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Since the value of the hydraulic resistance depends on flow rate, problem of flow distribution per pipes in a gas or water distributive looped pipelines has to be solved using iterative procedure. A number of iterative methods for determining of hydraulic solution of pipeline networks, such as, Hardy Cross, Modified Hardy Cross, Node-Loop method, Modified Node method and M.M. Andrijašev method are shown in this paper. Convergence properties are compared and discussed using a simple network with three loops. In a municipal gas pipeline, natural gas can be treated as incompressible fluid. Even under this circumstance, calculation of water pipelines cannot be literary copied and applied for calculation of gas pipelines. Some differences in calculations of networks for distribution of these two fluids, i.e. water apropos natural gas are also noted.

Introduction

A number of iterative methods for determining the hydraulic solution of water and natural gas pipeline networks which take ring-like form, such as, Hardy Cross, Modified Hardy Cross (including Andrijašev method), Node-Loop method and Modified Node method are compared 2 in this paper. All presented methods assume equilibrium among pressure and friction forces in steady and incompressible flow. As a result, they cannot be successfully used in unsteady and compressible flow calculations with large pressure drops where inertia force is important.

Problem of flow in pipes and open conduits was one which had been of considerable interest to engineers for nearly 250 years. Even today, this problem is not solved definitively. The difficulty to solve the turbulent flow problems lies in the fact that the friction factor is a complex function of relative surface roughness and Reynolds number. Precisely, hydraulic resistance depends on flow rate and hence flow problem in hydraulic networks has to be solved iteratively. Similar situation is with electric current when diode is in circuit. With common resistors in electrical circuits where the electric resistances do not depend on the value of electric current in the conduit, problem is linear and no iterative procedure has to be used. So problem of flow through a single tube is already complex. Despite of it, very efficient procedures are available for solution of flow problem in a complex pipeline such as looped pipeline like waterworks or natural gas distribution network is. Most of the shown methods are based on solution of the loop equations while the node equations are used only as control of accuracy. Node-Loop method is also based on solution of the loop equations but the node equations are also used in calculation and not only for control purposes. Node method and here shown Modified Node method is based on solution of the node equations while the loop equations is used for control purposes.

In this paper, speed of convergence of presented methods are compared and discussed. This is done for one simple network with three loops, both, for water and gas distribution networks. Similar example can be done for the air ventilation systems in the buildings or mines. For ventilation problem readers can consult paper of [START_REF] Aynsley | A resistance approach to analysis of natural ventilation airflow networks[END_REF], [START_REF] Mathews | A numerical optimization procedure for complex pipe and duct network design[END_REF], [START_REF] Wang | Computer solution of three-dimensional mine ventilation networks with multiple fans and natural ventilation[END_REF], etc. While the disposal of water or gas distribution system is in single plane with certain elevation of pipes, ventilation network is almost always spatial [START_REF] Brkić | An Improvement of Hardy Cross method applied on looped spatial natural gas distribution networks[END_REF].

Hydraulics frictions and flow rates in pipes

Each pipe is connected to two nodes at its ends. In a pipe network system, pipes are the channels used to convey fluid from one location to another. Pipes are sometimes referred to as tubes or conduits, and as a part of network to as lines, edges, arcs or branches (in the graph theory, special kinds of branches are referred to as trees). The physical characteristics of a pipe include the length, inside diameter, roughness, and minor loss coefficient. When fluid is conveyed through the pipe, hydraulic energy is lost due to the friction between the moving fluid and the stationary pipe surface. This friction loss is a major energy loss in pipe flow [START_REF] Farshad | New developments in surface roughness measurements, characterization, and modeling fluid flow in pipe[END_REF][START_REF] Kumar | Parameter estimation in water distribution networks[END_REF].

Various equations were proposed to determinate the head losses due to friction, including the Darcy-Weisbach, Fanning, Chezy, Manning, Hazen-Williams and Scobey formulas. These equations relate the friction losses to physical characteristics of the pipe and various flow parameters. The Darcy-Weisbach formula for calculating of friction loss is more accurate than the Hazen-Williams. Beside this, the Hazen-Williams relation is only for water flow.

Gas flow rates and pressure drops in pipes

When a gas is forced to flow through pipes it expands to a lower pressure and changes its density. Flow-rate, i.e. pressure drop equations for condition in gas distribution networks assumes a constant density of a fluid within the pipes. This assumption applies only to incompressible, i.e. for liquids flows such as in water distribution systems for municipalities (or any other liquid, like crude oil, etc.). For the small pressure drops in typical gas distribution networks, gas density can be treated as constant, which means that gas can be treated as incompressible fluid [START_REF] Pretorius | A flow network formulation for compressible and incompressible flow[END_REF], but not as liquid flow. Assumption of gas incompressibility means that it is compressed and forced to convey through pipes, but inside the pipeline system pressure drop of already compressed gas is small and hence further changes in gas density can be neglected. Fact is that gas is actually compressed and hence that volume of gas is decreased and then such compressed volume of gas is conveying with constant density through gas distribution pipeline. So, mass of gas is constant, but volume is decreased while gas density is according to this, increased. Operate pressure for distribution gas network is 4·10 5 Pa abs i.e. 3·10 5 Pa gauge and accordingly volume of gas is decreased four times compared to volume of gas at normal conditions. Inner surface of polyethylene pipes which are almost always used in gas distribution networks are practically smooth and hence flow regime in the typical network is hydraulically "smooth" [START_REF] Sukharev | Investigation of the hydraulic resistance in polyethylene pipelines[END_REF]. For this regime is suitable Renouard"s equation adjusted for natural gas flow (1):
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Regarding to Renouard"s formula has to be careful since it does not relate pressure drop but actually difference of the quadratic pressure at the input and the output of pipe. This means that C is not actually pressure drop in spite of the same unit of measurement, i.e. same unit is used for the pressure (Pa). For gas pipeline calculation is very useful fact that when C →0 this consecutive means that also C→0. Parameter C can be noted as pseudo-pressure drop.

