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Because of Moody's chart as demonstrated applicability of the Colebrook equation over a very wide range of Reynolds number and relative roughness values, this equation become the accepted standard of accuracy for calculated hydraulic friction factor. Colebrook equation suffers from being implicit in unknown friction factor and thus requires an iterative solution where convergence to 0.01% typically requires less than 7 iterations. Implicit Colebrook equation cannot be rearranged to derive friction factor directly in one step. Iterative calculus can causes problem in simulation of flow in a pipe system in which it may be necessary to evaluate friction factor hundreds or thousands of times. This is main reason for attempting to develop a relationship that is a reasonable approximation for the Colebrook equation but which is explicit in friction factor. Review of existing explicit approximation of the implicit Colebrook equation with estimated accuracy is shown in this paper. Estimated accuracy compared with iterative solution of implicit Colebrook equation is shown for entire range of turbulence where Moody diagram should be used as the reference. Finally, it can be concluded that most of available approximations of the Colebrook equation, with few exceptions, are very accurate with deviation of no more than few percentages.

Because of Moody's chart as demonstrated applicability of the Colebrook equation over a very wide range of Reynolds number and relative roughness values, this equation become the accepted standard of accuracy for calculated hydraulic friction factor. Colebrook equation suffers from being implicit in unknown friction factor and thus requires an iterative solution where convergence to 0.01% typically requires less than 7 iterations. Implicit Colebrook equation cannot be rearranged to derive friction factor directly in one step. Iterative calculus can causes problem in simulation of flow in a pipe system in which it may be necessary to evaluate friction factor hundreds or thousands of times. This is main reason for attempting to develop a relationship that is a reasonable approximation for the Colebrook equation but which is explicit in friction factor. Review of existing explicit approximation of the implicit Colebrook equation with estimated accuracy is shown in this paper. Estimated accuracy compared with iterative solution of implicit Colebrook equation is shown for entire range of turbulence where Moody diagram should be used as the reference. Finally, it can be concluded that most of available approximations of the Colebrook equation, with few exceptions, are very accurate with deviation of no more than few percentages.
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Reviewer 1:

1. I hope that my expression of English is now better. 1. Abstract was rearranged now as you suggested (last two sentences). Please, see also Research highlights. My text has now graphical abstract also….

2. I disagree with your suggestion to reduce number of approximation shown in my review. Honestly, I have considered your suggestion seriously, but in the meantime I have found new approximations such as Papaevangelou et al (2010) and Vatankhah andKouchakzadeh (2008, 2009). They are very accurate. Therefore, I have added these two approximations... 3. I agree with you that problem of range of applicability of certain approximation is very important. This problem is very complex. So to avoid any further speculations I have added diagram of accuracy of each approximation over the entire practical range of Reynolds number and relative roughness. According to these diagrams, one can choose will he/she use in certain case this particular approximation or not.

4. Detailed discussion with results is now presented in more appropriate way. 5. Conclusion is now rearranged after your suggestions.

Introduction 1

Difficulty of solving turbulent flow problems in pipes lies in the fact that hydraulic friction factor 2 is a complex function of relative surface roughness and Reynolds number. Precisely, hydraulic 3 resistance depends on flow rate. Similar situation is with electrical resistance when diode is in a 4 circuit. Furthermore, being more complex, widely used empirical Colebrook equation is 5 transcendental which means that it cannot be solved by using only elementary functions and 6 basic arithmetic operations in definitive form. Problem is that, since the Colebrook equation is 7 implicit (i.e. both the right and left-hand terms contain friction factor), containing the unknown 8 friction factor in implicit form, the Reynolds number and the pipe roughness, it has to be solved In laminar flow, all pipes behave as smooth but Colebrook equation is not valid for this regime.

9

One of the presented approximations in this paper includes laminar regime (Churchill 1977). 

