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An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks

Nomenclature

Q a -gas flow reduced to absolute pressure (m 3 /s), Q-gas flow reduced to standard value of pressure and temperature (m 3 /s) v-gas flow velocity (m/s), A c -surface value of cross section (m 2 ), -mark complementary value of Bull's variable (if Bull's variable u has value 1, then its complementary value ū is 0, and opposite)

Text
C-auxiliary Bull's variable (1 or 0)

Introduction

For single source, branching networks, only the reach equations need to be solved (e.g. using

Hazen-Williams for water or Renouard for natural gas). In this case, optimization by linear programming could yield the best alternative network, both hydraulically and economically [START_REF] Mcclure | Linear-programming offers way to optimize pipeline analysis[END_REF].

Critical path analysis for optimizing branched pipe networks and implementation of the finite element method can be done for branched networks. For looped networks, however, techniques that are more powerful are required. Algorithms have been developed to ensure convergence of the iterative procedures.

Today, Hardy Cross method [START_REF] Cross | Analysis of flow in networks of conduits or conductors[END_REF] is very often used for optimization of gas distribution networks with loops of conduits. Hardy Cross 1 developed a numerical method for calculating flow and pressure distribution in a looped network. This method also has been widely used in modeling of waterworks with ring-like structures of conduits in municipalities. Hardy Cross method assumes an equilibrium between pressure and friction forces in steady and incompressible flow. As a result, it cannot be successfully used in unsteady and compressible flow calculations with large pressure drop where inertia force is important. Original and improved Hardy Cross method, are methods of successive iterative corrections, but for the first one, corrections are calculated for each contour separately, while for the second one, corrections for all contours in each iteration is calculated simultaneously using the Newton-Raphson numerical procedure. Hardy Cross method is one approach to solve the loop equations. Original method first determines corrections for each loop independently and applies this correction to compute new flow in each conduit. It is not efficient compared to improved Hardy Cross method that considers entire system simultaneously. Simultaneous method is used by Epp and Fowler [START_REF] Epp | Efficient code for steady flows in networks[END_REF], but only for looped waterworks systems. 1 Hardy Cross (Nansemond County, Virginia 1885 -Virginia Beach, Virginia 1959), American engineer, assistant professor of civil engineering at Brown University, professor of structural engineering at the University of Illinois, Chair of the Department of Civil Engineering at Yale. He had also developed a method for analysing indeterminate structures that minimized the inconveniences and risks involved in the use and development of reinforced concrete.

Some methods developed by Russian authors are similar with original Hardy Cross method.

Contemporary with Hardy Cross, soviet author V.G. Lobachev [START_REF] Latysenkov | Hydraulics[END_REF] was being developed very similar method compared to original Hardy Cross method. Andrijashev method [START_REF] Andriyashev | Hydraulics calculation of water distribution networks[END_REF] was very often being used in Russia during the soviet era. According to this method, contour and loop are not synonyms (contours for calculations has to be chosen to include few loops and only by exception one).

Using the loop equations to represent conservation of energy, Wood and Charles [START_REF] Wood | Hydraulic network analysis using linear theory[END_REF] developed a linear theory (flow adjustment) method by coupling the loop equations with node equations.

Convergence characteristics of linear theory are later improved by Wood and Rayes [START_REF] Wood | Reliability of algorithms for pipe network analysis[END_REF].

Modified linear theory solves directly for the conduits flow rates rather than the loop equations approach of Hardy Cross method. Shamir and Howard [START_REF] Shamir | Water distribution systems analysis[END_REF] solved node equations instead loop equations using the Newton-Raphson method. After the nodal heads are computed, they computed the conduits flow rates. Previous methods solve for the conduits flows or nodal heads separately then use conservation of energy to determine the other set of unknowns. Haman and Brameller [START_REF] Hamam | Hybrid Method for the Solution of Piping Networks[END_REF], and, Todini and Pilati [START_REF] Todini | A gradient method for the analysis of pipe networks[END_REF] devised a method to solve for flows and heads simultaneously. Here, each conduit equation is written to include, both, the conduit flows and nodal heads. In addition, although the number of equations is larger than the other methods, the algorithm does not require defining loops. Further procedure is developed by Patankar [START_REF] Patankar | Numerical heat transfer and fluid flow[END_REF]. He developed a finite volume procedure to solve for Navier-Stokes equations in a structured coordinate system. Since the publication of the original paper in 1972, there have been several

developments reported to improve the numerical performance of the original algorithm. Datta

and Majumdar [START_REF] Datta | Flow distribution in parallel and reverse flow manifolds[END_REF] used this solution algorithm to develop a calculation procedure for manifold flow systems.

