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Abstract— Contrast of echographic images has been highly improved by the injection of microbubbles, due to their nonlinear 

behavior. However, this contrast enhancement is limited by the nonlinear acoustic propagation in tissue. To overcome this drawback, 

sub and ultra-harmonic contrast imaging can be used, since only microbubbles can generate these components. Nonlinear modeling is a 

primordial step in the analysis of microbubble signals for sub and ultra-harmonic imaging. Nonlinear models like Volterra model has 

been applied in harmonic imaging to model harmonics optimally. However, it can model harmonics only. For sub and ultra-harmonic 

modeling, a multiple input single output (MISO) Volterra has been proposed. The aim of this study is to propose a simpler alternative 

for the modeling of sub and ultra-harmonics. We propose a modified single input single output (SMISO) Volterra model based on input 

demodulation. The model is tested using simulated and experimental signals. Results showed that sub and ultra-harmonics are 

modeled. The number of kernels is reduced to its half using SMISO model compared to MISO model. The relative mean square error 

between the simulated signal and the modeled signal with SMISO Volterra model is −15.8 dB and it is −60.7 dB for experimental 

signals. The computational time is reduced by a factor of 4 and 5 in simulated and experimental cases respectively. SMISO model can 

make easier the sub and ultra-harmonics modeling. 

Keywords—modeling, sub-ultra-harmonics, SMISO Volterra, demodulation, microbubble. 

I. INTRODUCTION 

Contrast of ultrasound images has been highly improved with the introduction of ultrasound contrast agents consisted of gas 

microbubbles [1]. This contrast enhancement is mainly due to the non-linear acoustic oscillation of microbubbles [2]. 

Traditionally, contrast ultrasound imaging consists in transmitting at the frequency f0 and receiving at the second harmonic 2f0 [3], 

[4]. This modality is known as second harmonic imaging. Harmonic extraction could be carried out by using non-linear models, 

such as Volterra model [5]. These 
methods, that use a single input and output (SISO) Volterra model allowed to increase the CTR with respect to the linear bandpass 
filtering centered around 2f0 [5]. 

However, the contrast in second harmonic imaging is limited by the presence of second harmonic in the echo of the 

surrounding tissue [6]. To overcome this limitation, sub and ultraharmonic imaging can be used. They consist in transmitting at 

the frequency f0 and receiving at the subharmonic f0/2 [7] and ultra-harmonic frequencies (3/2 f0, 5/2 f0,…) [8] respectively, which 

are generated exclusively by microbubbles [9] with particular acoustic [7] and physical conditions [10]. Note that, in our work, 

we deal with conventional settings of imaging pressure levels. If the pressure level is very strong, as in high intensity focused 

ultrasound (HIFU) exposures, then subharmonic imaging can be performed by cavitation [11]. 
 

SISO Volterra model cannot be used directly in sub and ultra-harmonics imaging, since it models harmonics only [12]. Exciting 
methods for modeling sub and ultra-harmonics (SUH) use a multiple input single output (MISO) Volterra model [13], [14], [15], 
[16]. The main drawback of MISO Volterra methods is the large number of kernels to be evaluated, which leads to a high 
computational cost. However, other proposed solutions are based on the use of Hammerstein model [17], [18]; they allow the 
extraction of sub and ultra-harmonic components. Unfortunately, it is only possible by restraining the assumptions on the model. 

In this paper, we are interested in the reduction of complexity of sub and ultra-harmonic modeling based on the use of Volterra 
model with modified input. Note that the algorithm complexity lies in an inversion matrix in O(n

3
) by using the Gauss-Jordan 

elimination. Simplifying the model is thus crucial for experimental application of such technique. Therefore, the proposed solution 
is based on a modified single input single output (SMISO) Volterra structure applied on simulated and experimental microbubbles 
signals. 



II. SUB AND ULTRA-HARMONIC MODELING  

Standard SISO Volterra model can be considered as a Taylor expansion with memory [19]. Due to its polynomial formalism, 

it can only model harmonic components generated by a nonlinear system. In order to model SUH, one way is to modify the input 

signal in such away to have the subharmonic frequency f0/2 at the input of the model. Therefore, sub and ultra-harmonics can be 

modeled as they can be seen by the model as integer multiples of the input frequencies. 

