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Conflict management in information fusion with
belief functions

Arnaud Martin

Abstract In Information fusion, the conflict is an important concept. Indeed, com-
bining several imperfect experts or sources allows conflict. In the theory of belief
functions, this notion has been discussed a lot. The mass appearing on the empty
set during the conjunctive combination rule is generally considered as conflict, but
that is not really a conflict. Some measures of conflict have been proposed and some
approaches have been proposed in order to manage this conflict or to decide with
conflicting mass functions. We recall in this chapter some of them and we propose
a discussion to consider the conflict in information fusion with the theory of belief
functions.

1 Introduction

The theory of belief functions was first introduced by [5] in order to represent some
imprecise probabilities with upper and lower probabilities. Then [30] proposed a
mathematical theory of evidence with is now widely used for information fusion.
Combining imperfect sources of information leads inevitably to conflict. One can
consider that the conflict comes from the non-reliability of the sources or the sources
do not give information on the same observation. In this last case, one must not
combine them.

Let Ω = {ω1, . . . ,ωn} be a frame of discernment of exclusive and exhaustive hy-
pothesis. A mass function m, also called basic belief assignment (bba) is the map-
ping from elements of the power set 2Ω (composed by all the disjunctions of Ω )
onto [0,1] such that:

∑
X∈2Ω

m(X) = 1. (1)
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2 Arnaud Martin

A focal element X is an element of 2Ω such that m(X) 6= 0. If the focal elements are
nested, the mass functions is consonant. A simple mass function, noted Aw is given
by: {

m(A) = w
m(Ω) = 1−w (2)

This mass function allows to show that we can model an imprecise information (if
A is an union of singletons ωi) and an uncertain information (if w > 0). All non-
dogmatic mass functions (with m(Ω) > 0)) can be decomposed by a set of simple
mass functions [30].

Constraining m( /0) = 0 corresponds to a closed-world assumption [30], while
allowing m( /0)≥ 0 corresponds to an open world assumption [32]. Smets interpreted
this mass on the empty set such as an non-expected hypothesis and normalizes it in
the pignistic probability defined for all X ∈ 2Ω , with X 6= /0 by:

BetP(X) = ∑
Y∈2Ω ,Y 6= /0

|X ∩Y |
|Y |

m(Y )
1−m( /0)

. (3)

The pignistic probability can be used in the decision process such as a compromise
between the credibility and the plausibility. The credibility is given for all X ∈ 2Ω

by:

bel(X) = ∑
Y⊆X ,Y 6= /0

m(Y ), (4)

The plausibility is given for all X ∈ 2Ω by:

pl(X) = ∑
Y∈2Ω ,Y∩X 6= /0

m(Y ) = bel(Ω)−bel(Xc) = 1−m( /0)−bel(Xc), (5)

where Xc is the complementary of X . Hence, if we note the decision function fd
that can be the pignistic probability, the credibility or the plausibility, we choose the
element A ∈ 2Ω for a given observation if:

A = argmax
X∈Ω

( fd(X)) . (6)

The decision is made on the mass function obtained by the combination of all the
mass function from the sources.

The first combination rule has been proposed by Dempster [5] and is defined for
two mass functions m1 and m2, for all X ∈ 2Ω , with X 6= /0 by:

mDS(X) =
1

1−κ
∑

A∩B=X
m1(A)m2(B), (7)
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where κ = ∑
A∩B= /0

m1(A)m2(B) is the inconsistence of the combination and generally

called conflict. We call it here the global conflict such as the sum of all partial
conflicts.

To stay in an open world, Smets [32] proposes the non-normalized conjunctive
rule given for two mass functions m1 and m2 and for all X ∈ 2Ω by:

mConj(X) = ∑
A∩B=X

m1(A)m2(B) := (m1 ∩©m2)(X). (8)

These both rules allow to reduce the imprecision of the focal elements and to
increase the belief on concordant elements after the fusion. The main assumptions
to apply these rules are the cognitive independence and the reliability of the sources.

