘1<𝑘2≤𝑖

𝐹𝑘1 ⊗ 𝐹𝑘2 + 𝐹𝑘2 ⊗ 𝐹𝑘1 = (𝑋(𝑁)
𝑖/𝑁 )⊗2 −

𝑖∑︁
𝑘=1

𝐹 ⊗2
𝑘

it is straightforward to show

∑︁
1≤𝑘1<𝑘2≤𝑖

𝐹𝑘1 ⊗ 𝐹𝑘2 =
∫︁

0<𝑠1<𝑠2<𝑖/𝑁

𝑑𝑋(𝑁)
𝑠1

⊗ 𝑑𝑋(𝑁)
𝑠2

−
𝑖∑︁

𝑘=1
𝐹 ⊗2

𝑘 (51)

We thus conclude that:

∀𝑁 ≥ 1, ∀1 ≤ 𝑖 ≤ 𝑁, 𝑆2(𝑋(𝑁))0,𝑖/𝑁 =

⎛⎝𝑋𝑖,
∑︁

1≤𝑘1<𝑘2≤𝑖

𝐹𝑘1 ⊗ 𝐹𝑘2

⎞⎠⊗

(︃
0,

𝑖∑︁
𝑘=1

𝐹 ⊗2
𝑘

)︃

We can now give an answer to the two questions concerning the choice of the
embedding and of the topology:

Lemma 4.2. Choose (𝑋(𝑁)
𝑡 )𝑡 to be the geodesic embedding of (𝑋𝑛)𝑛 and suppose

𝑋0 = 0 a.s. Consider the geodesic embedding of 𝑍𝑘 =
∑︀𝑘

𝑗=1 𝐹 ⊗2
𝑗 given by

∀𝑁 ∈ N*, ∀𝑡 ∈ [0, 1], 𝑍
(𝑁)
𝑡 =

⌊𝑁𝑡⌋∑︁
𝑘=1

𝐹 ⊗2
𝑘 + (𝑁𝑡 − ⌊𝑁𝑡⌋)𝐹 ⊗2

⌊𝑁𝑡⌋+1

and set

∀𝑁 ∈ N*, ∀𝑡 ∈ [0, 1], Y(𝑁)
𝑡 = (0, 𝑍

(𝑁)
𝑡 )−1 ⊗ 𝑆2(𝑋(𝑁))0,𝑡

Then 𝑡 ↦→ Y(𝑁)
𝑡 is an embedding for (Y𝑛)𝑛. Furthermore, 𝑡 ↦→ Y(𝑁)

𝑡 is in
𝒞1−𝑣𝑎𝑟([0, 1], 𝑇

(2)
1 (𝑉 )) and is a non-geometric rough path.

Proof. The path 𝑡 ↦→ Y(𝑁)
𝑡 is constructed by concatenation of two rough paths,

(𝑆2(𝑋(𝑁))0,𝑡)𝑡 being a smooth rough path and (0, 𝑍
(𝑁)
𝑡 )𝑡 a smooth path in

𝑇
(2)
1 (𝑉 ), which implies that 𝑡 ↦→ Y(𝑁)

𝑡 is an element of 𝒞1−𝑣𝑎𝑟([0, 1], 𝑇
(2)
1 (𝑉 )).

Moreover, property 4.3 implies that 𝑡 ↦→ Y(𝑁)
𝑡 is a non-geometric rough path.
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The fact that 𝑡 ↦→ Y(𝑁)
𝑡 is an embedding for (X𝑛)𝑛 follows from lemma 4.1,

which tells us that:

∀𝑁 ≥ 1, ∀1 ≤ 𝑖 ≤ 𝑁, Y(𝑁)
𝑖/𝑁 = (0, 𝑌

(𝑁)
𝑖/𝑁 )−1 ⊗ 𝑆2(𝑋(𝑁))0,𝑖/𝑁

Remark. Another way of expressing 𝑡 ↦→ Y(𝑁)
𝑡 is through the rough path

bracket which concentrates the symmetric part of the second-level component
(see definition 5.5 from [5]), and implies:

∀𝑡 ∈ [0, 1], Y(𝑁)
𝑡 = (𝑋(𝑁)

𝑡 , 𝐴𝑡(𝑋(𝑁))) ⊗ (0,
1
2 [Y(𝑁)]𝑡)

where
∀𝑡 ∈ [0, 1], [Y(𝑁)]𝑡 = 𝑋

(𝑁)
𝑡 ⊗ 𝑋

(𝑁)
𝑡 − 𝑍

(𝑁)
𝑡

and 𝑡 ↦→ 𝐴𝑡(𝑋(𝑁)) is, as before, the stochastic area of 𝑡 ↦→ 𝑋
(𝑁)
𝑡 .

