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Abstract

The present research concerns the numerical analysis of an uncertain coupled fluid-structure dynamical system, for
which the geometrical nonlinearities of the structure induced by the large deformations and the large displacements
are taken into account. The structure is coupled with an internal cavity filled with a linear inviscid compressible fluid.
The formulation is carried out in terms of displacements andpressure unknowns. The modal basis is made up of
the structural modes of the structure and the acoustic modesof the fluid. A nonlinear-reduced order model is then
numerically constructed in order to reduce the size of the problem. The uncertainties are then implemented by using
the nonparametric probabilistic framework. Note that a peculiar attention that allows the uncertainties on the nonlinear
part to be coherently taken into account by preventing the presence of a too large number of random variables used
for generating the stochastic model is made. A numerical application is presented.
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1. Introduction

Nowadays, a major challenge in many industrial areas consists in developing advanced methodologies in order
to construct predictive numerical simulation tools, whichare representative of the observed dynamical behaviour of
the mechanical systems. In particular, it is important to quantify how inherent uncertainties propagate on the consid-
ered system. Furthermore, an essential aspect is to pay attention to the various nonlinear effects that can subsequently
modify the dynamical response of the response. The present work proposes an extension of the uncertainty quantifica-
tion for the nonlinear dynamical response of fluid-structure systems, for which the structural part present consequent
geometrical nonlinear effects and for which the fluid is assumed to be a linear inviscid compressible fluid. First, we
are interested by constructing a nonlinear-reduced-ordermodel [1–4]. A nonlinear mean reduced-order model of the
coupled system is constructed by projecting the finite element operators on a chosen projection basis [5]. Then, uncer-
tainties are implemented through the nonparametric probabilistic approach [6, 7], which has been recently improved
for the structural part of the nonlinear operators [8]. A numerical example is then presented.

2. Mean nonlinear reduced-order model of the structural-acoustic system

The structural-acoustic system under consideration is made up of a tank structure filled with a linear inviscid
compressible fluid. A linear elastic constitutive equationis considered for the structure. It is also assumed that the
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structure undergoes sufficiently large deformations and large displacements in order to consider the geometrical non-
linear effects, but also sufficiently moderate so that the fluid behavior remains linear. Atotal lagrangian formulation
around a static equilibrium state taken as a reference configuration is used.

The three-dimensional bounded domain of the physical spaceR
3 occupied by the structure is denoted byΩS with

boundary∂ΩS = ΓS,0 ∪ ΓS ∪ Σ. The structure is subjected to a body force fieldfvol(x, t). It is fixed onΓS,0 and
subjected to a surface force fieldfsurf(x) onΓS. The internal fluid occupies a three-dimensional bounded domainΩF

of R
3 with boundary∂ΩF = ΓF ∪Σ. It is coupled to the structure through boundaryΣ and has a free surface condition

onΓF . Let nS andnF be the outward unit normals to∂ΩS and∂ΩF . Note thatnS = −nF onΣ. Let x be the generic
point of R3. The forced response is formulated in the time domain. A formulation in terms of displacements field
u(x, t) for the structure and in terms of pressure fieldp(x, t) for the internal fluid is chosen. The equations related to
the mean structural-acoustic system [9] are then written as

ρS
∂2u
∂t2
− div (FS) = fvol in ΩS , (1)

u = 0 on ΓS,0 , (2)

(FS) · nS = fsurf on ΓS , (3)

(FS) · nS = pnS on Σ , (4)

1

ρF c2
F

∂2 p
∂ t2

−
1
ρF
∆p = 0 in ΩF , (5)

p = 0 on ΓF , (6)

1
ρF

∂p
∂nF

= −
∂2u
∂t2
· nF on Σ , (7)

in which the deformation gradient tensorF is defined byFi j = ui, j + δi j , in whichδi j is the Kronecker symbol such
thatδi j = 1 if i = j andδi j = 0 otherwise, and where the second Piola-Kirchoff symmetric stress tensorS is written,
for a linear elastic material, asSi j = ai jkℓ Ekℓ. The fourth-order elasticity tensora = {ai jkℓ}i jkℓ satisfies the usual
symmetry and positive-definiteness properties. The Green strain tensorE = {Ei j }i j is then written as the sum of linear

and nonlinear terms such thatEi j = εi j + ηi j , in whichεi j = 1
2

(
ui, j + u j,i

)
and ηi j =

1
2us,i us, j. QuantitiesρS, ρF

andcF denote the mass density of the structure, the mass density ofthe fluid, and the sound velocity respectively.
The structural-acoustic system is then discretized with the finite element method assuming that the finite element

meshes of the structure and of the internal fluid are compatible on the coupling interfaceΣ. A mean nonlinear reduced
matrix model of the structural-acoustic system is then constructed. Letu be theC

nS -vector of thenS DOF of the
structure and letp be theC

nF -vector corresponding to the finite element discretizationof the pressure field of the
internal acoustic fluid. The projection basis of the structural-acoustic problem is calculated as follows: (1) TheNS

structural modes related to the firstNS positive structural eigenfrequencies of the structure, for which an added mass
effect representing the quasi-static effect of the internal fluid of the structure is taken into account [9] , are stored in
thenS × NS modal matrix [ΦS]. (2) TheNF acoustic modes related to the firstNF positive acoustic eigenfrequencies
of the internal fluid are stored in thenF × NF modal matrix [ΦF ]. The projection basis allowing the mean reduced
matrix model to be constructed is given by

