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Abstract

The present research concerns the numerical analysis aiaartain coupled fluid-structure dynamical system, for
which the geometrical nonlinearities of the structure icetliby the large deformations and the large displacements
are taken into account. The structure is coupled with amnatecavity filled with a linear inviscid compressible fluid.
The formulation is carried out in terms of displacements pressure unknowns. The modal basis is made up of
the structural modes of the structure and the acoustic mofdige fluid. A nonlinear-reduced order model is then
numerically constructed in order to reduce the size of tidblem. The uncertainties are then implemented by using
the nonparametric probabilistic framework. Note that agiacattention that allows the uncertainties on the nardin
part to be coherently taken into account by preventing tlesgmce of a too large number of random variables used
for generating the stochastic model is made. A numericdicgifon is presented.

Keywords: Fluid-structure interaction, Geometric nonlinearitidacertainty Quantification

1. Introduction

Nowadays, a major challenge in many industrial areas cinisisleveloping advanced methodologies in order
to construct predictive numerical simulation tools, whaake representative of the observed dynamical behaviour of
the mechanical systems. In particular, it is important targify how inherent uncertainties propagate on the consid-
ered system. Furthermore, an essential aspect is to payiati¢o the various nonlineaffects that can subsequently
modify the dynamical response of the response. The presekiwoposes an extension of the uncertainty quantifica-
tion for the nonlinear dynamical response of fluid-struetsystems, for which the structural part present consequent
geometrical nonlinearfiects and for which the fluid is assumed to be a linear invisoidressible fluid. First, we
are interested by constructing a nonlinear-reduced-ontdelel [1-4]. A nonlinear mean reduced-order model of the
coupled system is constructed by projecting the finite efgmperators on a chosen projection basis [5]. Then, uncer-
tainties are implemented through the nonparametric piibst@bapproach [6, 7], which has been recently improved
for the structural part of the nonlinear operators [8]. A ruital example is then presented.

2. Mean nonlinear reduced-order model of the structural-acoustic system

The structural-acoustic system under consideration isemgodof a tank structure filled with a linear inviscid
compressible fluid. A linear elastic constitutive equat®eonsidered for the structure. It is also assumed that the
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structure undergoes iciently large deformations and large displacements inrdaleonsider the geometrical non-
linear dfects, but also diiciently moderate so that the fluid behavior remains lineatotal lagrangian formulation
around a static equilibrium state taken as a reference aoafign is used.

The three-dimensional bounded domain of the physical spicecupied by the structure is denoted®y with
boundaryoQs = I'sp U I's U Z. The structure is subjected to a body force fiklg(x, t). It is fixed onI'sp and
subjected to a surface force fidlg#x) onI's. The internal fluid occupies a three-dimensional boundedaloQr
of R® with boundanpQr = I'= UZ. Itis coupled to the structure through bound&mnd has a free surface condition
onTk. Letns andng be the outward unit normals tif2s andoQr. Note thaing = —ng onX. Letx be the generic
point of R3. The forced response is formulated in the time domain. A fdation in terms of displacements field
u(x, t) for the structure and in terms of pressure fipld, t) for the internal fluid is chosen. The equations related to
the mean structural-acoustic system [9] are then written as

@ —div(FS) = f in Q (1)
pS 6t2 = lvol S )
u=0 on TIsy , 2)
([F S) ‘Ng = fsurf on Is , (3)
(FS)-ns =pns on X , (4)
1 ##p 1 .

— — —Ap=0 in Q , 5
pFCIZ: 512 OF p F ( )
p= 0 on FF y (6)
10p &
p_Fﬂ = ~%e ne on X , 7

in which the deformation gradient tendbiis defined byFi; = u;; + &;j, in whichd;; is the Kronecker symbol such
thats;j = 1ifi = jands; = O otherwise, and where the second Piola-KifElsgmmetric stress tens6ris written,
for a linear elastic material, &; = aj Ex,. The fourth-order elasticity tensar = {ajJijke Satisfies the usual
symmetry and positive-definiteness properties. The Greamsensoi = {E;;};j is then written as the sum of linear
and nonlinear terms such th& = &;j + i, in whichs;; = 3(uj+uy) and 7 = $usus). Quantitieps, pr
andce denote the mass density of the structure, the mass densiig €éitiid, and the sound velocity respectively.
The structural-acoustic system is then discretized wigtfithite element method assuming that the finite element
meshes of the structure and of the internal fluid are comleatiibthe coupling interfacé. A mean nonlinear reduced
matrix model of the structural-acoustic system is then tanted. Letu be theC"s-vector of thens DOF of the
structure and lep be theC™-vector corresponding to the finite element discretizatibthe pressure field of the
internal acoustic fluid. The projection basis of the streatacoustic problem is calculated as follows: (1) Tie
structural modes related to the fifdg positive structural eigenfrequencies of the structurewfioich an added mass
effect representing the quasi-statiteet of the internal fluid of the structure is taken into acad@h, are stored in
thens x Ns modal matrix fbs]. (2) TheNg acoustic modes related to the firgt positive acoustic eigenfrequencies
of the internal fluid are stored in thg x Ng modal matrix fbr]. The projection basis allowing the mean reduced
matrix model to be constructed is given by

