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Abstract

We consider the problem of stopping a diffusion process with a payoff functional
involving probability distortion. The problem is inherently time-inconsistent as the
level of distortion of a same event changes over time. We study stopping decisions of
näıve agents who reoptimize continuously in time, as well as equilibrium strategies of
sophisticated agents who anticipate but lack control over their future selves’ behaviors.
When the state process is one dimensional and the payoff functional satisfies some
regularity conditions, we prove that any equilibrium can be obtained as a fixed point
of an operator. This operator represents strategic reasoning that takes the future
selves’ behaviors into account. In particular, we show how such strategic reasoning
may turn a näıve agent into a sophisticated one. Finally, when the diffusion process is
a geometric Brownian motion we derive stopping strategies of these two types of agent
for various parameter specifications of the problem, illustrating rich behaviors beyond
the extreme ones such as “never-stopping” or “never-starting”.
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1 Introduction

Optimal stopping is to determine the best (random) time to stop a stochastic process so as
to maximize a given payoff arising from the stopped state of the process. Applications of
such a timing problem are abundant including stock trading (e.g. the best time to sell a
stock), option pricing (e.g. American options) and real options (e.g. the best time to invest
in a project). Two main classical approaches to solving optimal stopping problems are
dynamic programming and martingale theory, which are both based foundationally on the
assumption of time-consistency, namely, any optimal stopping rule planned today remains
optimal tomorrow.

The assumption of time-consistency is rooted in the premise that an individual’s prefer-
ences are consistent over time and will not change as time goes by or circumstances evolve.
However, this premise is all too vulnerable to stand the test of reality. A gambler may
have planned initially to leave the casino after having made $1000, but then decides to go
on gambling when this target has been reached. This is because the gambler’s risk pref-
erence has changed after winning $1000; he has become more risk-seeking as the result of
the triumph. Indeed, extensive empirical and experimental studies all point to the fact that
time-inconsistency is the rule rather than the exception.

In the absence of time-consistency, whatever an “optimal” plan derived at this moment
is generally not optimal evaluated at the next moment; hence there is no such notion of a
“dynamically optimal strategy” good for the entire planning horizon as is the case with a
time-consistent model. Economists, starting from Strotz (1955-56), instead have described
the responses or behaviors of three types of individuals when facing a time-inconsistent
situation. Type 1, the näıve agent, chooses whatever seems to be optimal with respect to
his current preference, without knowing the fact that his preferences may change over time.
Type 2 is the pre-committed agent, who optimizes only once at the initial time and then
sticks to the resulting plan in the future. Type 3, the sophisticated agent, is aware of the fact
that his “future selves” will overturn his current plan (due to the lack of commitment) and
selects the best present action taking the future disobedience as a constraint. The resulting
strategy is called a (subgame perfect) equilibrium from which no incarnations of the agent
have incentive to deviate.

Thus, a time-inconsistent model is descriptive as opposed to its time-consistent counter-
part that is mainly prescriptive. The objective of the former is to describe behaviors of the
different types of agents, rather than to advise on the best course of action1.

In this paper we study the stopping problem when probability is distorted. Experimental
evidence supports the phenomenon of probability distortion (or weighting); in particular
that people inflate the small probabilities of occurrence of both extremely favourable and
extremely unfavorable events. Behavioral theories such as rank-dependent utility (RDU)
and cumulative prospect theory (CPT) include probability distortion as a key component
and consider it as a part of the risk preference. On the other hand, the level of probability
distortion associated with a same future event changes over time because the conditional
probability of that event evolves dynamically and the distortion is nonlinear. Therefore
time-inconsistency is inherent in the presence of (non-trivial) probability distortion.

1The strategies of the three types of agents coincide if the problem is time consistent.
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The aim of this paper is to study the stopping strategies of Type 1 (näıve) and Type 3
(sophisticated) agents. Pre-committed strategies (i.e. those of Type 2’s) have been inves-
tigated and obtained thoroughly for geometric Brownian motions by Xu and Zhou (2013)2,
which are conceptually and technically useful for the present paper.

A näıve stopping law is one such that, at any given time and state, it coincides with
the optimal stopping law at that particular pair of time and state. Definition of equilibrium
strategies in the continuous-time setting, on the other hand, is more subtle. Starting with
Ekeland and Lazrak (2006), and followed by e.g. Ekeland and Lazrak (2006), Yong (2012),
Hu et al. (2012), Björk et al. (2017), and Hu et al. (2017), an equilibrium for a control prob-
lem is defined as one that satisfies a first-order inequality condition on some spike variation
of the equilibrium. Ebert et al. (2017) apply this definition to a stopping problem by turning
the latter into a control problem. However, it remains a problem to rigorously establish the
equivalence between this first-order condition and the zeroth-order condition in the original
definition of a subgame perfect equilibrium.

In this paper we follow the formulation of Huang and Nguyen-Huu (2016) to define
an equilibrium stopping law (although therein a different stopping problem with a non-
exponential discount factor featuring decreasing impatience is considered). The idea of this
formulation is that, for any given stopping law, the sophisticated agent improves it by a
level of strategic reasoning through anticipating his future selves’ behaviors. The agent then
performs additional levels of similar reasoning until he cannot further improve it, which is an
equilibrium. Mathematically, an equilibrium is a fixed-point of an operator that represents
one level of this strategic thinking.

The general existence of such a fixed-point is a largely open question. The first con-
tribution of this paper is to prove that, assuming that the state follows a one-dimensional
diffusion process and the payoff functional satisfies some (very mild) measurable and Fatou
type conditions, any equilibrium strategy can be obtained from performing the aforemen-
tioned operator repeatedly on an initial stopping law and then taking the limit.

We then apply this result to the stopping problem of a geometric Brownian motion and
a RDU type of payoff functional involving probability distortion, whose pre-committed stop-
ping strategies have been studied thoroughly by Xu and Zhou (2013). Besides characterizing
the stopping behaviors of the näıve and the sophisticated, we are particularly interested in
the connection and potential transformation among the three type of agents: the näıve
agent in effect solves a pre-committed problem at every state and time who, interestingly,
may turn himself into a sophisticate if he carries out several levels (sometimes just one level)
of the strategic reasoning. In this regard, the fixed-point characterization of the equilibrium
strategies brings about a significant advantage over the first-order characterization, as the
former describes the “reasoning process” with which an initial näıve strategy is changed into
a sophisticated one.

Ebert and Strack (2015) show that under the assumptions leading to “skewness prefer-
ence in the small”, a naive following CPT will never stop “until the bitter end”. These
assumptions essentially ensure that probability distortion on small probabilities of big gains

2Due to time-inconsistency, dynamic programming or martingale approach does not work for deriving
pre-committed strategies. Xu and Zhou (2013) develop a new approach with a combination of the so-called
quantile/distribution formulation and Skorokhod’s embedding theory to solve the problem.
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outweighs loss aversion; hence at any wealth level the agent always favors a small, right-
skewed risk over the deterministic payoff resulting from the immediate stop. This is the rea-
son why he ends up never stopping. The antithesis of this result is presented in Ebert and Strack
(2017): assuming that there is an arbitrarily strong probability distortion on small probabil-
ities of big losses and considering only two-threshold type of strategies3, a sophisticate will
stop immediately or, equivalently, “never, ever getting started”. This is because when the
process is sufficiently close to the upper threshold the stopped state under the two-threshold
strategy becomes highly left-skewed, which is unattractive to a CPT agent with a typical
inverse-S shaped distortion function. Knowing that the future selves who are close to the
upper threshold will not carry out this strategy, in equilibrium each current self will simply
not start it.

The authors of these two papers acknowledge that both the “never stop” and “never
start” behaviors are “extreme” representing “unrealistic predictions” under the CPT. In
this paper, we complement their results by studying the cases in which the assumptions of
Ebert and Strack (2015) and Ebert and Strack (2017) do not hold, and showing that the
behaviors of the naives and sophisticates are far richer than the mere extreme ones. Indeed,
depending on the parameters of the geometric Brownian motion and the payoff functional,
both types of agents may want to start and end, relying on a (one) threshold-type stopping
strategy. This suggests that the RDU model may offer more realistic prediction if we allow
the distortion functions to take various shapes and, meanwhile, we take into consideration
the intertwining relationship between the preference of the agent and the characteristics of
the process he monitors.

The rest of the paper is organized as follows. In Section 2 we formulate a general time-
inconsistent stopping problem, define the näıve and sophisticated equilibrium stopping laws,
and introduce the operator that represents a strategic reasoning of a sophisticated agent.
Section 3 characterizes the set of equilibrium stopping laws when the state process is one
dimensional. In Section 4 we demonstrate how time-inconsistency may arise when the prob-
ability is distorted and the process is a geometric Brownian motion, followed by Section 5 in
which we develop the theory for deriving sophisticated equilibrium strategies in the presence
of time inconsistency. Section 6 is devoted to derivation of näıve and sophisticated strategies
for a wide range of parameter specifications. Finally, Appendices collect technical proofs.

2 Näıve and Equilibrium Stopping Laws

This section sets out to introduce time-inconsistency for a general optimal stopping problem
and the ways we deal with the issue. Although in the rest of this paper we focus on problems
in which the probability is distorted, the discussion in this section is more general.

Consider a probability space (Ω,F ,P) that supports a stationary stochastic process X :
R+ × Ω 7→ X ⊆ Rd with initial value X0 = x ∈ X, where X is called the state space of X .
We will constantly use the notation Xx to emphasize the dependence of the process on the
initial value x. We denote by B(X) the Borel σ-algebra of X. Let F = {Ft}t≥0 be the P-

3With a two-threshold type of strategy, the agent stops whenever the state process reaches a or b where
a < b are the two prescribed thresholds. Ebert and Strack (2017) consider pure Markovian strategies, which
are essentially two-threshold strategies.
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augmentation of the natural filtration generated by X , and let T be the set of all F-stopping
times that may be infinite with positive probabilities. Note that T includes non-Markovian
stopping times4.

At any given state x ∈ X, a decision-maker (an agent) needs to decide when to stop the
process X . If he chooses to stop at τ ∈ T , he receives the payoff J(x; τ), where J : X×T 7→ R

is a given objective functional. If he decides to stop immediately, then he gets a payoff u(x),
where u : X 7→ R is some Borel measurable function. The agent intends to maximize his
payoff by choosing an appropriate stopping time τ ∈ T , i.e., he aspires to achieve

sup
τ∈T

J(x; τ). (2.1)

A well-studied example of the objective functional is the expected payoff

J(x; τ) := E[u(Xx
τ )], (2.2)

whereas there can be many other forms5.
As {Xx

t }t≥0 evolves over time, one can reexamine and solve the optimal stopping problem
(2.1) at every moment t ≥ 0. A natural, conceptual question arises: suppose an optimal
stopping time τ̂x can be found for each and every x ∈ X, are τ̂x and τ̂Xx

t
, t > 0, consistent

with each other?
The notion of “consistency” in this question can be formalized as follows:

Definition 2.1 (Time-Consistency). Suppose an optimal stopping time τ̂x ∈ T of the prob-
lem (2.1) exists for all x ∈ X. We say problem (2.1) is time-consistent if for any t > 0 and
any x ∈ X,

τ̂x = t + τ̂Xx
t

a.s. on {τ̂x > t}; (2.3)

otherwise problem (2.1) is time-inconsistent.

Intuitively, time-inconsistency means that an optimal strategy planned at this moment
may no longer be optimal at the next moment. It is well known that problem (2.1) with
the expected payoff in (2.2) is time-consistent; hence one can apply classical approaches
such as dynamic programming and martingale method to solve it; see e.g. Shiryaev (1978)
and Karatzas and Shreve (1998). For a general objective functional, problem (2.1) is pre-
dominantly time-inconsistent - for example when probability distortion is involved or non-
exponential discouting is applied.

Time-inconsistency renders the very notion of “dynamic optimization” null and void,
for if one cannot commit his future selves to the optimal strategy he chooses today, then
today’s optimal strategy has little use in a dynamic context. More specifically, for any given
state x ∈ X at t = 0, suppose the agent finds an optimal stopping time τ̂x. He actually
wants, and indeed assumes, that all his future selves will follow τ̂x, so that the optimal value
supτ∈T J(x; τ) = J(x; τ̂x) can be attained. However, his future self at time t > 0 would like

4Non-Markovian stopping is widely used in practice. For example, the “trailing stop” in stock trading
is a non-Markovian selling rule. He et al. (2017) shows that in a casino gambling model under CPT path-
dependent stopping strategies strictly dominate Markovian ones.

5In later sections we will focus on an objective functional when the probability is “distorted”, as defined
in (4.9) below.
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to follow his own optimal stopping time τ̂Xx
t
, which may not be consistent with τ̂x in the

sense of (2.3). If the agent at time 0 does not have sufficient control over his future selves’
behavior, τ̂x will not be carried out throughout, and the optimal value supτ∈T J(x; τ) as
initially figured out at t = 0 will thus not be attained.