[
u(t)
p(t)

]
=

[
[ΦS] [0]
[0] [ΦF ]

] [
qS(t)
qF(t)

]
, (8)

in which qS andqF are theCNS -vector and theCNF -vector of the generalized coordinates related to the structure and
to the internal fluid. From such projection basis, the linearreduced operators [MS], [MF ], [KS] and [KF ] and the
coupling reduced operator [C] are constructed and the nonlinear quadratic and cubic reduced operatorsK(2)

S,αβγ and

K
(3)
S,αβγδ are explicitly constructed according [5] . The generalizedcoordinates are then solution of the matrix equation

[
[MS] 0
−[C]T [MF ]

] [
q̈S(t)
q̈F(t)

]
+

[
[DS] 0

0 [DF ]

] [
q̇S(t)
q̇F (t)

]
+

[
[KS] [C]

0 [KF ]

] [
qS(t)
qF(t)

]
+

[
F

NL(qS(t))
0

]
=

[
FS(t)

0

]
, (9)
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in which the nonlinear reduced forceFNL(qS) is defined from the nonlinear quadratic and cubic stiffness operators
such that

F
NL
α (qS) = K

(2)
S,αβγ qS,β qS,γ + K

(3)
S,αβγδ qS,β qS,γ qS,δ . (10)

For the application presented in this paper, the damping model is written as [DS] = bS [KS] and [DF ] = bF [KF ].
Furthermore, the vectorFS(t) is the external reduced load vector of the structure, assuming that there is no external
source for the fluid. The presence of the geometric nonlinearities yields the equations of the mean nonlinear reduced-
order model to be considered in the time domain. The forced response of the structural-acoustic problem is then
investigated in the time-domain by considering an equivalent time-evolution problem with zero initial conditions over
a finite time interval, which includes almost all of the signal energy of the excitation. The strategy is to simultaneously
and uniformly excite all the frequencies of a chosen frequency band of excitation so that only one computation of the
nonlinear dynamical problem is required.

3. Stochastic nonlinear reduced-order model of the structural-acoustic system

The uncertainty propagation of the nonlinear dynamical response of the structural-acoustic system is then investi-
gated by implementing the uncertainties through the nonparametric probabilistic approach whose review can be found
in [6].

• Let [A] be one of the matrices [MS], [MF ], [DS], [DF ] or [KF ] which are symmetric positive-definite matrices
and letN ∈ {NS,NF} be its order. In such case, the corresponding random matrix [A] is then written as

[A] = [LA]T [GA(δA)] [LA] , (11)

in which [LA] is the (N × N) upper triangular matrix issued from the Cholesky factorization of [A], and where
[GA] is a full random matrix with values in the set of all the positive-definite symmetric (N × N) matrices.
• The random coupling reduced operator [C], which is a (NS × NF ) rectangular matrix is written as

[C] = [TC] [LC]T [GC(δC)] [LC] , (12)

in which the matrices [TC] and [LC] are the (N × N) matrices defined by [LC] = [S]−1/2 [VC]T and [TC] =
[C] [VC] [S] [VC]T, in which the columns of the (NF × N) full matrix [VC] contains the withN < NS right-
singular vectors of matrix [C] related to the corresponding largest singular value stored by decreasing order
in the (P × P) diagonal matrix [S] and where [GC] is a full random matrix with values in the set of all the
positive-definite symmetric (N × N) matrices.
• Concerning the implementation of the uncertainties on the linear and the nonlinear terms issued from the linear

elasticity constitutive equation, the methodology is briefly described below. The main idea introduced in [7]
consist in globally introducing the uncertainties on all linear and nonlinear stiffness terms through a stiffness
operator self-containing the linear, quadratic and cubic stiffness terms. Such reduced operator is represented by
the (P × P) real matrix [K] with P = NS(NS + 1). It has been shown in [7] that matrix [K] is a symmetric
and positive-definite matrix. Consequently, the nonparametric probabilistic approach can be easily extended to
the geometrically nonlinear context. The random matrix [K] can be written as [K] = [LK ]T [GK(δK)] [LK ], in
which the (P× P) matrix [LK ] is issued from the Choleski factorization of matrix [K] and where [GK(δK)] is
a full random matrix with values in the set of all the positive-definite symmetric (P × P) matrices. The main
drawbacks of this method is that the dimensionP of the random germ [GK(δK)] drastically increases withN
and that a scale effect prevents to compare the influence of the uncertainties onthe nonlinear stiffness terms
with respect to the linear stiffness terms in the nonlinear dynamical analysis [10]. The main idea proposed in
[8] is to use another factorization of matrix [K], which involves a rectangular matrix of dimension (N×P) with
N ≪ P. This is achieved by performing a reduction of matrix [K]. Let us then consider the eigenvalue problem