u(t)} _ [[CDS] [0] } [QS(t)} @)
p(H) [0] [®elf[ar®)] ~
in which g5 andgg are theC™s-vector and thec"-vector of the generalized coordinates related to the stre@nd

to the internal fluid. From such projection basis, the linemuced operatorsMs], [ Mg], [Ks] and [ICF! and the

coupling reduced operato€] are constructed and the nonlinear quadratic and cubiccestioperatorsC 2 and

S,aBy
ICSLM are explicitly constructed according [5] . The generalizedrdinates are then solution of the matrix equation

ds(t)

L O[] [Bsd o s [0kt 1)
ae(t)

[T IME]| [Ge(0) 0 [Drl] [9e(t) 0 [K¥]
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in which the nonlinear reduced for@'"(qs) is defined from the nonlinear quadratic and cubiffrstiss operators
such that

Fias) = K&, dspdsy + KS§) s 5 0ss0sy Uss - (10)

For the application presented in this paper, the dampingafiedvritten as Ps] = bs[Ks] and [De] = be [KCg].
Furthermore, the vectoFs(t) is the external reduced load vector of the structure, asgythat there is no external
source for the fluid. The presence of the geometric nonlitieayields the equations of the mean nonlinear reduced-
order model to be considered in the time domain. The forcedamse of the structural-acoustic problem is then
investigated in the time-domain by considering an equivaiee-evolution problem with zero initial conditions ave

a finite time interval, which includes almost all of the sig@aergy of the excitation. The strategy is to simultanepusl|
and uniformly excite all the frequencies of a chosen fregydrand of excitation so that only one computation of the
nonlinear dynamical problem is required.

3. Stochastic nonlinear reduced-order model of the structural-acoustic system

The uncertainty propagation of the nonlinear dynamicgloase of the structural-acoustic system is then investi-
gated by implementing the uncertainties through the napatric probabilistic approach whose review can be found
in [6].

o Let [A] be one of the matrices\s], [ME], [Ds], [De] or [KCe] which are symmetric positive-definite matrices
and letN € {Ns, N} be its order. In such case, the corresponding random madiixs[then written as

[A] = [Lal" [GAGA[LA] . (11)

in which [La] is the (N x N) upper triangular matrix issued from the Cholesky factatitm of [4], and where
[Ga] is a full random matrix with values in the set of all the pastdefinite symmetricN| x N) matrices.
e The random coupling reduced operat6}, [which is a (Ns x Ng) rectangular matrix is written as

[C] = [Tcl[Lc] [Ge(@e)l[Le] (12)

in which the matricesTc] and [Lc] are the N x N) matrices defined bylis] = [S]7Y?[Vc]" and [Tc] =
[C1TVc][S][Ve]T, in which the columns of theNg x N) full matrix [Vc] contains the withN < Ng right-
singular vectors of matrixd] related to the corresponding largest singular value dtbre decreasing order
in the (P x P) diagonal matrix §] and where ¢] is a full random matrix with values in the set of all the
positive-definite symmetrid\ x N) matrices.

e Concerning the implementation of the uncertainties onittesal and the nonlinear terms issued from the linear
elasticity constitutive equation, the methodology is flyielescribed below. The main idea introduced in [7]
consist in globally introducing the uncertainties on alelar and nonlinear $iness terms through a ftiess
operator self-containing the linear, quadratic and cutbffness terms. Such reduced operator is represented by
the (P x P) real matrix [C] with P = Ns(Ns + 1). It has been shown in [7] that matriX] is a symmetric
and positive-definite matrix. Consequently, the nonpatemgrobabilistic approach can be easily extended to
the geometrically nonlinear context. The random mati} an be written asit] = [Lk]" [Gk (6k)][Lk], in
which the @ x P) matrix [Lk] is issued from the Choleski factorization of matrig][and where Gk (6k)] is
a full random matrix with values in the set of all the positidefinite symmetricR x P) matrices. The main
drawbacks of this method is that the dimensknf the random germG (6k)] drastically increases withN
and that a scalefkect prevents to compare the influence of the uncertaintigh®monlinear sffness terms
with respect to the linear $fhess terms in the nonlinear dynamical analysis [10]. Thenritga proposed in
[8] is to use another factorization of matrik], which involves a rectangular matrix of dimensidwx P) with
N <« P. This is achieved by performing a reduction of mati¥ [ Let us then consider the eigenvalue problem

