
HAL Id: hal-01586466
https://hal.science/hal-01586466v1

Submitted on 12 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diffraction Prediction in HDR measurements
Antoine Lucat, Ramon Hegedus, Romain Pacanowski

To cite this version:
Antoine Lucat, Ramon Hegedus, Romain Pacanowski. Diffraction Prediction in HDR measurements.
EUROGRAPHICS WORKSHOP ON MATERIAL APPEARANCE MODELING, Jun 2017, Helsinki,
Finland. �hal-01586466�

https://hal.science/hal-01586466v1
https://hal.archives-ouvertes.fr


Workshop on Material Appearance Modeling (2017)
H. Rushmeier and R. Klein (Editors)

Diffraction Prediction in HDR measurements

A. Lucat1,3 and R. Hegedus2 and R.Pacanowski1,3

1 Institut d’Optique Gradute School, CNRS (LP2N), Universite de Bordeaux
2 Department of Cognitive Neuroscience, Tubingen.

3 INRIA Bordeaux Sud-Ouest

Abstract

Modern imaging techniques have proved to be very efficient to recover a scene with high dynamic range values.
However, this high dynamic range can introduce star-burst patterns around highlights arising from the diffraction
of the camera aperture. The spatial extent of this effect can be very wide and alters pixels values, which, in a
measurement context, are not reliable anymore. To address this problem, we introduce a novel algorithm that
predicts, from a closed-form PSF, where the diffraction will affect the pixels of an HDR image, making it possible
to discard them from the measurement. Our results gives better results than common deconvolution techniques and
the uncertainty values (convolution kernel and noise) of the algorithm output are recovered.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

In a wide variety of applications, the camera dynamic
range does not permit to capture the whole dynamic range
of the scene. High dynamic range (HDR) imaging [Rei10] is
therefore necessary in order to fully recover the whole scene
dynamic range. HDR photography merges photographies of
a scene, taken at different levels of exposure, in order to in-
crease the native camera dynamic range. HDR images are
very useful because they speed up the acquisition process
when using an imaging device.

A common artifact arising from the high dynamic range
is that star burst patterns can be seen around highlights.
This effect is due to light diffraction through the lens di-
aphragm, and cannot be avoided. From a metrology perspec-
tive, these diffraction patterns pollute a lot of pixels around
the highlights, which cannot be taken as reliable measure-
ments. Since the camera diffraction pattern has a very high
dynamic range, the higher the image dynamic range is, the
more prominent is the pollution by diffraction. More gener-
ally, even if the effect becomes less visible, high value pixels
can always affect the lower value pixels through diffraction
because the spatial range of diffraction is not bounded. One
then has to be very careful when considering a low value
pixel as a reliable measurement. This diffraction effect can
be described by a convolution, to which is added a classical
measurement noise.

Recovering a noisy measurement blurred by a convolu-
tion kernel (impulse response) is an issue of main interest
since it focuses on removing the impact of the measuring in-
strument on the acquired data. The main difficulty is that it
is an ill-posed mathematical problem ( [TA77], p.7): a so-
lution is not unique, may not exist, and may not be stable.
In fact, if the deconvolved solution is not stable, a slight er-
ror in the data may lead to a very large error in the solu-
tion. It means that for measurement purposes, where noise is
always present, recovering the true unbiased data is math-
ematically impossible. Yet, a wide variety of deconvolu-
tion techniques have been developed, divided into 4 major
categories: Fourier based techniques (e.g., [Wie64]), con-
strained iterative algorithms (e.g., [RG05]), entropy maxi-
mization (e.g., [SB84]), and maximum likelihood estimation
(Bayesian methods, cf. [Ric72]).

Unfortunately, none of these algorithms guarantee any un-
certainty value for the deconvolution output because it de-
pends on the problem unknowns [Eld05, Ric72]. In his orig-
inal paper [Ric72], Richardson writes that the value of his
process "can give intelligible results in some cases where
the Fourier process cannot", highlighting the fact that the de-
convolution techniques are not aimed at guaranteeing a mea-
surement value. Therefore, the main issue with deconvolu-
tion algorithms is their inability at guaranteeing any bound-
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aries for the recovered pixel value, in spite of a good shape of
the reconstructed image. However, when doing metrology-
grade measurements, uncertainties remain necessary.