As discussed in the introduction, three types of agents have been described in literature in
the presence of time-inconsistency. A näıve agent simply follows an optimal stopping time τ̂Xx

t

at every moment t ≥ 0, without knowing the underlying time-inconsistency. A sophisticated
agent who is aware of the time-inconsistency but lacks commitment, by contrast, works on
consistent planning: he takes into account his future selves’ behaviors, and tries to find
a stopping strategy that, once being employed over time, none of his future selves has
incentives to deviate from it. Finally, a sophisticated agent who is able to commit simply
solves the problem once at t = 0 and then sticks to the corresponding stopping plan. The
problem of the last type, the so-called pre-committed agent, is actually a static (instead
of dynamic) problem and has been solved in various contexts and, in the case of optimal
stopping under probability distortion, by Xu and Zhou (2013). The goal of this paper is to
study the behaviors of the first two types of agents. It turns out, as we will demonstrate,
that the solutions of the two are interwound, and both depend heavily on that of the last
type.

Now we provide precise formulations of the stopping strategies of the first two types
of agents (hereafter referred respectively as the näıve and sophisticated agents). We first
introduce the notion of stopping laws.

Definition 2.2 (Stopping Laws). A Borel measurable function τ : X 7→ {0, 1} is called a
(Markovian) stopping law. We denote by T (X) the collection of all stopping laws.

The notion of stopping laws is analogous to that of feedback control laws in control
theory. A stopping law is independent of any state process; however for any given process,
such a law induces a stopping decision (in response to any current state) in the following
manner.

Given the process X with X0 = x, each stopping law τ ∈ T (X) governs when the agent
stops X : the agent stops at the first time when τ(Xt) yields the value 0, i.e. at the moment

Lτ(x) := inf{t ≥ 0 : τ(Xx
t ) = 0}. (2.4)

In other words, Lτ(x) is the stopping time induced by the stopping law τ when the current
state of the process is x.

We first define the stopping law used by a näıve agent.

Definition 2.3 (Näıve Stopping Law). Denote by {τ̂x}x∈X ⊂ T a collection of optimal
stopping times of (2.1), while noting that τ̂x may not exist for some x ∈ X. Define τ̂ : X 7→
{0, 1} by

τ̂(x) :=

{
0, if τ̂x = 0,

1, if τ̂x > 0 or τ̂x does not exist.
(2.5)

If τ̂ is Borel measurable, we say that it is the näıve stopping law generated by {τ̂x}x∈X.
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The stopping law τ̂ ∈ T (X) defined above describes the behavior of a näıve agent. For
any current state x > 0, a näıve agent decides to stop or to continue simply by following the
optimal stopping time τ̂x, if such a stopping time exists. If τ̂x fails to exist at some x ∈ X,
we must have supτ∈T J(x; τ) > u(x) (otherwise, we can take τ̂x = 0). Although the optimal
value supτ∈T J(x; τ) cannot be attained, the näıve agent can pick some τ ∈ T with τ > 0
a.s. such that J(x; τ) is arbitrarily close to supτ∈T J(x; τ), leading to J(x; τ) > u(x). That
is, a näıve agent determines that it is better to continue than to stop at x ∈ X. This is why
we set τ̂(x) = 1 when τ̂x does not exist in the above definition6.

Remark 2.1. Time-consistency in Definition 2.1 can also be formulated as

τ̂x = Lτ̂ (x) ∀x ∈ X,

which means that the moment at which a näıve agent will stop, i.e. Lτ̂(x), is entirely the
same as what the original pre-committed optimal stopping time (which was planned at time
0 when the process was in state x), τ̂x, prescribes.

Now we turn to characterizing a sophisticated agent. Suppose he starts with an initial
stopping law τ ∈ T (X). At any current state x ∈ X, the agent carries out the following
game-theoretic reasoning: if all my future selves will follow τ ∈ T (X), what is the best
stopping strategy at current time in response to that? Since the agent at current time can
only choose to stop or to continue, he simply needs to compare the payoffs resulting from
these two different actions. If the agent stops at current time, he obtains the payoff u(x)
immediately. If the agent chooses to continue at current time, given that all his future selves
will follow τ ∈ T (X), the agent will eventually stop at the moment

L∗τ(x) := inf{t > 0 : τ(Xx
t ) = 0}, (2.6)

leading to the payoff
J(x;L∗τ(x)).

Note the subtle difference between the two stopping times, L∗τ(x) and Lτ(x): at any moment
one may continue under the former even though the latter may instruct to stop.

Some conclusions can then be drawn: (i) The agent should stop at current time if u(x) >
J(x;L∗τ(x)), and continue at current time if u(x) < J(x;L∗τ(x)). (ii) For the case where
u(x) = J(x;L∗τ(x)), the agent is indifferent between stopping and continuation at current
time; there is therefore no incentive for the agent to deviate from the originally assigned
stopping strategy τ(x) now. This is already the best stopping strategy (or law) at current
time (subject to all the future selves following τ ∈ T (X)), which can be summarized as

Θτ(x) :=






0, if x ∈ Sτ ,

1, if x ∈ Cτ ,

τ(x), if x ∈ Iτ ,

(2.7)

6There is a technical question as to whether optimal stopping times {τ̂x}x∈X of (2.1) can be chosen such
that τ̂ defined in (2.5) is Borel measurable. The answer is positive under the standard expected payoff
formulation (2.2). For an objective functional under probability distortion, we will see in Sections 4 and 6
that τ̂ is measurable in all examples we explore.
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where

Sτ := {x ∈ X : J(x;L∗τ(x)) < u(x)},
Cτ := {x ∈ X : J(x;L∗τ(x)) > u(x)},
Iτ := {x ∈ X : J(x;L∗τ(x)) = u(x)}

are the stopping region, the continuation region, and the indifference region, respectively.

Remark 2.2 (Non-Existence of Optimal Stopping Times). The way we formulate time-
consistency in Definition 2.1, which follows a long thread of literature in Economics and
Mathematical Finance, hinges on the existence of (pre-committed) optimal controls/stopping
times at every state. When an optimal strategy fails to exist, it is unclear how to define time-
consistency. Recently, Karnam, Ma and Zhang (2016) point out this problem, and propose
a possible way to formulate time-consistency, without referring to optimal strategies, via
backward stochastic different equations (BSDEs). However, our game-theoretic approach
described above – which eventually leads to a sophisticated stopping strategy – does not rely
on the existence of optimal strategies.

Given any arbitrarily given stopping law τ ∈ T (X), the above game-theoretic thinking
gives rise to an alternative stopping law, Θτ , which is no worse than τ to this sophisticated
agent. Naturally, an equilibrium stopping law can be defined as one that is invariant under
such a game-theoretic reasoning. This motivates Definition 2.4 below.

However, to carry this idea through, we need to identify conditions for the objective func-
tional J under which Θτ is indeed a stopping law satisfying the measurability requirement
per Definition 2.2.

To this end, for any τ : X 7→ {0, 1}, we consider the kernel of τ , which is the collection
of states at which the agent stops, defined by

ker(τ) := {x ∈ X : τ(x) = 0}.

Remark 2.3. For any τ ∈ T (X) and x ∈ X, Lτ(x) and L∗τ(x) belong to T . Indeed, the
measurability of τ ∈ T (X) implies

ker(τ) ∈ B(X). (2.8)

Thanks to the right continuity of the filtration F,

Lτ(x) = inf{t ≥ 0 : Xx
t ∈ ker(τ)} and L∗τ(x) = inf{t > 0 : Xx

t ∈ ker(τ)} (2.9)

are F-stopping times.

Now we introduce the assumptions that will ensure the measurability of Θτ .

Assumption 2.1. The objective function J : (X, T ) 7→ R satisfies

(i) for any D ∈ B(X), the map x 7→ J(x;T x
D) is Borel measurable, where

T x
D := inf{t > 0 : Xx

t ∈ D}. (2.10)
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(ii) for any sequence {Dn}n∈N in B(X) such that Dn ⊆ Dn+1 for all n ∈ N,

lim inf
n→∞

J(x;T x
Dn

) ≤ J(x;T x
D), where D := ∪n∈NDn.

Note that under the standard expected payoff formulation in (2.2), condition (i) above
is true by definition, while condition (ii) holds under certain growth conditions on u or on
the process X , which depend on the specific problem at hand.

Proposition 2.1. Suppose Assumption 2.1 holds. Then Θτ ∈ T (X) whenever τ ∈ T (X).

Proof. In view of (2.9), L∗τ(x) is simply T x
ker(τ). Thus, by Assumption 2.1 (i), x 7→ J(x;L∗τ(x))

is Borel measurable, whence Sτ , Cτ , and Iτ are all in B(X). By (2.7) and (2.8),

ker(Θτ) = Sτ ∪ (Iτ ∩ ker(τ)) ∈ B(X),

which implies that Θτ : X 7→ {0, 1} is Borel measurable.

Definition 2.4 (Equilibrium (Sophisticated) Stopping Law). A stopping law τ ∈ T (X) is
called an equilibrium if Θτ(x) = τ(x) for all x ∈ X. We denote by E(X) the collection of all
equilibrium stopping laws.

Remark 2.4 (Trivial Equilibrium). As with almost all the Nash-type equilibria, existence
and uniqueness are important problems. In our setting, a stopping law τ ∈ T (X) defined by
τ(x) = 0 for all x ∈ X is trivially an equilibrium. Indeed, for any x ∈ X, L∗τ(x) = 0 and
thus J(x;L∗τ(x)) = u(x). This implies Iτ = X. By (2.7), we conclude Θτ(x) = τ(x) for all
x ∈ X.

To search for equilibrium stopping laws, the general (and natural) idea is to perform
fixed-point iterations on the operator Θ: starting from any τ ∈ T (X), take

τ∗(x) := lim
n→∞

Θnτ(x) x ∈ X. (2.11)

The above procedure admits a clear economic interpretation. At first, the (sophisticated)
agent has an initial stopping law τ . Once he starts to carry out the game-theoretic reasoning
stipulated earlier, he realizes that the best stopping strategy for him, given that all future
selves will follow τ , is Θτ . He therefore switches from τ to Θτ . The same game-theoretic
reasoning then implies that the best stopping strategy for him, given that all future selves
will follow Θτ , is Θ2τ . The agent thus switches again from Θτ to Θ2τ . This procedure
continues until the agent eventually arrives at an equilibrium τ∗, a fixed point of Θ and
a strategy he cannot further improve upon by the procedure just described. In economic
terms, each application of Θ corresponds to an additional level of strategic reasoning.

Mathematically, we need to prove that the limit taken in (2.11) is well-defined, belongs to
T (X), and satisfies Θτ∗ = τ∗. In general, such results are not easy to establish, and remain
largely an open question7.

7For a stopping problem with expected utility and non-exponential discounting, Huang and Nguyen-Huu
(2016) show that fixed-point iterations do converge to equilibriums, under appropriate conditions on the
discount function and the initial stopping law τ ∈ T (X); see Theorem 3.1 and Corollary 3.1 therein.
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However, when X is a one-dimensional diffusion process we will be able to derive the
stopping strategies of the näıvités and the sophisticates in a fairly complete and explicit
manner. This is not only because, in the one-dimensional case, pre-committed stopping laws
have been obtained rather thoroughly by Xu and Zhou (2013) on which a näıve strategy
depends, but also because the fixed-point iteration (2.11) turns out to be much more man-
ageable and does converge to an equilibrium, due to a key technical result (Lemma 3.1) that
holds only for a one-dimensional process.

3 Equilibrium Stopping Laws: The One-Dimensional

Case

Suppose X ⊆ R. Let X be a one-dimensional stationary diffusion process satisfying the
dynamics

dXt = b(Xt)dt + a(Xt)dBt, X0 = x ∈ X,

where B is a standard one-dimensional Brownian motion, and a, b are real-valued Borel
measurable functions with a(·) > 0. Define θ(·) := b(·)/a(·), and assume that

P

[∫ t

0

θ2(Xs)ds < ∞
]

= 1, ∀t ≥ 0. (3.1)

Introduce the process

Zt := exp

(
−
∫ t

0

θ(Xs)dBs −
1

2

∫ t

0

θ2(Xs)ds

)
for t ≥ 0, (3.2)

which is by definition a nonnegative local martingale. Note that (3.1) is a standard condition
ensuring that

∫ t

0
θ(Xs)dBs is well-defined for all t ≥ 0 a.s.. Consider the first revisit time to

the initial value x:
T x
x := inf{t > 0 : Xx

t = x} ∈ T . (3.3)

We also introduce the running maximum and minimum processes defined respectively by

X
x

t := max
s∈[0,t]

Xx
s and Xx

t := min
s∈[0,t]

Xx
s , t ≥ 0.

Lemma 3.1. Suppose (3.1) holds and Z defined in (3.2) is a martingale. Then, for any
x ∈ X, P[X

x

t > x] = P[Xx
t < x] = 1 for all t > 0. Hence, T x

x = 0 a.s.

The proof of this lemma is supplied in Appendix A.