Examples of calculation of looped natural gas distribution network after original Hardy Cross method can be found in handbooks [START_REF] Corfield | Distribution Design for Increased Demand, Chapter 9[END_REF] and similar calculation of real gas network is shown in paper of Manojlović et al. [START_REF] Manojlović | Optimized design of a gas-distribution pipeline network[END_REF]. But, deeper improvement of Hardy Cross method is only shown in case of looped waterworks systems [START_REF] Boulos | Comprehensive water distribution systems analysis handbook for engineers and planners[END_REF]. Analysis of looped gas distribution networks is shown in paper of Osiadacz [START_REF] Osiadacz | Simulation and analysis of gas networks[END_REF] while in many papers are shown methods for calculation of waterworks [START_REF] Arsene | Modelling and simulation of water systems based on loop equations[END_REF][START_REF] Collins | Solving the pipe network analysis problem using optimization techniques[END_REF][START_REF] Johnson | Finite-element method for water distribution networks[END_REF][START_REF] Gay | The solution of pipe network problems[END_REF][START_REF] Chiplunkar | Analysis of looped water distribution networks[END_REF][START_REF] Gupta | Optimization of water distribution system[END_REF][START_REF] Kessler | Analysis of the linear programming gradient method for optimal design of water supply networks[END_REF][START_REF] Varma | Optimal design of water distribution systems using an NLP method[END_REF][START_REF] Chenoweth | Pipe network analysis[END_REF][START_REF] Eiger | Optimal design of water distribution networks[END_REF][START_REF] Basha | Analysis of water distribution systems using a perturbation method[END_REF][START_REF] Todini | Looped water distribution networks design using a resilience index based heuristic approach[END_REF][START_REF] Ahuja | Some recent advances in network flows[END_REF]. Very interesting application of two ant colony optimisation algorithms to water distribution system optimisation is shown in the paper of Zecchin et al. [START_REF] Zecchin | Application of two ant colony optimisation algorithms to water distribution system optimisation[END_REF].

Concept of distribution network

Hardy Cross method is powerful toll for calculation of looped gas distribution network in settlements without limitation factors, such as: number of conduits per contours, number of loops, number of nodes or number of input nodes. In Hardy Cross calculation, previously, has to be determinated maximal consumption per each node (Q output ), and one or more inlet nodes (Table 1). These parameters are looked up. Now, initial guess of flow per conduits has to be assigned (Table 2), and in that way chosen values are to be used for first iteration. After the iteration procedure is completed, and if the value of gas flow velocity for all conduits are bellow standard values, calculated flows 2 become flow distribution per conduits for maximal possible consumptions per nodes. Further, pressure per all nodes can be calculated. Whole network can be supplied by gas from one or more points (nodes). Distribution network must be design for largest consumption assigned to nodes of networks chosen to satisfy larges possible gas consumption of households in condition of very severe winters (Table 1) 3 . Disposal of households is along the network's conduits, and only their consumption is to be assigned to nodes for the purpose of calculation according to Hardy Cross. Task of Hardy Cross method is to calculate gas flow distribution per conduits for fixed looked up maximal natural gas consumption per nodes and inputs in network. If the flow speed in some conduits are above standard values after the calculation is finished, these conduits must be chosen with larger diameters, and whole iteration procedure have to be repeated 4 . Hardy Cross method is only suitable for calculation of looped networks, not for branch-like networks. Before start of iterative procedure, consumption of gas per node, input nodes, their spatial disposal and length of conduits must be chosen and looked up. Then, first guess of flow for all conduits must be chosen according to first Kirchhoff's law for each of the node nodes. Next, diameters of all conduits have to be chosen (after eq. ( 1); see I in Table 2, or not; see II in Table 2).
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In previous equation [START_REF] Mcclure | Linear-programming offers way to optimize pipeline analysis[END_REF], flow is reduced to absolute value of pressure, and if flow is given for standard value is to be reduced using p a •Q a =p n •Q n . In distribution network pressure value is usually p a =4•105 Pa abs., or 3•10 5 Pa gauge pressure. First larger standard diameter than calculated after eq. ( 1) has to be chosen (du~Du) from the tables of standard polyethylene pipes.