Based on the results of these rules, the problem enlightened by the famous
Zadeh’s example [38] is the repartition of the global conflict. Indeed, consider
Ω = {ω1,ω2,ω3} and two experts opinions given by m1(ω1) = 0.9, m1(ω3) = 0.1,
and m2(ω2) = 0.9, m1(ω3) = 0.1, the mass function resulting in the combination
using Dempster’s rule is m(ω3) = 1 and using conjunctive rule is m( /0) = 0.99,
m(ω3) = 0.01. Therefore, several combination rules have been proposed to manage
this global conflict [33, 19].

As observed in [17, 20], the weight of conflict given by κ = mConj( /0) is not a
conflict measure between the mass functions. Indeed, the conjunctive-based rules
are not idempotent (as the majority of the rules defined to manage the global con-
flict): the combination of identical mass functions leads generally to a positive value
of κ . Hence, new kind of conflict measures are defined in [20].

In the following section 2, we recall some measures of conflict in the theory of
belief functions. Then, in section 3 we present the ways to manage the conflict either
before the combination, or in the combination rule. The last section 4 presents some
decision methods in order to consider the conflict during this last step of information
process.

2 Modeling conflict

First of all, we should not mix up conflict measure and contradiction measure. The
measures defined by [16, 34] are not conflict measures, but some discord and speci-
ficity measures (to take the terms of [15]) we call contradiction measures. We define
the contradiction and conflict measures by the following definitions:

Definition A contradiction in the theory of belief functions quantifies how a mass
function contradicts itself.

Definition (C1) The conflict in the theory of belief functions can be defined by
the contradiction between two or more mass functions.

Therefore, is the mass of the empty set or the functions of this mass (such as
− ln(1−mConj( /0)) proposed by [30]) a conflict measure? It seems obvious that the
property of the non-idempotence is a problem to use this as a conflict measure.
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However, if we define a conflict measure such as Conf(m1,m2) = mConj( /0), we note
that Conf(m1,mΩ ) = 0 where mΩ (Ω) = 1 is the ignorance. Indeed, the ignorance is
the neutral element for the conjunctive combination rule. This property seems to be
followed from a conflict measure.

Other conflict measures have been defined. In [14], a conflict measure is given
by:

Conf(m1,m2) = 1− plT1 .pl2
‖pl1‖‖pl2‖

(9)

where pl is the plausibility function and plT1 .pl2 the vector product in 2n space
of both plausibility functions. However, generally Conf(m1,mΩ ) 6= 0, that seems
counter-intuitive.

Auto-conflict

Introduced by [28], the auto-conflict of order s for one source is given by:

as =

(
s
∩©

j=1
m

)
( /0). (10)

where ∩© is the conjunctive operator of Equation (8). The following property holds:
as ≤ as+1, meaning that due to the non-indempotence of ∩©, the more masses m are
combined with itself the nearer to 1 κ is, and so in a general case, the more the
number of sources is high the nearer to 1 κ is. The behavior of the auto-conflict was
studied in [20] and it was shown that we should take into account the auto-conflict
in the global conflict in order to really define a conflict. In [37], the auto-conflict
was defined and called the plausibility of the belief structure with itself. The auto-
conflict is a kind of measure of the contradiction, but depends on the order s of the
combination. A measure of contradiction independent on the order has been defined
in [31].

Conflict measure based on a distance

With the definition of the conflict (C1), we consider sources to be in conflict
if their opinions are far from each other in the space of corresponding bba’s. That
suggests a notion of distance. That is the reason why in [20], we give a definition of
the measure of conflict between sources assertions through a distance between their
respective bba’s. The conflict measure between 2 experts is defined by:

Conf(1,2) = d(m1,m2). (11)
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We defined the conflict measure between one source j and the other M−1 sources
by:

Conf( j,E ) =
1

M−1

M

∑
i=1,i6= j

Conf(i, j), (12)

where E = {1, . . . ,M} is the set of sources in conflict with j. Another definition is
given by:

Conf( j,M) = d(m j,mM), (13)

where mM is the bba of the artificial source representing the combined opinions of
all the sources in E except j.