Proposition 3.1. Suppose X ⊆ R, Assumption 2.1 holds, and Z defined in (3.2) is a
martingale. Then, for any τ ∈ T (X),

ker(τ) ⊆ Iτ ,

ker(Θnτ) = SΘn−1τ ∪ ker(Θn−1τ), ∀n ∈ N. (3.4)

Hence, τ∗ in (2.11) is well-defined, with ker(τ∗) =
⋃

n∈N ker(Θnτ).
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Proof. For any x ∈ ker(τ), there are three possible cases:

1. x is an interior point of ker(τ): Then L∗τ(x) = 0 by definition, and thus J(x;L∗τ(x)) =
u(x), i.e. x ∈ Iτ .

2. x is a boundary point of ker(τ): By Lemma 3.1, P[X
x

t > x] = P[Xx
t < x] = 1 for all

t > 0. This implies L∗τ(x) = inf{t > 0 : Xx
t ∈ ker(τ)} < 1/n for all n ∈ N a.s., and

thus L∗τ(x) = 0 a.s. It follows that J(x;L∗τ(x)) = u(x), i.e. x ∈ Iτ .

3. x is an isolated point of ker(τ), i.e. ∃ ε > 0 such that (x − ε, x + ε) ∩ ker(τ) = {x}:
Since T x

x = 0 a.s. (by Lemma 3.1), L∗τ(x) = 0 a.s. This gives J(x;L∗τ(x)) = u(x),
i.e. x ∈ Iτ .

It follows that ker(τ) ⊆ Iτ . This, together with (2.7), shows that ker(Θτ) = Sτ ∪ (Iτ ∩
ker(τ)) = Sτ ∪ ker(τ). By repeating the same argument above for each n > 1, we obtain
(3.4).

Since {ker(Θnτ)}n∈N is a nondecreasing sequence of Borel sets, if x ∈ ⋃
n∈N ker(Θnτ),

then there exists N > 0 such that Θnτ(x) = 0 for all n ≥ N ; if x /∈
⋃

n∈N ker(Θnτ), then
Θnτ(x) = 1 for all n ∈ N . This already implies that the limit-taking in (2.11) is well-defined,
and ker(τ∗) =

⋃
n∈N ker(Θnτ).

Theorem 3.1. Suppose X ⊆ R, Assumption 2.1 holds, and Z defined in (3.2) is a martin-
gale. Then, for any τ ∈ T (X), τ∗ defined in (2.11) belongs to E(X). Hence,

E(X) = {τ∗ ∈ T (X) : τ∗ = lim
n→∞

Θnτ, for some τ ∈ T (X)} =
⋃

τ∈T (X)

{ lim
n→∞

Θnτ}. (3.5)

Proof. By Proposition 3.1, τ∗ ∈ T (X) is well-defined and ker(τ∗) =
⋃

n∈N ker(Θnτ). Since
ker(τ∗) ⊆ Iτ∗ (by Proposition 3.1 again), Θτ∗(x) = τ∗(x) for all x ∈ ker(τ∗). For x /∈
ker(τ∗), we have x /∈ ker(Θnτ), i.e. Θnτ(x) = 1, for all n ∈ N. In view of (2.7), this gives
J(x;L∗Θn−1τ(x)) ≥ u(x) for all n ∈ N. By (2.9), this can be written as J(x;T x

ker(Θn−1τ)) ≥
u(x) for all n ∈ N. Thanks to Proposition 3.1, {ker(Θn−1τ)}n∈N is a nondecreasing sequence
of Borel sets and ker(τ∗) =

⋃
n∈N ker(Θn−1τ). It then follows from Assumption 2.1 (ii) that

J(x;T x
ker(τ∗)) ≥ lim inf

n→∞
J(x;T x

ker(Θn−1τ)) ≥ u(x).

This implies x ∈ Cτ∗ ∪ Iτ∗ . If x ∈ Iτ∗ , then Θτ∗(x) = τ∗(x); if x ∈ Cτ∗ , then Θτ∗(x) = 1 =
τ∗(x), as x /∈ ker(τ∗). Thus, we conclude that Θτ∗(x) = τ∗(x) for all x ∈ X, i.e. τ∗ ∈ E(X).

For the first equality in (3.5), the “⊇” relation holds as a direct consequence of the above
result. Note that the “⊆” relation is also true because for each τ∗ ∈ E(X), one can simply
take τ ∈ T (X) on the right hand side to be τ∗ itself. The last set in (3.5) is simply a
re-formulation of the second set.

This theorem suggests that under its assumptions every equilibrium can be found through
the fixed-point iteration. Moreover, it stipulates a way of telling whether a given stopping
law is an equilibrium. Any initial strategy that can be strictly improved by the iteration
(namely the game-theoretic reasoning) is not an equilibrium strategy. On the other hand,
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even if the agent’s initial strategy happens to be already an equilibrium, he may not realize
it. He does only after he has applied the iteration and found that he gets the same strategy.

Any given stopping law τ will give rise to an equilibrium τ∗ according to (3.5); so in
general it is unlikely that we will have a unique equilibrium. In this paper, we are particularly
interested in the equilibrium τ̂∗ ∈ E(X) generated by the näıve stopping law τ̂ ∈ T (X) which
is induced by {τ̂x}x∈X in (2.5); that is,

τ̂∗(x) = lim
n→∞

Θnτ̂(x) x ∈ X. (3.6)

The economic significance of choosing such an equilibrium is that it spells out explicitly how
an (irrational) näıve agent might be turned into a (fully rational) sophisticated one, if he is
educated to carry out sufficient levels of strategic reasoning.

4 Probability Distortion: Time (In)consistency

In the remainder of this paper we apply the general setting and results established in the
previous section to the case where the objective functional involves probability distortion
(weighting) and the underlying process is a geometric Brownian motion. This section is
devoted to categorizing several cases and their time (in)consistency.

Let S = {St}t≥0 be a geometric Brownian motion satisfying

dSt = µStdt + σStdBt, S0 = s > 0, for t ≥ 0, (4.1)

where µ ∈ R and σ > 0 are constants and {Bt}t≥0 is a standard Brownian motion. Note
that the process S takes values in R+ := (0,∞) almost surely. In most of the discussions in
this paper, S is interpreted as the price process of an asset, although it could represent other
processes such as the value process of a project and similar discussions could be conducted.

Consider a nondecreasing, continuous function U : R+ 7→ R+ with U(0) = 0, and a
strictly increasing, continuous function w : [0, 1] 7→ [0, 1] with w(0) = 0 and w(1) = 1. Here,
U is the utility function of the agent or the payoff function of the asset, and w the probability
distortion function. The agent’s objective is, for any given initial state s, to maximize his
“distorted” expected payoff:

maximize I(s; τ) :=

∫ ∞

0

w (P [U(Ss
τ ) > y]) dy, (4.2)

by choosing an appropriate stopping time τ ∈ T .
So the agent intends to maximize his expected utility (or payoff) under probability distor-

tion, by stopping the price process at an appropriate moment. This formulation is motivated
by several financial applications, such as liquidation of a financial position, real options and
casino gambling. Note that with w(p) = p, we retrieve the standard expectation valuation.

In the rest of the paper, we denote

β := 1 − 2µ/σ2. (4.3)

We will show below that the sign of β critically affects the time-consistency of the underlying
problem.
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4.1 The Case β = 0

When β = 0 (i.e. µ = 1
2
σ2), St = seσBt for t ≥ 0. If the supremum sup{U(x) : x > 0} is not

attained, then Xu and Zhou (2013), p. 255, shows that an optimal stopping time of (4.2)
does not exist. In this case, the näıve agent never stops; recall (2.5).

If the supremum sup{U(x) : x > 0} is attained, let x∗ := inf
{
x > 0 : U(x) = supy>0 U(y)

}
.

Then Xu and Zhou (2013), p. 255, proves that

τ̂s := inf{t ≥ 0 : Ss
t ≥ x∗} = inf{t ≥ 0 : Bt ≥ σ−1 log(x∗/s)} (4.4)

is a (pre-committed) optimal stopping time of (4.2). The stopping threshold for the state pro-
cess Ss is always x∗, independent of the current state s. There is then no time-inconsistency
here. Indeed, for any t > 0 and s > 0, if τ̂s > t, then τ̂s = inf{r ≥ t : Ss

r ≥ x∗} = t + τ̂Ss
t
;

that is, (2.3) is satisfied. In this case, the three types of agents behave identically.

4.2 The Case β 6= 0: Transformation

When β 6= 0, we consider, as in Section 2.2 of Xu and Zhou (2013), the process Xt := Sβ
t ,

t ≥ 0. That is, X is the Doléans-Dade exponential of {βσBt}t≥0:

dXx
t = βσXx

t dBt, Xx
0 = x > 0, (4.5)

where x = sβ > 0. As a geometric Brownian motion with no drift, Xx is a P-martingale and

lim
t→∞

Xx
t = 0 a.s., (4.6)

thanks to the law of iterated logarithms. As we will see subsequently, this fact plays an
important role in dictating a sophisticated agent’s behavior - the value of the underlying
process diminishes in the long run. Moreover, for any b > x,

P[T x
b < ∞] =

x

b
< 1, where T x

b := inf{t > 0 : Xx
t = b}. (4.7)

Note that (4.7) follows from the hitting time probability of a standard Brownian motion to
a linear boundary; see e.g. Karatzas and Shreve (1991).

Let u be defined by
u(x) := U(x1/β), x ∈ (0,∞). (4.8)

Note that the transformed function u is nondecreasing if β > 0 and nonincreasing if β < 0.
The shape of u, which can be convex, concave, or S-shaped (i.e. first convex, and then
concave), depends on both the shape of U and the coefficient β.

Remark 4.1 (Goodness Index). The value of β, the shape of u, and how “good” the asset S
is (in terms of its risk-return profile) are all inter-connected. Shiryaev, Xu and Zhou (2008)
take µ

σ2 as the “goodness index” of an asset, which is included in our definition of β in (4.3).
The larger this index is, the higher the asset’s expected return relative to its volatility. More
specifically, Section 2.3 of Xu and Zhou (2013) discusses several concrete examples, which
leads to the following general observations: when β < 0 (or µ

σ2 > 1
2
), the asset S is considered

“good”, and u in this case is usually convex; as β increases (or µ
σ2 decreases), the asset S

changes gradually to “average” and then to “bad”, with u changing gradually to “S-shaped”
and then to “concave”.
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Similarly, we define

J(x; τ) := I(x1/β ; τ) ≡
∫ ∞

0

w (P [u(Xx
τ ) > y]) dy for x > 0, τ ∈ T . (4.9)

Here, we allow τ ∈ T to take the value +∞ with positive probability: on the set {τ = ∞},
we simply take Xτ = 0 in view of (4.6). As shown in Lemma 3.1 of Xu and Zhou (2013), for
any τ ∈ T := {τ ∈ T | P[τ < ∞] = 1}, (4.9) admits the following expressions:

J(x; τ) = JD(x;F ) :=

∫ ∞

0

w(1 − F (y))u′(y)dy, (4.10)

J(x; τ) = JQ(x;G) :=

∫ 1

0

u(G(y))w′(1 − y)dy, (4.11)

where F is the cumulative distribution function (CDF) of Xx
τ , and G := F−1 is the quantile

function of Xx
τ . Moreover,

sup
τ∈T

J(x; τ) = sup
F∈D

JD(x;F ) = sup
G∈Q

JQ(x;G), (4.12)

where

D := {F : R+ 7→ [0, 1] | F is a CDF of Xx
τ , for some τ ∈ T },

Q := {G : [0, 1) 7→ R+ | G = F−1 for some F ∈ D}.

By Proposition B.1, the equivalence relation (4.12) can be extended from T to T , i.e.

sup
τ∈T

J(x; τ) = sup
F∈D

JD(x;F ) = sup
G∈Q

JQ(x;G). (4.13)

Remark 4.2 (Näıve Law via Distribution or Quantile). The näıve stopping law τ̂ ∈ T (R+)
induced by optimal stopping times {τ̂x}x∈R+ (see (2.5)) can also be expressed using the dis-
tribution or quantile function, Fτ̂x or Gτ̂x respectively, of Xx

τ̂x . That is,

τ̂ (x) :=

{
0, if τ̂x = 0,

1, if otherwise.
=

{
0, if Fτ̂x(·) = 1[x,∞)(·),
1, if otherwise.

=

{
0, if Gτ̂x(·) ≡ x,

1, if otherwise.
(4.14)

4.3 The Case β < 0

When β < 0, u defined in (4.8) is nonincreasing with u(0+) = U(∞) and u(∞) = U(0+).
By Theorem 2.1 in Xu and Zhou (2013), supτ∈T J(x; τ) = u(0+) and τ̂x ≡ ∞, implying
“never-stopping”, is the optimal stopping time. Again, no time-inconsistency is present here
as τ̂x ≡ ∞ does not depend on current state x, and all the three types of agents do not stop
in any circumstances. The economic interpretation is that, in the context of selling an asset,
β < 0 corresponds to a “good asset”, and hence all the agents hold the asset perpetually in
the spirit of Warren Buffet’s “buy and hold a good asset”. See also Xu and Zhou (2013), p.
257, for a discussion.
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4.4 The Case β > 0: Time-Inconsistency

When β > 0, u defined in (4.8) is nondecreasing with u(0) = U(0) = 0. Under the objective
functional (4.9), Xu and Zhou (2013) characterize the pre-committed optimal stopping times
for problem (2.1), noting that the problem may be time-inconsistent as β > 0. The next
example demonstrates this time-inconsistency explicitly.