Liquid flow in pipes

In Renoard"s equation adjusted for gas pipelines (1) friction factor is rearranged in the way to be expressed using other flow parameters and also using some thermodynamic properties of natural gas. Using formulation for Darcy friction factor in hydraulically smooth region Renouard suggests his equation for liquid flow (2): 
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Renouard"s equation ( 2) is based on power law. Liquid flow is better fit using some kind of logarithmic formula like Colebrook"s (4):
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Colebrook"s equation is suitable especially for flow through steel pipes [START_REF] Colebrook | Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws[END_REF]. Some researchers adopt a modification of the Colebrook equation, using the 2.825 constant instead of 2.51 especially for gas flow calculation (Haaland 1983, Coelho and[START_REF] Coelho | Considerations about equations for steady state flow in natural gas pipelines[END_REF].

In the case of waterworks, pressures will also be expressed in Pa, not in meter (m) equivalents. In that way, clear comparison with gas distribution network can be done.

Pressures expressed in Pa can be very easily recalculated in heads expressed in meters (m) for water networks knowing water density. Example network is located in a single-flat area with no variation in elevation (otherwise the correction term must be used which is significant for water network).

Looped pipeline networks for distribution of fluids

A pipeline network is a collection of elements such as pipes, compressors, pumps, valves, regulators, tanks, and reservoirs interconnected in a specific way. In this article focus is on pipes. The behavior of the network is governed by the specific characteristics of the elements and how the elements are connected together. Our assumption is that pipes are connected in a smooth way, i.e. so called minor hydraulic loses are neglected. Including other elements different than pipes is a subject of sufficient diversity and complexity to merit a separate review.

The analysis of looped pipeline systems by formal algebraic procedures is very difficult if the systems are complex. Electrical models had been used in study of this problem in the time before advanced computer became available as background to support demandable numerical procedures [START_REF] Mah | Pipeline network design and synthesis[END_REF]. Here presented methods use successive corrections or better to say these methods require iterative procedure. The convergence properties of presented methods are the main subject of this article. All of such methods can be divided into two groups (1) Methods based on solution of the loop equations, and (2) Methods based on solution of the node equations.

Most of the methods used commonly in engineering practice belong to the group based on solution of the loop equations. Such method presented in this paper is Hardy Cross method [START_REF] Cross | Analysis of flow in networks of conduits or conductors[END_REF]. Method of Andrijašev is variation of Hardy Cross method (Andrijašev 1964) 1 .

1 There are some difficulties with citation of Russian methods. Both methods, Lobačev and Andrijašev, are actually from 1930"s but original papers from Soviet time are problem to be found. Many books in Russian language explain methods of Lobačev and Andrijašev but in these books reference list is not available.

Contemporary with Hardy Cross, soviet author V.G. Lobačev [START_REF] Latišenkov | Hydraulics. Gosstroizdat[END_REF] developed very similar method compared to original Hardy Cross method. Modified Hardy Cross method proposed [START_REF] Epp | Efficient code for steady flows in networks[END_REF] which considers entire system simultaneously is also sort of loop method. Node-Loop method proposed by [START_REF] Wood | Hydraulic network analysis using linear theory[END_REF] and later improved by [START_REF] Wood | Reliability of algorithms for pipe network analysis[END_REF] is combination of the loop and node oriented methods, but despite of its name is essentially belong to the group of loop methods. Node-Loop method is based on solution of the loop equations while the node equations are also involved in calculation. Only Node method proposed by [START_REF] Shamir | Water distribution systems analysis[END_REF] is real representative of node oriented methods. Node method uses idea of Hardy Cross but to solve node equations instead of loops ones. Improved Node method uses similar idea as [START_REF] Epp | Efficient code for steady flows in networks[END_REF] suggested for the improvement of original Hardy Cross method, but of course here applied to the Node method.

Example network with three loops is shown in the figure 1. Before calculation, maximal consumption for each node including one of more inlet nodes has to be determined. Pipe diameters and node inputs and outputs cannot be changed during the iterative procedure. Goal is to find final flow distribution for this pipeline system (simulation problem). pressure drops or pseudo-pressure drops in the case of node oriented methods. To have a better appreciation of the utility of these representations, first will be considered the laws that govern flow rates and pressure drops in a pipeline network. These are the counterparts to Kirchhoff"s laws for electrical circuits and accordingly for hydraulic networks, namely, (i) the algebraic sum of flows at each node must be zero; and (ii) the algebraic sum of pressure drops for water network (i.e. pseudo-pressure drop for gas network) around any cyclic path (loop) must be approximately zero. For a hydraulic network, fact that both laws are satisfied simultaneously means that calculation for steady state for simulation problem is finished.

