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Abstract. This paper considers the development of some mathematical operators as convolution and
primitive for continuous-in-time financial model. This development is given in form of API (Application
Programming Interface) with showing concept of its computation. The model is based on using measures
and fields. The work we report here addresses the fundamental issue of how measures and fields are
implemented for the software. The originality of this API lie in the fact that it will be used by the
company MGDIS.
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1 Introduction
Time is the central element that influence financial economic behavior. The continuous-in-time

financial model constitutes a powerful tool for studying the development of continuous-in-time methods
in finance. We refer to papers [10, 9], which are dealing with continuous-in-time financial model. These
papers develop the mathematics and economic theory of finance from the perspective of a model in which
agents can revise their decisions continuously in time. At the same time, we have seen an explosion in the
use of algorithms for computation methods to implement continuous-time models. The covered methods
include convolution and primitive has been one of the most effective and widely-used of these methods.
They began to be studied and applied systematically in various branches of modern science as in finance.
We refer to [7] that presents an approach for implementing continuous-time adaptive recursive filters for
convolution operator.

Within this paper, SOFI [1] is a software tool marketed by the company MGDIS. It is designed to
the public institutions such local communities to set out multiyear budgets. SOFI is based on a discrete
financial modeling. Currently, the mathematical objects involved in SOFI are suites and series. The
discrete model generates outcomes in the form of tables. We showed in previous work [5] the default
of this discrete model. We build a new model with using an other paradigm in [5]. This new model is
based on continuous-in-time model and uses the mathematical tools such convolution and integration
to describe loan scheme, reimbursement scheme and interest payment scheme. In [4, 3] we have shown
some results about improving one of the continuous-in-time financial models built in paper [5]. We use
in [4] a mathematical framework to discuss an inverse problem of the continuous-in-time model. We deal
in [3] with its inverse problem stability.

This article describes implementing the continuous-in-time financial model. Mainly, we focus on
concept of computation in API. This API is to be integrated in SOFI in order to produce the continuous
software, and is restricted to certain measures and fields. The purpose of computing integration of
measures over a time interval is to compute loan scheme, reimbursement scheme, etc; and the purpose
of computing evaluation of fields at an instant is to compute current debt amount, where current debt
field is a function that, at any time t, gives the capital amount still to be repaid.

Since some measures and fields could not been implemented continuously, we discretize them. Indeed,
some computations in API need discretization. Next, we use these discrete values for obtaining the
continuous values. The original motivation for this paper comes from a desire to understand the concept
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of computation in API with establishing mathematical relation between discrete measure and integrated
measure. In addition, convolution and primitive operators are fundamental operations in the model.
We use convolution in order to compute capital repayment measure with the Fast Fourier Transform
method. We use primitive to compute current debt field at an instant t with accumulating measures
between initial time and time t. The primitive of measure is defined as a field in spite of it is undefined
in the Radon measure space. In this work, we describe how we impelement and check these operators.

The rest of this paper contains three sections. The first one introduces time steps that are involved
in the models in order to show concept of computation in API. In the second we review numeric choices
linked to API, where we define a field as continuous function by superior value. The last one shows
implementation details about convolution and primitive.

2 Concept of computation in API
This section is devoted to explain time steps that are involved in the model and the relations between

them. We give the time scales to integrate measure over interval which are shown in Figure 1. We
introduce Tmin which is the time scale below which nothing coming from the model will be observed. To
be more precise, we say that a measure m̃ is observed over time interval [t1, t2] if∫ t2

t1

m̃, (1)

is computed. And, we will always, choose times t1 and t2 such that t2 − t1 > Tmin. In order to observe
models, we need an observation step Tobs which is strictly superior to minimal observation step Tmin

Tobs > Tmin. (2)

We define the discrete step TdM as a smaller step than step Tmin to discretize measures:

TdM ≤ Tmin. (3)

For instance, we are setting discrete step TdM by following equality:

TdM = Tmin

20 . (4)

Observation step Tobs is partitioned into nD discrete step TdM defined by:

nD =
[
Tobs

TdM

]
. (5)

A field is evaluated between inferior value a and superior value b with discrete step TdF satisfying:

TdF < b− a. (6)

Since measures and fields compose API, they are shared in two levels which are shown in Figure 2. First
is high level and is created for business reasons. The computation in high level is designed to the SOFI
users. Second is low level which is only used by the high level. The computation in low level is designed
to the high level users. Notice that low level doesn’t use its high. We say that high level implements
its low. High and low levels contain non-discrete measures, non-discrete fields defined on R, discrete
measures and discrete fields. Some computations in high level need discretization. For instance, if we
want to discretize a measure in high level, we create its copy in low level. Then we discretize it in order
to rise up its values to high level.
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Time density

Time scale

To be interpreted,
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are nothing observed

Figure 1: Different time steps.