                 
(1)
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The development of approximate equations for the calculation of friction factor in rough pipes 

6                                 D log 2 14 . 1 D 2 log 2 74 . 1 D 71 . 3 log 2 1 10 10 10
(2)

7
Greek ε is the equivalent Nikuradse"s sand-grain roughness value for the inner surface of pipe (or 8 so called uniform roughness). Prandtl"s and von Karman"s relations are also known as NPK 

17                  D 71 . 3 Re 51 . 2 log 2 1 10 (3) 18
Colebrook equation also can be noted as (3a): 4) recommended by the 18 American Gas Association (AGA) in case of natural gas pipelines calculations, using 2.825 19 constant instead of 2.51 (Haaland 1983, Coelho andPinho 2007). This procedure produces 20 maximal deviation up to 3.2% (Figure 3). Keady 1998, More 2006, Nandakumar 2007, Sonnad and Goudar 2004, 2005, 2006, 2007).
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Approximations proposed by Brkić (2011a) were also developed using Lambert W-function and 17 its solution proposed by Barry et al (2000). Further about Lambert-W function, readers can see in How well Colebrook equation fits the experimental data is beyond the scope of presented 1 approximations. Perhaps one of these equations even fits the available data better than the 2 Colebrook equation. Until the comparison is made with real, measured values, however, this will 3 not be known. According to Cipra (1996), some of the key formulas of turbulence are off by as 4 much as 65%. Yoo andSingh (2004, 2010) found that the Colebrook equation produced an 5 average error of more than 11% while the roughness height of commercial pipes varied quite 6 significantly, depending on the pipe size and type. 6). Its accuracy is not improved compared with Moody approximation.
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9 V 44 . 0 225 . 0 Re D 88 D 53 . 0 D 094 . 0                               (6) 10
Where V is (7):

11 134 . 0 D 62 . 1 V          (7)
12 Estimated error of Wood approximation is up to 23.79% compared with implicit Colebrook 13 equation (Figure 5). 

Eck approximation 19

Approximation proposed by Eck (1973) is most simple but not very accurate (8), but better than 20 those by Moody (1947) andWood (1966). 6). (1976) andJain (1976). It is first approximation with improved accuracy (9): proposed by Churchill (1973) and Swamee and Jain (1976): (including unstable zone between them) with error up to 2.19% (12):
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13   12 1 5 . 1 2 1 12 C C 1 Re 8 8                    (12) 14
Where C 1 is (13):

15 16 9 . 0 1 D 27 . 0 Re 7 1 ln 457 . 2 C                          (13) 16
And C 2 is (14): First, really accurate approximation (15) was developed by Chen (1979). 1980) is relative simple but not very accurate ( 16):
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18                            5 . 6 D Re 135 . 0 Re log 8 . 1 1 10 (16)
12 Estimated error of Round approximation is up to 10.92% compared with implicit Colebrook 1 equation (Figure 9). 18) is less accurate than ( 19), since the 2 first one is based on two internal iterations while the second one uses three internal iterations.
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3 Estimated error of more complex but also more accurate approximation by Zigrang and Sylvester 4 (1982) is up to 0.13% compared with implicit Colebrook equation (Figure 11). For simpler form 5 of Zigrang and Sylvester approximation error is up to 1% (Figure 11). 
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Where S 1 is (23):

15             Re 12 D 7 . 3 log 2 S 10 1 (23) 16
Where S 2 is (24): 17 1 Cronologically, after approximation by Serghides (1984) are approximations proposed by Chen (1984,1985). But these approximations are similar with Altshul, Russian power-law equation from Soviet practice and therefore they will be presented with this equation later in the text. Note also that author of Chen approximation from 1979 is Chen N.H. (Chen 1979), while the author of Chen approximations from 1984 is Chen J.J.J. (Chen 1984).

             Re S 51 . 2 D 7 . 3 log 2 S 1 10 2 (24) 1 Where S 3 is (25): 2              Re S 51 . 2 D 7 . 3 log 2 S 2 10 3 (25) 3
Form of approximation by Serghides (1984) ( 21) is more accurate than ( 22), since the first one is 4 based on three internal steps while the second one use two internal steps. More complex version 5 is with accuracy up to 0.13% while less complex one is up to 0.35% (Figure 14). is up to 0.13% compared with implicit Colebrook equation (Figure 16). 2006) as (29a, 29b), to increase its accuracy with error up to 0.15% (Figure 18). These 5 two improved equations here will be noted as approximations by Vatankhah and Kouchakzadeh 6 (2008,2009). 
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                   (31)
1 Φ(Re) can be neglected in most cases. Some additional details can be seen in paper of Rao and 2 Kumar (2009). Estimated error of Rao and Kumar approximation is up to 82% compared with 3 implicit Colebrook equation (Figure 19). 
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Where B is (33): Colebrook equation (Figure 20). 
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Estimated error of approximation by Avci and Karagoz ( 2009) is up to 4.7% compared with 8 implicit Colebrook equation (Figure 21). 
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Where β is (39):