Methods based on solution of the loop equations

Loops are sometimes referred also to as contours or paths. Note that contours and loops are not synonyms in the M.M. Andrijašev method.

For the loop oriented methods first Kirchhoff"s law must be satisfied for all nodes in all iterations. Second Kirchhoff"s law for each loop must be satisfied with acceptable tolerance at the end of the calculation. Or, in other words, final flows are these ones which values are not changed between two successive iterations (must be satisfied for flow in each pipe).

In a loop oriented methods, first initial flow pattern must be chosen to satisfied first Kirchhoff"s law. Endless number of flow combinations can satisfy this condition. Someone can conclude that it is crucial to start with good initial guesses. But, how does one obtain good initial guesses? And how sensitive are the methods to the initial guesses? Answer is that initial flow pattern does not have significant influence on convergence properties of observed method. These indicate that the choice of initial flows is not critical and need to be chosen only to satisfied first Kirchhoff"s law for all nodes [START_REF] Gay | The solution of pipe network problems[END_REF]. method are not actually flows Q but correction of flows ΔQ calculated for each loop. These corrections have to be added algebraically to flows from previous iteration for each pipe according to specific rules. A pipe common to two loops receives two corrections. The upper plus or minus sign (shown in tables 1-8) indicates direction of flow in that conduit in these two loops and is obtained from Q for previous iteration. The upper sign is the same as the sign in front of Q if the flow direction in each loop coincides with the assumed flow direction in the particular loop under consideration, and opposite if it does not. The lower sign is copied from the primary loop for this correction (sign from the loop where this correction is first, sign preceding the first iteration from adjacent contour for the conduit taken into consideration). The rules for sign of corrections ΔQ 2 are: (1). the algebraic operation for correction ΔQ 1 should be the opposite of its sign; i.e. add when the sign is minus. (2). the algebraic operation for corrections ΔQ 2 should be the opposite of their lower signs when their upper signs are the same as the sign in front of Q, and as indicated by their lower signs when their upper signs are opposite to the sign in front of Q. For details of sing of corrections consult paper of [START_REF] Brkić | An Improvement of Hardy Cross method applied on looped spatial natural gas distribution networks[END_REF] and article [START_REF] Corfield | Distribution design for increased demand[END_REF] from Gas Engineers Handbook.

Hardy Cross method for the pipeline calculation

Hardy Cross, American engineer, developed method in 1936, later named after him [START_REF] Cross | Analysis of flow in networks of conduits or conductors[END_REF]. Hardy Cross calculation for gas pipeline network is shown in table 1 and for water network in table 2. Only two iterations will be shown in details. Flow Q 1 calculated in first iteration become initial flow Q for second iteration. The plus or minus preceding the flow Q, indicates the direction of the conduit flow for the particular loop (Figure 2). A plus sign denotes clockwise flow in the conduit within the loop; a minus sign, counter-clockwise. A flow correction ΔQ 1 as shown in table 1 and 2 is computed for each loop. This correction must be subtracted algebraically from the assumed gas flow according to specific rules explained previously.

Correction for each loop ΔQ 1 is calculated using first derivative of pressure function C for pipes defined by Renouard"s equation for gas networks (5) and derivative of pressure drop Δp for pipes defined by Darcy-Weisbach for water networks (6) where flow Q is treated as variable:
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Derivative for loops is calculated using assumed loop shown in the figure 2 with no reference to direction. For the loop I this derivative for gas network (7) and for water network (8) can be written: 
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In presented example loop I begins and ends in node II via pipes 3, 4, and 7.

Correction of flow (ΔQ 1 ) for each loop can be calculated (9): 
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Using numerical values from table 2 for the first iteration of calculation of water network matrix equation can be written (11):
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Then set of correction for water network calculation in the first iteration is [ΔQ I , ΔQ II , ΔQ III ] T =[-12306·10 -5 , 9349·10 -5 , 1068·10 -5 ] T which is identical as in table 2.

Modified Hardy Cross method for the pipeline calculation

Modified Hardy Cross method (somewhere called improved) is also known as the simultaneous loop adjustment method. As seen in figure 1, several loops have common pipes, so corrections to these loops will cause energy losses around more than one loop. In figure 1, pipe 4 belongs to two loops (loop I and II), pipe 7 to loop I and III, and finally pipe 5 to II and III. Modified Hardy Cross method is a sort of Newton-Raphson method used to solve unknown flow corrections taking into consideration whole system simultaneously. [START_REF] Epp | Efficient code for steady flows in networks[END_REF] gave idea for this approach. To increase efficiency of Hardy Cross method zeros from non-diagonal term in matrix equation (10) will be replaced to include influence of pipes mutual with adjacent loop (12). 

                                                                                                                          
F F F Q Q Q x Q Q Q Q Q F Q Q F Q Q F Q Q F Q Q Q Q Q F Q Q F Q Q F Q Q F Q Q Q Q F 8 7 6 5 5 7 5 5 4 2 1 4 7 4 7 4 3 , , , , , , , , (12) 
Presented matrix is symmetrical; for example (13):
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13 This is because pipe 7 is mutual for two adjacent loops (loop I and loop III). Non-diagonal terms have always opposite sign than diagonal. Spatial networks common for ventilation systems in buildings or mines are exceptions [START_REF] Brkić | An Improvement of Hardy Cross method applied on looped spatial natural gas distribution networks[END_REF].