We propose to tackle this problem differently by predict-
ing and identifying the pixels in the image that are polluted
by diffraction, and then discard these pixels from the mea-
surement. Since our technique aims to classify pixels instead
of recovering their original value, no pixel value is modified
and therefore, we can keep track of the measurement uncer-
tainty.

Overview of the Method. The first step is to precompute
the optical impulse response (also called the point spread
function, PSF) of the camera for a given setup. This com-
putation is based on the diaphragm fitting with a proposed
model, which is general enough to cover a wide variety of
apertures, but also gives a closed-form solution of the PSF.
Therefore, our algorithm (cf. Section 2) predicts the amount
of diffraction present in the HDR image-based measurement.
The algorithm is based on an incremental prediction of the
effect of diffraction, from the highest to the lowest pixel val-
ues. Since recovering the true value for these pixels is too
complicated, we simply discard them from the measurement.
Section 3 presents results for HDR images taken with two
different lenses and for two types of conditions (laboratory
and night). Finally, we discuss some potential future work
(cf. Section 4) to improve further our results.

1. Fourier Optics and Lens Diaphragm Model

As stated by Fourier Optics [Ers06], the PSF is the function
that blurs a perfect incoherent image I∗, such that the cap-
tured image I is given by

I = I∗⊗PSF +B (1)

with ⊗ the convolution operator, and B the measurement
noise.

The PSF function is related to the camera, approximated
by a thin-lens model, through

PSF(x,y) =
1
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)
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with F [·] the Fourier transform operator, λ the scene wave-
length, D the sensor-lens distance, (x,y) the position on the
sensor, P the pupil function, and Spup its area. The most im-
portant feature is that the PSF function is directly shaped by
the Fourier transform of the diaphragm shape. Consequently,
if we want to correctly predict diffraction effects, we need a
good description of the pupil function.

The great majority of lens diaphragms are designed with
blades, also known as bladed apertures. In the case of a
circular diaphragm, the resulting PSF is the well-known
Airy pattern. Shung-Wu and Mittra [SM83] have studied di-
aphragms with polygonal shapes but only for straight edges.

Figure 1: Mathematical model of a standard n-bladed camera
aperture. The full pattern can be divided into similar geome-
tries, themselves sub-divided into two elementary parts : a
triangle OAB (blue), and a section of parabola whose axis of
symmetry passes by the middle point M (red).

However, by construction, each blade is an arc of a circle,
thus its shape is of constant curvature, giving a good de-
scription for any edge of the diaphragm. Generally, if two
consecutive blades cross each other in a certain point, re-
ferred as a vertex in the following, the shape described by
the set formed by these points is an irregular polygon (cf.
Fig. 1). If one could think that an aperture is designed to
fit a regular polygon, it is not the case because of mechan-
ical constraints between blades, mostly when they are tight
at high f-numbers. Our model also has the benefit of giving
a closed-form solution of the PSF equation (cf. Eq. 2).

Algorithm 1 Diffraction detection algorithm

1: procedure DETECTDIFFRACTION(Ihdr,PSF ,ρ,Db)
2: Ihdr← Ihdr/max(Ihdr)
3: N ← ceil(log(1/min(Ihdr))/ log(Db))

4: P̃SF ,K←K_REMOVAL(PSF ,Db)
5: for k← 2,N do
6: 1k← (D1−k

b > Ihdr >D−k
b )

7: 11→k−1← (Ihdr >D1−k
b )

8: Ik← Ihdr ∗1k
9: I1→k−1← Ihdr ∗11→k−1

10: Simu← I1→k−1⊗ P̃SF
11: Discarded←Discarded OR [1k AND (Simu >

ρIk)]
12: end for
13: return Discarded,K
14: end procedure

2. Diffraction Detection Algorithm

Our analytical PSF function permits to predict the effects of
diffraction. From this knowledge, our algorithm simulates
a second diffraction on the acquired image (the perfect im-
age is then diffracted once by the physical diaphragm, then
through simulation). Our method relies on two ideas: (i) if
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Algorithm 2 Residual kernel removal

1: procedure K_REMOVAL(PSF ,Db)
2: Within← PSF > max(PSF)/Db
3: s← argmin[‖ρ−

∫∫
PSF ∗ (PSF < s)‖2]

4: BottomU p← PSF > s
5: Mask←Within OR BottomU p
6: P̃SF ← PSF∗!Mask
7: K← PSF ∗Mask
8: return P̃SF ,K
9: end procedure

a pixel is not modified during our simulated diffraction, it
was also not the case during the physical diffraction; and (ii)
diffraction pollution on a pixel is always coming from pixels
of higher values.