8                 Re 1 . 1 1 ln Re 1 . 1 ln 816 . 1
Re ln (39) 9 Estimated error of Brkić approximation is up to 2.3% compared with implicit Colebrook 10 equation (Figure 23). Additionally (Barry et al. 2000), error can be reduced using (39a) or (39b): There is no special explanation for different coefficients in some equations (e.g. 3.7065 or 3.707 11 instead of 3.71 etc). Only reasonable explanation can be that this changed coefficients maybe [4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23]. This comparative study is based on some particular conditions of test grid 17 points which means that presented relative error could be different using different check points.
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But here presented analysis with 592 and 740 check points give good general picture of accuracy 19 for the presented approximations. Relative error is not distributed systematically over the entire 20 range of Reynolds number and relative roughness which means that real maximal relative error 21 can be slightly above here reported. MS Excel file is available as electronic appendix2 to this 1 paper and in this file any other values for Reynolds number and for relative roughness can be 2 used as input parameters. Modern software, especially in the case of spreadsheets, can be 3 conveniently programmed to solve any implicit equation, with a minimum of programming and 4 details. Some of MS Excel effectiveness for numerical computations comes from a module 5 "Solver". It was originally designed for optimization problems, where one has to find values of a 6 number of different parameters such that some quantity is minimized, usually the sum of errors 7 of a number of equations. With this tool one can find such optimal solutions, or solutions of one 8 or many equations, even if they are nonlinear. In more details, to allow iterative computations in 9 MS Excel 2007, one has to choose "Excel options", and then in "Formulas" to tick box "Enable 10 iterative calculation". In this case, Excel is set to terminate the calculation after maximum 3·10 4 11 iterations or 1·10 -7 difference or less between the values of two successive iterations.

12 Consequently, deviations involving explicit equations have been reported to 1·10 -5 %. This means 13 that real relative error is presented by sum of calculated relative error and deviation. So deviation 14 in "Excel options" has to be set to be significantly smaller compared to estimated error of 15 observed approximations ("Maximum Change" in "Formulas"). 25). Approximations proposed by Moody (1947), Wood (1966), Eck 3 (1973) and Round (1980) should not be used because they produce significant relative error 4 (Figure 26). Moderate accurate approximations such as proposed by Jain (1976), Swamee and 5 Jain (1976( ), Churchill (1973( , 1977)), Manadilli (1997), Brkić (2011a) and Avzi and Karagoz 6 (2009), can be used since they made maximal relative error up to 5% (Figure 27). any desired degree of precision. For many applications, the simpler but less accurate explicit 8 equation will be sufficed. Sometime, simplicity is sacrificed for excessive accuracy. To find 9 balance between these two extremes it is appropriate to introduce concept of complexity or 10 complexity index of explicit approximations. Zigrang and Sylvester (1985) defined complexity 11 as the number of algebraic notation calculator key strokes required to solve the equation for 12Re=10 5 and ε/D=0.001 (Table 2). Complexity index is defined as quotient of key strokes 13 required for an observed approximation and the least complex one (Table 2). 

5 4 1 Re 68 D 11 . 0            (41) 6 4 1 Re 100 D 46 . 1 1 . 0             (42) 7 8
Altshul formula was eliminated from the last wording of the Russian norms. However, it is used 9 as before since other recommendations were not proposed (Sukharev et al 2005). Readers also can see paper by Chen (1985). In general, approximations by Moody (1947) and by 3 Wood (1966) also belong to power-law formulas. 
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Conclusion 6

Maybe, it is difficult for many to recall for the time as recently as the 1970"s where there were no 7 personal computers or even calculators that could do much more than add or subtract. In that 8 environment an implicit relationship such as Colebrook (1939), which was well-known then, was 9 impractical and some simplification was essential. Today, it is not difficult to solve single 10 Colebrook equation by iteration. But solution of complex looped pipeline problem in such case 11 requires double iterative procedure where first is for the standard implicit Colebrook equation 12 while second one is for Hardy Cross method or similar iterative method used to solve simulation 13 problem in a looped pipe network (Brkić 2009b(Brkić , 2011b)). This double procedure can be serious 14 burden even for today very powerful computers. has to be chosen and finally box "Enable iterative calculation" have to be ticked. This allows 1 implementation of so called "Circular references" into a calculation. -Implicit Colebrook equation cannot be rearranged to derive friction factor directly.