Example 4.1. Take u(x) = xη with η ≥ 1, and consider the probability weighting function
proposed by Prelec (1998):

w(x) = exp(−γ(− log x)α) for some α, γ > 0. (4.15)

Since u is convex, Theorem 4.5 of Xu and Zhou (2013) shows that problem (2.1), with J(x; τ)
as in (4.9), can be reduced to the optimization problem

sup
λ∈(0,1]

w(λ)u
(x
λ

)
. (4.16)

To solve this problem for our case, for each x > 0, set f(λ) := w(λ)u
(
x
λ

)
. By direct

computation,

f ′(λ) =
w(λ)

λ

(x
λ

)η

[αγ(− log λ)α−1 − η].

Observe that f ′(λ) = 0 has a unique solution λ∗ = e−( η
αγ )

1/(α−1)

on (0, 1]. Moreover,

f ′′(λ∗) = −αγ(α− 1)

(
η

αγ

)α−2
α−1 w(λ∗)

(λ∗)2

( x

λ∗

)η

.

Suppose α > 1, in which case w is S-shaped (i.e. first convex, and then concave). Then
f ′′(λ∗) < 0; moreover, f ′(λ) > 0 for λ < λ∗, and f ′(λ) < 0 for λ > λ∗. This implies that λ∗

is the unique maximizer of (4.16). By the discussion following Corollary 4.6 in Xu and Zhou
(2013), we conclude that

τ̂x := inf{t ≥ 0 : Xx
t ≥ x/λ∗} = inf

{
t ≥ 0 : Xx

t ≥ e(
η
αγ )

1/(α−1)

x

}
∈ T (4.17)

is a pre-committed optimal stopping time of (2.1) when the current state is x. A moving
stopping threshold causes time-inconsistency: for any t > 0, τ̂x 6= t+ τ̂Xx

t
on {τ̂x > t}, unless

Xx
t ≡ x; thus, (2.3) is in general violated. More specifically, as X evolves over time, the

agent continuously updates the initial value x in (2.1) with current state y := Xt, and thus
changes the original stopping threshold x/λ∗ to y/λ∗ at time t. While being an optimal
solution to (2.1) at state x, τ̂x will not be implemented as future selves will dismiss it.

A crucial observation here is that time-inconsistency leads the näıve agent to postpone
stopping indefinitely. Since 1/λ∗ > 1, we have τ̂x > 0 for all x > 0, whence the näıve agent
will never stop at any given moment and – as a result – will never stop.
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The above example is reminiscent of Ebert and Strack (2015), which shows – under the
CPT setting – that a näıve agent may defer his stopping decision indefinitely (hence disobey
the original pre-committed optimal stopping time) under the so-called “skewness preference
in the small” assumption.8

Example 4.2. Take u(x) = (x−K)+ for some K > 0 and w(x) = ηx2 + (1 − η)x for some
η ∈ (0, 1). In this case both u and w are convex. Then (4.16) becomes supλ∈(0,1] f(λ) with

f(λ) := (ηλ2 + (1 − η)λ)
(
x
λ
−K

)+
. For x > K, f ′(λ) = ηx− (1 − η)K − 2ηKλ. Define

λ̄ :=
η(x + K) −K

2ηK
.

If x > η+1
η
K, f ′(λ) > (η + 1)K − (1 − η)K − 2ηK = 0 for all λ ∈ (0, 1], which implies that

λ∗ = 1 is the maximizer. If K < x ≤ η+1
η
K, then λ∗ = λ̄ ≤ 1 is the maximizer. For x ≤ K,

observe that

f(λ) =

{
−ηK

[
λ− λ̄

]2
+ (1 − η)x + ηKλ̄2, if 0 < λ ≤ x

K
,

0, if x
K

< λ ≤ 1.
(4.18)

If η ≤ 1/2, then λ̄ ≤ x−K
4ηK

≤ 0. This, together with (4.18), implies that supλ∈(0,1] f(λ) admits

no maximizer. If η > 1/2, then for x > 1−η
η
K, it can be checked that λ̄ ∈ (0, x

K
), which

implies that λ∗ = λ̄ is the maximizer (thanks again to (4.18)); for x ≤ 1−η
η
K, we have λ̄ ≤ 0

and thus supλ∈(0,1] f(λ) admits no maximizer. Thus, we conclude that

τ̂x :=

{
inf{t ≥ 0 : Xx

t ≥ x} = 0, if x > η+1
η
K,

inf{t ≥ 0 : Xx
t ≥ 2ηKx

η(x+K)−K
} > 0, if

(
1−η
η

∧ 1
)
K < x ≤ η+1

η
K,

is a (pre-committed) optimal stopping time of (2.1) for x >
(

1−η
η

∧ 1
)
K, and there exists

no optimal stopping time for x ≤
(

1−η
η

∧ 1
)
K. We observe time-inconsistency here: the

stopping threshold 2ηKx
η(x+K)−K

depends on current state x, when
(

1−η
η

∧ 1
)
K < x ≤ η+1

η
K.

The näıve stopping law is thus given by

τ̂(x) = 1(0, η+1
η

K)(x), for all x > 0,

a threshold-type (e.g. stop-loss or stop-gain) stopping strategy.

It is interesting that in this example even a näıvité will stop, seemingly contradicting the
result of Ebert and Strack (2015). However, there is really no contradiction – the convexity of
w violates Assumption 2 of Ebert and Strack (2015). In economics terms, a convex distortion
overweights the small probabilities of very bad events and underweights those of very good
events; so a small, right-skewed, lottery-like gamble is unattractive to the agent. As a result,
he decides that he will stop once the process hits the threshold, η+1

η
K. This example also

suggests that RDU/CPT together with the time-inconsistent theory can indeed offer realistic
predictions if we allow modeling of different types of preferences and different characteristics
of the underlying process.

8Indeed Example 4.1 satisfies Assumptions 1 and 2 in Ebert and Strack (2015), which are sufficient for
the “skewness preference in the small” to hold.
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5 Equilibrium Stopping Law: The Case β > 0

In the previous section we have demonstrated in two examples that, when β > 0, time-
inconsistency arises. We have also derived the respective näıve strategies in the examples.

The next step is to study how a sophisticated agent lacking commitment might be doing
by applying the general result Theorem 3.1. We are particularly interested in finding the
equilibrium stopping law τ̂∗ ∈ E(R+) generated by the näıve stopping law, as defined in
(3.6). Through this construction of an equilibrium we will be able to see an intriguing
connection between a näıve agent and a sophisticated one – in particular how the former
might turn himself into the latter by evoking strategic reasonings. Details of these will
be presented in Section 6, and the current section is focused on developing the necessary
theoretic foundations.

Technically, in order to apply Theorem 3.1 we need to check the validity of its assump-
tions. To this end, we need the following two results.

Lemma 5.1. Suppose β > 0. For any 0 ≤ a < x < b, denote τab := inf{t ≥ 0 : Xx
t /∈

(a, b)} ∈ T .

(i) If a = 0 and b = ∞, then J(x; τab) = 0;

(ii) If a > 0 and b = ∞, then J(x; τab) = u(a);

(iii) If a ≥ 0 and b < ∞, then

J(x; τab) = u(a) + w

(
x− a

b− a

)
(u(b) − u(a)). (5.1)

The proof is relegated to Appendix C.

Lemma 5.2. Suppose β > 0. The objective functional (4.9) satisfies Assumption 2.1.

The proof is deferred to Appendix D.

Theorem 5.1. Suppose β > 0 and the objective functional is given by (4.9). For any
τ ∈ T (R+), τ∗ defined in (2.11) belongs to E(R+), and hence (3.5) holds with X = R+. In
particular, τ̂∗ defined by (3.6) belongs to E(R+).

Proof. Since X is a geometric Brownian motion with zero drift, the process Z in (3.2) is con-
stantly 1 and thus a martingale. Since the objective functional (4.9) satisfies Assumption 2.1
(by Lemma 5.2), the result is now a direct consequence of Theorem 3.1.

The following two examples demonstrate how a general initial stopping law τ ∈ T (R+),
which need not be the näıve law τ̂ in (2.5), converges to its corresponding equilibrium
τ∗ ∈ E(R+).

Example 5.1. Let β > 0, and take u(x) = x. This setup may generate time-inconsistency
as Example 4.1 demonstrates. For arbitrary constants 0 < a < b < ∞, define the stopping
law τ ∈ T (R+) by

τ(x) := 1(a,b)(x), for all x > 0.
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Then L∗τ(x) = inf{t > 0 | Xx
t /∈ (a, b)}. For x /∈ (a, b), L∗τ(x) = 0 and thus J(x;L∗τ(x)) =

u(x), which implies (0, a] ∪ [b,∞) ⊆ Iτ . For x ∈ (a, b), Lemma 5.1-(iii) indicates that

J(x;L∗τ(x)) − u(x) = (a− x) + w

(
x− a

b− a

)
(b− a). (5.2)

If w is concave and w(x) 6= x for some x > 0, then w
(
x−a
b−a

)
> x−a

b−a
for all x ∈ (a, b). In

view of (5.2), we have Cτ = (a, b). It follows that Θτ(x) = 1(a,b)(x) = τ(x) for all x > 0.
That is, τ is itself an equilibrium stopping law, and thus τ∗ = τ . Incidentally, it follows that
there are infinitely many equilibrium stopping laws in this case.

If w is convex and w(x) 6= x for some x > 0, then w
(
x−a
b−a

)
< x−a

b−a
for all x ∈ (a, b),

and thus Sτ = (a, b), thanks to (5.2). It follows that Θτ(x) = 0 for all x > 0. That is,
τ∗ = Θτ ≡ 0, the trivial equilibrium that stops immediately.

Finally, consider the case when w is inverse S-shaped and intersects u(x) = x at some
point z∗ ∈ (0, 1). For any x ∈ (a, b), observe that whether w

(
x−a
b−a

)
is larger than, equal to,

or less than x−a
b−a

depends on whether x−a
b−a

is less than, equal to, or large than z∗. It then
follows from (5.2) that

Sτ = (a + z∗(b− a), b), Cτ = (a, a + z∗(b− a)), and a + z∗(b− a) ∈ Iτ .

By (3.4), ker(Θτ) = ker(τ)∪Sτ = (0, a]∪(a+z∗(b−a),∞), and thus Θτ(x) = 1(a,a+z∗(b−a)](x)
for all x > 0. By the same argument as above, SΘτ = (a + (z∗)2(b− a), a + z∗(b− a)) and

ker(Θ2τ) = ker(Θτ) ∪ SΘτ = (0, a] ∪ (a + (z∗)2(b− a), a + z∗(b− a)) ∪ (a + z∗(b− a),∞).

In general, for each n ∈ N,

ker(Θnτ) = (0, a] ∪ (bn, bn−1) ∪ (bn−1, bn−2) ∪ ... ∪ (b2, b1) ∪ (b1,∞),

where bk := a + (z∗)k(b − a) for all k ∈ N. It follows that ker(τ∗) =
⋃

n∈N ker(Θnτ) =
(0,∞) \ {bn}∞n=1. Thus, τ∗(x) = 1{bn}∞n=1

(x) for all x > 0. Since Lτ∗(bn) = 0 for any n, we
conclude the induced stopping time Lτ∗(x) = 0 for all x. Therefore this stopping law is
essentially the same as the trivial equilibrium.

In the above example, when the probability distortion is convex or inverse S-shaped, the
assumption (2) in Ebert and Strack (2017) is satisfied; hence the argument therein applies
and equilibrium strategy is to stop immediately, or “never, ever getting started”. How-
ever, when the distortion is concave which invalidates the assumption above, even a highly
left-skewed gamble can be attractive due to the exaggeration of the small probabilities of
extremely good events. As a result, all the selves can agree upon a threshold level before
which they will all continue to hold the asset.

Example 5.2. Let β > 0. Take u(x) = (x−K)+ for some K > 0 and w(x) = ηx2 +(1−η)x
for some η ∈ (0, 1). As shown in Example 4.2, time-inconsistency is present in this case.

For an arbitrary constant b > η+1
η
K, define the stopping law τ ∈ T (R+) by

τ(x) := 1(0,b)(x), for all x > 0,
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which is different from the näıve one derived in Example 4.2. Observe that L∗τ(x) = inf{t >
0 | Xx

t ≥ b}. For x ≥ b, L∗τ(x) = 0 and thus J(x;L∗τ(x)) = u(x), which implies [b,∞) ⊆ Iτ .
For 0 < x < b, Lemma 5.1-(iii) gives

J(x;L∗τ(x)) = w
(x
b

)
u(b) =

(
η
x2

b2
+ (1 − η)

x

b

)
(b−K).