Each equation for determination of pressure drop in distribution gas network [START_REF] Coelho | Considerations about equations for steady state flow in natural gas pipelines[END_REF] (e.g. in the technical literature the Renouard equation for conditions of pressure values in gas distribution networks comes written in an explicit form in terms of the pressure difference) (2) 5 :
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can be written in form Δp 2 =R•Q n , where is: n=1.82, and hydraulics resistance R is to be written

as R=4810•ρ r •L•D in -4.82 .
Basics assumption is to be satisfied for Hardy Cross calculation:

-Algebraic sum of flows per each node must be zero exactly (first Kirchhoff's law-continuity of flow), -Algebraic sum of pressure drops per each contour must be approximately zero at the end of iterative procedure (second Kirchhoff's law -continuity of potential).

It is usually desired to determine the total loss of pressure or voltage between inlet and outlet. If a single conductor connected these two points, the loss of head for given flow could be computed directly from the relation between flow and head loss. In a network, however, this loss depends on the distribution of the flow in the system. If such distribution is known, the drop of potential in each conductor can be determined directly, and the total drop found as the sum of the drops along any path connecting inlet and outlet, the total drop being of course the same whatever path is chosen. If, however, the relation is not linear as for gas flow (2), serious difficulties arise in solving the equations. This problem must be solved during iterative procedure. 5 whereas in the technical literature it appears as: Δp 2 =4088•ρ r 0.82

•L•Q 1.82 •D in -4.82
In general, systems for distributing natural gas in cities may, for purposes of analysis, be considered as in a single plane. In other cases, as, for example, the distribution may take place in several planes, with interconnection between the planar systems of distribution (Fig. 1). This type of problem presents no especially new features except that distribution must be made in circuits closed by the risers as well as in the circuits which lie in a plane. It will be noted that in such problems any conduit may lie in only one circuit (an outside conduit in a floor) or in two circuits, three circuits, or even in four circuits (two floor circuits and two riser circuits). The total change in flow in the conduit is the sum of the changes in all the circuits of which it is a member.

All networks with three or more dimensions can be noted as spatial. Spatial network is each network with at least one conduit mutual for three or more contours. In fig. 1,networks A) can be reduced to single plane problem, but case C) is three-dimensional problem as in our example in fig 2 6 .

Mathematical description of network

The first step in solving a problem is to make a network map showing conduit sizes and lengths, connections between conduits (nodes), and sources of supply. For convenience in locating conduits, assign each contour and each main a code number. Conduits on the network periphery are common to one contour and those in the network interior are common to two contours.

Special cases may occur in which two conduits cross each other but are not connected, resulting in certain conduits being common to three or more loops. The distribution network then becomes three-dimensional rather than two-dimensional. for example, by starting at the right end of conduit 15 via conduit 8 and returning to the left end of conduit 15 via conduit 2 or 3.

Gas distribution system, composed of fifteen conduits (Fig. 2), has been analyzed by the Hardy Cross method (original and improved version) to determine the individual conduit flow rates and pressure drops. Gas flow into the network from a source on the left side is 7000 m 3 /h (Table 1.).

Points of delivery are at junctions of conduits, with the arrows pointing to volumes delivered (summation of these deliveries equals 7000 m 3 /h). Assumed gas flow and its direction, also indicated by an arrow (near pipe in fig. 2).

After the network map with its conduit and contour numbers and delivery and supply data has been prepared, the next step is to assume a flow pattern in the network (Table 2). This may be done by starting at sources with volumes of gas delivered into the system, and distributing these volumes through the conduits until they have been allocated to the various delivery points. The flows thus assumed are entered next to their respective conduits, with arrows to indicate direction. The total gas flow arriving at a junction must equal the total gas flow leaving it (first Kirchhoff's law). The assumed flow pattern will approximate the correct flow pattern if consideration is given to the relative flow capacity of various network conduits.

To introduce matrix form in calculation, it is necessary to represent distribution network (Fig. 2) as a graph according to Euler's theorem from mineralogy (number of polyhedral angles and edges of minerals). Graph has X branches and Y nodes (in Fig. 2 
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In (3); 1 means that particular conduit has input in observed node, -1 if not and 0 if this particular conduit do not belong to observed node. If network has two or more points of supply, that can be included in eqs. (3) as Q i but with negative sign. Equation ( 3) can be written as (4) in develop form: 
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For independent loops can be written set of X-Y+1 independent equations of energy continuity for network shown in fig. 2. can be written as (5):
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In ( 5); 1 means that flow direction in conduit coincides with assumed direction of observed contour, -1 if not, and 0 if conduit do not belong to observed contour. Equation (3) can be written as (4) in develop form: 
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Equations [START_REF] Epp | Efficient code for steady flows in networks[END_REF][START_REF] Latysenkov | Hydraulics[END_REF][START_REF] Andriyashev | Hydraulics calculation of water distribution networks[END_REF][START_REF] Wood | Hydraulic network analysis using linear theory[END_REF] are for initial guess of gas flow rate I from Table 2 andFig 