A comparison of distances in the theory of belief functions is presented in [14].
We consider the distance defined in [13] as the most appropriate. This distance is
defined for two basic belief assignments m1 and m2 on 2Ω by:

dJ(m1,m2) =

√
1
2
(m1−m2)T D(m1−m2), (14)

where D is an 2|Ω |×2|Ω | matrix based on Jaccard dissimilarity whose elements are:

D(A,B) =


1, ifA = B = /0,

|A∩B|
|A∪B|

, ∀A,B ∈ 2Ω .
(15)

An interesting property of this measure is given by Conf(m,m) = 0. That means
that there is no conflict between a source and itself (that is not a contradiction).
However, we generally do not have Conf(m,mΩ ) = 0, where mΩ (Ω) = 1 is the
ignorance.

Conflict measure based on inclusion degree and distance

We have seen that we cannot use the mass on the empty set as a conflict measure
because of the non-idempotence of the conjunctive rule. We also have seen that the
conflict measure based on the distance is not null in general for the ignorance mass.
The conjunctive rule does not transfer mass on the empty set if the mass functions
are included. We give here some definitions of the inclusion.

Definition 1: strict inclusion
We say that the mass function m1 is included in m2 if all the focal elements of m1
are included in each focal elements of m2.
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Definition 2: light inclusion
We say that the mass function m1 is included in m2 if all the focal elements of m1
are included in at least one focal element of m2.

Definition We note this inclusion by m1 ⊆ m2. The mass functions are included
if m1 is included in m2 or m2 is included in m1.

In [25], we propose a conflict measure base on five following axioms. Let note
Conf(m1,m2) a conflict measure between the mass functions m1 and m2. We present
hereafter essential properties that must verify a conflict measure.

1. Non-negativity:
Conf(m1,m2)≥ 0 (16)

A negative conflict does not make sense. This axiom is,therefore, necessary.
2. Identity:

Conf(m1,m1) = 0 (17)

Two equal mass functions are not in conflict. This property is not reached by the
global conflict, but seems natural.

3. Symmetry:
Conf(m1,m2) = Conf(m2,m1) (18)

The conflict measure must be symmetric. We do not see any case where the non-
symmetry can make sense.

4. Normalization:
0≤ Conf(m1,m2)≤ 1 (19)

This axiom is may not be necessary to define a conflict measure, but the normal-
ization is very useful in many applications requiring a conflict measure.

5. Inclusion:

Conf(m1,m2) = 0, if and only if m1 ⊆ m2 or m2 ⊆ m1 (20)

This axiom means that if the focal elements of two mass functions are not con-
flicting (the intersection is never empty), the mass functions are not in conflict
and the mass functions cannot be in conflict if they are included. This axiom is
not satisfied by a distance based conflict measure.

These proposed axioms are very similar to ones defined in [7]. If a conflict measure
satisfied these axioms that is not necessary a distance. Indeed, we only impose the
identity and not the definiteness (Conf(m1,m2) = 0 ⇔ m1 = m2).
The axiom of inclusion is less restrictive and makes more senss for a conflict mea-
sure. Moreover, we do not impose the triangle inequality
(Conf(m1,m2) ≤ Conf(m1,m3) + Conf(m3,m2)). It can be interesting to have
Conf(m1,m2) ≥ Conf(m1,m3) + Conf(m3,m2) meaning that an expert given the
mass function m3 can reduce the conflict. Therefore, a distance (with the property
of the triangle inequality) cannot be used directly to define a conflict measure.

We see that the axiom of inclusion seems very important to define a conflict mea-
sure. This is the reason why we define in [25] a degree of inclusion to measure how
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two mass functions are included. Let the inclusion index: Inc(X1,Y2) = 1 if X1 ⊆Y2
and 0 otherwise, where X1 and Y2 are two focal elements of m1 and m2 respectively.
According to the definition 1 and definition 2, we introduce two degrees of inclusion
of m1 in m2. A strict degree of inclusion of m1 in m2 is given by:

dincS(m1,m2) =
1

|F1||F2| ∑
X1∈F1

∑
Y2∈F2

Inc(X1,Y2) (21)

where F1 and F2 are the set of focal elements of m1 and m2 respectively, and |F1|,
|F2| are the number of focal elements of m1 and m2.