We can now proceed to the main proof of proposition 2.1.

Proof. Theorem 2.1 implies the following convergence in law in the space
𝒞𝛼−Höl([0, 1], 𝐺2(𝑉 )) for 𝛼 < 1/2:(︁

𝛿(𝑁𝐶𝛽−1)−1/2𝑆2(𝑋(𝑁))0,𝑡

)︁
𝑡∈[0,1]

−→
𝑁→∞

(︀
B𝑆𝑡𝑟𝑎𝑡

𝑡 ⊗ (0, Γ𝑡)
)︀

𝑡∈[0,1] (52)

where Γ is the area anomaly from 2.1.
Next, we apply the decomposition in pseudo-excursions to 𝑍𝑛 i.e.

∀𝑛 ≥ 1, 𝑍𝑛 =
𝜅(𝑛)−1∑︁

𝑗=0

𝑇𝑗+1∑︁
𝑖=𝑇𝑗+1

𝐹 ⊗2
𝑖 +

𝑛∑︁
𝑖=𝑇𝜅(𝑛)+1

𝐹 ⊗2
𝑖

and, by the law of large numbers, we deduce the convergence of the finite-
dimensional marginals

∀𝑡 ∈ [0, 1], 𝛿(𝑁𝐶𝛽−1)−1/2(0, 𝑍
(𝑁)
𝑡 ) −→

𝑁→∞

(︃
0, 𝑡𝐶−1E

[︃
𝑇1∑︁

𝑖=1
𝐹 ⊗2

𝑖

]︃)︃

We can now prove the tightness of the sequence of processes (0, 𝑍
(𝑁)
𝑡 )𝑡 in

𝒞𝛼−Höl([0, 1], 𝑇
(2)
1 (𝑉 )) for 𝛼 < 1/2, by using a version of the Kolmogorov criterion.

Theorem 3.10 from [5] implies that it is enough to prove

∃𝐾 > 0, ∀𝑠, 𝑡 ∈ [0, 1], ∀𝑁 ≥ 1, 𝑁−1E
[︁
|𝑍(𝑁)

𝑠,𝑡 |𝑉 ⊗𝑉

]︁
≤ 𝐾|𝑡 − 𝑠|

We use the fact that the 𝐹𝑘s are uniformly bounded:

𝑁−1E
[︁
|𝑍(𝑁)

𝑠,𝑡 |𝑉 ⊗𝑉

]︁
= 𝑁−1E

⎡⎣⃒⃒⃒⃒⃒⃒ ⌊𝑁𝑡⌋∑︁
𝑖=⌊𝑁𝑠⌋+1

𝐹 ⊗2
𝑖

⃒⃒⃒⃒
⃒⃒
𝑉 ⊗𝑉

⎤⎦
≤ 𝐾|𝑡 − 𝑠|
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where 𝐾 comes from the condition (8).
We thus conclude to the following convergence in probability in the 𝒞𝛼−Höl([0, 1], 𝑇

(2)
1 (𝑉 ))

topology for 𝛼 < 1/2:

(︁
𝛿(𝑁𝐶𝛽−1)−1/2(0, 𝑍

(𝑁)
𝑡 )

)︁
𝑡∈[0,1]

−→
𝑁→∞

(︃
0, 𝑡𝐶−1E

[︃
𝑇1∑︁

𝑖=1
𝐹 ⊗2

𝑖

]︃)︃
𝑡∈[0,1]

(53)

Using the Slutsky’s theorem (theorem 3.1 from [1]), and combining (52) and
(53), we get

(︁
𝛿(𝑁𝐶𝛽−1)−1/2Y(𝑁)

𝑡

)︁
𝑡∈[0,1]

−→
𝑁→∞

(︃
B𝑆𝑡𝑟𝑎𝑡

𝑡 ⊗ (0, 𝑡(Γ − 𝐶−1E

[︃
𝑇1∑︁

𝑖=1
𝐹 ⊗2

𝑖

]︃
)
)︃

𝑡∈[0,1]
(54)

where B𝑆𝑡𝑟𝑎𝑡 is the standard Brownian motion (𝐵𝑡)𝑡 on 𝑉 enhanced with its
iterated integrals in the Stratonovich sense.