Using numerical values from table 2 for the first iteration of calculation of water network matrix equation can be written ( 14):
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First two iterations from our example using the modified Hardy Cross method is shown in table 3 for gas network and in table 4 for water network. Table 3. Calculation after the modified Hardy Cross method for example gas network Table 4. Calculation after the modified Hardy Cross method for example water network

Modified Andrijašev method for the pipeline calculation

Andrijašev method can be used in the formulation as in the original Hardy Cross method and as in Modified Hardy Cross method. Here it will be given in notation as improved method because this approach shows better convergence performance (example for two iteration of gas network calculation is shown in table 5 and for water network in table 6). It can be noted that some pipes in table 1-4 received only one correction per iteration (for example pipe 3 in contour I). This means that pipe 3 belongs only to one loop. In method of M.M. Andrijašev contours can be defined to include few loops. Thus, contours can be defined in other way and then each pipe in the network belongs to two contours (Figure 3). Loop is not synonym with contour in M.M. Andrijašev method as in Hardy Cross approach. Andrijašev"s contour will be marked with special sign ( O ). 3) starting and ending in node I via pipes 4, 5. 6, 8, 3, contour II O (green circuit in figure 3) starting and ending in referent node via pipes 1, 6, 8, 7, 4, 2, and finally contour III O (blue circuit in figure 3) starting and ending in referent node via pipes 1, 5, 7, 3, 2.

Matrix formulation of this method for example gas network can be written as (15):
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Here has to be very careful because non-diagonal terms are not always negative as in modified Hardy Cross method (16): which is used for calculation. Furthermore, calculation of single-flat pipeline networks using M.M. Andrijašev method is equally complex as calculation of spatial, multidimensional network, using Modified Hardy Cross method [START_REF] Brkić | An Improvement of Hardy Cross method applied on looped spatial natural gas distribution networks[END_REF].

                                 

Methods based on solution of the node equations

Nodes are sometimes also referred to as junctions, points or vertices. [START_REF] Shamir | Water distribution systems analysis[END_REF] introduced first node oriented method. For the node oriented methods second Kirchhoff"s law must be satisfied for each loop in all iterations. First Kirchhoff"s law for each node must be satisfied with acceptable tolerance at the end of the calculation. Here will be presented only one method. Improvement of presented method is done according to the same idea as used to improve original Hardy Cross method but here applied to the matrix solution for the node equations.

Node method

Pipe equations in previous text were expressed as Δp=F(Q) for waterworks, or C= 2 2 2 1 p p  =F(Q) for gas networks. These relations can be rewritten in form as Q=f(Δp) for waterworks or Q=f(C) for gas networks. After that, Renouard"s equation (1) can be rearranged (17):
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Similar, can be done for Darcy-Weisbach equation ( 18):
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In Node method, (C) for each pipe in a gas network and (Δp) for each pipe in a water network has to be assumed, not flows. These assumed functions of pressure must be chosen to satisfy second Kirchhoff"s law (Figure 4). First Kirchhoff"s law will be fulfilled with demanded tolerance at the end of calculation. For gas network, correction of C, noted as ΔC must be calculated, and for water network, correction of Δp, here noted as Δ Δp . Same algebraic rules as for loop oriented methods are valid. Correction ΔC or Δ Δp will be calculated using first derivative of Q=f(Δp) for waterworks and Q=f(C) for gas networks, where Δp, i.e. C is treated as variable (19):
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In previous equation x is Δp or C. Example network adjusted for node oriented calculation is shown in figure 4 (red letters for gas network and blue for water network).

Figure 4. Example of pipeline gas network with three loops adjusted for node oriented methods Calculation of the network using non-improved Node method is not shown here.

Modified Node method

Modified Node method is also referred to as the simultaneous node adjustment method. For the improvement of Node method, same idea as for the improvement of the Hardy Cross method is used. One node must be chosen to be omitted from the calculation shown in table 7 and 8, because linear independency among node equations is preserved in that way [START_REF] Mathews | A numerical optimization procedure for complex pipe and duct network design[END_REF]Köhler 1995, Mah and[START_REF] Mah | Pipeline network design and synthesis[END_REF]. More details about graph theory of networks will be explained in further text (section 3.4). Gas network calculation after Modified Node method is shown in table 7:

Table 7. Calculation after Modified Node method for example gas network with three loops Corrections in the table 7 and 8 are calculated using matrix equation ( 20): 
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When non-diagonal terms in the first matrix (21) are equalized with zero, results are equal as for Node method in basic form (19). For the first iteration, numerical values for the matrix equation are extracted from table 6 (21): For the node oriented calculation applied for water networks, pressure function (C) must be replaced with pressure drop (Δp). Further analogy is clear (Table 8).
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Table 8. Calculation after Modified Node method for example water network with three loops

Node-Loop method

Conditionally, Node-Loop method can be sorted in the group of methods based on solution of the loop equations according to the previous discussion, but better solution is to be treated as combination of the loop and node oriented methods as its name unambiguously suggest.

