Tarik Chakkour 
  
Implementing some mathematical operators for a continuous-in-time financial model

Keywords: API, convolution, primitive, discretization, integration, software tool

This paper considers the development of some mathematical operators as convolution and primitive for continuous-in-time financial model. This development is given in form of API (Application Programming Interface) with showing concept of its computation. The model is based on using measures and fields. The work we report here addresses the fundamental issue of how measures and fields are implemented for the software. The originality of this API lie in the fact that it will be used by the company MGDIS.

Introduction

Time is the central element that influence financial economic behavior. The continuous-in-time financial model constitutes a powerful tool for studying the development of continuous-in-time methods in finance. We refer to papers [START_REF] Robert | Continuous-Time Finance[END_REF][START_REF] Robert C Merton | Theory of finance from the perspective of continuous time[END_REF], which are dealing with continuous-in-time financial model. These papers develop the mathematics and economic theory of finance from the perspective of a model in which agents can revise their decisions continuously in time. At the same time, we have seen an explosion in the use of algorithms for computation methods to implement continuous-time models. The covered methods include convolution and primitive has been one of the most effective and widely-used of these methods. They began to be studied and applied systematically in various branches of modern science as in finance. We refer to [START_REF] Johns | Continuous-time lms adaptive recursive filters[END_REF] that presents an approach for implementing continuous-time adaptive recursive filters for convolution operator.

Within this paper, SOFI [1] is a software tool marketed by the company MGDIS. It is designed to the public institutions such local communities to set out multiyear budgets. SOFI is based on a discrete financial modeling. Currently, the mathematical objects involved in SOFI are suites and series. The discrete model generates outcomes in the form of tables. We showed in previous work [START_REF] Frénod | A continuous-in-time financial model[END_REF] the default of this discrete model. We build a new model with using an other paradigm in [START_REF] Frénod | A continuous-in-time financial model[END_REF]. This new model is based on continuous-in-time model and uses the mathematical tools such convolution and integration to describe loan scheme, reimbursement scheme and interest payment scheme. In [START_REF] Chakkour | Inverse problem and concentration method of a continuousin-time financial model[END_REF][START_REF] Chakkour | Inverse problem stability of a continuous-in-time financial model[END_REF] we have shown some results about improving one of the continuous-in-time financial models built in paper [START_REF] Frénod | A continuous-in-time financial model[END_REF]. We use in [START_REF] Chakkour | Inverse problem and concentration method of a continuousin-time financial model[END_REF] a mathematical framework to discuss an inverse problem of the continuous-in-time model. We deal in [START_REF] Chakkour | Inverse problem stability of a continuous-in-time financial model[END_REF] with its inverse problem stability.

This article describes implementing the continuous-in-time financial model. Mainly, we focus on concept of computation in API. This API is to be integrated in SOFI in order to produce the continuous software, and is restricted to certain measures and fields. The purpose of computing integration of measures over a time interval is to compute loan scheme, reimbursement scheme, etc; and the purpose of computing evaluation of fields at an instant is to compute current debt amount, where current debt field is a function that, at any time t, gives the capital amount still to be repaid.

Since some measures and fields could not been implemented continuously, we discretize them. Indeed, some computations in API need discretization. Next, we use these discrete values for obtaining the continuous values. The original motivation for this paper comes from a desire to understand the concept of computation in API with establishing mathematical relation between discrete measure and integrated measure. In addition, convolution and primitive operators are fundamental operations in the model. We use convolution in order to compute capital repayment measure with the Fast Fourier Transform method. We use primitive to compute current debt field at an instant t with accumulating measures between initial time and time t. The primitive of measure is defined as a field in spite of it is undefined in the Radon measure space. In this work, we describe how we impelement and check these operators.

The rest of this paper contains three sections. The first one introduces time steps that are involved in the models in order to show concept of computation in API. In the second we review numeric choices linked to API, where we define a field as continuous function by superior value. The last one shows implementation details about convolution and primitive.

Concept of computation in API

This section is devoted to explain time steps that are involved in the model and the relations between them. We give the time scales to integrate measure over interval which are shown in Figure 1. We introduce T min which is the time scale below which nothing coming from the model will be observed. To be more precise, we say that a measure m is observed over time

interval [t 1 , t 2 ] if t2 t1 m, (1) 
is computed. And, we will always, choose times t 1 and t 2 such that t 2 -t 1 > T min . In order to observe models, we need an observation step T obs which is strictly superior to minimal observation step T min

T obs > T min . (2) 
We define the discrete step T dM as a smaller step than step T min to discretize measures:

T dM ≤ T min . ( 3 
)
For instance, we are setting discrete step T dM by following equality:

T dM = T min 20 . ( 4 
)
Observation step T obs is partitioned into n D discrete step T dM defined by:

n D = T obs T dM . ( 5 
)
A field is evaluated between inferior value a and superior value b with discrete step T dF satisfying:

T dF < b -a. ( 6 
)
Since measures and fields compose API, they are shared in two levels which are shown in Figure 2. First is high level and is created for business reasons. The computation in high level is designed to the SOFI users. Second is low level which is only used by the high level. The computation in low level is designed to the high level users. Notice that low level doesn't use its high. We say that high level implements its low. High and low levels contain non-discrete measures, non-discrete fields defined on R, discrete measures and discrete fields. Some computations in high level need discretization. For instance, if we want to discretize a measure in high level, we create its copy in low level. Then we discretize it in order to rise up its values to high level.