Our diffraction detection algorithm is divided into three
parts:

1. The HDR image is cut into non-overlapping bands of val-
ues of same dynamic range Db.

2. A residual convolution kernel K is removed from the
diffraction prediction (cf. Algo. 2).

3. Diffraction is progressively predicted, by iterating from
the band of highest values toward the lowest and applying
a user thresholding criterion to discard pixels affected by
diffraction (cf. Algo. 1).

The key idea of our algorithm is that for most lenses, the
dynamic range in which the PSF is very similar to a Dirac
function is big, between a factor of 10 to 1000. Each band
is therefore composed of two separate contributions: its in-
ner value that is considered diffraction-free and a diffraction
term coming from the higher bands. Then, convolving the
measurement I by the PSF should not modify the diffraction-
free pixels if they were not affected by diffraction during the
measurement. Indeed, for a given band of value, the inner
value is not truly free from diffraction. A certain residual
kernel of diffraction cannot be detected, noted K (cf. Algo.
2). Therefore, our algorithm (cf. Algo. 1) essentially consists
of a sequence through the bands, from the highest values to
the lowest. In each iteration, a partial HDR image is con-
volved with the PSF, and these values are compared to the
original picture, a thresholding criterion ρ is applied to dis-
tinguish clean pixels from the ones affected by diffraction.
This method is then iteratively applied until the full image
dynamic range has been covered. Finally, the output of the
algorithm is a mask giving the pixels polluted by diffrac-
tion, and a residual convolution kernel K. Therefore, the
remaining (i.e., non-discarded) pixels Iout put are metrolog-
ically characterized by

Iout put = I∗⊗K+B . (3)

Figure 2: Fitting of our diaphragm model for different real
diaphragms. The second row shows a fit with straight edges
(orange) and with curved edges (green). These examples
demonstrate the importance of being able to represent ir-
regular polygonal shapes (high f-number), but also curved
shapes (low f-number).

3. Results

Real Aperture Fitting and Point Spread Function. The
aperture model composed of an irregular polygon with
curved edges is assessed to be general enough to cover a
wide range of camera lenses. We tested it on our available
camera lenses: one scientific-class lens of focal 50mm from
Linos, and two consumer Canon lenses of 50 and 100mm fo-
cal length. The goal is to compare how the diaphragm model
fits a real aperture, and to demonstrate that the resulting the-
oretical PSF also fits well a true PSF image.

The variety of diaphragms in Figure 2 highlights the need
to have an elaborated enough mathematical modeling. Our
model allows a very good fit of a wide range of common
diaphragms. Furthermore, our diaphragm model gives a an-
alytical solution of its Fourier transform, thus the resulting
PSF. As shown in Figure 2, the irregular polygon and the
curved edges features have their importance. For the Canon
100mm lens at f/11, it is sufficient to fit an irregular polyg-
onal shape, with no need for a curvature term. In contrary,
the Linos 50mm at f/4 could not have been described with
a regular polygon, as the curvature of the edges really needs
to be taken into account. Our diaphragm model fits well the
aperture and we also obtain from the theory (cf. Eq. 2) a well
fitted PSF compared to a real photography (cf. Figure 3).

Diffraction Prediction on HDR images. The algorithm
seems to discard a lot more pixels than one would expect,
highlighting the fact that the method does not pretend to dis-
card only pixels affected by diffraction, but also diffraction-
free pixels. Since the algorithm can be too conservative, the
percentage of discarded measurements can significantly de-
crease the efficiency of an HDR image-based measurement,
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Figure 3: Comparison of the PSF resulting from the fitted
diaphragm against a real HDR photograph of a quasi-point
light source. Some slight differences can be observed in the
repartition of light within the widened star branches of the
PSF, which is explained by the random variations along the
diaphragm edges that we do not take into account.

ruining the benefit of having higher camera resolutions. The
K kernel is also greatly smaller than the PSF kernel, to a
range of few pixels, which guarantees that the long-range
blurring effect of the PSF has been removed.