For 0 < x ≤ K, J(x;L∗τ(x)) > 0 = u(x) and thus (0, K] ⊆ Cτ . For K < x < b,

J(x;L∗τ(x)) − u(x) =

(
η
x2

b2
+ (1 − η)

x

b

)
(b−K) − (x−K)

=
η(b−K)

b2

[
x2 −

(
b +

Kb

η(b−K)

)
x +

Kb2

η(b−K)

]

=
η(b−K)

b2
(x− b) (x− b′) ,

where b′ := Kb
η(b−K)

> K; moreover, b > η+1
η
K is equivalent to K

η(b−K)
< 1, and thus b′ < b. It

follows that J(x;L∗τ(x)) − u(x) > 0 for K < x < b′, J(x;L∗τ(x)) − u(x) < 0 for b′ < x < b,
and J(x;L∗τ(b′)) − u(b′) = 0. We therefore conclude that Sτ = (b′, b), Cτ = (0, b′), and
Iτ = {b′} ∪ [b,∞), which implies

τ1 := Θτ(x) = 1(0,b′](x) for all x > 0.

By the same argument as above, we obtain [b′,∞) ⊆ Iτ1 , (0, K] ⊆ Cτ1 , and when K < x < b′,

J(x;L∗τ1(x)) − u(x) =
η(b′ −K)

(b′)2
(x− b′) (x− b′′) , with b′′ :=

Kb′

η(b′ −K)
.

We claim that b′′ > b′. First, observe that b′ < η+1
η
K. Indeed, b′/(η+1

η
K) = b

(η+1)(b−k)
< 1 if

and only if 0 < η(b−K)−K, which is equivalent to b > η+1
η
K. Now, since b′ < η+1

η
K yields

K
η(b′−K)

> 1, we get b′′ > b′. It follows that J(x;L∗τ1(x)) − u(x) > 0 for all K < x < b′. Now

we conclude that Cτ1 = (0, b′) and Iτ1 = [b′′,∞), which shows that

Θτ1(x) = 1(0,b′](x) = τ1(x) for all x > 0.

That is, τ∗(x) = limn→∞ Θnτ(x) = Θτ(x) = 1(0,b′](x) for all x > 0. So this equilibrium
strategy stops earlier than the initial stopping law before a strategic reasoning has been
carried out, showing a less risk-taking attitude.9

An interesting question is what the fixed-point iteration leads to if one starts with a
näıve law. In the next section we will study in great detail those equilibria τ̂∗ obtained from
iterations on initially näıve stopping strategies, i.e. τ̂ in (2.5).

9Once again, this example does not contradict the result of Ebert and Strack (2017), as u here is not
strictly increasing, an assumption imposed in Ebert and Strack (2017).
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6 A Detailed Study on the Case β > 0

In this section, we study in more details the case β > 0, which, as shown in Section 4,
is the only case where genuine time-inconsistency may arise. As in Xu and Zhou (2013),
we will discuss various parameter specifications related to the shapes of u and w. We are
particularly interested in investigating whether there is time-inconsistency, and comparing
the näıve stopping law τ̂ in (2.5) with the corresponding equilibrium stopping law τ̂∗ in (3.6).
Recall that when β > 0, u is nondecreasing with u(0) = 0.

The next result, which will be used repeatedly in this section, shows that a drastic change
in behavior takes place when a näıve agent applies the game-theoretic reasoning described
in Section 2 just once: a näıve agent who would have never stopped (“until the bitter end”
Ebert and Strack (2015)) transforms himself to a sophisticated one who stops immediately.

Proposition 6.1. Let β > 0 and assume u(x) > 0 ∀x > 0. Then for τ ∈ T (R+) given by
τ(x) = 1 ∀x > 0,

τ∗(x) = lim
n→∞

Θnτ(x) = Θτ(x) = 0 ∀x > 0.

Proof. First of all β > 0 implies u is nondecreasing and u(0) = 0. By the definition of τ ,
L∗τ(x) = ∞ ∀x > 0. This, together with (4.6), implies J(x;L∗τ) =

∫∞

0
w(P[u(0) > y])dy =

0 < u(x) ∀x > 0. It follows that Sτ = R+, whence Θτ(x) = 0 ∀x > 0.

Example 6.1. We have shown in Example 4.1 that, as α > 1, a näıve agent postpones
stopping indefinitely, i.e. τ̂(x) = 1 for all x > 0. By Proposition 6.1, the corresponding
equilibrium stopping law τ̂∗ = limn→∞ Θnτ̂ = Θτ̂ is the trivial equilibrium described in
Remark 2.4, namely, to stop immediately.

The näıvité, once thinking like a sophisticate, decides to stop immediately. What con-
stitutes the economic reasoning behind the proof of Proposition 6.1 is the following. At any
given point of time, assuming all the future selves will be carrying out the näıve, never-
stopping strategy. With this in mind, the question is what to do now. There are only two
options. If he is to follow the original strategy, namely, to continue now, then according to
(4.6) the value of the (un-stopped) underlying process will almost surely diminish to zero
and hence the payoff is zero. If he is to stop now, then he can get some positive payoff
because of the assumption u(x) > 0 when x > 0. This simple comparison will prompt him
to stop immediately.

In what follows we categorize various specifications of the shapes of u and w.

6.1 Convex u

As discussed in Remark 4.1, u being nondecreasing and convex generally indicates that
the asset is “average” in terms of its risk-return profile. Also recall from Section 4.2 of
Xu and Zhou (2013) that, when u is convex, problem (2.1), with J(x; τ) specified in (4.9),
can be reduced to (4.16). If an optimizer λ∗(x) ∈ (0, 1] exists, then τ̂x := inf{t ≥ 0 : Xx

t ≥
x/λ∗(x)} is a pre-committed optimal stopping time. If an optimizer of (4.16) does not exist,
then such a pre-committed optimal stopping time does not exist.
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If w is concave, then the agent is risk-seeking or optimistic: he exaggerates the probability
of the “very good” scenarios, and understates the probability of the “very bad” scenarios.
With only an average asset at hand, this optimistic view however prevents the agent from
liquidating the asset, as we show now. Assume u is a convex function which is not linear
on the entire domain [0,∞), and w is concave. The same argument in Corollary 4.3 in
Xu and Zhou (2013) shows that supτ∈T J(x; τ) > u(x) for all x > 0. Indeed,

sup
τ∈T

J(x; τ) = sup
0<a≤x≤b

[
u(a) + w

(
x− a

b− a

)
(u(b) − u(a))

]

≥ sup
0<a≤x≤b

[
u(a) +

x− a

b− a
(u(b) − u(a))

]

= sup
0<a≤x≤b

[
b− x

b− a
u(a) +

x− a

b− a
u(b)

]
> u(x),

where the second line follows from w(z) ≥ z for all z ∈ (0, 1) (as w is concave with w(0) = 0
and w(1) = 1), and the last inequality stems from the fact that u is convex, but not linear
on the entire [0,∞). Consequently, it is optimal for the agent to continue at any state x.
The näıve stopping law is therefore τ̂ (x) = 1 for all x > 0. If in addition u satisfies u(x) > 0
∀x > 0, then the corresponding equilibrium is τ̂∗(x) = Θτ̂ (x) = 0 for all x > 0, thanks to
Proposition 6.1.

Here, as in Example 6.1, if an agent examines the never-stop strategy by strategically
thinking about his future selves’ moves then he is a sophisticate who will stop immediately
(or indeed will not start at all).

If, on the other hand, w is convex, then the agent is pessimistic: he understates the prob-
ability of a “very good” scenario, and exaggerates the probability of a “very bad” scenario.
The following example illustrates the behavior of this type of agents with an average asset
at hand.

Example 6.2. Take u(x) = xη and w(x) = xγ with η, γ > 1. Then (4.16) becomes
supλ∈(0,1] λ

γ−ηxη. If γ > η, λ∗ = 1 is the maximizer, and thus the optimal stopping time
τ̂x = inf{t ≥ 0 : Xx

t ≥ x} = 0. If γ = η, supλ∈(0,1] λ
γ−ηxη = xη = u(x), and thus τ̂x = 0 is

optimal. Hence there is no time-inconsistency when γ ≥ η, and the optimal stopping law is
to stop immediately.

The interesting case is when γ < η, in which case supλ∈(0,1] λ
γ−ηxη = ∞, not attainable

by any λ ∈ (0, 1]. In this case, an optimal stopping time τ̂x fails to exist for all x > 0.
The näıve stopping law is therefore τ̂ (x) = 1 for all x > 0. This leads to the equilibrium
τ̂∗(x) = Θτ̂ (x) = 0 for all x > 0, thanks to Proposition 6.1.

In the above example, note that γ = w′(1), which measures the intensity of probability
weighting on very unfavorable events. So, when the agent sufficiently inflates the probabilities
of bad scenarios relative to how good the asset is (i.e. γ ≥ η), he liquidates the asset
immediately no matter what type of agent he is. Otherwise (i.e. γ < η), he always intends
to continue if he is näıve, and stops right away if he is sophisticated.

Also note in the above example that w′(0) = 0, indicating that the agent infinitely
understates the probability of “very good” events. A slightly more hopeful agent, modeled
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by w′(0) > 0, who only moderately understates the probability of “very good” scenarios,
may behave markedly different. This is shown in the next example.

Example 6.3. Take u(x) = (x−K)+ for some K > 0 and w(x) = ηx2 + (1 − η)x for some
η ∈ (0, 1). We have studied this case in Examples 4.2 and 5.2. In particular, we have derived
the näıve stopping law to be

τ̂(x) = 1(0, η+1
η

K)(x), for all x > 0.

Remarkably, this is also an equilibrium stopping law. To see this, for x ≥ η+1
η
K, L∗τ̂ (x) = 0

and thus J(x;L∗τ̂(x)) = u(x). This implies [η+1
η
K,∞) ⊂ Iτ̂ . For 0 < x < η+1

η
K, L∗τ̂ (x) =

inf{t ≥ 0 : Xx
t ≥ η+1

η
K}. By Lemma 5.1-(iii),

J(x;L∗τ̂(x)) = w

(
ηx

(η + 1)K

)
u

(
η + 1

η
K

)
=

η2x2

(η + 1)2K
+

1 − η

1 + η
x.

If 0 < x ≤ K, J(x;L∗τ̂(x)) > 0 = u(x), which yields (0, K] ⊂ Cτ̂ . If K < x < η+1
η
K,

J(x;L∗τ̂ (x)) − u(x) =
η2x2

(η + 1)2K
+

1 − η

1 + η
x− (x−K)

=
η2

(η + 1)2K

(
x− η + 1

η
K

)2

> 0,

which shows that (K, η+1
η
K) ⊂ Cτ̂ . Hence, Cτ̂ = (0, η+1

η
K) and Iτ̂ = [η+1

η
K,∞), which

implies Θτ̂(x) = 1(0, η+1
η

K)(x) + τ̂(x)1[ η+1
η

K,∞)(x) = τ̂ (x) for all x > 0, i.e. τ̂ ∈ E(R+). We

therefore conclude that τ̂∗ = τ̂ .

Examples 6.3 and 6.2 have the same qualitative properties for u and w – they are both
convex. However, both types of agents display significantly different stopping behaviors. The
reason behind is that w′(0) > 0 in Example 6.3 (instead of w′(0) = 0 in Example 6.2): the
agent only moderately understates the probability of the “very good” scenarios. With this
more hopeful view about the very good states, not only a näıve agent but also a sophisticated
one is willing to exploit the upside potential of the average asset until its value hits a target,
x∗ = η+1

η
K. Moreover, the two types of agent share the same “stop-gain” threshold in this

particular example.10 Finally, a simple comparative static analysis shows that the more
hopeful about the very good states of the world (i.e. the smaller η) the higher target he will
set (i.e. the larger x∗), leading to a delayed stopping and more risk-seeking attitude.

Next, let us consider an S-shaped w, which indicates that the agent understates the
probabilities of both the “very good” and “very bad” scenarios. Compared with a convex w,
this reflects a less pessimistic view on the “very bad” scenarios, and is therefore more likely
to lead the agent to postpone stopping. Indeed, Example 4.1 shows that an S-shaped w (i.e.
when α > 1 therein) induces time-inconsistency, making a näıve agent to postpone stopping
indefinitely and a sophisticated agent to stop immediately.

10Recall that in Example 5.2 we have shown that the equilibrium law constructed via iterations on a
non-näıve, threshold-type of stopping law is still of threshold type, yet with a smaller threshold.
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Finally, an inverse S-shaped w indicates that the agent exaggerates the probabilities
of both the “very good” and “very bad” scenarios. This type of w has been widely stud-
ied, as it is consistent with empirical data11. The literature on inverse S-shaped w, in-
cluding Tversky and Kahneman (1992), Lattimore et al. (1992), Camerer and Ho (1994),
Wu and Gonzalez (1996), Birnbaum and McIntosh (1996), and Prelec (1998), among oth-
ers, has suggested three main models of w: 1) the one-factor model

w(x) =
xγ

(xγ + (1 − x)γ)1/γ
with γ∗ ≤ γ < 1, (6.1)

where γ∗ ≈ 0.279 is the minimal value of γ such that w is nondecreasing; 2) the two-factor
model

w(x) =
αxγ

αxγ + (1 − x)γ
with α > 0, 0 < γ < 1; (6.2)

and 3) the two-factor model (4.15) with 0 < α < 1 and γ > 0.
Compared with a convex w, an inverse S-shaped w reveals a more optimistic view on the

“very good” scenarios, and is therefore more likely to lead the agent to postpone stopping.
Indeed, in Example 4.1, when w is inverse S-shaped (i.e. with α < 1), the optimal value is
infinite for all x > 0:

sup
τ∈T

J(x; τ) = lim
λ↓0

w(λ)u
(x
λ

)
= lim

λ↓0

exp(−γ(− log(λ))α)

λη
xη = lim

y→∞

e−γyα

e−ηy
xη = ∞,

where the last equality follows from α < 1. If an optimal stopping time τ̂x exists, we must
have τ̂x > 0 as stopping immediately does not attain the optimal value (as u(x) < ∞). The
näıve stopping law is therefore to continue perpetually and the sophisticated one is to stop
immediately.