General solution after Hardy Cross method

Two types of methods based on Hardy Cross's idea are shown for the solution of loop equations:

-Hardy Cross method; successive substitution method (single loop adjustment method) -Modified Hardy Cross method; simultaneous loop solution method (Newton-Raphson method)

Hardy Cross's successive substitution method (single loop adjusment method)

Equations of flow (for conduits i which belong to contour j) for all contours (each particular contour is marked by j) can be written as follows [START_REF] Wood | Reliability of algorithms for pipe network analysis[END_REF]:
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The basic idea of the Hardy-Cross method is that conservation of mass at each node can be established initially. This means we must first assume an initial guess of flows in every pipe element before starting the pressure drop calculation. For any pipe in which Q 0 is assumed to be the initial flow rate, eq. ( 7) can be estimated using a Taylor series expansion as follows (8):
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Because of second Kirchof's law in late iterations; F(Q) (m) →0, and
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For contour (loop) j, where conduits i belong to loop j (10):
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For Renouard equation ( 2): n=1,82. Equation [START_REF] Todini | A gradient method for the analysis of pipe networks[END_REF] in matrix form can be writen as [START_REF] Patankar | Numerical heat transfer and fluid flow[END_REF]:
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Detail example for calculation according Hardy Cross's successive substitution method (single loop adjusment method) for network shown in fig. 2 are given in table 4.

Modified Hardy Cross method (Newton-Raphson simulaneous method)

The Newton-Raphson method is a numerical method that can solve a set of equations [START_REF] Wood | Reliability of algorithms for pipe network analysis[END_REF] simultaneously. Convergence of Newton method nonlinear network analysis is studied by Altman and Boulos [START_REF] Altman | Convergence of Newton method nonlinear network analysis[END_REF]. The method is particularly convenient for solving differentiable equations when the value of the desired unknown parameters is known approximately. Using the Taylor's series expansion, a first-order approximation can be written as [START_REF] Datta | Flow distribution in parallel and reverse flow manifolds[END_REF]:
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First matrix in [START_REF] Patankar | Numerical heat transfer and fluid flow[END_REF] and ( 12) is a Jacobian matrix of first derivates of loop equations evaluated at Q (m-1) of all the functions for (12) and for only observed loop in [START_REF] Patankar | Numerical heat transfer and fluid flow[END_REF]. Jacobian matrix is square (number of contours) and symmetric. The rows in Jacobian matrix are corresponding to the loop equations and the columns correlated the loop corrections. The diagonal terms of Jacobian matrix are the sum of first derivates of the conduit equation in particular contour. The difference between successive substitution method and simultaneous solution method is that some of nondiagonal terms are non-zero in simultaneous solution method.

For the network shown in Fig. 2 Jacobian matrix is for the first iteration (13): 
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Numbers in [START_REF] Manojlović | Optimized design of a gas-distribution pipeline network[END_REF] are from first iteration shown in Table 4 (but note that Table 4 is for single loop adjustment method and only input parameters for first iteration have equal numerical values): [START_REF] Manojlović | Optimized design of a gas-distribution pipeline network[END_REF] Note that in eq. ( 14); 559997875 = 233875825 + 326122050, and 179192287 = 14916225 + 164276062 (see Table 4).
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Rules for determination of algebraic signs preceding corection of flow

These rules are to be applied for both version of method (shown in chapter 4).

Contours and conduits numbers are listed in the first and second columns of the table 4, respectively. Diameters and lengths of conduits are listed in the third and forth column of table 4.

The assumed gas flow in each conduit for iteration 1 (shown in Table 2) is listed in the fifth column in table 4. The plus or minus preceding the flow, Q, indicates the direction of the conduit flow for the particular contour. A plus sign denotes clocwisese flow in the conduit within the contour; a minus sign, counterclockwise.

The first computation-resistance to change in gas flow in each conduit, R•Q 0,82 -is listed in table 4 (R is according to (2). The coefficient n, which in this case equals 1.82 -from Renouard equation ( 2), has become n-1=0,82 (first derivate). The pressure drop in each main, R•Q 1.82 , is listed, and carries the same sign as the gas flow. Column R•Q 0,82 is added arithmetically for each contour. Column R•Q 1.82 is added algebraically for each contour. A flow correction, Δ, is computed for each contour - [START_REF] Patankar | Numerical heat transfer and fluid flow[END_REF] for original method and (12) for improved. This correction must be subtracted algebraically from the assumed gas flow. A conduit common to two loops receives two corrections, and a main common to three or more contours receives three or more corrections.