The aim here is to explain how measures are integrated and how fields are evaluated. A non-discrete
measure in low level is integrated between inferior bound a and superior bound b with minimal observation
step Tmin and observation step Tobs. It follows that discrete step TdM is computed with relation (4).
Whereas in high level it is integrated between inferior bounds a and superior bound b. A non-discrete
field in low level is evaluated between inferior value a and superior value b with discrete step TdF. Yet,
its evaluation in high level is done only between inferior value a and superior value b.

The parallelism of discrete measures and fields in low level is based on the concept of a task. Tasks
provide much benefits: more efficient computation and robustness API. Precisely, the Task Parallel
Library [2] is used to entail execution and development speed. It is shown in [8] that this library makes
it easy to take advantage of potential parallelism in a program. It relies heavily on generics and delegate
expressions. Paper [13] shows several strategies that can be applied in large-scale discrete distribution
clustering tasks.

In what follows, we build the unidimensional mesh called DAS (DiscretizedAxeSegment presented
in Figure 3) for two reasons. First is to better structure the low level. Second is to compute discrete
convolution due to the impossibility for computing it with variable step using the Fast Fourier Transform.
Mesh DAS associated to discrete step TdM is defined by a set of points (xk)k∈Z that are its multiple

DASTdM = {xk = k × TdM, k ∈ Z}. (7)

Integration of measure md in low level between inferior bound a and superior bound b with minimal
observation step Tmin returns its integration between new inferior bound xa and new superior bound xb
with discrete step TdM, where

xa = na × TdM, (8)

such that:
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na =
[

a

TdM

]
, (9)

and where

xb = nb × TdM, (10)

such that:

nb =


b

TdM
if TdM is divisible by b,[

b

TdM

]
+ 1 else.

(11)

High level

Low level

SOFI

Lemf (Library Embedded Finance)

LemfAN (Library Embedded Finance And Numerical Analysis)
API

Figure 2: API composition.

−∞ +∞• •a bxa xb• • • • • • • • •

Figure 3: Mesh DAS defined on R.

Interval [xa, xb] is partitioned into N b
a subintervals of equal length, where N b

a is given by:

N b
a = nb − na, (12)

where integers na and nb are defined respectively in relations (9) and (11). Now, we will define a discrete
measure of measure md. For any integer j from 1 to N b

a , we call (na + j − 1)nd discrete value, the
integration of measure md between inferior bound (na + j− 1)×TdM and superior bound (na + j)×TdM
given by following equality:

∀j ∈ [[1;N b
a ]],md(na + j − 1) =

∫ (na+j)×TdM

(na+j−1)×TdM

md. (13)

4



For any integer i from 1 to
[
N b
a

nD

]
, we define quantity mobs

d (i) as observed measure over time interval that

its length is Tobs between inferior bound na×TdM +(i−1)×Tobs and superior bound na×TdM + i×Tobs.
Formally, mobs

d (i) is defined as:

∀i ∈

[[
1;
[
N b
a

nD

]]]
,mobs

d (i) =
∫ na×TdM+i×Tobs

na×TdM+(i−1)×Tobs

md, (14)

which is decomposed with Chasles relation as:

∀i ∈

[[
1;
[
N b
a

nD

]]]
,mobs

d (i) =
nD∑
k=1

∫ (na+k−nD)×TdM+i×Tobs

(na+k−1)×TdM+(i−1)×Tobs

md. (15)

Because of (5) and of the fact that l = k + (i− 1)× nD, relation (15) implies that:

∀i ∈

[[
1;
[
N b
a

nD

]]]
,mobs

d (i) =
i×nD∑

l=1+(i−1)×nD

∫ (na+l)×TdM

(na+l−1)×TdM

md. (16)

From this and according to (13), we conclude that observed value mobs
d (i) is a sum of values md(na+l−1)

for integer l from 1 + (i− 1)× nD to i× nD

∀i ∈

[[
1;
[
N b
a

nD

]]]
,mobs

d (i) =
i×nD∑

l=1+(i−1)×nD

md(na + l − 1). (17)

There are two situations for computing observed values. If N b
a is divisible by nD, then

[
N b
a

nD

]
observed

values are computed with relation (17). Else,
[
N b
a

nD

]
observed values are computed with relation (17)

such that the observed value mobs
d

([
N b
a

nD

]
+ 1
)

is computed with following relation:

mobs
d

([
N b
a

nD

]
+ 1
)

=
N b

a∑
k=nD×

[
N b

a
nD

]
+1

md(na + k − 1). (18)

3 Numeric choices in API
We are concerned in this section about implementation choices providing for great flexibility in API.