In laboratory conditions, where we used our Linos lens,
the scene is perfectly stable and controlled, and the camera
response is also very stationary. In this situation, shown in
Figure 4, our diffraction removal algorithm completely re-
moves the widened star shaped pattern making it very useful
for measurements. In an uncontrolled scenario, (e.g., with
outdoor imaging, the illumination conditions are not stable
wrt. time) HDR values can be shifted up or down because of
the intensity variation of lamps. Moreover, the diaphragm fit-
ting is not guaranteed to be correct because of the repeatabil-
ity of the camera lens diaphragm can be bad (especially for
high f-numbers). Then, the PSF prediction is biased, so are
the discarded pixels. This is visible on the left case of Figure
4, where the removed pixels seem tilted from the star shaped
pattern, emerging from the lack of diaphragm repeatability.

Error Analysis A good way to quantify the quality of
the separation between polluted and non-polluted pixels by
diffraction is to test the algorithm on a great variety of gener-
ated HDR images. Given one image, its "real" measurement
is simulated by convolving it with the precomputed PSF and
by adding a Gaussian white noise, we then apply our algo-
rithm to newly created image.

In order to remain as general as possible, our test HDR
images are tuned by their bandwidth limit (Gaussian speckle
pattern), their histogram of magnitude, and their HDR dy-
namic (Dhdr). With such generated images, it is possible to
generate a wide variety of images. Since the different fea-
tures and conclusions do not seem to be altered whatever
the input image, by default, the chosen generated image is a
HDR image with a flat histogram,Dhdr = 1010 and a speckle
size of 20 pixels.

Figure 4: Results of the algorithm applied on real HDR
images (tonemapped with Drago [DMAC03]) for various
camera configurations, with input parameters Db = 10 and
ρ = 5%. The wavelengths used for each color channel are
[λR,λG,λB] = [600nm,540nm,470nm]. The segmentation
images show the discarded pixels (red), the valid pixels
(green), and the under-exposed ones (black). If the HDR im-
ages exhibits obvious star shaped patterns, the algorithm de-
tects it, and they are finally removed.

Since our method focuses on guaranteeing no diffraction
pollution on the remaining pixels, the data of interest is the
histogram of relative errors between the "true" image and the
"measured" one. One particular metric can be considered,
the "maximum error of magnitude", noted Emax = max(E),
with

E = | log10(Iout put)− log10(I∗)| . (4)

This metric allows sorting the different methods, compar-
ing our method to the ones from the state of the art. In Figure
5 is plotted a relative histograms of the E error. The PSF used
to simulate the measurement is that of the 50mm Linos lens
at f/11.

As firstly stated, the conclusion does not depend on the
image content: the maximum error Emax resulting from our
algorithm (with Db = 10 and ρ = 5%) is always better than
any other tested deconvolution method (Fig. 5, blue curves),
and the result histogram (red curve) fits very well what we
expect to recover (a measurement quality up to a K kernel
convolution: equation (3), brown curve).

Figure 5 puts also in evidence that not considering diffrac-
tion may lead to a very wrong measurement: the quality of
the ground truth (green curve) is far off the real initial mea-
surement (black curve).

4. Conclusion and Future Work

We have introduced an algorithm that predicts diffraction in
the case of HDR imaging measurements. The result of the
algorithm ensures a good quality of the measurement, yet
the link between the algorithm parameters and the resulting
image characteristics is not known, despite clues on their de-
pendence. As future work, we intend to focus on the precise
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Figure 5: Histograms of the error of magnitude against a vir-
tual reference (SNR=10) of the remaining valid pixels for
different methods. The histogram of our method (red curve)
is much more concentrated on the small errors than every de-
convolution algorithm (blue curves). Of course, the quality
of the original image (green curve) is not reached because of
the residual kernel contribution, but our output error matches
very well with the achieved output (brown curve) prediction.

analysis of the impact of the input image on the result. The
histogram, the frequency content and the spatial coherence
of the HDR image should give more insight on how to pre-
dict well the resulting error from any measurement; at the
moment we still have to infer it from a generated content-
equivalent image. The PSF model can also be improved, by
improving the diaphragm edge description. In particular, a
roughness term may be added for the edges, a method that
could be inspired from the prediction of radio wave propa-
gation above rough landscapes [Dur09].
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