Correction Δ 1 is from the particular contour under consideration. Corrections Δ 2 and Δ 3 are from the second and third contours to which a conduit belongs. The upper plus or minus sign shown indicates direction of flow in that conduit in these two contours and is obtained from Q for previous iteration. The upper sign is the same as the sign in front of Q if the flow direction in each contour coincides with the assumed flow direction in the particular contour under consideration, and opposite if it does not.

The flow, Q, and corrections are totaled across to obtain the Q listed under next iteration according to the following rules:

1. The algebraic operation for correction 1 should be the opposite of its sign; i.e., add when the sign is minus.

2. The algebraic operation for corrections 2 and 3 should be the opposite of their lower signs when their upper signs are the same as the sign in front of Q, and as indicated by their lower signs when their upper signs are opposite to the sign in front of Q.

Rules for determination of preceding sign for flow corrections is shown in Table 3. Rules shown in table 3 can be presented by following logical equation; Bull's logic [START_REF] Boulos | Comprehensive water distribution systems analysis handbook for engineers and planners[END_REF] and ( 16):

D G K D G K D G K D G K A             (15) 
D C D C A     (16) 
Where in ( 16) is auxiliary relation for [START_REF] Arsene | Modelling and simulation of water systems based on loop equations[END_REF]:

G K G K C     (17) 
Some possible logical circuits according previous equations ( 15) and ( 16) are shown in Fig. 3.

Computation according to these rules is by an algebraic subtraction of the flow correction terms.

The iteration procedure is repeated until the net pressure drop around each loop, is as close to zero as the degree of precision desired demands. The network is then in approximate balance.

Pressure drops in conduits along a path from the node of lowest pressure to the supply source are summed to obtain the total pressure drop in the network. When the gas flow in a conduit is in the same direction as the path taken between two nodes, there is a pressure loss. When the flow is opposite to the direction of the path, there is a pressure gain. Since the network is in approximate balance, the total pressure drop should be computed along several paths and averaged to obtain a better value.

Results and identification of possible problems

Detail calculation (first two iterations -1 st guess, network in Fig. 2) after original Hardy Cross method (shown in subchapter 4.1) is given in Table 4. Corrections are calculated using eq. ( 15).

Calculation after improved Hardy Cross method is not given here in such detailed table, but calculation is done [START_REF] Datta | Flow distribution in parallel and reverse flow manifolds[END_REF] and compared graphically in figs. 4-6 with (11). Set of corrections calculated using eq. ( 12) for first iteration (1 st guess, network in Fig. 2) after modified Cross method (shown in subchapter 4.2) are Δ 1 =-44/325, Δ 2 =-7/93, Δ 3 =-48/577, Δ 4 =135/862, and Δ 5 =103/538. Modified Hardy Cross method has better convergence performance for all contours (approximately 3-5 increased speed of convergence in our case) for both guess -1 st and 2 nd .

Same conclusions can be done for convergence of flow corrections (shown in fig. 5 for contour I and in fig. 6 for contour IV).

Example of symmetric network is good example to solve some misunderstandings (initial and final flow pattern are shown in fig. 7, node consumption in Table 1; 3 rd guess, initial flow in Table 2, and final results in Table 5). This network is selected very carefully because under above-mentioned circumstances, in conduit 6 two-way flow must be expected (Fig. 8) [START_REF] Kaluđerčić | Problem of two-way supplied pipes in a gas network[END_REF]. But in Hardy Cross calculation that kind of flow in conduit is forbidden and cannot be calculated.

Anyway, after the calculation of this network is finished, value of flow in conduit 6 for 3 rd guess is 0 m 3 /s. But real consumers are located between node XI and node VII. That implies that in real network, in conduit 6 some value of flow must be expected (two-way supplied pipes) or some household will be left gasless. In some rare cases, convergence of Hardy Cross method can be spoiled [START_REF] Altman | Convergence of Newton method nonlinear network analysis[END_REF]. Recommendations for these cases is to changed method for calculation, i.e. original Hardy Cross instead of improved Hardy Cross, or opposite, or to applied some of other available methods. Even, if the node consumption is satisfied, in some regimes of exploitation of network, some households can be felt lack of gas. These households are place in the middle of conduits, between the nodes. In two-way supplied conduits this case can be occurred (Fig. 9). Also, in our case of symmetric network, convergence is stabile as for 1 st and 2 nd guess. Under some special cases, modified Hardy Cross method has not always better convergences characteristics in comparisons to original Hardy Cross method.