6.2 Convex w

As mentioned above, a convex w indicates a pessimistic view throughout: the agent deflates
the probability of the very good scenarios, and inflates the probability of the very bad
scenarios. We single out this case for further discussions because a pre-committed optimal
stopping time τ̂x, among generally non-Markovian stopping strategies, inherently has a simple
structure of “cut loss or take profit” : when w is convex, Theorem 4.2 in Xu and Zhou (2013)
shows that

sup
τ∈T

J(x; τ) = sup
0≤a≤x≤b<∞

J(x; τab),

where τab := inf{t ≥ 0 : Xx
t /∈ (a, b)} if a < b, and τab := 0 if a = b = x.

First consider the case when u is concave, which normally indicates that the asset is
“bad” in terms of its risk-adjusted return; recall Remark 4.1. With such a bad asset at
hand, the pessimistic view from a convex w is expected to lead the agent to liquidate the
asset immediately. As shown in Corollary 4.3 of Xu and Zhou (2013), when u is concave
and w is convex, τ̂x = 0 is indeed an optimal stopping time. The problem is therefore time

11He and Zhou (2016) relate an inverse S-shaped w with the emotion of hope (hope for the “very good”
scenarios) and fear (fear of the “very bad” scenarios) in decision making.
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consistent, and all the three types of agents stop immediately. The moral of this result is
that “never lay your hands on a bad stock if you are pessimistic”.

The case when u is convex has been studied in the previous subsection; see in particular
Examples 6.2 and 4.2.

Finally, when u is S-shaped, it normally indicates that the asset is “average” to “bad”
in terms of its risk-return profile; see Remark 4.1. This happens for example if the original
utility function U in (4.2) is of log-type (U(x) := ln(1 + x)) with β > 1, or of CARA-type
(U(x) := 1 − e−γx for γ > 0) with 0 < β < 1.

We investigate S-shaped u in the next two examples, and find that 1) there may or may
not be time-inconsistency, and 2) both the näıve and sophisticated agents may take the
threshold-type of strategy.

Example 6.4. Take u(x) = (x1/β − K)+ for some β > 1 and K > 0, and w(x) = xα for
some α ≥ 1. First, we claim that for each x > 0,

sup
0≤a≤x≤b<∞

J(x; τab) = sup
0≤a≤Kβ∧x, Kβ∨x≤b<∞

J(x; τab). (6.3)

For x ≤ Kβ, observe that if a ≤ x ≤ b ≤ Kβ, then J(x; τab) = 0 as u(a) = u(b) = 0. This
already implies that (6.3) is true. For x ≤ Kβ , by the convexity of w and the concavity of
u on [Kβ,∞), the same argument in Corollary 4.3 of Xu and Zhou (2013) shows that

sup
Kβ≤a≤x≤b<∞

J(x; τab) ≤ u(x).

It follows that (6.3) holds. Now, for any a ≤ Kβ ∧ x and b ≥ Kβ ∨ x,

f(a, b) := J(x; τab) = u(a) + w

(
x− a

b− a

)
(u(b) − u(a)) =

(
x− a

b− a

)α

(b1/β −K), (6.4)

where the second equality follows from Lemma 5.1 and the third equality is due to u(a) = 0
for a ≤ Kβ. Note that

∂f(a, b)

∂a
= −α

(
x− a

b− a

)α−1
b− x

(b− a)2
(b1/β −K) < 0, (6.5)

which implies that for any fixed b ≥ Kβ ∨ x, f(0, b) ≥ f(a, b) for all 0 ≤ a ≤ x. Then

∂f(0, b)

∂b
=

xα

bα+1

[
(1/β − α)b1/β + αK

]
, (6.6)

showing that (0, b∗) with b∗ :=
(

αK
α−1/β

)β

> Kβ is the maximizer of (6.3). We thus conclude

that

τ̂x := τ0b∗ = inf

{
t ≥ 0 : Xx

t ≥
(

αK

α− 1/β

)β
}

(6.7)

is an optimal stopping time of (2.1), with J(x; τ) specified in (4.9), for each x > 0. There

in no time-inconsistency here as the stopping threshold
(

αK
α−1/β

)β

is independent of current

state x > 0. In this case, all the three types of agents have the same (optimal) stopping law,
which is

τ̂(x) = 1(

0,( αK
α−1/β )

β
)(x), for all x > 0.
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Example 6.5. Take u(x) = (x1/β −K)+ for some β > 1 and K > 0, and w(x) = 1
2
(x2 + x).

First, observe that (6.3) follows from the same argument in Example 6.4. For any a ≤ Kβ∧x
and b ≥ Kβ ∨ x,

f(a, b) := J(x; τab) = u(a) + w

(
x− a

b− a

)
(u(b) − u(a)) =

1

2

[(
x− a

b− a

)2

+
x− a

b− a

]
(b1/β −K),

(6.8)
where the second equality follows from Lemma 5.1 and the third equality is due to u(a) = 0
for a ≤ Kβ. For any fixed b ≥ Kβ ∨ x, observe that f(0, b) ≥ f(a, b) for all 0 < a ≤ x. Then
a direct calculation yields

∂f(0, b)

∂b
=

x

2b3
h(b), where h(b) :=

(
1

β
− 1

)
b

1
β
+1 −

(
1

β
− 2

)
xb

1
β + Kb + 2xK.

We deduce from

h′′(b) = − 1

β

(
1 − 1

β

)
b

1
β
−1

[(
1

β
+ 1

)
−

(
2 − 1

β

)
x

b

]

that on (0,∞), h starts being convex, becomes less convex as b increases, and eventually
turns concave. This, together with h(0) = 2xK > 0 and h(∞) = −∞, shows that there
exists a unique b∗(x) > 0 such that h(b∗) = 0. As a consequence, h(x) > 0 if and only if
x < b∗(x). Since

h(x) = x

[(
2

β
− 3

)
x

1
β + 3K

]

we conclude that x < b∗(x) if and only if x < x̄ :=
(

3K
3−2/β

)β

. Thus,

τ̂x := τ0b∗ = inf{t ≥ 0 : Xx
t ≥ b∗(x)} =

{
> 0 if 0 < x < x̄,

= 0 if x ≥ x̄

is an optimal stopping time of (2.1), with J(x; τ) specified in (4.9). Time-inconsistency is
present here as the stopping threshold b∗(x) depends on the current state x. The näıve
stopping law is

τ̂(x) = 1(0,x̄)(x), for all x > 0.

Remarkably, this is already an equilibrium stopping law. To see this, for x ≥ x̄, L∗τ̂ (x) = 0
and thus J(x;L∗τ̂ (x)) = u(x). This shows that [x̄,∞) ⊆ Iτ̂ . For x < x̄, L∗τ̂ (x) = τ0x̄ =
inf{t ≥ 0 : Xx

t ≥ x̄}. Then

J(x;L∗τ̂(x)) = w
(x
x̄

)
u(x̄) =

1

2

[(x
x̄

)2

+
x

x̄

]
(x̄

1
β −K)+,

where the first equality is due to Lemma 5.1. If x ≤ Kβ , J(x;L∗τ̂(x)) > 0 = u(x), which
implies (0, Kβ] ⊆ Cτ̂ . Now, observe that the curve

y = g(x) :=
1

2

[(x
x̄

)2

+
x

x̄

]
(x̄

1
β −K) =

u(x̄)

2x̄2

(
x +

x̄

2

)2

− u(x̄)

8
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is a convex quadratic function that intersects the concave function y = κ(x) := x1/β − K
at x = x̄. Moreover, it can be checked that g′(x̄) = κ′(x̄), which implies that x = x̄ is the
only intersection of these curves and g(x) > κ(x) on (0, x̄). If x ∈ (Kβ, x̄), observe that
J(x;L∗τ̂ (x)) = g(x) > κ(x) = u(x), which shows that (Kβ , x̄) ⊆ Cτ̂ . We therefore conclude
that Cτ̂ = (0, x̄) and Iτ̂ = [x̄,∞). It follows that Θτ̂(x) = 1(0,x̄) + τ̂ (x)1[x̄,∞) = τ̂(x) for all
x > 0. That is, τ̂ ∈ E(R+), and thus τ̂∗ = τ̂ .

6.3 Concave u

When u is concave, it normally indicates that the asset is “bad” in terms of its risk-return
profile; recall Remark 4.1.

For a general w, to find an optimal stopping time τ̂x for (2.1), Xu and Zhou (2013) turn
to the quantile formulation

sup
G∈Q

JQ(x;G), (6.9)

as stated in (4.13). Once the optimal quantile function G∗
x is found, a pre-committed optimal

stopping time τ̂x can be constructed using Skorokhod’s embedding theorem such that the
quantile function of Xx

τ̂x
coincides with G∗

x; see Xu and Zhou (2013) for details.
When w is convex (including the case of no probability distortion), the case has been

covered in Subsection 6.2. When w is also concave, the next result, taken from Theorem 5.1
of Xu and Zhou (2013), states in detail how to find the quantile function G∗

x that maximizes
(6.9).

Proposition 6.2. Suppose u and w are both concave. For each x > 0, if there exists
λ∗(x) ≥ 0 such that

(u′)−1
ℓ

(
λ∗

w′(1 − y)

)
> 0 ∀y ∈ (0, 1) and

∫ 1

0

(u′)−1
ℓ

(
λ∗

w′(1 − y)

)
dy = x,

where
(u′)−1

ℓ (y) := inf{z ≥ 0 : u′(z) ≤ y}, (6.10)

then G∗
x(y) := (u′)−1

ℓ

(
λ∗

w′(1−y)

)
is an optimal solution to (6.9).

Intriguingly, in order to identify the näıve stopping law τ̂ it is not necessary to find out
what τ̂x is specifically in this case: in view of Remark 4.2, τ̂ is well-defined once the optimal
quantile function G∗

x is known; see the last equality of (4.14). This leads to the following
result.

Theorem 6.1. Suppose u is strictly concave and continuously differentiable, and w is con-
cave with w(y) 6= y for some y ∈ (0, 1). If an optimal quantile G∗

x as specified in Proposi-
tion 6.2 exists for all x > 0, then

τ̂ (x) = 1 for all x > 0,

τ̂∗(x) = 0 for all x > 0,

where τ̂ ∈ T (R+) is the näıve stopping law defined in (2.5), and τ̂∗ ∈ E(R+) is the corre-
sponding equilibrium law defined in (3.6).
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Proof. Since u is nondecreasing and strictly concave, u′(x−) ≥ u′(x+) > 0 for all x > 0.
For each x > 0, to prove τ̂(x) = 1, it suffices to show that G∗

x(·) 6≡ x, in view of (4.14). If
λ∗(x) = 0, then G∗

x(y) = (u′)−1
ℓ (0) = ∞ 6= x. Assume λ∗(x) > 0. Note that infy≥(0,1) w

′(y)
must be strictly less than supy∈(0,1) w

′(y), otherwise w(y) = y for all y ∈ (0, 1). Thus, we
can take y1, y2 ∈ (0, 1), y1 6= y2 such that w′(1− y1) 6= w′(1− y2). Without loss of generality,
assume η1 := λ∗

w′(1−y1)
> λ∗

w′(1−y1)
=: η2. Since y 7→ u′(y) is continuous and strictly decreasing,

(u′)−1
ℓ (η1) must be strictly less than (u′)−1

ℓ (η2), unless they are both +∞. This already shows
that G∗

x(·) cannot be a constant function equal to x.
With τ̂(x) = 1 for all x > 0, Proposition 6.1 implies τ̂∗(x) = Θτ̂(x) = 0 for all x > 0.

Example 6.6. Take u(x) = 1
γ
xγ for some 0 < γ < 1, and w(x) = xα for some 0 < α ≤ 1.