This definition is very strict, so we introduce a light degree of inclusion of m1 in
m2 given by:

dincL(m1,m2) =
1
|F1| ∑

X1∈F1

max
Y2∈F2

Inc(X1,Y2). (22)

Let δinc(m1,m2) a degree of inclusion of m1 and m2 define by:

δinc(m1,m2) = max(dinc(m1,m2),dinc(m2,m1)) (23)

This degree gives the maximum of the proportion of focal elements from one mass
function included in another one. Therefore, δinc(m1,m2) = 1 if and only if m1 and
m2 are included, and the axiom of inclusion is reached for 1−δinc(m1,m2).

Hence, we define in [25], a conflict measure between two mass functions m1 and
m2 by:

Conf(m1,m2) = (1−δinc(m1,m2))dJ(m1,m2) (24)

where dJ is the distance defined by the equation (14). All the previous axioms are
satisfied. Indeed the axiom of inclusion is 1− δinc(m1,m2) and the distance dJ sat-
isfied the other axioms. Moreover 0 ≤ δinc(m1,m2) ≤ 1, by the product of 1− δinc
and dJ , all the axioms are satisfied.

For more than two mass functions, the conflict measure between one source j
and the other M−1 sources can be defined from equations (12) or (13).

3 Managing conflict

The role of conflict is essential in information fusion. Different ways can be used
to manage and reduce the conflict. The conflict can come from the low reliability
of the sources. Therefore, we can use this conflict to estimate the reliability of the
sources if we cannot learn it on databases as proposed in [20]. Hence, we reduce
the conflict before the combination, but we can also directly manage the conflict in
the rule of combination as generally made in the theory of belief functions such as
explained in [33, 19].

According to the application, we do not search always to reduce the conflict.
For example, we can use the conflict measure such as an indicator of the inconsis-
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tence of the fusion for example in databases [2]. Conflict information can also be an
interesting information in some applications such as presented in [29].

3.1 Managing the conflict before the combination

The conflict appearing while confronting several experts’ opinions can be used as
an indicator of the relative reliability of the experts. We have seen that there exist
many rules in order to take into account the conflict during the combination step.
These rules do not make the difference between the conflict (global or local conflict)
and the auto-conflict due to the non-idempotence of the majority of the rules. We
propose here the use of a conflict measure in order to define a reliability measure,
that we consider before the combination, in a discounting procedure.

When we can quantify the reliability of each source, we can weaken the basic
belief assignment before the combination by the discounting procedure:{

mα
j (X) = α jm j(X), ∀X ∈ 2Ω r{Ω}

mα
j (Ω) = 1−α j(1−m j(Ω)).

(25)

α j ∈ [0,1] is the discounting factor of the source j that is, in this case, the reliability
of the source j, eventually as a function of X ∈ 2Ω .

Other discounting procedures are possible such as the contextual discounting
[26], or a discounting procedure based on the credibility or the plausibility functions
[39].

According to the applications, we can learn the discounting factors α j, for ex-
ample, from the confusion matrix [22]. In many applications, we cannot learn the
reliability of each source. A general approach to the evaluation of the discounting
factor without learning is given in [10]. For a given bba the discounting factor is
obtained by the minimization on α of a distance given by:

Distα j = ∑
A∈Ω

(
BetP j(A)−δA, j

)2
, (26)

where BetP j is the pignistic probability (Equation (3)) of the bba given by the source
j and δA, j = 1 if the source j supports A and 0 otherwise.

This approach is interesting with the goal of making decision based on pignis-
tic probabilities. However, if the source j does not support a singleton of Ω , the
minimization on α j does not work well.