Conclusions

Approach of Hardy Cross was extremely practical. His view was that engineers lived in a real world with real problems and that it was their job to come up with answers to questions in design even if approximations were involved. Hardy Cross method procedure can give good results when designing a looped gas-pipeline network of composite structure. According to the price and velocity limits, the optimal design can be predicted. This paper addresses to the problem of construction of networks for distribution of natural gas in the cities and with subject to all the practical requirements for the engineers charged with design and/or analysis of such system. This paper is especially addressed to those engineers willing to understand and interpret the results of calculation properly and to make good engineering decision based on this subject. While the spatial natural gas networks with loops are maybe purely hypothetic, this kind of networks, but with some adjustment can find application in calculation of mines ventilation systems. a constant in calculation (network -Fig. 2) b constant in calculation (network -Fig. 7) c Flow into the network is sum of consumptions per nodes a must be chosen to satisfy rule after first Kirchhoff's law for all nodes (exactly) b initial guess means: distribution of flows for first iteration c chosen after eq. ( 1) -(1 st guess, network Fig. 2) d chosen to satisfy only mandatory first Kirchhoff's law for all nodes, but not chosen after eq. ( 1) -(2 nd guess, network Fig. 2) e flow pattern chosen for symmetric node consumption (see Table 1) -(3 rd guess, network Fig. 7) 1.82 and R•Q con 0.82 are not shown explicitly as in iteration 1 b Δ 1 must be added with opposite preceding sign, Δ 2 and Δ 3 must be added with adopted preceding sign (according to rule shown in table 3) c first assumed (initial) guess (flows per all conduits must be chosen to satisfy first Kirchhoff's law for all nodes -sum of pressure drops *** per all loops according to second Kirchhoff's law must be (approximate) zero when the network is in balance (here after 15 iterations) -see a calculation is over when second Kirchhoff's law is approximately satisfied (after n iterations) for all contours (loops) -algebraic sum of pressure drop per conduit is approximately equal zero. Note that final flow is not depend on first assumed gas flow and chosen type of methods, b must be under standard values [START_REF] Manojlović | Optimized design of a gas-distribution pipeline network[END_REF] -The velocity limits are 6 m/s for the pipes of small diameter (up to 0,09 m) and 12 m/s for the pipes of large diameter (up to 0,225 m) (if not must be changed diameter of conduit and must be repeated whole calculation) c symmetric network, Fig. 7 d velocity limit is exceeded in conduit 3 (must be increased diameter of conduit and must be repeated whole calculation) 

a c Q (1) R•Q 1,82 (2) R•Q ,0,82 Flow correction Δ b Q Flow correction Δ b Q 1 2 3 1 2 
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 3 in -inner diameter of conduit (m), π-Ludolph's number (=3.14159), p 2 -pressure at conduit exit (Pa), p 1 -pressure at conduit entrance (Pa), ρ r -relative gas density (-), L-conduit length (m), R-hydraulic resistance, flow resistance (m/m n ) (in electric networks equivalent Ω) n-flow equation exponent (n=1,82 in Renouard equation), m-mark observed iteration, X-number of conduits (pipes, main, manifolds) Y-number of nodes i, j, k-counter Δ-flow correction (m 3 /s) A, K, G, D-Bull's variables (1 or 0)
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 2 Figure 27 is an example of a three-dimensional network because conduit 15 is not connected to
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  Fig 4 d change of flow direction (opposite than in previous iteration -opposite upper sing in Δ 2 and Δ 3 )

  

  

  

  

  : X=15, Y=11). Graph with n nodes has Y-1 independent nodes and X-Y+1 independent loops. Tree is a set of connected branches chosen to connect all nodes, but not to closed any closed path (not to form loop) -in fig.2 e.g. conduits 13, 11, 10, 9, 15, 3, 4, 1, 5, 7 or other combination. Branches, which do not

belong to a tree, are links (number of links are X-Y+1). Number of independent loops in network are formed using tree conduits and one of the links conduit). So, number of loops are determined by number of links. In graph, one node is referent (in Fig.

2

referent node is I) and all others are so called dependent nodes. In example from fig.