Detailed analysis was carried out in Example 1 of Xu and Zhou (2013), where pre-committed
optimal stopping times of (2.1), with J(x; τ) specified in (4.9), were found, under different
values of γ and α: If α = 1 (i.e. no probability distortion), τ̂x := 0 solves (2.1) and the
problem is time consistent, as also argued at the start of Subsection 6.2. If γ < α < 1, i.e.
the agent is moderately risk-seeking, then

τ̂x := inf

{
t ≥ 0 : Xx

t ≤ α− γ

1 − γ
max
0≤s≤t

Xx
s

}
(6.11)

solves (2.1). If α < γ, i.e. the agent is sufficiently risk-seeking, then for any 0 < η < 1,

τ̂x := inf

{
t ≥ 0 : Xx

t ≤ η max
0≤s≤t

Xx
s

}
(6.12)

solves (2.1). In both latter cases, the pre-committed optimal strategies are non-Markovian,
and are of the so-called “trailing stop” type in the context of selling a stock: the investor
sells only when the stock price drops from the historical high (the “maximum drawdown”)
by a given percentage.

Since α−γ
1−γ

< 1 and η < 1, it follows from (6.11) and (6.12) that τ̂x > 0 for all x > 0. Thus,

the näıve agent will never stop as he reoptimizes at every time instant, i.e. τ̂ (x) = 1 for all
x > 0. It then follows from Proposition 6.1 that a sophisticated agent will stop immediately,
i.e. τ̂∗(x) = Θτ̂ (x) = 0 for x > 0. All these affirm Theorem 6.1.

Finally, let us consider the case when w is inverse S-shaped. The next result, taken
from Theorem 5.2 of Xu and Zhou (2013), states in detail how to find the optimal quantile
function G∗

x.

Proposition 6.3. Suppose u is concave and w is inverse S-shaped, i.e. it is concave on
[0, 1 − q] and convex on [1 − q, 1] for some q ∈ (0, 1). For each x > 0, if (a∗(x), λ∗(x)) is a
solution to the following mathematical program:

Maximize (1 − w(1 − q))u(a) +

∫ 1

q

u

(
a ∨ (u′)−1

ℓ

(
λ

w′(1 − y)

))
w′(1 − y)dy

subject to a, λ ≥ 0, aq +

∫ 1

q

a ∨ (u′)−1
ℓ

(
λ

w′(1 − y)

)
dy = x,

(6.13)
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where (u′)ℓ is defined as in (6.10), then

G∗(y) := a∗1(0,q](y) +

(
a∗ ∨ (u′)−1

ℓ

(
λ∗

w′(1 − y)

))
1(q,1)(y), y ∈ [0, 1), (6.14)

is an optimal solution to (6.9).

When w′(0+) = ∞, i.e. the agent infinitely exaggerates the probability of the “very
good” scenarios, we have the following result.

Theorem 6.2. Suppose u is concave and w is inverse S-shaped with w′(0+) = ∞. Assume
that an optimal quantile G∗

x as specified in Proposition 6.3 exists for all x > 0.

(i) If supy>0 u(y) is attained, then

τ̂ (x) = τ̂∗(x) = 1(0,y∗)(x) for all x > 0.

where y∗ := inf{y > 0 : u(y) = supz>0 u(z)} < ∞.

(ii) If supy>0 u(y) is not attained, then

τ̂ (x) = 1 for all x > 0,

τ̂∗(x) = 0 for all x > 0.

Here, τ̂ ∈ T (R+) is the näıve stopping law defined in (2.5), and τ̂∗ ∈ E(R+) is the corre-
sponding equilibrium law defined in (3.6).

Proof. Thanks to (4.14), for each x > 0, τ̂ (x) = 0 if and only if G∗
x(·) ≡ x.

(i) With y∗ < ∞, we observe from w′(0+) = ∞ that for any λ ≥ 0, (u′)−1
ℓ

(
λ

w′(1−y)

)
↑ y∗

as y ↑ 1. Then, for any x > 0, (6.14) implies that G∗
x(·) ≡ x holds only when a∗ = x ≥ y∗.

This already shows that τ̂ (x) = 1 for all x < y∗. Now, for x ≥ y∗, observe that with a = x,
the constraint in (6.13) becomes

xq +

∫ 1

q

x ∨ (u′)−1
ℓ

(
λ

w′(1 − y)

)
dy = xq +

∫ 1

q

xdy = x.

That is, the constraint is satisfied for any λ ≥ 0. Similarly, with a = x and any λ ≥ 0, the
objective function in (6.13) has the value

(1 − w(1 − q))u(x) +

∫ 1

q

u (x)w′(1 − y)dy = u(x) = sup
y>0

u(y).

This already attains the maximum of (6.13). Indeed, the maximization in (6.13) can be
simplified as

max
a,λ≥0

{
(1 − w(1 − q))u(a) +

∫ 1

q

u

(
a ∨ (u′)−1

ℓ

(
λ

w′(1 − y)

))
w′(1 − y)dy

}

= max
a≥y∗

{
(1 − w(1 − q))u(a) +

∫ 1

q

u (a)w′(1 − y)dy

}
= max

a≥y∗
u(a) = sup

y>0
u(y).
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We therefore conclude that a∗ = x and any λ ≥ 0 form a solution to (6.13), which yields
G∗

x(·) ≡ x. Thus, τ̂(x) = 0 for all x ≥ y∗. We therefore obtain τ̂(x) = 1(0,y∗)(x) for
all x > 0. Finally, for any x ≥ y∗, L∗τ̂(x) = 0 and thus J(x;L∗τ̂(x)) = u(x), which
implies Θτ̂(x) = τ̂ (x) = 0. For any x < y∗, L∗τ̂ (x) is the first hitting time of Xx to the
value y∗. Thus, J(x;L∗τ̂ (x)) =

∫∞

0
w(P[u(y∗) > y])dy = u(y∗) ≥ u(x). It follows that

Θτ̂(x) = 1 = τ̂(x). As a result, τ̂∗(x) = Θτ̂ (x) = τ̂ (x) for all x > 0.

(ii) If λ∗ = 0, then (u′)−1
ℓ

(
λ∗

w′(1−y)

)
= (u′)−1

ℓ (0) = ∞ for all y ∈ (q, 1), as supy>0 u(y) is

not attained. This implies that the constraint in (6.13) cannot be satisfied, a contradiction.
Assume λ∗ > 0. Since w′(0+) = ∞, λ∗

w′(1−y)
→ 0 as y ↑ 1. The concavity of u and the fact

that supy>0 u(y) is not attained then imply that (u′)−1
ℓ

(
λ∗

w′(1−y)

)
→ ∞ as y ↑ 1, which shows

G∗
x(·) 6≡ x. Thus, τ̂ (x) = 1 for all x > 0. By Proposition 6.1, τ̂∗(x) = 0 for all x > 0.

Since all the three major forms of w proposed in the literature and supported by empirical
evidence, (6.1), (6.2), and (4.15) with 0 < α < 1 and γ > 0, are inverse S-shaped with
w′(0+) = ∞, the result of Theorem 6.2 is of sufficient practical relevance.

Theorem 6.2-(ii) is consistent with the results of Ebert and Strack (2015) and Ebert and Strack
(2017): the näıve agent never stops while the sophisticated one stops immediately. Both
Ebert and Strack (2015) and Ebert and Strack (2017) assume that u is strictly increasing,
which is stronger than the condition that supy>0 u(y) is not attained. On the other hand,
Theorem 6.2-(i) shows that if there exists a state that maximizes the payoff function u itself,
then it makes no sense for even the näıvité to hold the asset forever: he ought to stop when-
ever such a state is reached. Moreover, since such a threshold type strategy can be upheld
by all the selves, it is also a sophisticated strategy. Note that this conclusion also demon-
strates that the respective extreme stopping behaviors of the two types of agents reported in
Ebert and Strack (2015) and Ebert and Strack (2017) depend critically on the assumption
that the payoff function u is strictly increasing. When supy>0 u(y) is attained which violates
the assumption, then both agents will instead adopt the same, threshold-type of strategy.

Even when an inverse S-shaped w admits w′(0+) < ∞, meaning that the agent only
modestly inflates the probabilities of very good states of nature, a näıve agent may still
postpone stopping indefinitely, as the next example shows. This example was first studied in
Subsection 5.2 of Xu and Zhou (2013), where the authors demonstrated how to find a pre-
committed optimal stopping time, but did not solve it in a completely explicit fashion. In the
following, we will solve the problem completely and explicitly, correct a typo in calculation
on p.270 of Xu and Zhou (2013), and argue that a näıve agent will never stops.

Example 6.7. Consider u(x) = 1
γ
xγ with 0 < γ < 1, and an inverse S-shaped probability

weighting function

w(x) :=

{
2x− 2x2, if 0 ≤ x ≤ 1/2,

2x2 − 2x + 1, if 1/2 ≤ x ≤ 1.

Using the mathematical program in Proposition 6.3, Xu and Zhou (2013) shows that the
problem (6.9) reduces to

sup
c∈( 1

2
,1]

1

γ
xγg(c), (6.15)
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where

g(c) :=


 1

c + 1−γ
2(2−γ)

[(2c− 1)
1

γ−1 − (2c− 1)]




γ (
1 − 2c + 2c2 +

1 − γ

2 − γ
[(2c− 1)

γ
γ−1 − (2c− 1)2]

)
,

and the optimal quantile function is given by

G∗
x(y) = a(x)1(0,c∗](y) + a(x)

(
4c∗ − 2

4y − 2

)1/(γ−1)

1(c∗,1)(y), y ∈ [0, 1),

where c∗ is the maximizer of (6.15) and

a(x) :=
x

c∗ + 1−γ
2(2−γ)

[(2c∗ − 1)
1

γ−1 − (2c∗ − 1)]
. (6.16)

The corresponding Azéma-Yor stopping time

τ̂x := inf{t ≥ 0 : Ψ(Xx
t ) ≤ max

0≤s≤t
Xx

s } (6.17)

is optimal for problem (2.1), with J(x; τ) specified in (4.9), where Ψ is the barycenter function
for F ∗ defined by

Ψ(z) :=





0, if z < a(x),(∫∞

z
ydF ∗

x (y)
)
/(1 − F ∗

x (z−)), if a(x) ≤ z < (2c∗ − 1)
1

γ−1 a(x),

z, if z ≥ (2c∗ − 1)
1

γ−1a(x),

=






0, if z < a(x),

1−γ
2−γ

(2c∗−1)
2−γ
γ−1 −(z/a(x))2−γ

(2c∗−1)−1−(z/a(x))1−γ a(x), if a(x) ≤ z < (2c∗ − 1)
1

γ−1a(x),

z, if z ≥ (2c∗ − 1)
1

γ−1 a(x).

(6.18)

Note that (6.18) corrects the formula of Ψ on p.270 of Xu and Zhou (2013).
The above procedure hinges on the solvability of the maximizer c∗ ∈ (1/2, 1]. Xu and Zhou

(2013) did not solve for c∗, but only mentioned that the maximizer exists if 0 < γ < 2/3.
Here, we claim that c∗ is actually a constant 1/

√
2, independent of the choice of 0 < γ < 1.

To see this, observe that

g′(c) =
γ

(2c− 1)(2 − γ)


 2(2 − γ)

2c + (1 − γ)
[
1 + (2c− 1)

1
γ−1

]




1+γ

h(c), (6.19)

where

h(c) := 1 + (2c− 1)
1

γ−1 − 2c(2c− 1)
γ

γ−1 − 2c(1 − c)
[
1 + 2c + (2c− 1)

1
γ−1

]

= (1 − 2c(1 − c)(1 + 2c)) +
[
(1 − 2c(1 − c))(2c− 1)

1
γ−1 − 2c(2c− 1)

γ
γ−1

]

= (1 − 2c− 2c2 + 4c2) + (2c− 1)
1

γ−1
(
1 − 2c + 2c2 − 2c(2c− 1)

)

= (2c2 − 1)(2c− 1) − (2c− 1)
1

γ−1 (2c2 − 1)

= (2c2 − 1)
[
(2c− 1) − (2c− 1)

1
1−γ

]
.
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Note that the only real solutions to h(c) = 0, c ∈ (1/2, 1], are c = 1/
√

2 and c = 1. Since
h(c) ↑ ∞ as c ↓ 1/2, we must have h > 0 on (1/2, 1/

√
2) and h < 0 on (1/

√
2, 1). In

view of (6.19), this already implies that the maximizer of (6.15) is c∗ = 1/
√

2, for any given
0 < γ < 1.

At any current state x > 0, to decide whether to stop or not under the optimal stopping
time τ̂x in (6.17), it boils down to determine if Ψ(x) ≤ x holds. With c∗ = 1/

√
2, we

observe from (6.16) that a(x) is decreasing in γ, and a(x) ↑ 2(
√

2 − 1)x < x as γ ↓ 0. This

implies a(x) < x for all 0 < γ < 1. Similarly, (2c∗ − 1)
1

γ−1a(x) is increasing in γ, and

(2c∗ − 1)
1

γ−1a(x) ↓ 2x as γ ↓ 0. This implies that (2c∗ − 1)
1

γ−1 a(x) > x for all 0 < γ < 1.

Thus, given any 0 < γ < 1, we have a(x) < x < (2c∗ − 1)
1

γ−1 a(x) for all x > 0. In view of
(6.18), this implies

Ψ(x) =
1 − γ

2 − γ

(2c∗ − 1)
2−γ
γ−1 − (x/a(x))2−γ

(2c∗ − 1)−1 − (x/a(x))1−γ
a(x).