Node-Loop method is also known as the flow adjustment method. [START_REF] Wood | Hydraulic network analysis using linear theory[END_REF] developed the flow adjustment method by coupling the loop equations with the node equations. [START_REF] Wood | Reliability of algorithms for pipe network analysis[END_REF] improved this method. Rather than solve for loop corrections, in this method, conservation of energy around a loop is written directly in the terms of the pipe flow rates. Final result after this method is not flow correction, but even better flow itself.

Pipeline network with three loops and six nodes is used as example in this article. Graph has X branches (pipes) and Y nodes where in our example, X=8 and Y=6. Graph with Y nodes (in our case 6) has Y-1 independent nodes (in our case 5) and X-Y+1 independent loops (in our case 3). Tree is a set of connected branches chosen to connect all nodes, but not to make any closed path (not to form a loop). Branches, which do not belong to a tree, are links (number of links are X-Y+1). Loops in the network are formed using pipes from tree and one more chosen among the link pipes. Number of the loops is determined by number of links. Network from example has six nodes and five independent nodes. One node can be omitted from calculation while no information on the topology in that way will be lost. Rows in the node matrix with all node included are not linearly independent. To obtain linear independence any row of the node matrix has to be omitted. For example, pipe 6 is between node IV and V, and reasonable assumption is that if node IV is output node for flow through pipe 6, then node V must be input node for flow through this pipe. In our example, node VI will be omitted. First Kirchhoff's law for the initial flow pattern shown in figure 2 can be written using set of equations ( 22 
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Node VI will be omitted from the node matrix to assure linear independency of the rows as shown in figure 4 (23):
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First Kirchhoff's law must be fulfilled in all iterations for all nodes. Second Kirchhoff's law for the initial water flow pattern shown in the figure 1 can be written using set of equations ( 24):

III III II II I I F F F F F loop F F F F F loop F F F F loop              8 7 6 5 5 4 2 1 7 4 3 ~ (24)
Second Kirchhoff's law for the initial flow pattern shown in the figure 1 also can be noted in matrix form using loop matrix (25):
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Second Kirchhoff's law must be fulfilled for all loops at the end of calculation with demanded accuracy (i.e. F I →0, F II →0 and F III →0).

In Node-Loop method these two matrices become one with some modifications. The nodes and the loops equations shown in previous text here will be united in one coherent system by coupling these two set of equations. To introduce matrix calculation, the node-loop matrix

[NL], matrix of calculated flow in observed iteration [Q], and [V] matrix will be defined (26):
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Sign minus preceding some of the flows Q in matrix [V] means that this particular Q is not consumption (sing minus represent inlet of fluid). Node-Loop matrix [NL] can be defined using node matrix, loop matrix and first derivative of Renouard"s function for gas pipes or of Darcy-Weisbach for water networks, as follows ( 27):
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Further, vector [Q] of the unknown flows can be calculated in the first iteration (28). Here will be used values from table 1 for gas network (29) and from table 2 for water network 
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For gas network last three rows are calculated as follows using values from table 1, Excellent book for waterworks calculation by [START_REF] Boulos | Comprehensive water distribution systems analysis handbook for engineers and planners[END_REF] can be recommended for further reading. In this book, authors instead to omit one node in the node matrix to preserve linear independency of rows in this matrix introduce one pseudo-loop in loop matrix. This procedure is not practical because at least two nodes with equal pressure must be found in the network. This is not always possible. Further in that way the node-loop matrix has two additional rows which could be avoided. [START_REF] Mathews | A numerical optimization procedure for complex pipe and duct network design[END_REF] in his discussion use simplest way, i.e. they omit one row.

Comparison of solution techniques for looped piping networks

Final flows are unique after all presented methods, and will be listed in table 9, both for water and for gas network. Table 9. Final flows for network presented in this paper Each method has advantages and shortcomings. Convergence performances will be compared for all presented methods in figure 5. Note that Modified Node method cannot be compared literary because initial values cannot be equalized. In all other methods initial patterns are given in the form of flows and equalized, while in Node method initial pattern is in the form of pressures (better to say function of pressure). Best way to compare water and gas distribution network is to compare velocity of gas and water through pipes. For water, this can be done using (31):

    2 4 in w D Q v (31)
Velocity of gaseous fluids depends on the pressure in pipe since they are compressible (32):

      2 4 in n n g D p Q p v (32)
Velocities for water and gas for calculated flows through the pipes in our example is listed in table 10:

Table 10: Velocities for water and gas for calculated flows from example network

Conclusion

Comparison between analyzed methods was carried out, taking as a criterion the number of iteration to achieve final results. Modified Hardy Cross method, Modified M.M. Andrijahshev method and Node-Loop method have equal performances according to above adopted criterion.

For more complex networks, using Node-Loop method, number of required iterations is smaller even compared with Modified Hardy Cross method. Among these three methods, Node-Loop method is superior because it does not require complex numerical scheme for algebraic addition of corrections in each of iterations. In Node-Loop method, final results of each of the iterations are flows directly and not correction of flows. Modified Andrijašev method is more complex compared with Modified Hardy Cross method but without any improvement in the properties of the convergence. Node method has the worst performance of convergence, but this method is different in its approach compared with all other methods shown in this paper. Node method cannot be rejected easily based only on calculation shown in this paper. Hardy Cross method in original form has historical value and should be replaced with Modified Hardy Cross method, or even better with Node-Loop method.