2

for 1 st guess referent node is I (3). So first row in matrix is for node 2, second for node 3, etc., and last row is for node Y-1 (i.e. XI).
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 2 First assumed flowsTable3Combinations for choose of final algebraic sign of second rang correction or higher Table4Calculation of spatial natural gas distributive network of conduits with loops after original Hardy Cross method (example from fig.2)-1 st initial guess Table5Final (calculated) flows in the network for both methods

Table 1

 1 

	Constant node outflows			
	Consumption a Asymmetric 1 st and 2 nd guess Node m 3 /h m 3 /s	b Symmetric -3 rd guess Node m 3 /h m 3 /s
	I	60	1/60	I'	60	1/60
	II	2100	7/12	II'	2300	23/36
	III	170	17/360	III'	185	37/720
	IV	90	1/40	IV'	90	1/40
	V	200	1/18	V'	185	37/720
	VI	2500	25/36	VI'	2300	23/36
	VII	300	1/12	VII'	290	29/360
	VIII	170	17/360	VIII'	225	1/16
	IX	850	17/72	IX'	850	17/72
	X	280	7/90	X'	225	1/16
	XI Node m 3 /h 280 c Flow into the network 7/90 XI' m 3 /s Node	290 m 3 /h	29/360 m 3 /s
	I	-7000 -1 17/18 I'	-7000 -1 17/18
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Table 2

 2 

	First assumed flows			
	a First assumed flows per conduit -m 3 /s b initial guess of gas flow rate	
	conduit	c I	d II	conduit	e III
	1	1/18	1/36	1'	7/36
	2	5/72	1/12	2'	1/9
	3	17/30	47/180	3'	47/180
	4	23/36	5/9	4'	5/6
	5	7/90	1/120	5'	61/240
	6	1/72	31/180	6'	13/144
	7	1/120	7/72	7'	19/72
	8	7/180	1/20	8'	29/144
	9	41/360	7/60	9'	1/48
	10	13/360	7/36	10'	1/12
	11	1/18	4/9	11'	61/240
	12	1/12	1/12	12'	1/9
	13	1/36	5/12	13'	7/36
	14	13/18	1 1/9	14'	5/6
	15	7/18	5/72	15'	1/72
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Table 4

 4 Calculation of spatial natural gas distributive network of conduits with loops after original Hardy Cross method (example from fig.2)-1 st initial guess

				Iteration 1
	*	**	D in	L

  ** 29403 *-mark Loop i.e. Contour, **-mark Conduit i.e. Pipe (Main), ***-pressure drop per Loop i.e. Contour (Pa) a calculation of R•Q con

																				3
	I	1 2	0.4064 0.3048	100 100	+1/18 -5/72	114959 -690438	2069265 9942302	+35/123 +35/123		… -6/619±			… …	+251/738 +91/443 d	-15/104 ... -15/104 -4/73=	... ...	+19/97 +5/782
		3	0.1524	100	-17/30	-889949040 1570498307 +35/123		+53/219 ‡	…	-31/773	-15/104 -89/743±	...	-59/194
		4	0.3048	100	+23/36	39193885	61346951	+35/123		…					…	+193/209	-15/104 ...	…	+60/77
					∑ -851330634 1643856824 *** 29178		I		82 , 1 	1643856824 851330634 			123 35	*** 8805		I		295343529 77528086 82 , 1 		104 15
	II	5 6	0.1524 0.3048	100 200	+7/90 -1/72	23969880 -73795	308184165 5313266	+6/619 +6/619		… +1/560 ‡		… …	+37/423 -1/415	+4/73 +4/73	... -27/539±	... ...	+34/239 +1/437 d
		11 12 2	0.1524 0.1524 0.3048	100 100 100	-1/18 -1/12 +5/72	-12993101 -27176838 690438	233875825 326122050 9942302	+6/619 +6/619 +6/619		-43/303  +53/219 ‡ -35/123=	… -114/731  …	-89/441 +2/161 d -91/443 d	+4/73 +4/73 +4/73	-13/392  ... -89/743= -13/392 ‡ +15/104 ‡ ...	-20/111 -3/35 d -5/782
					∑ -15583417 *** 3948	883437609		II			82 , 1 	883437609 15583417 			619 6	*** 10506		II		82 , 1 	1106807745 110372041 			73 4
	III	7 8 9 10 6	0.1524 0.1524 0.3048 0.1524 0.3048	100 100 100 100 200	+1/120 -7/180 +41/360 1698792 411338 -6788773 +13/360 5932191 +1/72 73795	49360570 174568437 14916225 164276062 5313266	-1/560 -1/560 -1/560 -1/560 -1/560		… … -114/731 ‡ -114/731 ‡ -6/619=	... ... ... ... ...	+4/611 -29/713 -31/707 d -9/74 d +1/415	+27/539 ... +27/539 ... +27/539 -13/392  ... ... ... +27/539 -13/392  ... +27/539 -4/73= ...	+29/512 +5/531 d -7/260 -78/745 -1/437 d
					∑ 1327344 *** 1152	408434560		III			408434560 1327344 82 , 1 			560 1	*** 7841		III		82 , 1 	674361136 61479037 			539 27
	IV	3 12 13	0.1524 0.1524 0.1524	100 100 100	+17/30 +1/12 -1/36	889949040 27176838 -3679919	1570498307 -53/219 326122050 -53/219 132477076 -53/219		-35/123= -6/619= …	... +114/731  ...	+31/773 -2/161 d -242/897	+89/743 +15/104  ... +89/743 -4/73± +13/392 ‡ +89/743 ... ...	+59/194 +3/35 d -3/20
		14	0.4064	100	-13/18	-12243919	16953118	-53/219		…					...	-647/671	+89/743 ...	...	-38/45
					∑ 901202040 *** 30020	2046050552		IV		2046050552 901202040 82 , 1 		219 53	*** 15651		IV		82 , 1 	1123546748 244942051 			743 89
	V	15 9 10	0.1524 0.3048 0.1524	200 100 100	+7/18 +41/360 1698792 897059511 +13/360 5932191	2306724456 -114/731 … 14916225 -114/731 -1/560 ‡ 164276062 -114/731 -1/560 ‡			... ... ...	+157/674 -31/707 d -9/74 d	-13/392 ... -13/392 +27/539= ... ... -13/392 +27/539= ...	+177/886 -7/260 -78/745
		11 12	0.1524 0.1524	100 100	-1/18 -1/12	-12993101 -27176838	233875825 326122050	-114/731 +6/619= -114/731 +6/619=		... +53/219 ‡	-89/441 +2/161 d	-13/392 +4/73 = -13/392 +4/73 ±	... -89/743=	-20/111 -3/35 d
					∑ 864520555	3045914618		V			304591461 864520555 82 , 1 		731 114	*** 12786		V		2708713524 163492506 82 , 1 		392 13