Time density

Time scale

To be interpreted, integrated over intervals of length: > T min The aim here is to explain how measures are integrated and how fields are evaluated. A non-discrete measure in low level is integrated between inferior bound a and superior bound b with minimal observation step T min and observation step T obs . It follows that discrete step T dM is computed with relation [START_REF] Chakkour | Inverse problem and concentration method of a continuousin-time financial model[END_REF]. Whereas in high level it is integrated between inferior bounds a and superior bound b. A non-discrete field in low level is evaluated between inferior value a and superior value b with discrete step T dF . Yet, its evaluation in high level is done only between inferior value a and superior value b.

Time scale below which are nothing observed

The parallelism of discrete measures and fields in low level is based on the concept of a task. Tasks provide much benefits: more efficient computation and robustness API. Precisely, the Task Parallel Library [START_REF]Task parallel library[END_REF] is used to entail execution and development speed. It is shown in [START_REF] Leijen | The design of a task parallel library[END_REF] that this library makes it easy to take advantage of potential parallelism in a program. It relies heavily on generics and delegate expressions. Paper [START_REF] Zhang | Parallel massive clustering of discrete distributions[END_REF] shows several strategies that can be applied in large-scale discrete distribution clustering tasks.

In what follows, we build the unidimensional mesh called DAS (DiscretizedAxeSegment presented in Figure 3) for two reasons. First is to better structure the low level. Second is to compute discrete convolution due to the impossibility for computing it with variable step using the Fast Fourier Transform. Mesh DAS associated to discrete step T dM is defined by a set of points (x k ) k∈Z that are its multiple

DAS T dM = {x k = k × T dM , k ∈ Z}. (7) 
Integration of measure m d in low level between inferior bound a and superior bound b with minimal observation step T min returns its integration between new inferior bound x a and new superior bound x b with discrete step T dM , where

x a = n a × T dM , (8) 
such that:

n a = a T dM , (9) 
and where

x b = n b × T dM , (10) 
such that: -

n b =          b T dM if T dM is divisible by b, b T dM + 1 else. (11) 
∞ +∞ • • a b x a x b • • • • • • • • • Figure 3: Mesh DAS defined on R. Interval [x a , x b ] is partitioned into N b a subintervals of equal length,
where N b a is given by:

N b a = n b -n a , ( 12 
)
where integers n a and n b are defined respectively in relations ( 9) and [START_REF] Schaller | Efficient and precise computation of convolutions: applying fft to heavy tailed distributions[END_REF]. Now, we will define a discrete measure of measure m d . For any integer j from 1 to N b a , we call (n a + j -1) nd discrete value, the integration of measure m d between inferior bound (n a + j -1) × T dM and superior bound (n a + j) × T dM given by following equality:

∀j ∈ [[1; N b a ]], m d (n a + j -1) = (na+j)×T dM (na+j-1)×T dM m d . ( 13 
)
For any integer i from 1 to

N b a n D
, we define quantity m obs d (i) as observed measure over time interval that its length is T obs between inferior bound n a × T dM + (i -1) × T obs and superior bound n a × T dM + i × T obs . Formally, m obs d (i) is defined as:

∀i ∈ 1; N b a n D , m obs d (i) = na×T dM +i×T obs na×T dM +(i-1)×T obs m d , ( 14 
)
which is decomposed with Chasles relation as:

∀i ∈ 1; N b a n D , m obs d (i) = n D k=1 (na+k-n D )×T dM +i×T obs (na+k-1)×T dM +(i-1)×T obs m d . ( 15 
)
Because of ( 5) and of the fact that l = k + (i -1) × n D , relation (15) implies that:

∀i ∈ 1; N b a n D , m obs d (i) = i×n D l=1+(i-1)×n D (na+l)×T dM (na+l-1)×T dM m d . ( 16 
)
From this and according to (13), we conclude that observed value m obs d (i) is a sum of values m d (n a +l-1) for integer l from 1 

+ (i -1) × n D to i × n D ∀i ∈ 1; N b a n D , m obs d (i) = i×n D l=1+(i-1)×n D m d (n a + l -1). (17) 
m obs d N b a n D + 1 = N b a k=n D × N b a n D +1 m d (n a + k -1). ( 18 
)