In order to combine the bbas of all sources together, we propose here to estimate
the reliability of each source j from the conflict measure Con f between the source
j and the others by:

α j = f (Conf( j,M)), (27)

where f is a decreasing function. We can choose:
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α j =
(

1−Conf( j,M)λ

)1/λ

, (28)

where λ > 0. We illustrate this function for λ = 2 and
λ = 1/2 on figure 1. This function allows to give more reliability to the sources
with few conflict with the other.

Fig. 1 Reliability of one source based on conflict of the source with the other sources.

Other definitions are possible. The credibility degree defined in [4] is also based
on the distance given in the Equation (14), and could also be interpreted as the
reliability of the source. However the credibility degree in [4] is integrated directly
in the combination with a weighted average. Our reliability measure allows the use
of all the existing combination rules.

3.2 Managing the conflict in the combination

According to the application, if we cannot reduce the conflict before the combina-
tion, we can do it by incorporating it into a combination rule. The choice of the
combination rule is not easy, but it can be done by utilizing the conflict and the
assumption on its origin. Indeed the Dempster rule can be apply if the sources are
independent and reliable. Dempster’s rule is given for S sources for all X ∈ 2Ω ,
X 6= /0 by:

mDS(X) =
1

1−mConj( /0) ∑
Y1∩...∩Ys=X

S

∏
j=1

m j(Yj) =
mConj(X)

1−κ
, (29)

where κ = mConj( /0), Yj ∈ 2Ω is the answer of the source S j, and m j(Yj) the associ-
ated mass function. This normalization by 1−mConj( /0) hide the conflict and so this
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rule is interesting only if we consider the closed-world and if the sources are not
highly conflicting.

If the assumption of independent and reliable sources are not reached, the appli-
cation of the Dempster’s rule can produce some global conflict.

Conflict coming from a false assumption of closed world

In the closed world, the elements of the frame of discernment are assumed ex-
haustive. If m( /0) > 0, this mass can be interpreted such as another element, and so
the assumption on the exhaustiveness of the frame of discernment is false. Hence,
Smets [33] proposed the use of the conjunctive rule given for S sources for all
X ∈ 2Ω by:

mConj(X) = ∑
Y1∩...∩Ys=X

S

∏
j=1

m j(Yj). (30)

Here, the sources must be cognitively independent and reliable while the open-world
is considered. Hence, the mass on the empty set can be interpreted as another ele-
ment unknown by the sources. In fact, in the proposed model by Smets, the conflict
is transfered during the decision step by the pignistic probability [32], hiding the
conflict to the end. This rule cannot be used in applications with a high value of κ .

The global conflict come from the sum of the partial conflict. Hence, if the global
conflict can be interpreted as an unknown element, all the partial conflict can be
interpreted as many unknown elements. In that case we can keep the partial conflict
in order to decide on these elements (see section 4 for this consideration). Therefore
the assumption of the exclusivity is considered here as false.

Under this assumption, the mass functions are no more defined on the power set
2Ω but on the so called hyper power set1 DΩ . Therefore the space Ω is closed by
the union and intersection operators. This extension of the power set, lead to a lot
of reflexions around this new expressiveness taking the name of DSmT (Dempster-
Shafer modified Theory).

One can also consider a partial exclusiveness of the frame of discernment. Hence,
we introduce the notation DΩ

r in [23] in order to integrate some constraints on the
exclusiveness of some elements of Ω and so reduce the hyper power set size. Under
these assumptions, we define the PCR6 rule in [18], given by:

1 This notation is introduced by [8] and D come from the Dedeking lattice.
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mPCR6(X) = mConj(X)

+
S

∑
j=1

m j(X)2
∑

S−1
∩

j′=1
Y

σ j( j′)∩X= /0

(Yσ j(1)
,...,Yσ j(S−1))∈(DΩ

r )s−1


s−1

∏
j′=1

mσ j( j′)(Yσ j( j′))

m j(X)+
s−1

∑
j′=1

mσ j( j′)(Yσ j( j′))

, (31)

where σ is given by: {
σ j( j′) = j′ if j′ < j,
σ j( j′) = j′+1 if j′ ≥ j, (32)

This rule transfers the partial conflicts on the elements that generate it, proportion-
ally to their masses. This rule has been used in many applications allowing for good
results.