*
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Table 5

 5 Final (calculated) flows in the network for both methods 1 st and 2 nd guess 3 rd guess d

	conduit D in (m)	a Final flow m 3 /s	m 3 /h	b Velocity check m/s	c conduit D in (m) m 3 /s a Final flow	m 3 /h	b Velocity check m/s
	1	0.4064	334/979 1228.19	2.63	1'	0.1524 85/421	726.84	11.07
	2 3	0.3048 0.1524	13/129 82/539	362.80 547.68	1.38 8.34	2' 3'	0.1524 1/29 0.1524 81/329	124.14 886.32	1.89 13.50 d
	4	0.3048	551/596 3328.19 12.67	4'	0.3048 639/760	3026.84 11.52
	5	0.1524	130/673 695.39	10.59	5'	0.1524 180/973	665.98	10.14
	6	0.3048	1/71	50.73	0.19	6'	0.3048 0	0	0
	7	0.1524	9/94	344.66	5.25	7'	0.1524 40/383	375.98	5.73
	8	0.1524	18/371	174.66	2.66	8'	0.3048 32/763	150.98	0.57
	9	0.3048	22/687	115.28	0.44	9'	0.3048 32/763	150.98	0.57
	10	0.1524	28/255	395.28	6.02	10' 0.1524 40/383	375.98	5.73
	11	0.1524	106/611 624.55	9.51	11' 0.1524 180/973	665.98	10.14
	12	0.1524	17/235	260.43	3.97	12' 0.1524 1/29	124.14	1.89
	13	0.1524	76/485	564.13	8.59	13' 0.1524 85/421	726.84	11.07
	14	0.4064	223/262 3064.13 6.56	14' 0.3048 639/760	3026.84 11.52
	15	0.1524	7/45	560.05	8.53	15' 0.1524 58/381	548.03	8.35
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for example networks shown in Fig.2

see conduit 3' in Table

Table 3

Combinations for choose of final algebraic sign of second rang correction or higher 

indicates the direction of the conduit flow for particular loop (contour) -a plus sign denotes clockwise flow in the conduit within the loop; a minus sign, counterclockwise b second rang correction is from the second contour to which a conduit belongs, third rang correction is from the third contour to which a conduit belongs, etc. c the upper plus or minus sign shown indicates direction of flown in that conduit in these two contours and is obtained from Q for previous iteration. The upper sign is the same as the sign in front Q if the flow direction in the particular contour under consideration, and opposite if it does not. d the lower sign is copied from the primary contour for this correction (sign from the contour where this correction is first, sign preceding the first iteration from adjacent contour for the conduit taken into consideration) e logical zero is equivalent to sign (-) minus f logical one is equivalent to sign (+) plus