Given a continuous function φ, the Dirac measure δp at point p acts on the function φ. The value of
this action is φ(p). The purpose is to maintain this action in API. For that, we will explain the numeric
choices that we have made to achieve it due to the difficulty for describing the dual of vector space
of continuous piecewise function with a finite number of pieces, continuous with superior values. For
instance, the action of Dirac measure δp on fields 1]−∞,p] and 1[p,+∞[ is undefined. Indeed, they integrals
with respect to Dirac measure δp could not be computed. Formally, following integrals

∫ +∞

−∞
1]−∞,p] dδp(x),

∫ +∞

−∞
1[p,+∞[ dδp(x), (19)
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are undefined. In order to set the value of this action consistently, we make a choice on Dirac measure
δp defined by:

< δp, φ >= lim
x→p+

φ(x). (20)

Consider a continuous function g with integral equals 1 over R. To justify relation (20), we may restrict
to support of function g defining function gε which approaches Dirac measure δp, and is defined as:

gε(x) = 1
ε
g

(
x− p
ε

+ εp

)
. (21)

g

xp(1 + ε2)

Figure 4: Restriction to support of function g defining function gε in relation (21).

Dirac measure δp can be expressed as a limit of function gε

lim
ε→0+

gε = δp. (22)

To obtain relation (20), we require the following inclusion:

Supp(gε) ⊂]p,+∞[, (23)

because of:

Supp(g) ⊂]p,+∞[. (24)

Relation (24) provides restriction to support of function g illustrated in Figure 4 due to following equiv-
alence:

∀ε ∈ R∗+, x > p ⇐⇒ 1
ε
×

(
x− p
ε

+ εp

)
> p. (25)

Using relation (20), the value of Dirac measure’s action δp on field 1]−∞,p] is 0, and the value of Dirac
measure’s action δp on field 1[p,+∞[ is 1. Consequently, the numeric choice given by relation (20) is
consistent to make Dirac measure δp act on a set of fields. Next, we can extend the restriction for any
measure mε converging to m as ε approches 0. This restriction to support of measure mε is given by:

Supp(mε) ⊂] sup(Supp(m)),+∞[. (26)
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4 Convolution and accumulation
This section covers the implementation of convolution and of primitive operators. We refer to papers

[6, 12, 11], which are dealing with how convolution can be efficiently computed by FFT (the Fast Fourier
Transform). For example, algorithms based on explicit computation and on FFT are described in [6].
Paper [12] presents a more efficient computation of the convolution between a compressed text and an
uncompressed pattern. Schaller & Temnov estimates in [11] numerical errors of discrete FFT. In the
model, Loan Measure κ̃E is defined such that the amount borrowed between times t1 and t2 is:∫ t2

t1

κ̃E , (27)

and Repayment Measure ρ̃K is defined such that the amount borrowed between times t1 and t2 is:

∫ t2

t1

ρ̃K. (28)

Loan Measure κ̃E and Capital Repayment Measure ρ̃K are connected by a convolution operator. It is
required to implement it in order to compute repayment amount. Then the discrete convolution may
be evaluated with the aid of FFT method. By the Fourier convolution theorem, the discrete Fourier
transform of κ̃E ? γ̃ may be computed as

F(ρ̃K) = F(κ̃E ? γ̃) = F(κ̃E) • F(γ̃), (29)

where the Repayment Pattern Measure γ̃ expresses the way an amount 1 borrowed at t = 0 is repaid and
where • denotes component-wise multiplication. Quantities F(κ̃E) and F(γ̃) define discrete Fourier trans-
forms of κ̃E and of γ̃, respectively. The computation of discrete convolution (κ̃E ? γ̃(ne + j − 1))1≤j≤N f

e

with discrete measures (κ̃E(na + j − 1))1≤j≤N b
a

and (γ̃(nc + j − 1))1≤j≤Nd
c

between points xe and xf of
universel mesh DASTdM is summarized as follows:

• Determine the convex hull of the support of discrete measure (κ̃E(na + j − 1))1≤j≤N b
a

supposed to
be interval [xa1 , xb1 ] ;

• Determine the convex hull of the support of discrete measure (γ̃(nc + j − 1))1≤j≤Nd
c

supposed to
be interval [xc1 , xd1 ] ;

• Complete by zero discrete measures (κ̃E(na + j − 1))1≤j≤N b
a

and (γ̃(nc + j − 1))1≤j≤Nd
c

such that
they have N values, where N is power of 2 and is smallest value satisfying N ≥ N b

a +N d
c . Then,

(κ̃1
E(na + j − 1))1≤j≤N and (γ̃1(nc + j − 1))1≤j≤N are called the discrete values extended by zero ;

• Compute discrete measures (x(na + j − 1))1≤j≤N and (y(nc + j − 1))1≤j≤N by Fourier transform
of discrete measures (κ̃1