Conflict coming from the assumption of source’s independence

If we consider some dependent sources, the conjunctive rule cannot be used. If we
want to combine mass functions coming from dependent sources, the combination
rule has to be idempotent. Indeed, if we combine two identical dependent mass
functions (coming from different dependent sources), we have to obtain the same
mass function without any global conflict.

The simplest way to obtain a non-idempotent rule is the average of the mass
functions such given in [27] by:

mMean(X) =
1
s

S

∑
j=1

m j(Yj). (33)

We showed the interest in a such rule in [28], but in that case the sources have to be
assumed totally reliable. If the sources give high conflicting information, this rule
can provide some errors in the decision process.

The cautious rule [6] could be used to combine mass functions for which in-
dependence assumption is not verified. Cautious combination of S non-dogmatic
mass functions m j, j = 1,2, · · · ,S is defined by the bba with the following weight
function:

w(A) =
S
∧

j=1
w j(A), A ∈ 2Ω \Ω . (34)

We thus have

mCautious(X) = ∩©
A(Ω

A
S
∧

j=1
w j(A)

, (35)
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where Aw j(A) is the simple support function focused on A with weight function
w j(A) issued from the canonical decomposition of m j. Note also that ∧ is the min
operator.

When the dependence/independence of the sources is estimated, another rule was
proposed in [3].

Conflict coming from source’s ignorance

Another possible interpretation of the reason for the conflict is the ignorance of
the sources. Indeed, if a source is highly ignorant, it should give a categorical mass
function on Ω .

Therefore, [36] interprets the global conflict coming from the ignorance of the
sources and transfers the mass on the total ignorance (i.e. on Ω ) in order to keep the
closed world assumption. In the case of high conflict, the result of the fusion is the
ignorance. This rule is given by:

mY(X) = mConj(X),∀X ∈ 2Ω , X 6= /0, X 6= Ω

mY(Ω) = mConj(Ω)+mConj( /0)
mY( /0) = 0.

(36)

A source can also be ignorant not on all but only on some focal elements. Hence,
[9] proposed a clever conflict repartition by transferring the partial conflicts on the
partial ignorances. This rule is given for all X ∈ 2Ω , X 6= /0 by:

mDP(X) = ∑
Y1∩...∩Ys=X

S

∏
j=1

m j(Yj)+ ∑
Y1∪ . . .∪Ys = X
Y1∩ . . .∩Ys = /0

S

∏
j=1

m j(Yj), (37)

where Yj ∈ 2Ω is a focal element of the source S j, and m j(Yj) the associated mass
function. This rule has a high memory complexity, such as the PCR6 rule, because
it is necessary to manage the partial conflict.

Conflict coming from source reliability assumption

If we have no knowledge of the reliability of the sources, but we know that at
least on source is reliable, the disjunctive combination can be used. It is given for
all X ∈ 2Ω by:

mDis(X) = ∑
Y1∪...∪Ys=X

S

∏
j=1

m j(Yj). (38)
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The main problem of this rule is the lost of specificity after combination.
One can also see the global conflict κ = mConj( /0) such as an estimation of the

conflict coming from the unreliability of the sources. Therefore, the global conflict
can play the role of a weight between a conjunctive and disjunctive comportment of
the rule such introduced by [12]. This rule is given for X ∈ 2Ω , X 6= /0 by:

mFlo(X) = β1(κ)mDis(X)+β2(κ)mConj(X), (39)

where β1 and β2 can be defined by:

β1(κ) =
κ

1−κ +κ2 ,

β2(κ) =
1−κ

1−κ +κ2 .
(40)

In a more general way, we propose in [19] to regulate the conjunctive/disjunctive
comportment taking into consideration the partial combinations. The mixed rule is
given for m1 and m2 for all X ∈ 2Ω by:

mMix(X) = ∑
Y1∪Y2=X

δ1m1(Y1)m2(Y2)

+ ∑
Y1∩Y2=X

δ2m1(Y1)m2(Y2).
(41)

If δ1 = β1(κ) and δ2 = β2(κ) we obtain the rule of [12]. Likewise, if
δ1 = 1− δ2 = 0 we obtain the conjunctive rule, and if δ1 = 1− δ2 = 1 the dis-
junctive rule. With δ1(Y1,Y2) = 1− δ2(Y1,Y2) = 1l{ /0}(Y1 ∩Y2) we get back to the
rule of [9] by taking into account partial conflicts.