[KIdy = Ao, (13)

Matrix [K] can then be approximated by thR  P) matrix [K] such that K] = [Lk]" [Lk] . in which [Lk]
is the full (N x P) matrix defined by[x] = [AN]Z [¥M]T, where \M] is the (N x N) diagonal matrix such that
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[AN]oow = Ao, Whereds > 25 > --- > Ay and where the columns of th & N) matrix [¥N] are the eigenvector
V,, @ € {1,..., N} related to eigenvaluet,. Random matrix K] is then replaced by the random matri]
such that

[K] = [Lk]" [Gk (k)] [Lk] + ([K] - [K]) (14)

in which [Gk (6)] is a (N x N) random matrix with values in the set of the symmetric positiefinite matrices.
Note that Eq. (14) ensures thatfBtess operatoi{] is almost surely positive definite.

It can be proved that the probability distribution and thed@m generator of each randohx N) matrix [Ga(da)]
is detailed in [6, 11]. The dispersion of each random matgx][is controlled by the hyperparame® belonging
an admissible sets. Consequently, the uncertainty level of the coupled fldfideture system is entirely controlled
by theR’-valued hyperparametér= (5w, dbs, 9c, Sm.» 9p;» Ok, »9k), belonging to the admissible s&f.

Concerning the numerical procedure for computing the nespof the stochastic nonlinear reduced-order model
in the time domain, the Monte Carlo nhumerical simulationdediwith an implicit and unconditionally stable integra-
tion scheme (Newmark method with the averaging acceleratbheme) combined with either the fixed point method
or with an adaptedficient algorithm based on the arc-length method [10, 12,defjending on the nonlinearity rate.
A posterior nonlinear dynamical analysis is then perforindte frequency domain by using Fast Fourier Transform.

4. Numerical application

The fluid-structure coupled dynamical system under conaiab is a cylindrical tank partially filled with a linear
inviscid acoustic fluid that is described in a global cagasioordinate systen®( e;, €1, €3), whereO is the center of
the cylinder basis and where the cylinder axis is definedgadgn Its geometry is characterized by the mean radius
rm = 0.93m, thicknesse = 0.14m, h = 2m, and bottom thicknesls, = 0.5m. The bottom of the cylindrical
shell is clamped. The material is a linear isotropic homegess elastic material for which the Young modulus
E = 2.1x 10N x m2, the Poisson ratio = 0.3, and the mass densipg = 7860Kgx m3. The internal fluid
occupies a cylindrical volume with radiug = 0.86mand heighhg = 0.75m. It has a free surface. The fluid has
mass densityr = 1000Kg.m™2 and sound velocitgr = 1480mx s. The finite element model of the system has
1024 three-dimensional solid finite elements with 8 nodagb ng = 3750 Dofs. The finite element model of the
fluid has 768 three-dimensional fluid finite elements with 8ewwithns = 819 Dofs and is represented by Fig. 1.
The structure is subjected to a transverse load such thttealiodes located at the top of the cylindrical shell are
uniformly excited alongg,. The damping model is characterizediiyy = 1.5x 10°° andbg = 107°.

Figure 1: Finite element model of the mean fluid-structurstey.
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The frequency band of excitation&y. = [200, 1400]Hz such thats = 2/3 andAv = 1 200Hzaccording to
Eq.(14). The stochastic reduced-order model is consulueith Ns = 50 andNg = 40, for which a convergence
analysis concerning the displacements of the structuretfagbressure in the fluid has been made. The chosen
observations are the displacemedisUy, U, along direction®, e, 3 of the point of coordinatesl, 0, 2) located
at the top of the structure and the presdeitd the point of coordinated{0.64, 0, 1), located in the fluid. Figures 2 and
3 compare the confidence region of the nonlinear stochastpminse of the fluid-structure system at these observation
points when uncertainty is located on thetsiss structure onl§k = 0.2 or on the sfiness fluid onlysx, = 0.2.

Fourier Transform of displacement (m.s)
Fourier Transform of displacement (m.s)

8 | 8 L
o 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Frequency (Hz) Frequency (Hz)

Fourier Transform of displacement (m.s)
Fourier Transform of pressure (kg.m™.s™")

1 . 107 I I
0200 400 600 800 1000 1200 1400 0200 400 600 800 1000 1200 1400 1600 1800
Frequency (Hz) Frequency (Hz)

Figure 2: Fowkg = 0.2, graph of the deterministic response (thick line), themreaponse (thin dashed line) and of the confidence regiatecel
to (a) displacemeritx(), (b) displacemently(v), (c) displacementi,(v), (d) pressuré(»).

5. Conclusion

A numerical method for computing the nonlinear dynamicdidséour of an uncertain coupled fluid-structure
system has been presented. A numerical application deratesthe feasability of the proposed method.
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