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Abstract

In this paper, we present a novel technique for the retrieval of the modes of a multicomponent signal

using a time-frequency (TF) representation of the signal. Our approach is based on a novel ridge extraction

method that takes into account the fact that the TF representation is both discrete in time and frequency,

followed by a demodulation procedure. Numerical results show the benefits of the proposed approach

for mode reconstruction in comparison to similar techniques that do not make use of demodulation.

Furthermore, numerical investigations show that the proposed approach sharpens the TF representation

on which it is built.
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On Demodulation, Ridge Detection and

Synchrosqueezing for Multicomponent Signals

I. INTRODUCTION

There are many physical systems which generate complex signals that are often modeled as a sum

of amplitude and frequency-modulated (AM–FM) waves. These signals are generally referred to as

multicomponent signals (MCSs). In many situations, it is often desirable and necessary to decompose

these MCSs into their individual components. As a result of their computational simplicity and efficiency,

linear time-frequency (TF) transforms such as the short-time Fourier transform (STFT) and the continuous

wavelet transform (CWT) have received considerable attention to this end, over the last 40 years. The

STFT of a MCS determines ridges in the TF plane which, once detected, allow for the reconstruction

of the different components based on the TF representation evaluated on these ridges [1]. More recently,

it has been shown in [2][3] that local frequency integration can improve the robustness to noise of the

reconstruction. An alternative approach to the reconstruction of the modes, based on the information

computed on the ridge, is known as the synchrosqueezing transform (SST) originally introduced in [4],

and theoretically studied in [5]. In essence, the technique consists of enhancing the time-scale (TS)

representation, given by a wavelet transform, by reassigning the coefficients using an estimate of the

instantaneous frequency (IF). Such a technique is easily transferable to the TF representation given by

the STFT [6][7]. However, in their original formulations, these techniques are not well suited for signals

made of non purely harmonic modes, therefore an extension of SST was recently proposed to better deal

with this case, and is known as second order synchrosqueezing transform [8].

In this present paper, we introduce a novel demodulation technique, built on the second order syn-

chrosqueezing transform that leads to an even sharper representation along with better mode reconstruction

results. A previous attempt which involved demodulating the signal before applying SST was presented

in [9]. In that paper, the demodulation was based on the computation of the phase of the analytic signal

associated with the MCS. However, it is well known that this phase cannot be related to the instantaneous

frequency (IF) of the modes which the MCS consists of. Indeed, to demodulate a MCS requires estimates

of the IF of the modes. In relation to this issue, in [10], an estimate of the IF of a mono-component signal

was computed using local frequency extrema of the spectrogram. An iterative procedure was proposed

to accurately estimate the IFs of the modes, but mode reconstruction was not discussed.
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In this paper, we first introduce a novel ridge estimation technique, based on the second-order SST

method introduced in [8], followed by demodulation and finally mode reconstruction. The benefits of

using such a procedure is an improvement in the sharpness of the TF representation obtained and also

in the mode reconstruction performance. The paper is structured as follows, after this brief introduction,

we recall the basics of STFT-based SST (Section II). Then, we focus on the practical implementation of

ridge estimation in Section III, and move on to the definition of the demodulation procedure followed by

the reconstruction algorithm based on the demodulated signal (Section IV). Numerical examples showing

the relevance of the proposed approach on both simulated and real data conclude the paper.

II. BACKGROUND TO FOURIER SYNCHROSQUEEZING TRANSFORM

Prior to starting, it is useful to define our notation, and remind readers of the basic elements of STFT

based SST (FSST) and of the approach to FSST which is better adapted to deal with modulated modes.

A. Basic Definitions and Notation

Let f be a function in L1(R), the space of integrable functions, we denote by f̂ the Fourier transform

of f , defined using the following normalization:

f̂(η) =

∫
R
f(x)e−2iπηxdx. (1)

Taking a window g in the Schwartz class, the space of smooth functions with fast decaying derivatives

of any order, the (modified) STFT of f is defined by

V g
f (η, t) =

∫
R
f(τ)g∗(τ − t)e−i2πη(τ−t) dτ, (2)

where g∗(t) is the complex conjugate of g(t).

