Diffraction Prediction in HDR measurements

A. Lucat and R. Hegedus and R. Pacanowski

Our setup (presented last year):

- Imaging system
- Uniform Isotropic BRDF
- HDR (for glossy BRDFs)

Our setup (presented last year):

- Imaging system
- Uniform Isotropic BRDF
- HDR (for glossy BRDFs)

The HDR process:

Antoine LUCAT

The HDR process:

Exposure time 2

Antoine LUCAT

Exposure time

The HDR process:

The HDR process:

The HDR process:

Common issue: Diffraction

Caused by : → Lens diaphragm → High dynamic range

Common issue: Diffraction

Lens Diffraction Effect

Wave behaviour: the image of a point through finite aperture is not a point

Lens Diffraction Effect

Wave behaviour: the image of a point through finite aperture is not a point

Key Idea

Key Idea

diaphragm

- Method: PSF from diaphragm fitting $PSF \propto |\mathcal{F}[$
- Absence of noiseGood knowledge of the setup2[Rietdorf05]

- Known cases of PSF functions:
- → Perfect disk (Airy pattern)
- → Polygons with straight edges [Shung-Wu83]

Closed-form (Precision ③)
 Not general enough

• Method: PSF from diaphragm fitting

- Known cases of PSF functions:
- → Perfect disk (Airy pattern)
- → Polygons with straight edges [Shung-Wu83]
- Our model:
- → Polygons with curved edges

✓ Closed-form
✓ General enough

Simulated PSF:

Hexagon with **Straight** edges

Hexagon with **Curved** edges

Antoine LUCAT

Linos 50mm at f/11

Linos 50mm at f/11

Antoine LUCAT

Key Idea

Output Mask

Advantages :

- Unmodified pixel values
 - $\rightarrow\checkmark$ Keep tracks on uncertainties (${\cal B}$)
- Worst-case scenarios analysis
 - \rightarrow \checkmark Metrologically characterized (\mathcal{K})

$$I_{out\,put} = I^* \otimes \mathcal{K} + \mathcal{B}$$

Equivalent to the measurement by a *virtual setup* of *response function very smaller than the PSF*

Qualitative results

Qualitative results

Conclusion & Future work

- Reduced diffraction convolution kernel
- Improved HDR measurement
- User controlled parameters

- How to minimize the loss of pixel: trade-off study
- Better diaphragm model (edge roughness) [Durgin09]
- Full GPU implementation (few minutes for the PSF precomputation)

Thank you for your attention

 [Matusik03] Matusik W., Pfister H., Brand M., McMillan L. : Efficient isotropic BDRF measurement. In Proc. EGWR '03 (2003), pp. 241-247.

[Marschner98]

Marschner S.R., Westin S.H., Lafortune E.P.F., Torrance K.E., Greenberg D.P.: Image-Based BRDF Measurement Including Human Skin. In Proc. of 10th Eurographics Workshop on Rendering, p.139-152, June 1999.

[Rietdorf]

J. Rietdorf and T. W. J. T. W. J. Gadella, Microscopy techniques (Springer, 2005).

[Durgin09]

G. Durgin, "The Practical Behavior of Various Edge-Diffraction Formulas," IEEE Antennas and Propagation Magazine 51, 24–35 (2009).

Supplemental Detailled Algorithm

Supplemental Within-band influence

Supplemental Bottom-up influence

Diaphragm repeatability

Canon 100mm at f/27

Canon 100mm at f/27

Rotation → <u>Caused by lack of repeatability in the diaphragm closure</u>

Supplemental Trade-offs

Antoine LUCAT