A. SISO and MISO Volterra model 

For a nonlinear system with input x(n) and output y(n), in discrete time n, the standard SISO Volterra model, of order P and 
truncated to a memory M is given by  the following equation: 
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Where hp(k1,k2,…,kp) is the kernel of order p with p {1,2,...,P}  . 

The total number of kernels increases drastically with P and M. A simplification can be obtained by considering the symmetry 

of the kernels. Symmetry means that hp(k1, k2,…,kp) are invariant if the order of the indexes ik ,i {1,2,...,p}  is exchanged [20]. 

By considering this symmetry, the total number NPsym of kernels is given by the following equation: 
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For SUH modeling using MISO Volterra model, the input signal is decomposed to Nsub orthogonal inputs, where Nsub is the 

order of the subharmonic frequency. Each input signal is of frequency f0/Nsub. Therefore, the model can be viewed as a succession 

of Nsub SISO Volterra models. As a result, the number of kernels to be evaluated for a MISO model is Nsub times that for a SMISO 

model: Nsub×NPsym. Note that the standard algorithm complexity is consequently in O(n
3
) with n proportional to Nsub×NPsym. 

 

To reduce the number of kernels, we propose here a SMISO Volterra model. The basic idea is to modify the frequency of the 

input signal without decomposition to preserve a single input Volterra structure. 

 

B. SMISO Volterra model 

The SMISO model that we proposed here is based on the same concept as the MISO model. The input signal is demodulated 

by f0/Nsub, to include the subharmonic frequency. In the case of microbubble signals Nsub=2. The new modified input z(n) of the 

SMISO model is obtained by adding the demodulated  input xmod(n) of frequency f0/2 and the input x(n) of frequency f0 following 

the equation: 
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2
amodz(n)=x(n)+x (n) =x(n)+R(x (n).e ) , 

where R represents the real part, xa(n) is the analytic signal of x(n), and Ts=1/fs  is the sampling period, with fs is the sampling 

frequency. 

 

 A SMISO Volterra model of input z(n), illustrated in Fig. 1, is able to model SUH as they can be considered as linear 

combinations and integer multiples of the inputs frequencies. The modeling process is resumed to finding the kernels 

hp(k1,k2,…,kp) of the SMISO model. 

 

Equation (1), with input z(n), could be rewritten, with an algebric formula, as follows:  

 Y=Z.H  



Where Y is the output signal: 

  
T

Y= y(M+1),y(M+2),…,y(L) ,   

With L is the length of the signal, H is the vector of kernels:   
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and where Z is the input matrix: 
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with  l M-1,M,…,L . 

 

The vector of kernels H is calculated to minimize the error between the output signal y(n) and the modeled signal ŷ(n) . The 

vector H can be obtained with a pseudo-inversion solution, such as:  
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Fig. 1. Blockdiagram of  a SMISO Volterra model. 

Note that the new algorithm complexity remains in O(n
3
), but where n is proportional to NPsym. 

SMISO Volterra model is applied on simulated and experimental microbubble signals. Modeling is performed with Matlab® 
(Mathworks, Natick, MA, USA) using a CPU: 2 processors Xeon E5-2630 with a clock at 2.3 GHz and 48 Go Ram. 

III. SIMULATION SETUP AND SIMULATION RESULTS 

The oscillation of microbubbles is simulated using a free simulation program Bubblesim developed by Hoff [21]. The incident 

burst to the microbubble is a sinusoidal wave of frequency f0= 4 MHz, at 1.6 MPa pressure, and consists of 32 cycles. Under 

these conditions, the oscillation of the microbubble presents SUH. The sampling frequency is fs=60 MHz [7]. The parameters of 

the microbubble are given in the table I [21]. 

 

Fig. 2 shows, the excitation signal and the modified input, for SMISO model in time and frequency domains. The spectrum of 

the modified input shows clearly that it has both the fundamental and sub-harmonic frequencies. 