In what follows, we investigate the retrieval of the components fk of a MCS f defined by:

f(t) =

K∑
k=1

Ak(t)e
2iπφk(t) =

K∑
k=1

fk(t), (3)

where Ak(t) > 0 and φ′k(t) > 0. The signal f is completely defined by its so-called ideal TF representation

as follows:

TIf (ω, t) =

K∑
k=1

Ak(t)δ(ω − φ′k(t)). (4)
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B. The Basics of FSST

The aim of STFT-based SST (FSST) [6][7] is to retrieve the ideal TF representation of f from its

STFT, based on estimation of the IF at time t and frequency η:

ω̂f (η, t) =
1

2π
∂t arg V g

f (η, t) = η − Im

{
1

2π

V g′

f (η, t)

V g
f (η, t)

}
, (5)

where Im {X} denotes the imaginary part of complex number X . The principle of FSST is to reassign

the complex coefficients V g
f (η, t) according to the following map (η, t) 7→ (ω̂f (η, t), t), by means of the

synchrosqueezing operator:

T gf (ω, t) =
1

g∗(0)

∫
{η, |V gf (η,t)|≥γ}

V g
f (η, t)δ (ω − ω̂f (η, t)) dη, (6)

where δ is the Dirac distribution. Knowing φ′k, the kth mode can then be retrieved by considering:

fk(t) ≈
∫
|ω−φ′

k(t)|<d
T gf (ω, t)dω. (7)

Essentially, FSST reassigns the information in the TF plane and then makes use of this sharpened

representation to recover the modes. Previous theoretical investigations [8][6] have highlighted a set

of signals on which the performance of FSST can be evaluated. These are defined as follows:

Definition II.1. Let ε > 0. We define the set B∆,ε of MCS where

• for all k, fk satisfies: Ak ∈ C1(R)
⋂
L∞(R), φk ∈ C2(R), supt φ

′
k(t) <∞ and for all t, Ak(t) > 0,

φ′k(t) > 0, |A′k(t)| ≤ ε and |φ′′k(t)| ≤ ε.

• the fks are separated with resolution ∆, i.e. for all k ∈ {1, · · · ,K − 1} and for all t,

φ′k+1(t)− φ′k(t) > 2∆. (8)

The synchrosqueezing operator with threshold γ > 0 and accuracy parameter λ > 0 is then defined,

using a function ρ ∈ D(R), in the space of compactly supported smooth functions, such that
∫
R ρ(x) dx =

1, as:

T λ,γf (ω, t) =
1

g(0)

∫
{η,|Vf (η,t)|>γ}

V g
f (η, t)

1

λ
ρ

(
ω − ω̂f (η, t)

λ

)
dη. (9)

This definition allows us to state the main approximation result of FSST [6]:

Theorem II.1. Let f ∈ B∆,ε, ε̃3 = ε, and g be a window in the Schwartz class, such that ĝ is compactly

supported in [−∆,∆]. Then, if ε is small enough,

• |V g
f (η, t)| > ε̃ only if there exists k ∈ {1, · · · ,K} s. t. (η, t) ∈ Zk := {(η, t), s.t. |η−φ′k(t)| < ∆}.
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• For all k ∈ {1, · · · ,K} and all pair (η, t) ∈ Zk, s. t. |V g
f (η, t)| > ε̃, one has

|ω̂f (η, t)− φ′k(t)| ≤ ε̃. (10)

• For all k ∈ {1, · · · ,K} there exists a constant C s. t. for all t ∈ R,∣∣∣∣∣ limλ→0

(∫
|ω−φ′

k(t)|<ε̃
T λ,ε̃f (ω, t) dω

)
− fk(t)

∣∣∣∣∣ ≤ Cε̃. (11)

A detailed proof is available in [6].

C. Second-Order Synchrosqueezing

One of the limitations of FSST is that it does not allow for the reconstruction of modes subject to

significant frequency modulation. A method was recently reported to deal with mode modulation in the

FSST context via second order synchrosqueezing (VSST) [8][11]. This technique uses a second order

approximation of the phase of the modes in the definition of the synchrosqueezing operator. VSST is

based on a new complex estimate of the second order derivative of the phase of f , defined as follows:

q̃f (η, t) =
∂t(∂tV

g
f (η, t)/V g

f (η, t))