-Colebrook equation has to be solved iteratively or using approximations.

-Iterative calculus can cause problem in simulation of flow in a pipe system.

-Error of almost all explicit approximations of the Colebrook relation is up to 3%.

-An explicit approximation of the Colebrook relation can be very complex but also it can be easily implemented in a computer code. .33 a number of estimated algebraic notation calculator key strokes required to solve the approximation, i.e. to find value of friction factor λ (estimated, i.e. average number of strokes) b Complexity index is defined as quotient of key strokes required for an observed approximation and the least complex one; here Eck (8) c the least complex approximation presented here 

9

  iteratively. Even today in the era of advance computer technology, explicit approximations of the 10 implicit Colebrook relation is very often used for calculation of friction factor in pipes. The 11 reason that so many researchers propose approximate solutions to Colebrook equation is that 12 these correlations are necessary to calculate the pressure drop and average velocity in conduits in 13 one step. Friction factor can be derived using logarithmic or power law formulation (Zagarola et 14 al 1997). Colebrook equation belongs to the logarithmic law. The laws of resistances to fluid 15 flow through rough pipe are of great significance. Colebrook equation is valid for turbulent 16 regime in rough pipes including so called rough and smooth turbulent regime with special accent 17 on transient regime between them. There is no perfectly smooth inner surface of pipe. All pipe 18 walls have physically rough surfaces (Figure 1). Degree of roughness varies depending on the 19 manufacturing process, surface finish, type of pipe material (Hammad 1999), age, conditions of 20 exploitation, etc. In turbulent flow, thin layer of fluid very close to inner pipe surface in which 21 flow is laminar is called "laminar sub-layer". If the pipe roughness (protrusions of inner pipe 22 surface) is completely covered by the sub-layer, the surface is smooth from the hydraulic point of 3 view. With increasing of Reynolds number, thickness of laminar sub-layer decreases baring 1 protrusions and fluid flow through pipe become consequently rough from the hydraulic point of 2 view. At very low Reynolds number, relative roughness does not have influence on friction 3 factor and it depends only on value of Reynolds number. But, on the contrary, at very high 4 Reynolds number, Reynolds number does not have influence on friction factor and it depends 5 only on relative roughness. Between these two opposite regime friction factor depends on both, 6 Reynolds number and relative roughness. Colebrook equation was developed to cover this 7 transient zone of turbulence, but it also covers completely smooth and completely rough regime.

  8

Figure 1 .

 1 Figure 1. Hydraulic regimes; A) Hydraulically "smooth", B) Partially turbulent, and C)

(

  when Colebrook equation was published, for turbulent regime in smooth pipes 21 widely was used Prandtl equation also implicit in friction factor (Colebrook 1939). Prandtl 4 derived a formula from the logarithmic velocity profile and experimental data on smooth pipes 1

4

  began with Nikuradse"s turbulent pipe flow investigations in 1932 and 1933 (Hager and Liiv 5 2008). For turbulent regime in rough pipes widely was used von Karman"s relation (2):

9(

  Nikuradse-Prandtl-Karman) equations. Colebrook later performed experiments on sixteen spun 10 concrete-lined pipes and six spun bitumastic-lined pipes ranging in diameter from 101.6 mm to 11 1524 mm with average surface roughness values between 0.04318 mm and 0.254 mm (Taylor et 12 al 2006).

  to classify the data available at the time and those from experiment conducted by 15 himself and his colleague White (Colebrook and White 1937), Colebrook (1939) developed a 16 curve fit to describe transitional roughness (3):

  a monotonic change in the friction factor from smooth to fully 1 rough (Figure 2). It is valid especially for commercial steel pipes. Strictly mathematically is 2 incorrect what Colebrook had done, i.e. log(A+B)≠log(A)+log(B), but physically this relation 3 gives good results. Problem can be treated as inverse; according to logarithmic rules equally is 4 incorrect to split the Colebrook relation into two pieces.