[K] �α = λα �α . (13)

Matrix [K] can then be approximated by the (P× P) matrix [K̃] such that [̃K] = [ L̃K ]T [ L̃K ] , in which [̃LK ]
is the full (N× P) matrix defined by [̃LK ] = [ΛN]

1
2 [ΨN]T , where [ΛN] is the (N×N) diagonal matrix such that
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[ΛN]αα = λα, whereλ1 ≥ λ2 ≥ · · · ≥ λN and where the columns of the (P× N) matrix [ΨN] are the eigenvector�α, α ∈ {1, . . . ,N} related to eigenvaluesλα. Random matrix [K] is then replaced by the random matrix [K̃]
such that

[K̃] = [ L̃K ]T [G̃K(δK)] [ L̃K ] +
(
[K̃] − [K]

)
, (14)

in which [G̃K(δK)] is a (N×N) random matrix with values in the set of the symmetric positive-definite matrices.
Note that Eq. (14) ensures that stiffness operator [̃K] is almost surely positive definite.

It can be proved that the probability distribution and the random generator of each random (N×N) matrix [GA(δA)]
is detailed in [6, 11]. The dispersion of each random matrix [GA] is controlled by the hyperparameterδA belonging
an admissible set∆A. Consequently, the uncertainty level of the coupled fluid-structure system is entirely controlled
by theR

7-valued hyperparameterδ = (δMS , δDS , δC, δMF , δDF , δKF , δK), belonging to the admissible set∆
7.

Concerning the numerical procedure for computing the response of the stochastic nonlinear reduced-order model
in the time domain, the Monte Carlo numerical simulation is used with an implicit and unconditionally stable integra-
tion scheme (Newmark method with the averaging acceleration scheme) combined with either the fixed point method
or with an adapted efficient algorithm based on the arc-length method [10, 12, 13],depending on the nonlinearity rate.
A posterior nonlinear dynamical analysis is then performedin the frequency domain by using Fast Fourier Transform.

4. Numerical application

The fluid-structure coupled dynamical system under consideration is a cylindrical tank partially filled with a linear
inviscid acoustic fluid that is described in a global cartesian coordinate system (O, e1, e1, e3), whereO is the center of
the cylinder basis and where the cylinder axis is defined along e3. Its geometry is characterized by the mean radius
rm = 0.93m, thicknesse = 0.14m, h = 2m, and bottom thicknesshb = 0.5m. The bottom of the cylindrical
shell is clamped. The material is a linear isotropic homogeneous elastic material for which the Young modulus
E = 2.1× 1011 N ×m−2, the Poisson ratioν = 0.3, and the mass densityρS = 7860Kg×m−3. The internal fluid
occupies a cylindrical volume with radiusr f = 0.86m and heighthF = 0.75m. It has a free surface. The fluid has
mass densityρF = 1000Kg.m−3 and sound velocitycF = 1480m× s−1. The finite element model of the system has
1024 three-dimensional solid finite elements with 8 nodes with nS = 3750 Dofs. The finite element model of the
fluid has 768 three-dimensional fluid finite elements with 8 nodes withnF = 819 Dofs and is represented by Fig. 1.
The structure is subjected to a transverse load such that allthe nodes located at the top of the cylindrical shell are
uniformly excited alonge2. The damping model is characterized bybS = 1.5× 10−5 andbF = 10−5.

Figure 1: Finite element model of the mean fluid-structure system.
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The frequency band of excitation isBexc = [200, 1 400]Hzsuch thats = 2/3 and∆ν = 1 200Hzaccording to
Eq.(14). The stochastic reduced-order model is constructed with NS = 50 andNF = 40, for which a convergence
analysis concerning the displacements of the structure andthe pressure in the fluid has been made. The chosen
observations are the displacementsUx,Uy,Uz along directionse1, e2, e3 of the point of coordinates (−1, 0, 2) located
at the top of the structure and the pressureP of the point of coordinated (−0.64, 0, 1), located in the fluid. Figures 2 and
3 compare the confidence region of the nonlinear stochastic response of the fluid-structure system at these observation
points when uncertainty is located on the stiffness structure onlyδK = 0.2 or on the stiffness fluid onlyδKS = 0.2.

Figure 2: ForδKS = 0.2, graph of the deterministic response (thick line), the mean response (thin dashed line) and of the confidence region related
to (a) displacement̂Ux(ν), (b) displacement̂Uy(ν), (c) displacement̂Uz(ν), (d) pressurêP(ν).

5. Conclusion

A numerical method for computing the nonlinear dynamical behaviour of an uncertain coupled fluid-structure
system has been presented. A numerical application demonstrates the feasability of the proposed method.
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