Node-Loop method, presented among others in the text, is powerful numerical procedure for calculation of flows in looped fluid distribution networks. Main advantage is that flow in each pipe can be calculated directly, which is not possible after other available methods. In other methods, results of calculation are flow corrections which have to be added to flows calculated in previous iteration using complex algebraic rules. Node-Loop method is recommended to be used.

In the real network, consumers are not concentrated in the nodes. This can cause two-way flow in some pipes [START_REF] Brkić | An Improvement of Hardy Cross method applied on looped spatial natural gas distribution networks[END_REF]. This can cause disturbance in convergence properties of certain method. In such case, method should be changed. Some details on convergence properties can be found in the paper of [START_REF] Mah | Pipeline network calculations using sparse computation techniques[END_REF], [START_REF] Mah | Comparison of modified Newton"s methods[END_REF] and [START_REF] Altman | Convergence of Newton method nonlinear network analysis[END_REF].

Simulation problem today can be solved using different software [START_REF] Huddleston | Water distribution network analysis using Excel[END_REF][START_REF] Lopes | Implementation of the Hardy-Cross method for the solution of piping networks[END_REF]) in which can be implemented shown methods. Method for solution of pipe equations proposed by [START_REF] Hamam | Hybrid method for the solution of piping networks[END_REF] for gas networks and [START_REF] Todini | A gradient method for the analysis of pipe networks[END_REF] for water networks is available, but not shown here. 

Acknowledgements

pp  F'=   CQ Q   c ΔQ 1 = ' F F d ΔQ 2 e Q 1 =Q b C= 22 12 pp  F'=   CQ Q   c ΔQ 1 =
pp  F'=   CQ Q   c ΔQ 1 d ΔQ 2 e Q 1 =Q b C= 22 12 pp  F'=   CQ Q   c ΔQ 1 d ΔQ 2 Q 2 =Q I -19444·10 -5 -1264933339 11839776055 +15114·10 -5 - -4331·10 -5 -82226369 3455539181 +2078·10 -5 - -2253·10 -5 +2778·10 -5 +20357137 1333799622 +15114·10 -5 +7937·10 -5  +25828·10 -5 +1178151884 8301891430 +2078·10 -5 -5572·10 -5 = +22263·10 -5 -30556·10 -5 -2399620963 14293015047 +15114·10 -5 -4288·10 -5  -19730·10 -5 -1082435403 9985057887 +2078·10 -5 -4154·10 -5 ‡ -17620·10 -5 Σ F I =-3644197166 27466590725 F I =+13490112 21742488499 II +27778·10 -5 +1344982710 8812326713 -7937·10 -5 - +19841·10 -5 +729037716 6687432899 +5643·10 -5 - +25484·10 -5 -27778·10 -5 -200615476 1314432601 -7937·10 -5 - -35715·10 -5 -316967670 1615251716 +5643·10 -5 - -30072·10 -5 -2778·10 -5 -20357137 1333799622 -7937·10 -5 -15114·10 -5  -25828·10 -5
-1178151884 8301891430

+5643·10 -5 +1128·10 -5  -22263·10 -5 +2778·10 -5 +1828426 119798452 -7937·10 -5 -4288·10 -5 = -9447·10 -5f -16966070 326858346.3 +5643·10 -5 -4154·10 -5 ‡ -3772·10 -5 Σ F II =+1125838522 11580357388 F II =-783047908 16931434392 III -2778·10 -5 -1828425 119798452 +4288·10 -5 +7937·10 -5 ‡ +9447·10 -5f +16966070 326858346.3 -32·10 -5 -5572·10 -5 = +3772·10 -5 +2778·10 -5 +65604940 4298435730 +4288·10 -5 - +7066·10 -5 +358812846 9242405949 -32·10 -5 - +7034·10 -5 +30556·10 -5
+2399620963 14293015047 +4288·10 -5 -15114·10 -5 = +19730·10 -5 +1082435403 9985057887 -32·10 -5 +1128·10 -5 = +17620·10 -5 -16667·10 -5 -2096864105 22897756035 +4288·10 -5 --12379·10 -5 -1220331619 17942054130 -32·10 -5 --12411·10 -5 Σ F III =+366533372 41609005264 F III =+237882701 37496376312 Pipe lengths and diameters are shown in figure 1 and initial flow pattern a in figure 2; 3 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) b this is F calculated using (1), c using ( 12) where (Δp) is replaced with (C), d ΔQ 2 is ΔQ 1 from adjacent loop, e final calculated flow in the first iteration is used for the calculation in the second iteration, f opposite flow direction than in previous iteration 