At the same time, we can compute

Γ − 𝐶−1E

[︃
𝑇1∑︁

𝑖=1
𝐹 ⊗2

𝑖

]︃
= 𝐶−1E

⎡⎣1
2

∑︁
1≤𝑘1<𝑘2≤𝑇1

𝐹𝑘1 ⊗ 𝐹𝑘2 − 𝐹𝑘2 ⊗ 𝐹𝑘1

⎤⎦− 𝐶−1E

[︃
1
2

𝑇1∑︁
𝑖=1

𝐹 ⊗2
𝑖

]︃
(55)

= 𝐶−1E

⎡⎣ ∑︁
1≤𝑘1<𝑘2≤𝑇1

𝐹𝑘1 ⊗ 𝐹𝑘2

⎤⎦− 1
2𝐶−1E

[︀
𝑋⊗2

𝑇1

]︀

= 𝐶−1E

⎡⎣ ∑︁
1≤𝑘1<𝑘2≤𝑇1

𝐹𝑘1 ⊗ 𝐹𝑘2

⎤⎦− 1
2𝐼𝑑 = 𝑀 − 1

2𝐼𝑑 (56)

where 𝑀 = 𝐶−1E
[︁∑︀

1≤𝑘1<𝑘2≤𝑇1
𝐹𝑘1 ⊗ 𝐹𝑘2

]︁
(as stated in (18)) and E

[︀
𝑋⊗2

𝑇1

]︀
is

non other than the covariance matrix of 𝑋𝑇1 since the excursions are centred.
The expression (55) shows that (0, 𝑀𝑡) is a non-geometric rough path: while

the first term of the sum is antisymmetric, the second one is symmetric and can
not be expressed through the first component of the rough path (which is zero).
This shows that the limit of the (Y(𝑁)

𝑡 )𝑡 is a non-geometric rough path.
The expression (56) shows that we can rewrite the limit using Itô integration,

as
∀0 ≤ 𝑠 < 𝑡 ≤ 1, B𝑆𝑡𝑟𝑎𝑡

𝑡,𝑠 = BItô
𝑡,𝑠 ⊗ (0,

1
2(𝑡 − 𝑠)𝐼𝑑)

We thus obtain the convergence:(︁
𝛿(𝑁𝐶𝛽−1)−1/2Y(𝑁)

𝑡

)︁
𝑡∈[0,1]

−→
𝑁→∞

(︀
BItô

𝑡 ⊗ (0, 𝑡𝑀)
)︀

𝑡∈[0,1]

which achieves the proof.
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Remark. We find in the expression of the limit (54) the decomposition of a
non geometric rough path in a geometric rough path plus an element in the
centre of 𝑇

(2)
1 (𝑉 ), highlighted in particular in [5] and expressed by

∀1/3 < 𝛼 < 1/2, 𝒞𝛼([0, 1], 𝑇
(2)
1 (𝑉 )) ≃ 𝒞𝛼([0, 1], 𝐺2(𝑉 )) ⊕ 𝒞2𝛼([0, 1], 𝑉 ⊗ 𝑉 )

5 Open questions
We have seen that hidden Markov walks are a natural generalization of the class
of Markov chains on periodic graphs when one wants to study the area anomaly
using techniques related to the theory of excursions, in particular allowing to
analyse the convergence of a HMW as that of a sum of i.i.d. variables. It would
be therefore interesting to know whether we can obtain results on area anomaly
on other processes which present only weak time-correlations that could be
ignored when passing to the limit in uniform convergence topology (for example,
the 𝛼-mixing processes described in [1]).

A further study of the iterated occupation times 𝐿𝑢1,...,𝑢𝑘;𝑁 (𝑅) 2.5 of a
Markov chain (𝑅𝑛)𝑛 could also prove fruitful. Several directions can be consid-
ered: a generalization of some results of the ergodic theory (in particular, the
connection with the invariant measure), their study as random combinatorial
objects (using their representation as cardinals), the construction and analysis
of an abstract vector space generated by this objects (which would in particular
allow an abstract representation of a HMW depending on (𝑅𝑛)𝑛), etc.