Numeric choices in API

We are concerned in this section about implementation choices providing for great flexibility in API. Given a continuous function φ, the Dirac measure δ p at point p acts on the function φ. The value of this action is φ(p). The purpose is to maintain this action in API. For that, we will explain the numeric choices that we have made to achieve it due to the difficulty for describing the dual of vector space of continuous piecewise function with a finite number of pieces, continuous with superior values. For instance, the action of Dirac measure δ p on fields 1 ]-∞,p] and 1 [p,+∞[ is undefined. Indeed, they integrals with respect to Dirac measure δ p could not be computed. Formally, following integrals

+∞ -∞ 1 ]-∞,p] dδ p (x), +∞ -∞ 1 [p,+∞[ dδ p (x), ( 19 
)
are undefined. In order to set the value of this action consistently, we make a choice on Dirac measure δ p defined by:

< δ p , φ >= lim x→p + φ(x).
(20)

Consider a continuous function g with integral equals 1 over R. To justify relation (20), we may restrict to support of function g defining function g which approaches Dirac measure δ p , and is defined as: Dirac measure δ p can be expressed as a limit of function g

g (x) = 1 g x -p + p . ( 21 
) g x p(1 + 2 )
lim →0 + g = δ p . ( 22 
)
To obtain relation (20), we require the following inclusion:

Supp(g ) ⊂]p, +∞[, (23) 
because of:

Supp(g) ⊂]p, +∞[. ( 24 
)
Relation (24) provides restriction to support of function g illustrated in Figure 4 due to following equivalence:

∀ ∈ R * + , x > p ⇐⇒ 1 × x -p + p > p. ( 25 
)
Using relation (20), the value of Dirac measure's action δ p on field 1 ]-∞,p] is 0, and the value of Dirac measure's action δ p on field 1 [p,+∞[ is 1. Consequently, the numeric choice given by relation ( 20) is consistent to make Dirac measure δ p act on a set of fields. Next, we can extend the restriction for any measure m converging to m as approches 0. This restriction to support of measure m is given by:

Supp(m ) ⊂] sup(Supp(m)), +∞[. ( 26 
)

Convolution and accumulation

This section covers the implementation of convolution and of primitive operators. We refer to papers [START_REF] Hearn | Fast computation of convolution operations via low-rank approximation[END_REF][START_REF] Tanaka | Computing convolution on grammar-compressed text[END_REF][START_REF] Schaller | Efficient and precise computation of convolutions: applying fft to heavy tailed distributions[END_REF], which are dealing with how convolution can be efficiently computed by FFT (the Fast Fourier Transform). For example, algorithms based on explicit computation and on FFT are described in [START_REF] Hearn | Fast computation of convolution operations via low-rank approximation[END_REF]. Paper [START_REF] Tanaka | Computing convolution on grammar-compressed text[END_REF] presents a more efficient computation of the convolution between a compressed text and an uncompressed pattern. Schaller & Temnov estimates in [START_REF] Schaller | Efficient and precise computation of convolutions: applying fft to heavy tailed distributions[END_REF] numerical errors of discrete FFT. In the model, Loan Measure κE is defined such that the amount borrowed between times t 1 and t 2 is:

t2 t1 κE , (27) 
and Repayment Measure ρK is defined such that the amount borrowed between times t 1 and t 2 is:

t2 t1 ρK . ( 28 
)
Loan Measure κE and Capital Repayment Measure ρK are connected by a convolution operator. It is required to implement it in order to compute repayment amount. Then the discrete convolution may be evaluated with the aid of FFT method. By the Fourier convolution theorem, the discrete Fourier transform of κE γ may be computed as

F(ρ K ) = F(κ E γ) = F(κ E ) • F(γ), (29) 
where the Repayment Pattern Measure γ expresses the way an amount 1 borrowed at t = 0 is repaid and where • denotes component-wise multiplication. Quantities F(κ E ) and F(γ) define discrete Fourier transforms of κE and of γ, respectively. The computation of discrete convolution (κ E γ(n e + j -1)) 1≤j≤N f e with discrete measures (κ E (n a + j -1)) 1≤j≤N b a and (γ(n c + j -1)) 1≤j≤N d c between points x e and x f of universel mesh DAS T dM is summarized as follows:

• Determine the convex hull of the support of discrete measure (κ E (n a + j -1)) 1≤j≤N b a supposed to be interval [x a1 , x b1 ] ;

• Determine the convex hull of the support of discrete measure (γ(n c + j -1)) 1≤j≤N d c supposed to be interval [x c1 , x d1 ] ;