2iπ − ∂t(∂ηV g
f (η, t)/V g

f (η, t))
, (12)

which is computable by means of five different STFTs:

q̃f (η, t) =
1

2iπ

V g′′

f (η, t)V g
f (η, t)− (V g′

f (η, t))2

V tg
f (η, t)V g′

f (η, t)− V tg′

f (η, t)V g
f (η, t)

. (13)

Now, introducing ω̃f (η, t) =
∂tV

g
f (η,t)

2iπV gf (η,t) , and t̃f (η, t) = t− ∂ηV
g
f (η,t)

2iπV gf (η,t) , enables the definition of a new IF

estimate as [11]:

ω̂
(2)
f (η, t) =


Re
{
ω̃f (η, t) + q̃f (η, t)(t− t̃f (η, t))

}
if ∂tt̃f (η, t) 6= 0

ω̂f (η, t) otherwise,
(14)

where Re {X} denotes the real part of X . It is worth noting here that ω̂f (η, t) = Re {ω̃f (η, t)}. It can be

easily shown that, when f(t) = A(t)e2iπφ(t) is a linear chirp with Gaussian amplitude, ω̂(2)
f (η, t) = φ′(t).

For a more general mode with Gaussian amplitude, when the IF is estimated by ω̂(2)
f (η, t), the estimation

error involves only derivatives of the phase whose orders are larger than 3.

VSST then consists of replacing ω̂f by ω̂(2)
f in FSST:

TV g
f (ω, t) =

1

g∗(0)

∫
{η, |V gf (η,t)|≥γ}

V g
f (η, t)δ(ω − ω̂(2)

f (η, t))dη. (15)
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The reconstruction of the mode fk is subsequently performed by means of the following formula:

fk(t) ≈
∫
|ω−φ′

k(t)|<d
TV g

f (ω, t)dω. (16)

D. On the Computation of the STFT and Synchrosqueezed Transforms

In many practical situations, the signal f is of finite length, typically defined on the interval [0, T ],

and discretized into f(nTN )n=0,··· ,N−1. In what follows and without loss of generality, N is assumed to

be a power of 2 to ease the presentation. Assuming g is supported on [−LT
N , LTN ], with L < N/2 the

STFT is then computed as follows:

V g
f (η, t) =

∫
R
f(t+ τ)g(τ)e−2iπτηdτ =

∫ LT

N

−LT
N

f(t+ τ)g(τ)e−2iπτηdτ

≈ T

N

L∑
n=−L

f(t+
nT

N
)g(

nT

N
)e−i2π

nT

N
η, (17)

from which we infer that:

V g
f (
p

T
,
qT

N
) ≈ T

N

L∑
n=−L

f(
(q + n)T

N
)g(

nT

N
)e−i2π

np

N

=
Te

2iπpL

N

N

2L∑
n=0

f(
(q + (n− L))T

N
)g(

(n− L)T

N
)e−i2π

np

N (18)

:= e
2iπpL

N

2L∑
n=0

S(q, n)e−i2π
np

N , (19)

where the last sum is computed by means of an FFT. It is common to extend, for each q, the sequence

(S(q, n))n into a sequence of size Nf > N by adding Nf −N zeros to it. This operation is known as

zero-padding. By doing so, one obtains an increased frequency resolution in the TF grid but not of the

time resolution, since:

V g
f (

N

Nf

p

T
,
qT

N
) ≈ T

N

L∑
n=−L

f(
(q + n)T

N
)g(

nT

N
)e
−i2π np

Nf

=
Te

2iπpL

Nf

N

2L∑
n=0

f(
(q + (n− L))T

N
)g(

(n− L)T

N
)e
−i2π np

Nf

= e
2iπpL

Nf

2L∑
n=0

S(q, n)e
−i2π np

Nf . (20)

Since V g
f ( NNf

p
T ,

qT
N ) is approximated by means of an FFT, only the first half of the frequency set is

meaningful. That is, V g
f is approximated on the TF grid {0, TN , · · · ,

(N−1)T
N }×{0, NNf

1
T , · · · ,

N
Nf

Nf/2−1
T }.
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It is worth noting here that the synchrosqueezed TF representations T gf or TV g
f correspond to reassigned

versions of the STFT on the discrete time-frequency grid defined above. The computation of T gf from

V g
f can then be carried out as explained in Algorithm 1 (putting tq = qT

N ) [8].