Figure 2 .9

 2 Figure 2. Colebrook relation make transitional curve between hydraulically "smooth" regime

Figure 3 . 3 Figure 3

 333 Figure 3. Distribution of estimated deviation of implicit Colebrook equation modified by AGA

9

  researchers use Fanning factor which is not the same as the Darcy friction factor 6 (here noted as λ). Darcy friction factor is 4 times greater than the Fanning friction factor, but 7 physical meaning is equal. Darcy, Darcy-Weisbach and Moody friction factors are synonyms. 8 Colebrook equation is somewhere known as Colebrook-White equation (CW equation). White 10 was not actually a co-author of the paper in which this equation was presented (Colebrook 1939). 11 But, Colebrook made a special point of acknowledging important contribution of White to the 12 development of the equation (Colebrook and White 1937, Colebrook 1939). Letter W has 13 additional symbolic value because alternate explicit reformulations of Colebrook equation with 14 Lambert W-function involved exist (Brkić 2011a, Clamond 2009, Goudar and Sonnad 2003,15

7 8

 7 As it will be shown, there were some early expressions of Colebrook equation in explicit form 9 which were not particularly accurate, but in the years 1973-1984 there was a flurry of activity 10 obtaining more accurate approximations that appeared mainly in the chemical engineering 11 literature. Note that some of presented approximations exist in several versions. Here has to be 12 very careful because typographical errors are always possible(Concha 2008, Brkić 2009a).13Approximations will be presented starting from the oldest. Estimated accuracy compared with 14 iterative solution of implicit Colebrook equation will be shown in figures 4-23 for entire range of 15 turbulence where Moody diagram should be used as the reference.
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  to 21.49% compared with implicit Colebrook equation (Figure4), it has today only 1 historical value.

Figure 4 .7

 4 Figure 4. Distribution of estimated error of Moody approximation compared with implicit

Figure 5 .

 5 Figure 5. Distribution of estimated error of Wood approximation compared with implicit

Figure 6 .7

 6 Figure 6. Distribution of estimated error of Eck approximation compared with implicit

  Churchill approximation (valid only for turbulent regime) is up to 2.18% 11 compared with implicit Colebrook equation (Figure7).

Figure 7 .

 7 Figure 7. Distribution of estimated error of approximation by Churchill (valid only for turbulent

  on this approximation readers can see in paper of Swamee and Rathie 1 (2007).

4

  Approximation proposed by Jain (1976) (11) with error up to 2.05% is comparable with those

  5

7

  Distribution of estimated error of Jain approximation over turbulent part of Moody"s chart is 8 shown in figure7.

  approximation (full range of turbulence including laminar regime) 11 Approximation proposed by Churchill (1977) covers entire laminar and turbulent regime 12

  error of Churchill approximation (full range of turbulence including 1 laminar regime and unstable zone between them) over turbulent part of Moody"s chart is shown 2 in figure 7.

7

  Estimated error of Chen approximation is up to 0.35% compared with implicit Colebrook 8 equation (Figure8).

Figure 8 .

 8 Figure 8. Distribution of estimated error of Chen approximation compared with implicit

Figure 9 .7

 9 Figure 9. Distribution of estimated error of Round approximation compared with implicit

  9

  Barr approximation is up to 0.27% compared with implicit Colebrook 11 equation (Figure10).

Figure 10 .

 10 Figure 10. Distribution of estimated error of Barr approximation compared with implicit

Figure 11 .

 11 Figure 11. Distribution of estimated error of Zigrang and Sylvester approximations compared

  Haaland equation (20) is valid for flow of liquid. Haaland (1983) suggested that n=3 15 yields friction factors in consonance with those recommended for use in gas transmission lines. 16 17 Estimated error of approximation by Haaland (1983) valid for liquid flow is up to 1.4% 18 compared with implicit Colebrook equation (Figure 12).

Figure 12 .1

 12 Figure 12. Distribution of estimated error of Haaland approximation for liquid flow compared

Figure 13 .

 13 Figure 13. Distribution of estimated error of Haaland approximation for gaseous flow compared

Figure 14 .