The choice of δ1 = 1−δ2 can also be made from a dissimilarity such as:

δ2(Y1,Y2) =
|Y1∩Y2|

min(|Y1|, |Y2|)
, (42)

where |Y1| is the cardinality of Y1. Jaccard dissimilarity can also be considered by:

δ2(Y1,Y2) =
|Y1∩Y2|
|Y1∪Y2|

. (43)

Therefore, if we have a partial conflict between Y1 and Y2, |Y1∩Y2|= 0 and the rule
transfers the mass on Y1∪Y2. In that case Y1 ⊂Y2 (or the contrary), Y1∩Y2 =Y1 and
Y1∪Y2 =Y2, hence with δ2 given by (42) the rule transfers the mass on Y1 and with δ2
given by (43) on Y1 and Y2 according to the ratio |Y1|/|Y2| of cardinalities. In the case
Y1∩Y2 6=Y1,Y2 and /0, the rule transfers the mass on Y1∩Y2 and Y1∪Y2 according to
equations (42) and (43). With such weights, the Mix rule considers partial conflict
according to the imprecision of the elements at the origin of the conflict.
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Conflict coming from a number of sources

When we have to combine a many sources, the assumption of the reliability of all
the sources is difficult to consider especially if the sources are human. The disjunc-
tive rule (38) assume that at least one source is reliable but a precise decision will
be difficult to take. Moreover, the complexity of main rules managing the conflict in
a clever way is too high such as the rules given by (41) and (31). That is the reason
why we introduce in [40] a new rule according to the following assumptions:

• The majority of sources are reliable;
• The larger extent one source is consistent with others, the more reliable the source

is;
• The sources are cognitively independent.

For each mass function m j we consider the set of mass functions {Aw j
k ,Ak ⊂Ω}

coming from the canonical decomposition. If group the simple mass functions A
w j
k

in c clusters (the number of distinct Ak) and denote by sk the number of simple mass
functions in the cluster k, the proposed rule is given by:

mLNS = ∩©
k=1,··· ,c

(Ak)

1−αk+αk

sk

∏
j=1

w j

(44)

where
αk =

sk
c

∑
i=1

si

. (45)

How to choose the combination rule?

To answer the delicate question on which combination rule to choose, many au-
thors propose a new rule. Of course, we could propose a no free lunch theorem
showing that there is no a best combination rule.

To answer this question, we propose in [24] a global approach to transfer the be-
lief. Indeed, the discounting process, the reduction of the number of focal elements,
the combination rules and the decision process can be seen such as a transfer of be-
lief and we can define these transfers in joint operator. However, it seems to difficult
to propose a global approach which will be too general to be applied. In [24], we
define a rule integrating only the reliability given for X ∈ 2Ω by:

m(X)= ∑
Y∈(2Ω )S

S

∏
j=1

m j(Yj)w(X ,m(Y),T (Y),α(Y)), (46)
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where Y = (Y1, . . . ,YS) is the response vector of the S sources, m j(Yj) the associated
masses (m(Y) = (m1(Y1), . . . ,m j(Ys)), w is a weight function, α is the matrix of
terms αi j of the reliability of the source S j for the element i of 2Ω , and T (Y) is
the set of elements of 2Ω , on which we transfer the elementary masses m j(Yj) for a
given vector Y. This rule has been illustrated in a special case integrating the local
reliability, but it seems even too complex to be easily applied.

Hence, the best way to choose the combination rule is to identify the assumptions
that we can or we have to make and choose the adapted rule according to these
assumptions.