Furthermore, using the example of HMW, we would like to see if there is a
connection between the iterated occupation times as combinatorial structures
and the Hopf algebras which describe the combinatorics of (abstract) rough
paths (as in [7]).

We have seen that, in the case of HMW, iterated sums allow, for example, to
get a decomposition of rough paths that isolates the area anomaly or to propose
an interesting construction of non-geometric rough paths. It can prove useful
to continue studying these objects (possibly for more general processes) as they
may contribute on one hand to developing the discrete setting in the rough paths
theory and on the other hand to construct some concrete examples which allow
explicit computations, which is often difficult when it comes to rough paths.

It could be interesting to use the framework we present in this paper to
study in a new way finite difference equations and in particular their asymptotics
and continuous limits; or, in the reverse way, if new discrete models could be
imagined to discretize efficiently classical (stochastic) differential equations.

Overall, we hope that the present paper will provide the reader with good
arguments to be interested in the role of the area anomaly in the classical
stochastic calculus and that of discrete processes in the classical rough paths
setting.

43



References
[1] P. Billingsley. Convergence of Probability Measures. Wiley, 1999.

[2] E. Breuillard, P. Friz, and M. Huesmann. From random walks to rough
paths. Proc. Amer. Math. Soc., 137(10):3487–3496, 2009.

[3] A. Davie. Differential equations driven by rough paths: an approach via
discrete approximation. Appl. Math. Res. Express, pages 009–40, 2007.

[4] S. Eilenberg and S. Mac Lane. On the groups H(Π, n), I. Annals of
Mathematics, 58(1):55–106, 1953.

[5] P. Friz and M. Hairer. A Course on Rough Paths - With an introduction to
regularity structures. Springer, 2014.

[6] P. Friz and N. Victoir. Multidimensional Stochastic Processes as Rough
Paths: Theory and Applications. Cambridge University Press, 2010.

[7] M. Hairer and D. Kelly. Geometric versus non-geometric rough paths.
Annals of Institute Henri Poincaré, 51(1):207–251, 2015.

[8] M. Hoffman. Quasi-shuffle products. Journal of Algebraic Combinatorics,
11:49–68, 2000.

[9] M. Hoffman and K. Ihara. Quasi-shuffle products revisited. Journal of
Algebra, 481:293–326, 2017.

[10] J.Norris. Markov Chains. Cambridge University Press, 1997.

[11] A. Lejay and T. Lyons. On the importance of the Lévy area for studying
the limits of functions of converging stochastic processes. application to
homogenization. Current Trends in Potential Theory, page 63–84, 2003.

[12] Y. Liu and S. Tindel. Discrete rough paths and limit theorems.
arXiv:1707.01783, 2017.

[13] O. Lopusanschi and D. Simon. Lévy area with a drift as a renormalization
limit of Markov chains on periodic graphs. Accepted for publication in
Stochastic Processes and Applications, 2017.

[14] T. Lyons, M. Caruana, and Th. Lévy. Differential Equations Driven by
Rough Paths (Ecole d’Eté de Probabilités de Saint-Flour XXXIV). Springer,
2004.

[15] T. Lyons and Z. Qian. Flow equations on spaces of rough paths. Journal
of Functional Analysis, 149:135–159, 1997.

[16] L. Young. The Theory of Integration. The University Press, 1927.

44


	Introduction
	On the importance of discrete models in the rough paths theory.
	Structure of the article and notations.

	Main results and map of the paper
	Rough paths models from microscopic models.
	Main theorems: rough paths from hidden Markov walks.
	An easy example: the diamond and round-point models.

	Combinatorial structure behind the iterated sums of HMW.
	Iterated sums and non-geometric rough paths.
	Iterated occupation times of HMW as underlying combinatorial structures of rough paths.


	From Hidden Markov Walks to rough paths
	Theory of pseudo-excursions for hidden Markov walks.
	Elements of rough paths theory
	Embeddings
	Getting back to theorem 2.3

	Iterated structures behind discrete time and discrete space Markov chains.
	Shuffle and quasi-shuffle products.
	From geometric to non-geometric rough paths through hidden Markov walks
	Geometric rough paths and shuffle products.
	A discrete construction for non-geometric rough paths.

	Getting back to proposition 2.1.

	Open questions