Q b Δp=p 1 -p 2 F'=   pQ Q   c ΔQ 1 d ΔQ 2 e Q 1 =Q b Δp=p 1 -p 2 F'=   pQ Q   c ΔQ 1 d ΔQ 2 Q 2 =Q I 3 -19444·10 -5 -5279095 54299272 +14195·10 -5 - -5250·10 -5 -416024 +2505·10 -5 - -2744·10 -5 4 +2778·10 -5 +69146 4978573 +14195·10 -5 +8006·10 -5  +24978·10 -5 +4800902 +2505·10 -5 -5312·10 -5 = +22172·10 -5 7 -30556·10 -5 -10718549 70157780 +14195·10 -5 -4053·10 -5  -20413·10 -5 -4840373 +2505·10 -5 -107·10 -5  -18015·10 -5 Σ F I =-15928498 129435625 F I =-455494 II 1 +27778·10 -5 +5919850 42622924 -8006·10 -5 - +19772·10 -5 +3030676 +5312·10 -5 - +25084·10 -5 2 -27778·10 -5 -816585 5879413 -8006·10 -5 - -35784·10 -5 -1342790 +5312·10 -5 - -30472·10 -5 4 -2778·10 -5 -69146 4978573 -8006·10 -5 -14195·10 -5  -24978·10 -5 -4800902 +5312·10 -5 -2505·10 -5  -22172·10 -5 5 +2778·10 -5 +5967 429677 -8006·10 -5 -4053·10 -5 = -9281·10 -5 -57430 +5312·10 -5 -107·10 -5  -4076·10 -5 Σ F II =+5040086 53910587 F II =-3170446 III 5 -2778·10 -5 -5967 429677 +4053·10 -5 +8006·10 -5 ‡ +9281·10 -5 +57430 +107·10 -5 -5312·10 -5 = +4076·10 -5 6 +2778·10 -5 +232186 16717415 +4053·10 -5 - +6830·10 -5 +1312311 +107·10 -5 - +6937·10 -5 7 +30556·10 -5 +10718549 70157780 +4053·10 -5 -14195·10 -5 = +20413·10 -5 +4840373 +107·10 -5 -2505·10 -5 = +18015·10 -5 8 -16667·10 -5 -8874257 106491089 +4053·10 -5 - -12614·10 -5 -5136681 +107·10 -5 - -12507·10 -5 Σ F III =+2070510
193795963 F III =+1073434 Pipe lengths and diameters are shown in figure 1 and initial flow pattern a in figure 2; 3 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) b this is F calculated using (3), c using (12), d ΔQ 2 is ΔQ 1 from adjacent loop, e final calculated flow in the first iteration is used for the calculation in the second iteration, f opposite flow direction than in previous iteration 17), b F'=|∂Q(C)/∂C|, c ΔC 1 after eq. ( 20), d ΔC 2 is ΔC 1 from adjacent node, e final calculated pressure function in the first iteration is used for the calculation in the second iteration, f opposite flow direction than in previous iteration 2409·10 -10 -10320·10 -5 654·10 -10 Pipe lengths and diameters are shown in figure 1; see figure 4 for initial pattern (blue letters); 9 iterations are enough to achieve results shown in table 9 (this is for Σf→0) a using (18); to calculate friction factor λ, Reynolds number has to be calculated and for this velocity have to be chosen (this velocity does not have effect on final results, here is chosen extremely large velocity 100 m/s), b F'=|∂Q(Δp)/∂Δp|, c Δ Δp1 after eq. ( 20), d Δ Δp2 is Δ Δp1 from adjacent node, e final calculated pressure function in the first iteration is used for the calculation in the second iteration, f opposite flow direction than in previous iteration 

pp  F'=   CQ Q   1 co Q  2 do Q  e Q 1 =Q b C= 22 12 pp  F'=   CQ Q   1 co Q  2 do

  [START_REF] Ekinci | An optimization strategy for water distribution networks[END_REF]) can be found very easily using Darcy-Weisbach equation (3):
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 1 Figure 1. Example of pipeline network
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 2 Figure 2. Example network initial parameters prepared for loop oriented calculation
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 3 Figure 3. Contours for method of M.M. Andrijašev calculation

  in a front of flow Q in the matrix [Q] means that calculated flow direction is opposite compared to shown one in the previous iteration (or in the figure 1 in our case for the first calculated values of flows compared with initials flow pattern). If all values of pressure drops sums calculated after (24) are not approximate zero with reasonable accuracy, calculation has to be repeated using values calculated in previous iteration. At the end of calculation calculated set of flows [Q] stays unchanged.

( 30 )

 30 as example. These values are valid for the first iteration. First five rows (first matrix) are from node equation, and next three is from loop equation but multiplied with first derivate marked in tables as F":

  027·119798452+0.027·4298435730+0.305·14293015047+(-0.166·22897756035)) After first iteration for gas network vector of flows is [0.198409265, 0.357146291, 0.043307855, 0.25828288, -0.094469817, 0.07065686, 0.197298048, 0.123787585] T . Minus in front of flow in pipe 5 means: change assumed flow direction from previous iteration. After first iteration for water network vector of flows is [0.197719798, 0.357835758, 0.052496097, 0.249784106, -0.092806697, 0.068304272, 0.204133702, 0.126140172] T . Flows are expressed in m 3 /s.
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 5 Figure 5. Comparisons of convergence for presented methods (gas network)
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 1 

. Hardy Cross calculation for example gas network Table

2

. Hardy Cross calculation for example water network In the original Hardy Cross method, each loop correction is determined independently of other loops. Original Hardy Cross method is a sort of Newton-Raphson method but used to solve each single loop equation solely, one by one. Hence, Hardy Cross method is also known as the single contour adjustment method. In matrix form, original Hardy Cross method for the example network for water distribution from figure 1 can be noted as (10):

Table 5 .