However, we know that a given rule can provide good results in a context where
the assumptions are satisfy this rule. Hence, another way to evaluate and compare
some rules of combination, is to study the results (after decision) of the combined
masses, e.g. on generated mass functions. In [28], from generated mass functions,
we study the difference of the combination rules in terms of decisions. We showed
that we have to take into account the decision process. We will present some of them
in the next section in the context of conflicting mass functions.

4 Decision with conflicting bbas

The classic functions used for decision making such as the pignistic probability,
the credibility and the plausibility are increasing by sets inclusion. We cannot use
these functions directly to decide on other elements than the singletons. When the
assumption of exclusiveness of the frame of discernment is not made, such as in the
equation (31), we can decide on DΩ

r . That can be interesting from the data mining
point of view such as we show in [21].

The approach proposed by [1] has been extend to the consideration of DΩ
r in [23]

allowing to decide on any element of DΩ
r by taking into account the mass function

and the cardinality. Hence, we choose the element A ∈ DΩ
r for a given observation

if:

A = argmax
X∈DΩ

r

(md(X) fd(X)) , (47)

where fd is the considered decision function such as the credibility, plausibility or
pignistic probability calculated from the mass function coming from the result of
the combination rule, and md is the mass function defined by:

md(X) = KdλX

(
1

CM (X)ρ

)
, (48)

CM (X) is the cardinality of X of DΩ
r , defined by the number of disjoint parts in

the Venn diagram, ρ is a parameter with its values in [0,1] allowing to decide from
the intersection of all the singletons (with ρ = 1) until the total ignorance Ω (with
ρ = 0). The parameter λX enables us to integrate the lost of knowledge on one of
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the elements X of DΩ
r . The constant Kd is a normalization factor that guaranties

the condition of equation (1). Without any constraint on DΩ , all the focal elements
contain the intersection of the singletons. One cannot choose the plausibility such
as decision function fd .

The choice of the parameter ρ is not easy to make. It depends on the size of Ω .
According to the application, it can be more interesting to define a subset on which
we want to take the decision. Hence, we can envisage the decision on any subset of
DΩ

r , noted D , and equation (47) becomes simply:

A = argmax
X∈D

(md(X) fd(X)) . (49)

Particularly this subset can be defined according to the expected cardinality of the
element on which we want to decide.

With the same spirit, in [11], another decision process is proposed by:

A = argmax
X∈D

(dJ(m,mX )) , (50)

where mX is the categorical mass function m(X) = 1, and m is the mass function
coming from the combination rule. The subset D is the set of elements on which we
want to decide.

This last decision process allows also a decision on imprecise elements of the
power set 2Ω and to control the precision of expected decision element without any
parameter to fit.

5 Conclusion

In this chapter, we propose some solutions to the problem of the conflict in in-
formation fusion in the context of the theory of belief functions. In section 2 we
present some conflict measures. Today, there is no consensus in the community on
the choice of a conflict measure. Measuring the conflict is not an easy task because a
mass function contains some information such as auto-conflict, we can interpret dif-
ferently. The proposed axioms are a minimum that a conflict measure has to reach.
In section 3, we discuss how to manage the conflict. Based on the assumption that
conflict comes from the unreliability of the sources, with a conflict estimation for
each source, the best to do is to discount the mass function according to the reliabil-
ity estimation (and so the conflict measure).

Another way to manage the conflict, is the choice of the combination rule. Start-
ing from the famous Zadeh’s example, many combination rules have been proposed
to manage the conflict. In this chapter, we present some combination rules (with-
out exhaustiveness) according to the assumptions that the rules suppose. Hence, we
distinguish the assumptions of: open/closed world, dependent/independent sources,
ignorant/not-ignorant sources, reliable/unreliable sources, few/many sources.
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To end this chapter, when the assumption of exclusiveness of the frame of dis-
cernment is not make, and so when we postpone the matter of conflict to the deci-
sion, we present some adapted decision processes. These decision methods are also
adapted to decide on some imprecise elements of the power set.

Of course, all the exposed methods here must be selected according to the appli-
cation, to the possible assumptions, and to the final expected result.
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