Algorithm 1
for q = 0 to N − 1 do

for k = 0 to Nf/2− 1 do
T gf ( NNf

k
T , tq) := 0

for p = 0 to Nf/2− 1 do

Compute ω̂f ( NNf
p
T , tq) = N

Nf
p
T − Im

{
1

2π

V g
′

f ( N

Nf

p

T
,tq)

V gf ( N

Nf

p

T
,tq)

}
.

Put k = round(T Nf
N ω̂f ( NNf

p
T , tq)).

Reassign |V g
f ( NNf

p
T , tq)| > γ as follows:

T gf (
N

Nf

k

T
, tq) = T gf (

N

Nf

k

T
, tq) +

1

g∗(0)
V g
f (

N

Nf

p

T
, tq).

The same algorithm is applied to get TV g
f from V g

f , replacing ω̂f by ω̂(2)
f . The role of zero-padding

is going to be further investigated in the sequel.

III. RIDGE ESTIMATION

Any mode reconstruction techniques based on the synchrosqueezing transform requires an estimate of

the ridges (t, φ′k(t)) (mode reconstruction being then either based on formula (7) or (16), depending on

the type of TF representation used). In that context, we are going to introduce a classical ridge detector

that is usually applied to the spectrogram, and then investigate whether to perform the ridge detection

on the reassigned transform is profitable. The influence of all of the different parameters on the accuracy

of ridge estimation both in noiseless and noisy contexts will also be studied.

A. Algorithm for Ridge Extraction

To compute an estimate of the ridge (t, φ′k(t)), assuming knowledge of the number of modes K, we

can use the same algorithm as described in [5] or [12], and which was originally proposed in [13]. This

computes a local minimum of the functional

Ef (ψ1, · · · , ψK) =

K∑
k=1

−
∫
R
|TFf (ψk(t), t)|2dt+

∫
R
λψ′k(t)

2dt+ βψ′′k(t)2dt, (21)
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where TFf is one of the TF representations given by V g
f , T gf or TV g

f . However, as presented, equation

(21) does not offer any algorithmic means to compute the ridges. Inspired by the above minimization

problem, we derive Algorithm 2, for that purpose.

Algorithm 2
Pick q ∈ {0, · · · , N − 1}

for k = 1 to K do
1. tq = qT

N .
2. Define pk,q = argmax

l
|TFf ( NNf

l
T , tq)|.

3. Define Ik,q = {max(0, pk,q − Nf
N T∆), · · · ,min(pk,q + Nf

N T∆, Nf/2− 1)}.
4. Define pk,q−1 = argmax

l∈Ik,q
|TFf ( NNf

l
T , tq−1)|.

5. Define pk,q+1 = argmax
p∈Ik,q

|TFf ( NNf
p
T , tq+1)|2 − λ(p− pk,q)2 − β(p− 2pk,q + pk,q−1)2

6. Iterate forward in time.
7. Iterate steps 2-6 backward from time tq.
8. (ψk(tq))q = ( NNf

pk,q
T )q

9. TFf = TFf \
⋃
q[ψk(tq)−∆, ψk(tq) + ∆]

To improve the robustness of the procedure, several random initializations are required, leading to the

detection of many different ridge sets (ψk)k=1,··· ,K , and the one retained as the output corresponds to

the one maximizing

K∑
k=1

N−1∑
n=0

|TFf (
N

Nf

pk,n
T
, tn)|2 − λ

N−1∑
n=1

(pk,n − pk,n−1)2 − β
N−2∑
n=1

(pk,n+1 − 2pk,n + pk,n−1)2.

Note that, at the end of the procedure, the estimated ridges need to be resorted according to increasing

IF.

B. Influence of Zero-Padding on Ridge Estimation

To start the discussion on the influence of zero-padding on ridge estimation, we recall, for the case of

a mono-component signal, the following estimate of φ′(tn):

Ψ(tn) = argmax
η
|V g
f (η, tn)|2, (22)

which was studied in [14], for a noisy version of the signal f(t) = A(t)e2iπφ(t), i.e. f̃(tn) = f(tn)+ε(tn),

where ε is a Gaussian white noise with variance σ2
ε . Selecting

∆Ψ(tn) := Ψ(tn)− φ′(tn), (23)
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and assuming g is the Gaussian window, g(x) = 1√
2πσ

e−
x2

2σ2 , it was proven in [14] that:

Bias{∆Ψ(tn)} ∼N→+∞

+∞∑
k=1

2πφ(2k+1)(tn)σ2k

2kk!