 

Fig. 3 shows the time and frequency domain representations of the microbubble signal and those modeled with MISO and 

MISO Volterra models. Time domain representations show that the modeled signal with SMISO model follows well the 

microbubble signal. The spectra of the modeled signals are identical to that of the microbubble signal. Therefore, the SMISO 

model can model SUH generated by the microbubble in addition the harmonics. 

 
Quantitatively, the effectiveness of SMISO Volterra model with respect the MISO Volterra model is evaluated in terms of the 

relative mean square error (rMSE) between the modeled signal with each model and the output of microbubble, the number of 
kernels, and the computation time. Results reported in table II show that both models provides approximately the same rMSE, the 

 



number of kernels is reduced to its half by using SMISO model, and the computational time is reduced by a factor of 4 with 
SMISO model. 

IV. EXPERIMENTAL SETUP AND EXPERIMENTAL RESULTS  

Experiments are carried out by using the same experimental used in [17]. The excitation signal is transmitted to a 10 MHz PZT 
single element. Responses of a diluted solution of Sonovue™  microbubbles were measured by a 5 MHz PZT single element 
transducer. Measured echoes were amplified by 30 dB, visualized on a digital oscilloscope then transferred to a personal computer. 

TABLE I.  THE PARAMETERS OF MICROBUBBLES [21]. 

Resting radius R0=2µm 

Shell thickness dSe = 4nm 

Shear modulus Gs = 50MPa 

shear viscosity η= 0.8Pa.s 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Excitation signal x(n) at the top and modified input signal z(n) at the bottom, in the simulated case. 

Figs. 4 and 5 show identical results as those shown in Figs. 2 and 3 for the experimental case. 

For experimental signals, in order to model the signal on the full duration, here 10 μs, the memory M of Volterra model had to 

be equal to the samples number, as here 5000 and the order is equal to P = 1 since the output signal has only subharmonic and 

fundamental frequencies. Normally, a Volterra model of order P = 1 can only model the fundamental frequency. Since for SMISO 

Volterra model, the modified input has both sub-harmonic and fundamental frequencies, they are considered as a fundamental 

frequency for the SMISO Volterra model and then they can be modeled. 

Quantitative comparison is presented in Table III. Results show that the rMSE is reduced by a factor of 8.5 dB with SIMSO 

Volterra model; this is due to the high memory of the model. The number of kernels is reduced to its half by using SMISO 

Volterra model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) simulated microbubble signal (black), modeled signal with MISO model (red) and SMISO model (green). (b) spectra for the signals in (a). P = 3 and 

M = 35. 

 

 

 

 



TABLE II.  QUANTATIVE COMPARISON BETWEEN MISO VOLTERRA MODEL AND SMISO VOLTERRA MODEL FOR SIMULATED SIGNALS. 

Model MISO SMISO Ratio(MISO/SMISO) 

rMSE (dB) -15.5 -15.8 1.02 

Computation 
time (s) 

960.14 236.5 4 

Number of 

kernels 
16870 8435 2 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Excitation signal x(n) at the top and modified input signal z(n) at the bottom, in the experimental case. 

V. DISCUSSIONS AND CONCLUSION 

SMISO Volterra model allows an optimal modeling of microbubble signals that present sub and ultra-harmonics. Required 

prior knowledge includes only the center frequency of the excitation set by the user, and the frequency range in the output usually 

defined by the transducer. The importance of MISO Volterra model lies in the significant reduction of the computation time with 

a significant gain in terms of rMSE for experimental signals due to the intermodulation present in the modified input signal. 

 

To conclude, SMISO Volterra model can be considered as a simple, quick and efficient method to model sub and 

ultraharmonics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. (a) experimental microbubble signal (black), modeled signal with MISO model (red) and SMISO model (green). (b) spectra for the signals in (a). P = 1 

and M = 5000. 

TABLE III.  QUANTATIVE COMPARISON BETWEEN MISO VOLTERRA MODEL AND SMISO VOLTERRA MODEL FOR EXPERIMENTAL SIGNALS. 

Model MISO SMISO Ratio(MISO/SMISO) 

rMSE (dB) -17.5 -63.7 8.5 

Computation 

time (s) 
236.5 48.5 5 

Number of 
kernels 

10000 5000 2 
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