 5 Calculation after Modified M.M. Andrijašev method for example gas network

	4 4048956589	3 2586239214	3 1171997760		Q	o	-	3277663792
								I
	3 2586239214	8 5294976574	-	4166255733	x	Q	o	1492371894	(16)
								II
	3 1171997760	-	4166255733	8 3637934886		Q	o	-	2518358643
							III
	For example term in first row and second column from (16) is
	25862392143=4298435730+22897756035-1333799622 according to table 5. Same value has
	term in second row, first column, etc. Presented matrix is symmetrical. Similar can be done
	for water network (table 6).						

Table 6 .

 6 Calculation after Modified M.M. Andrijašev method for example water network M.M. Andrijašev method does not improve convergence properties compared with Modified Hardy Cross method. It only complicates calculation of non-diagonal terms in the matrix

Table 1 .

 1 The Hardy Cross calculation for example gas network

	Iteration 1

Table 3 .

 3 Calculation after the modified Hardy Cross method for example gas network

	Iteration 1

table 3 DB Click here to download table: Table 3 DB.docTable 4 .

 34 Calculation after the modified Hardy Cross method for example water network

	Iteration 1

table 4 DB Click here to download table: Table 4 DB.docTable 5 .

 45 Calculation after Modified M.M. Andrijašev method for example gas network

	Iteration 1

Table 7 .

 7 Calculation after Modified Node method for example gas network with three loops Pipe lengths and diameters are shown in figure1; see figure4for initial pattern (red letters); 26 iterations are enough to achieve results shown in table 9 (this is for Σf→0)

	Iteration 1

a using (

table 7 DB Click here to download table: Table 7 DB.docTable 8 .

 78 Calculation after Modified Node method for example water network with three loops

table 8 DB Click here to download table: Table 8 DB.docTable 9 .

 89 Final flows for network presented in this paper .73 94.86 802.87 -146.23 a 248.50 643.36 451.50 Gas 913.72 1086.28 82.01 804.27 -137.86 a 251.58 633.60 448.42 a sing minus means flow direction opposite than first assumed in figure 2

	Flows (m 3 /h)							
	Pipe	1	2	3	4	5	6	7	8
	Water	902.27 1097						

table 9 DB Click here to download table: Table 9 DB.doc

 9 

Table 10 :

 10 Velocities for water and gas for calculated flows from example network

	Velocity (m/s)							
	Pipe	1	2	3	4	5	6	7	8
	Water	21.0	15.4	2.2	18.6	-1.7 a	9.4	14.9	13.2
	Gas	5.3	3.8	0.5	4.7	-0.4 a	2.4	3.7	3.3
	a sing minus means flow direction opposite than first assumed in figure 2		

table 10 DB Click here to download table: Table 10 DB.doc

  

-10 -11 -11 -11 -11 -10 -11

List of tables:

Table 1. Hardy Cross calculation for example gas network Table 2. Hardy Cross calculation for example water network Table 3. Calculation after the modified Hardy Cross method for example gas network Table 4. Calculation after the modified Hardy Cross method for example water network Table 5. Calculation after Modified M.M. Andrijašev method for example gas network Table 6. Calculation after Modified M.M. Andrijašev method for example water network Table 7. Calculation after Modified Node method for example gas network with three loops Table 8. Calculation after Modified Node method for example water network with three loops

-1264933339 11839776055 +13268·10 -5 --6177·10 -5 -156904917 -1128·10 -5 --7305·10 -5 4 +2778·10 -5 +20357137 1333799622 +13268·10 -5 +9722·10 -5  +25767·10 -5 +1173109335 -1128·10 -5 -5572·10 -5 = +19067·10 -5

+2399620963 14293015047 -881·10 -5 -13268·10 -5 = +16407·10 -5 +773797561 +4154·10 -5 +1128·10 -5  +21689·10 -5 8 -16667·10 -5 -2096864105 22897756035 -881·10 -5 --17548·10 -5 -2302927589 +4154·10 -5 --13394·10 -5 Σ F III =+366533372 41609005264 F III =-1488793175 Pipe lengths and diameters are shown in figure 1 and initial flow pattern a in figure 2; 6 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) b this is F calculated using (1), c also using (9), d ΔQ 2 is ΔQ 1 from adjacent loop, e final calculated flow in the first iteration is used for the calculation in the second iteration, f opposite flow direction than in previous iteration 

193795963 F III =-6463424 164880214 Pipe lengths and diameters are shown in figure 1 and initial flow pattern a in figure 2; 6 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) b this is F calculated using (3), c also using ( 9) or (10), d ΔQ 2 is ΔQ 1 from adjacent loop, e final calculated flow in the first iteration is used for the calculation in the second iteration, f opposite flow direction than in previous iteration 

-316967670 +3876·10 -5 +1767·10 -5 = -30072·10 -5 Σ F°=-2518358644 36379348868 F°=-769557797 Pipe lengths and diameters are shown in figure 1, initial flow pattern in figure 3 and numerical values for initial flows a in figure 2; 3 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) b this is F calculated using (1), c using (15),

adjacent contour, e final calculated flow in the first iteration is used for the calculation in the second iteration, f opposite flow direction than in previous iteration -1342790 +3855·10 -5 +1457·10 -5 = -30472·10 -5 Σ F°=-10888413 173389067 F°=-3625941 Pipe lengths and diameters are shown in figure 1, initial flow pattern in figure 3 and numerical values for initial flows a in figure 2; 3 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) b this is F calculated using (3), c using (15),