• Complete by zero discrete measures (κ E (n a + j -1)) 1≤j≤N b a and (γ(n c + j -1)) 1≤j≤N d c such that they have N values, where N is power of 2 and is smallest value satisfying N ≥ N b a + N d c . Then, (κ 1 E (n a + j -1)) 1≤j≤N and (γ 1 (n c + j -1)) 1≤j≤N are called the discrete values extended by zero ;

• Compute discrete measures (x(n a + j -1)) 1≤j≤N and (y(n c + j -1)) 1≤j≤N by Fourier transform of discrete measures (κ 1 E (n a + j -1)) 1≤j≤N and (γ 1 (n c + j -1)) 1≤j≤N , respectively ;

• Compute vector z(j -1) 1≤j≤N defined by element-wise multiplication of (x(n a + j -1)) 1≤j≤N by (y(n c + j -1)) 1≤j≤N ;

• Compute vector (h(j -1)) 1≤j≤N defined by inverse Fourier transform of (z(j -1)) 1≤j≤N ;

• Construct tabulated measure mTabulated between inferior value x a1 +x c1 and superior value x b1 +x d1 with a set of first N b a + N d c values of h ;

• Discretize tabulated measure mTabulated between points x e et x f with discrete step T dM to get discrete values (κ E γ(n e + j -1)) 1≤j≤N f e .

The integration of discrete measure (κ E γ(n e + j -1)) 1≤j≤N f e in high level between inferior bound e and superior bound f is the sum of its values given by: N f e j=1 κE γ(n e + j -1).

After defining convolution operator, we describe how the accumulation of measure is defined in API. The Current Debt Field K RD is related to Loan Measure κE and Repayment Measure ρK by the following Ordinary Differential Equation:

dK RD dt = κ E (t) -ρ K (t). ( 30 
)
The solution of this ODE is expressed:

K RD (t) = K RD (t I ) + t tI κE - t tI ρK . ( 31 
)
To compute the Current Debt Field K RD at an instant t, we define the method that is computing the primitive of a measure. This method is based on numerical approach which consists in accumulating a discrete measure in order to approximate it by a field. The primitive of measure m d in low level that is zero at point x c is a field F d . Its discretization between inferior value x a and superior value x b with discrete step T dF is defined by discrete field (

F D d (n a + k -1)) 1≤k≤N b a +1
given by:

∀k ∈ [[1; N b a + 1]], F D d (n a + k -1) = y k xc m d , (32) 
where points (y k ) 1≤k≤N b a +1 are defined as: 

∀k ∈ [[1; N b a + 1]], y k = x a + (k -1) × T dF . ( 33 

Figure 1 :

 1 Figure 1: Different time steps.

Figure 2 :

 2 Figure 2: API composition.

  There are two situations for computing observed values. If N b a is divisible by n D , then computed with following relation:

Figure 4 :

 4 Figure 4: Restriction to support of function g defining function g in relation (21).

)

  We distinguish three cases of computing discrete field (F D d (n a + k -1)) 1≤k≤N b a +1 : First case x c < x a Measure m d is discretized between points x c and x b with discrete step T dF to compute discrete measure (m d (n c + j -1)) 1≤j≤N b c . The integral defined in relation (32) is decomposed with Chasles relation to get:∀k ∈ [[1; N b a + 1]], F D d (n a + kx a by x c + N a c × T dF in relation (34), we obtain the following equality:∀k ∈ [[1; N b a + 1]], F D d (n a + kusing relation[START_REF] Zhang | Parallel massive clustering of discrete distributions[END_REF] which defines discrete measure, we get:∀k ∈ [[1; N b a + 1]], F D d (n a + k -1) = N a c j=1 m d (n c + j -1) + k-1+N a c j=1+N a c m d (n c + j -1). (36) Second case x c > x bMeasure m d is discretized between points x a and x c with discrete step T dF to compute discrete measure (m d (n a + j -1)) 1≤j≤N c a . It follows that Chasles relation applied to relation (32) gives:∀k ∈ [[1; N b a + 1]], F D d (n a + k -1) =following form: ∀k ∈ [[1; N b a + 1]], F D d (n a + k -1) = -N c a j=k m d (n a + j -1). (38) Third case x a ≤ x c ≤ x b Determining integer L ∈ [[1; N b a ]] satisfying following inequalities:y L < x c ≤ y L+1 . (39)Since x c > y k for each integer k from 1 to L, the result of second case implies that:∀k ∈ [[1; L]], F D d (n a + k -1) = -N c a j=k m d (n a + j -1). (40) Replacing x c by x a + N c a × T dF in relation (32), we employ Chasles relation to obtain: ∀k ∈ [[L + 1; N b a + 1]], F D d (n a + k -1) = k-1 j=1+N c a m d (n a + j -1). (41)

Conflict of Interests

The authors declare that there is no conflict of interests.