E(na + j − 1))1≤j≤N and (γ̃1(nc + j − 1))1≤j≤N , respectively ;

• Compute vector z(j − 1)1≤j≤N defined by element-wise multiplication of (x(na + j − 1))1≤j≤N by
(y(nc + j − 1))1≤j≤N ;

• Compute vector (h(j − 1))1≤j≤N defined by inverse Fourier transform of (z(j − 1))1≤j≤N ;

• Construct tabulated measure m̃Tabulated between inferior value xa1 +xc1 and superior value xb1 +xd1

with a set of first N b
a +N d

c values of h ;

• Discretize tabulated measure m̃Tabulated between points xe et xf with discrete step TdM to get
discrete values (κ̃E ? γ̃(ne + j − 1))1≤j≤N f

e
.

7



The integration of discrete measure (κ̃E ? γ̃(ne + j − 1))1≤j≤N f
e

in high level between inferior bound
e and superior bound f is the sum of its values given by:

N f
e∑

j=1
κ̃E ? γ̃(ne + j − 1).

After defining convolution operator, we describe how the accumulation of measure is defined in API. The
Current Debt Field KRD is related to Loan Measure κ̃E and Repayment Measure ρ̃K by the following
Ordinary Differential Equation:

dKRD
dt

= κE(t)− ρK(t). (30)

The solution of this ODE is expressed:

KRD(t) = KRD(tI) +
∫ t

tI

κ̃E −
∫ t

tI

ρ̃K. (31)

To compute the Current Debt Field KRD at an instant t, we define the method that is computing the
primitive of a measure. This method is based on numerical approach which consists in accumulating a
discrete measure in order to approximate it by a field. The primitive of measure md in low level that
is zero at point xc is a field Fd. Its discretization between inferior value xa and superior value xb with
discrete step TdF is defined by discrete field (FD

d (na + k − 1))1≤k≤N b
a +1 given by:

∀k ∈ [[1;N b
a + 1]], FD

d (na + k − 1) =
∫ yk

xc

md, (32)

where points (yk)1≤k≤N b
a +1 are defined as:

∀k ∈ [[1;N b
a + 1]], yk = xa + (k − 1)× TdF. (33)

We distinguish three cases of computing discrete field (FD
d (na + k − 1))1≤k≤N b

a +1:

First case xc < xa

Measure md is discretized between points xc and xb with discrete step TdF to compute discrete measure
(md(nc + j − 1))1≤j≤N b

c
. The integral defined in relation (32) is decomposed with Chasles relation to

get:

∀k ∈ [[1;N b
a + 1]], FD

d (na + k − 1) =
Na

c∑
j=1

∫ xc+j×TdF

xc+(j−1)×TdF

md +
k−1∑
j=1

∫ xa+j×TdF

xa+(j−1)×TdF

md. (34)

Replacing xa by xc +N a
c × TdF in relation (34), we obtain the following equality:

∀k ∈ [[1;N b
a + 1]], FD

d (na + k − 1) =
Na

c∑
j=1

∫ xc+j×TdF

xc+(j−1)×TdF

md +
k−1∑
j=1

∫ xc+(j+Na
c )×TdF

xc+(j−1+Na
c )×TdF

md. (35)

From this and using relation (13) which defines discrete measure, we get:

∀k ∈ [[1;N b
a + 1]], FD

d (na + k − 1) =
Na

c∑
j=1

md(nc + j − 1) +
k−1+Na

c∑
j=1+Na

c

md(nc + j − 1). (36)
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Second case xc > xb

Measure md is discretized between points xa and xc with discrete step TdF to compute discrete measure
(md(na + j − 1))1≤j≤N c

a
. It follows that Chasles relation applied to relation (32) gives:

∀k ∈ [[1;N b
a + 1]], FD

d (na + k − 1) = −
N c

a∑
j=k

∫ xa+j×TdF

xa+(j−1)×TdF

md. (37)

This reduces to following form:

∀k ∈ [[1;N b
a + 1]], FD

d (na + k − 1) = −
N c

a∑
j=k

md(na + j − 1). (38)

Third case xa ≤ xc ≤ xb

Determining integer L ∈ [[1;N b
a ]] satisfying following inequalities:

yL < xc ≤ yL+1. (39)

Since xc > yk for each integer k from 1 to L, the result of second case implies that:

∀k ∈ [[1;L]], FD
d (na + k − 1) = −

N c
a∑

j=k
md(na + j − 1). (40)

Replacing xc by xa +N c
a × TdF in relation (32), we employ Chasles relation to obtain:

∀k ∈ [[L+ 1;N b
a + 1]], FD

d (na + k − 1) =
k−1∑

j=1+N c
a

md(na + j − 1). (41)
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