V ar{∆Ψ(tn)} ∼N→+∞
σ2
ε

8
√
π|A(tn)|2

[
1 +

σ2
εT

2N
√
πσ|A(tn)|2

]
T

Nσ3
. (24)

These results are interesting but they do not consider the fact that |V g
f (η, tn)| is only available on a

discrete frequency grid, since it is computed using an FFT. More precisely, (22) actually corresponds to

the ridge detector we would like to study (when λ and β are null), assuming a continuous frequency

representation. To illustrate the impact of the discrete grid associated with frequency resolution, remem-

bering that, as already noted, TF representations are evaluated at frequencies
(
N
Nf

p
T

)
p=0,··· ,Nf/2−1

, we

investigate the quality of IF estimate depending on this discretization, i.e. the choice for Nf . This can be

quantified by measuring the mean square error (MSE) between the estimated ridge and the ground truth:

MSE(ψ) =

√√√√ 1

N − 1

N−1∑
n=0

(φ′(tn)− ψ(tn))2, (25)

when the frequency resolution varies. To have a better understanding of what is at work in this ridge

detection, we not only investigate the influence of zero-padding but also of the noise-level. Since, the

study of a linear chirp is somewhat limiting, we extend the analysis to three different types of mono-

component signals whose STFT are displayed in Figure 1, first row (they correspond to a linear chirp, a

polynomial chirp and a mode with sinusoidal phase).

The results, displayed in Figure 1 D, show that, in a noise-free context, when STFT or VSST are

used for ridge detection, MSEs are the same for the linear chirp, which corresponds to the fact that

the coefficients are reassigned to a maximum of the STFT with VSST (this method being based on an

exact IF estimate for linear chirps). For the other two signals, the detector based on STFT behaves a

little bit better than VSST, but not significantly so. In contrast, since FSST is based on an inaccurate IF

estimate (even for the linear chirp), the results in terms of ridge estimation are significantly worse when

the former is used as TF representation. For this reason, we do not consider it in the simulations which

follow. Finally, we remark, that in the noise-free context for the linear and polynomial chirps of Figure 1

A and B, the MSE error when using STFT or VSST decreases when the frequency resolution across the

sampling grid is increased. However, this is no longer true with the signal of Figure 1 C. In such a case,

since the signal modulation is important, there is no staircase effect even at a low frequency resolution

such as Nf = N . The conclusion of this study is that the frequency resolution, for the purpose of ridge

estimation, has to be tuned depending on the signal modulation: a small modulation requires a higher

January 13, 2017 DRAFT



9

frequency resolution.

time

0 0.2 0.4 0.6 0.8

fr
e

q
u

e
n

c
y

0

50

100

150

200

250

300

350

400

450

500

A
time

0 0.2 0.4 0.6 0.8

fr
e

q
u

e
n

c
y

0

50

100

150

200

250

300

350

400

450

500

B
time

0 0.2 0.4 0.6 0.8

fr
e

q
u

e
n

c
y

0

50

100

150

200

250

300

350

400

450

500

C

frequency resolution
1 2 4 8 16

M
S

E

0

0.2

0.4

0.6

0.8

1

1.2

1.4 STFT, noise free
FSST, noise free
VSST, noise free
STFT, 5 dB
VSST, 5 dB
STFT, 0 dB
VSST, 0 dB
STFT, -5 dB
VSST, -5 dB

D
frequency resolution

1 2 8 16

M
S

E

0

0.5

1

1.5
STFT, noise-free

FSST, noise-free

VSST, noise-free

STFT, 5 dB

VSST, 5 dB

STFT, 0 dB

VSST, 0 dB

STFT, -5 dB

VSST, -5 dB

E
frequency resolution

1 2 8 16

M
S

E

0.5

1

1.5

2

2.5

3

3.5

4

4.5
STFT, noise-free

FSST, noise-free

VSST, noise-free

STFT, 5 dB

VSST, 5 dB

STFT, 0 dB

VSST, 0 dB

F

Figure 1. A: STFT of a linear chirp; B: STFT of a polynomial chirp; C: STFT of a mode with sinusoidal phase; D: Computation
of the mean square error associated with the ridge detection for the linear chirp displayed in A, for various frequency resolution
(k in abscissa means Nf = kN ), different TF representations and noise level; E: same as D but for the polynomial chirp
displayed in B; F: same as D but for the mode with sinusoidal phase displayed in C.