Using (6.16) and c∗ = 1/
√

2, it can be checked that Ψ is increasing in γ, and Ψ(x) ↓ (3/2)x
as γ ↓ 0. Thus, for any 0 < γ < 1, Ψ(x) > x and thus τ̂x > 0 for all x > 0. It follows that
the näıve stopping law is τ̂ (x) = 1 for all x > 0, and by Proposition 6.1 the equilibrium
stopping law is τ̂∗(x) = Θτ̂(x) = 0 for all x > 0.

6.4 S-shaped u

When u is S-shaped, it normally indicates that the asset is “average” to “bad” in terms of
its risk-return profile. As in Xu and Zhou (2013), Section 6, we discuss only the case where
w is inverse S-shaped, as the other cases either have been treated or can be treated similarly
as in the previous subsections.

Suppose u is convex on [0, θ] and concave on [θ,∞) for some θ > 0, and w is concave on
[0, 1− q] and convex on [1− q, 1] for some q ∈ (0, 1). One may solve the problem (6.9) using
similar arguments in Propositions 6.2 and 6.3. More specifically, Section 6 of Xu and Zhou
(2013) proposes the following mathematical program: if there exist 0 < a1 ≤ a2 ≤ a3 ≤ θ,
0 ≤ c1 ≤ c2 ≤ q, and λ ≥ 0 such that they maximize

(1 − w(1 − c1))u(a1) + (w(1 − c1) − w(1 − c2))u(a2) + (w(1 − c2) − w(1 − q))u(a3)

+

∫ 1

q

u

(
a3 ∨ (u′)−1

ℓ

(
λ

w′(1 − y)

))
w′(1 − y)dy,

subject to

a1c1 + a2(c2 − c1) + a3(q − c2) +

∫ 1

q

a3 ∨ (u′)−1
ℓ

(
λ

w′(1 − y)

)
dy ≤ x,

then

G∗
x(y) := a11(0,c1](y) + a21(c1,c2](y) + a31(c2,q](y)

+

(
a3 ∨ (u′)−1

ℓ

(
λ

w′(1 − y)

))
1(q,1)(y), y ∈ [0, 1), (6.20)
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is an optimal quantile function.
Here, we observe that under the general condition on w specified in Theorem 6.2, the

same argument there shows that G∗
x in (6.20) is not a constant function equal to x. Hence,

by (4.14), the näıve stopping law is τ̂ (x) = 1 for all x > 0, and the corresponding equilibrium
law is τ̂∗(x) = Θτ̂(x) = 0 for all x > 0.

A Proof of Lemma 3.1

First, recall from Problem 7.18 on p. 94 of Karatzas and Shreve (1991) that if W is a
standard Brownian motion defined on a probability space (Ω′,F ′,P′), then

P′[W t > 0] = P′[W t < 0] = 1, for all t > 0, (A.1)

where W t := maxs∈[0,t]Ws and W t := mins∈[0,t]Ws.
Fix T > 0. With Z in (3.2) being a martingale, we can define a probability Q ≈ P by

dQ
dP

= ZT . Note that we have Q ≈ P, instead of merely Q ≪ P, because ZT > 0 P-a.s. under

(3.1). Girsanov’s theorem then implies that under Q, dXt = a(Xt)dB̃t for t ∈ [0, T ], where

B̃t := B(t) +
∫ t

0
θ(Xs)ds, t ∈ [0, T ], is a Q-Brownian motion. Since X is a continuous local

martingale under Q, it can be expressed as a time-changed Brownian motion, i.e.

Xt = x + W[X]t t ∈ [0, T ],

for some standard Brownian motion {Wt}t≥0 under Q. As a consequence,

Q[XT ≥ x + η] = Q[Xs ≥ x + η, for some 0 ≤ s ≤ T ]

= Q[W[X]s ≥ η, for some 0 ≤ s ≤ T ]

= Q[Ws ≥ η, for some 0 ≤ s ≤ [X ]T ].

This implies

Q[X
x

T > x] = lim
η↓0

Q[X
x

T ≥ x + η] = lim
η↓0

EQ
[
1{Ws≥η, for some 0≤s≤[X]T }

]
. (A.2)

In view of (A.1), we have Q[W t > 0] = 1 for all t > 0. This implies that we can find some
Ω∗ ∈ F with Q(Ω∗) = 1 such that for each ω ∈ Ω∗, there exist a real sequence {tn(ω)} with
tn(ω) ↓ 0 and Wtn(ω)(ω) > 0. It follows that for each ω ∈ Ω∗,

1{Ws≥η, for some 0≤s≤[X]T }(ω) = 1, as η small enough.

We hence conclude from (A.2) that Q[X
x

T > x] = 1. Similarly, we have

Q[Xx
T < x] = lim

η↓0
Q[XT ≤ x− η] = lim

η↓0
EQ

[
1{Ws≤−η, for some 0≤s≤[X]T }

]
= 1, (A.3)

where the last equality follows from Q[W t < 0] = 1 for all t > 0, as shown in (A.1). With
Q ≈ P, we conclude that P[X

x

T > x] = Q[X
x

T > x] = 1 and P[Xx
T < x] = Q[Xx

T < x] = 1.
As a consequence of P[X

x

T > x] = P[Xx
T < x] = 1 for all T > 0, P[T x

x < T ] = 1 for all
T > 0. This implies that T x

x < 1/n for all n ∈ N P-a.s., which yields T x
x = 0 P-a.s.

32



B Optimal Value is Independent of the Finiteness Con-

dition

Most of the results in this paper depend on Xu and Zhou (2013) in which only almost surely
finite stopping times are considered. Namely, therein the collection of stopping times is
T = {τ ∈ T : P[τ < ∞] = 1}. In this paper, it is necessary to consider stopping times
that are infinite with positive probability, since some of the explicitly constructed stopping
strategies do belong to this category. However, the following result shows that the optimal
values are the same with T and T .

Proposition B.1. Let J be defined by (4.9). Then, for any x > 0,

sup
τ∈T

J(x; τ) = sup
τ∈T

J(x; τ).

Proof. By definition, supτ∈T J(x; τ) ≤ supτ∈T J(x; τ). For any ε > 0, if supτ∈T J(x; τ) < ∞
(resp. supτ∈T J(x; τ) = ∞), take τ ′ ∈ T such that J(x; τ ′) > supτ∈T J(x; τ) − ε (resp.
J(x; τ ′) > 1/ε). Consider τ ′M := τ ′ ∧ M ∈ T for all M ∈ N. Then, u(Xx

τ ′M
) converges to

u(Xx
τ ′) a.s., and thus in distribution, as M → ∞. This in particular implies that for any

y > 0, P[u(Xx
τ ′M

) > y] converges to P[u(Xx
τ ′) > y]. By Fatou’s lemma,

lim inf
M→∞

J(x; τ ′M ) = lim inf
M→∞

∫ ∞

0

w(P[u(Xx
τ ′M

) > y])dy

≥
∫ ∞

0

w
(

lim
M→∞

P[u(Xx
τ ′M

) > y]
)
dy =

∫ ∞

0

w(P[u(Xx
τ ′) > y])dy = J(x; τ ′).

It follows that supτ∈T J(x; τ) ≥ J(x; τ ′). By the arbitrariness of ε > 0, we conclude that
supτ∈T J(x; τ) = supτ∈T J(x; τ).

It follows from Proposition B.1 that any optimal stopping time constructed in Xu and Zhou
(2013) is automatically an optimal stopping time for supτ∈T J(x; τ).

C Proof of Lemma 5.1

First note that parts of this lemma were derived in Xu and Zhou (2013), while the cases
where P[τab = ∞] > 0 were not dealt with there. This includes “a = 0 and b = ∞” and
“a = 0 and b < ∞”. For completeness and reader’s convenience, we present the proof for all
possible cases of 0 ≤ a < b ≤ ∞.

Recall that τab = T x
a ∧ T x

b , with T x
a and T x

b defined as in (4.7), and u is nondecreasing
with u(0) = 0 when β > 0.

(i) Observe that τab = ∞ a.s. By (4.6), J(x; τab) =
∫∞

0
w(P[u(0) > y])dy = 0.

(ii) Thanks to (4.6), u(Xx
τab

) = u(a) a.s. It follows that J(x; τab) =
∫∞

0
w(P[u(a) >

y])dy = u(a).
(iii) We first deal with the case “a > 0 and b < ∞”. The CDF of Xx

τab
is F (y) =

p∗1[a,b)(y) + 1[b,∞)(y) for y ∈ [0, 1], where p∗ := P[Xx
τab

= a] = b−x
b−a

by the optional sampling
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theorem. Note that the use of the optional sampling theorem to find p∗ requires either
P[T x

a < ∞] = 1 or P[T x
b < ∞] = 1. The former is true here thanks to a > 0 and (4.6). Then,

by (4.10),

J(x; τab) =

∫ a

0

w(1)u′(y)dy +

∫ b

a

w

(
1 − b− x

b− a

)
u′(y)dy +

∫ ∞

b

w(0)u′(y)dy,

which yields the desired result as w(0) = 0 and w(1) = 1.
For the case “a = 0 and b < ∞”, by the fact that Xx does not reach a = 0 a.s. and

(4.6), Xx
τab

= b1{Tx
b <∞} a.s. This, together with u(0) = 0, gives u(Xx

τab
) = u(b)1{Tx

b <∞} a.s.
It follows that

J(x; τab) =

∫ ∞

0

w
(
P[u(b)1{Tx

b <∞} > y]
)
dy =

∫ u(b)

0

w
(
P[u(b)1{Tx

b <∞} > y]
)
dy

=

∫ u(b)

0

w(P[T x
b < ∞])dy = w(P[T x

b < ∞])u(b) = w
(x
b

)
u(b),

where the last equality follows from (4.7). Thus, the formula (5.1) still holds for a = 0.

D Proof of Lemma 5.2

Fix a D ∈ B(R+). For any x > 0, define

a(x) := sup{a < x : a ∈ D}, b(x) := inf{b > x : b ∈ D}. (D.1)

If a(x) = x or b(x) = x, then T x
D = 0 a.s. and thus J(x;T x

D) = u(x). If a(x) < x < b(x),
then T x

D = inf{t ≥ 0 : Xx
t /∈ (a(x), b(x))}. We then deduce from Lemma 5.1 that

J(x;T x
D) =





u(x), if a(x) = x or b(x) = x,

u(a(x)) + w
(

x−a(x)
b(x)−a(x)

)
(u(b(x)) − u(a(x))), if a(x) < x < b(x) < ∞,

u(a(x)), if 0 < a(x) < x < b(x) = ∞,

0, if 0 = a(x) < x < b(x) = ∞.

(D.2)
Now, note that with DQ := {q ∈ Q : a ≤ q ≤ b for some a, b ∈ D},

a(x) = sup{q < x : q ∈ DQ} = sup
q∈DQ

q1(q,∞)(x), b(x) = inf{q > x : q ∈ DQ} = inf
q∈DQ

q1(0,q)(x).

It follows that x 7→ a(x) and b 7→ b(x) are both Borel measurable. We then conclude form
(D.2) that x 7→ J(x;T x

D) is Borel measurable, i.e. Assumption 2.1 (i) is satisfied.
Fix a sequence {Dn}n∈N in B(R+) such that Dn ⊆ Dn+1 for all n ∈ N. For any x > 0,

consider a(x) and b(x) as in (D.1) with D :=
⋃

n∈N Dn. Moreover, we define

an(x) := sup{a < x : a ∈ Dn}, bn(x) := inf{b > x : b ∈ Dn}, for all n ∈ N.
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Since Dn ⊆ Dn+1 for all n ∈ N, we have an(x) ↑ a(x) and bn(x) ↓ b(x) as n → ∞. For each
n ∈ N, by the same argument above (D.2),

J(x;T x
Dn

) =






u(x), if an(x) = x or bn(x) = x,

u(an(x)) + w
(

x−an(x)
bn(x)−an(x)

)
(u(bn(x)) − u(an(x))), if an(x) < x < bn(x) < ∞,

u(an(x)), if 0 < an(x) < x < bn(x) = ∞,

0, if 0 = an(x) < x < bn(x) = ∞.

From the above formula and (D.2), one may deduce from the continuity of u and w and the
convergence an(x) ↑ a(x) and bn(x) ↓ b(x) that

lim
n→∞

J(x;T x
Dn

) = J(x;T x
D). (D.3)

Indeed, the only nontrivial case is “a(x) = b(x) = x while an(x) < x < bn(x) for all n ∈ N”.
In this case,

lim
n→∞

J(x;T x
Dn

) = lim
n→∞

[
u(an(x)) + w

(
x− an(x)

bn(x) − an(x)

)
(u(bn(x)) − u(an(x)))

]

= u(x) + lim
n→∞

[
w

(
x− an(x)

bn(x) − an(x)

)
(u(bn(x)) − u(an(x)))

]
= u(x) = J(x;T x

D),

where the third equality follows from a(x) = b(x) = x and w being a bounded function.
Then (D.3) in particular implies that Assumption 2.1 (ii) is satisfied.
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