 14 Figure 14. Distribution of estimated error of Serghides approximations compared with implicit

  of functions appearing in mathematical models of many processes is the 14 signomial functions. A signomial function is defined as the sum of signomial terms, which in 15 turn are products of power functions multiplied with a real constant. Estimated error of 16 approximation byManadilli (1997) is up to 2.06% compared with implicit Colebrook equation 17 (Figure15).

Figure 15 .1

 15 Figure 15. Distribution of estimated error of Manadilli approximation compared with implicit

Figure 16 .

 16 Figure 16. Distribution of estimated error of approximation by Romeo, Royo and Monzón

Figure 17 .3

 17 Figure 17. Distribution of estimated error of Sonnad and Goudar approximation compared with

  Figure 18. Distribution of estimated error of Vatankhah and Kouchakzadeh approximation
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Figure 19 .

 19 Figure 19. Distribution of estimated error of Rao and Kumar approximation compared with

  Figure 20. Distribution of estimated error of Buzzelli approximation compared with implicit

Figure 21 .(

 21 Figure 21. Distribution of estimated error of Avci and Karagoz approximation compared with

  36)18 Estimated error of approximation by Papaevangelou, Evangelides and Tzimopoulos is up to 19 0.85% compared with implicit Colebrook equation (Figure22).

  Figure 22. Distribution of estimated error of approximation by Papaevangelou, Evangelides and

Figure 23 .

 23 Figure 23. Distribution of estimated error of Brkić approximation compared with implicit

18

  For parameter β (39), solution for Lambert W-function byBarry et al. (2000) is used. Procedure 19 byWinitzki (2003) gives parameter β with similar accuracy (40):

1

  Parameter β calculated by using procedures byBarry et al. (2000) and byWinitzki (2003) gives 2 similar results in accuracy.

  formula itself is not very accurate (Cipra 1996), its accurate resolution 7 is nonetheless an issue for numerical simulations because a too crude resolution may affect the 8 repeatability and comparisons of calculation (Clamond 2009).

12

  better fit experimental data. Examples for this are e.g. Churchill (1973) approximation (9) and 13 Jain (1976) approximation (11) with slightly different coefficients. 14 15 Churchill (1977) relation (12) holds for all values of Reynolds and relative roughness, including 16 laminar regime (Figure24).

  Figure24. Churchill (1977) approximation includes laminar and highly unstable transient zone

3 4(

 3 figures 25-30) are used for relative roughness (ε/D) and 37 points for Reynolds number (Re).

7

  Approximations byZigrang and Sylvester (1982) (18), Haaland (1983), Sonnad and Goudar 8 (2006) and Papaevangelou et al (2010) produce maximal error up to 1.5% (Figure 28). Very 9 accurate (Figure 29), with estimated error up to 0.5%, are approximations by Chen (1979), Barr 10 (1981), Zigrang and Sylvester (1982) (19), Serghides (1984), Romeo et al (2002), Buzzelli 11 (2008), and approximations proposed by Vatankhah and Kouchakzadeh approximations (2008, 12 2009). Note that approximations proposed byVatankhah and Kouchakzadeh (2008, 2009) are 13 actually very successfully improved approximation bySonnad and Goudar (2006).

Figure 25 .Figure 27 . 21 Figure 28 . 25 Figure 29 .2

 252721282529 Figure 25. Inaccuracy of approximation byRao and Kumar (2007) 

Figure 30 .6

 30 Figure 30. Extremely accurate approximations presented in higher resolution

  profiles in boundary layers (Zagarola et al 1997). As mentioned in 2 introduction, Colebrook equation is based on the logarithmic formulation. Example of the power-3 law formula, valuable for the same flow regimes as Colebrook"s is old Altshul equation from the 4 Soviet era (Figure 31) (41, 42):

Figure 31 .

 31 Figure 31. Distribution of deviation of Altshul formula (41) compared with implicit Colebrook

  44) 17 Deviation of presented power-law formulas from Russian practice and by Chen (1984) is shown 18 in figure 32.

Figure 32 .

 32 Figure 32. Power law formulas as substitution for implicit Colebrook equation

  approach can be used for determination of friction factor. Good example for the 7 era of computerization is approach ofÖzger and Yildlrim (2009). They use adaptive neuro-fuzzy 8 computing technique for determination of turbulent flow friction coefficient. In the paper of Yoo 9 and Singh (2005) are shown two new methods for the computation of commercial pipe friction 10 factor. Today, main problem is not how to calculate friction factor. Problem is how to measure or 11 estimate roughness of pipe (Farshad et al 2001). Most pipes usually have rough inner pipe 12 surface. Resistance to fluid flow offered by rough boundaries is larger than that for smooth one 13 due to the formation of eddies behind protrusions. Colebrook equation is valid for both, smooth 14 and rough turbulent regime including transient zone between them. In principle, a system of 15 partial differential equations known as Navier-Stokes equations describes the exact behavior of 16 the fluid flow in so-called boundary layer, but solving these equations remains beyond current 17 theory and computations. Sletfjerding and Gudmundsson (2003) proposed also methodology for 18 determination of friction factor directly from roughness measurements. In that way they 19 eliminated roughness as a parameter in Colebrook equation (only Reynolds number and pipe 20 diameter are necessary as input parameters). Using a similar approach to that of in Nikuradse"s 21 experiment, Sletfjerding and Gudmundsson (2003) related measured roughness values with 22 friction factor, but their equation is implicit in friction factor. In formulation given by 1 Sletfjerding and Gudmundsson (2003) equation is implicit and valid for average steel pipe (45):

3

  For other materials of pipes readers can consult paper ofSletfjerding and Gudmundsson (2003).

  equations give the friction factor explicitly as a function of Reynolds 17 number and relative roughness. Comparative analysis indicates that almost all approximate 18 equations give a very good prediction of the friction factor and can reproduce the Colebrook 19 equation and its Rouse and Moody plot. Therefore, these approximations for the friction factor 20 provide a rational, accurate, and practically useful method over the entire range of the Moody 21 chart in terms of Reynolds number and relative roughness. Apropos relative complexity at first 22 sight, these approximations can be very easily implemented in a computer code. 30
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  The calculation of the parameters ofRomeo et al (2002) approximation was done through non-4 linear multivariable regression. Estimated error of approximation by Romeo, Royo and Monzón
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Table 1 .

 1 Maximal relative error for available approximations for test check points Approximation by Rao and Kumar (2007) is extremely inaccurate compared with standard

	16	
	17	
	18	Maximal percentage (relative) error of presented approximations over the entire range of
	19	applicability of Colebrook equation is shown in table 1.
	20	
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Colebrook equation (Figure

Table 2 .

 2 Complexity and complexity index of available explicit approximations

	16	
	17	
	18	Eck (1973) approximation is the least complex with only 27 key strokes required for solution and
		hence this equation has complexity index 1 (Table 2).

Table 1 .

 1 Maximal relative error for available approximations for test check points

	δ max (%)	Relative roughness (ε/D)	Reynolds number (Re)

Table 1 DB Click here to download Table: Table 1 DB.docTable 2 .

 12 Complexity and complexity index of available explicit approximations a Complexity b Complexity index

	c Eck (8)	27	1
	Moody (5)	29	1.07
	Churchil (9)	31	1.14
	Haaland (20)	35	1.29
	Jain (11)	35	1.29
	Swame and Jain (10)	36	1.33
	Round (16)	36	1.33
	Manadilli (26)	44	1.62
	Zigrang and Sylvester (18)	47	1.74
	Avzi and Karagoz (35)	47	1.74
	Rao and Kumar (30)	61	2.25
	Brkić (38)	67	2.48
	Sonnad and Goudar (28)	67	2.48
	Papaevangelou, Evangelides and Tzimopoulos (36)	67	2.48
	Brkić (37)	69	2.55
	Zigrang and Sylvester (19)	69	2.55
	Vatankhah and Kouchakzadeh (28a)	77	2.85
	Barr (17)	80	2.96
	Chen (15)	91	3.37
	Wood (6)	98	3.62
	Buzzelli (32)	104	3.85
	Churchil (12)	106	3.92
	Serghides (22)	107	3.96
	Romeo, Royo and Monzon (27)	125	4.62
	Serghides (21)	144	5
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MS Excel can be also successfully used in other engineering fields; see electronic appendix inBrkić and Tanasković (2008) 
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1

Most available approximations of the Colebrook equation are very accurate. Exceptions are 2 Round (1980), Eck (1973), Moody (1947), Wood (1966), andRao andKumar (2007) 3 approximations. The average error of almost all explicit approximations of the Colebrook (1939) 4 relation is up to 3%.