Now, we would like to understand what happens in noisy situations, therefore we perform the ridge

detection on the linear and polynomial chirps and also on the mode with sinusoidal phase but with an

SNR equal to 5, 0 or -5 dB. The results are depicted in Figure 1 D to F (for the latter type of signals,

and whatever the TF representation used, the ridge detector does not perform well at -5 dB, therefore

the results are not depicted). It is clear from Figures 1 D and E that, while a finer frequency resolution,

associated with a larger Nf , leads to a more accurate IF estimate in the noise-free case, Nf has a much

smaller impact on the quality of the estimation in a noisy context. Furthermore, the quality of the estimate

provided by applying the ridge detector to VSST rather than to STFT is always better: the ridge detection

operates on a much sharper TF representation which appears to be less sensitive to noise. Finally, we

note that, from these simulations, Nf = 8N is a good choice for frequency resolution for ridge detection

purpose.
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Figure 2. A: MSE corresponding to the ridge estimation for the linear chirp of Figure 1 A with V g
f as TF representation (noise-

free case, Nf = 8N ); B: Same as A but at a 0 dB noise level; C: Same as A but at a -5 dB noise level; D: MSE corresponding
to the ridge estimation for the linear chirp of Figure 1 A with TV g

f as TF representation (noise-free case, Nf = 8N ); E: Same
as D but at a 0 dB noise level; H: Same as D but at a -5 dB noise level.

C. Influence of Regularization Parameters

Taking into account the study carried out in the previous section, the ridge detector applied either to

STFT or VSST both lead to good results when no regularization is used, even though, as illustrated in

Figure 1 (second row), to perform ridge detection on VSST rather than STFT is always better in noisy

situations.

We now study the behavior of the ridge detector applied to STFT or VSST when regularization terms

vary, both in the noise-free and noisy cases. To do so, we consider the same linear chirp as previously

either in the noise-free, 0 dB or -5 dB cases. We remark that the ridge detector is much more sensitive

to regularization parameters when applied to STFT rather than VSST (see Figure 2): the reassignment

technique enables a more robust ridge detection even at high noise level, because it corresponds to a

sharper TF representation. Finally, note that, the regularization parameters do not offer any improvement

in terms of the accuracy of the ridge estimation, which argues against using them, (the simulations shown

in Figure 2 were carried out for Nf = 8N , but the same results could be derived for any reasonable

value of Nf ). It is important to note here that the same conclusions would hold if the simulations were

carried out on the polynomial chirp or on the mode with sinusoidal phase, as soon the algorithm detects
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the ridge.

IV. DEMODULATION ALGORITHM AND MODE RECONSTRUCTION

Once a ridge is detected using an appropriate Nf to avoid the staircase effect mentioned above, we

compute a demodulation operator for each mode which is going to be subsequently used to extract the

corresponding demodulated mode. Inverting the demodulation operator, we will finally obtain the desired

mode. The modes are extracted in a sequential fashion, i.e. one at a time, a commonly used technique

often referred to as the peeling method in the literature [15][16].

It is worth noting here that, in most cases, and in contrast to our approach, when demodulation problems

are considered, it is often assumed that knowledge of a phase function v(t) is available and, this is then

used to compute the so-called short time generalized Fourier transform (STGFT). Indeed, the STGFT

corresponds to:

V g,v
f (η, t) =

∫
R
f(t)g∗(t− τ)e−2iπv(t)e−2iπη(t−τ)dt. (26)

This kind of approach has also been used in [17][18] and ridge detection can be viewed as a way to

estimate this phase function. Attempts have also been made to estimate the ridges using parametric models

[10]. As will be explained later, our approach is fully non-parametric.

A. Definition of Demodulation Operator

Based on the ridge estimate defined above, we introduce the demodulation algorithm for a mono-

component signal f(t) = A(t)e2iπφ(t), for which we assume the IF estimate ψ(t) is computed. For the

case of a linear chirp, i.e. φ(t) = at + bt2, ψ(t) approximates a + 2bt. So, by multiplying f(t) by

e−2iπ(ψ(t)t/2), and if the IMF estimation is accurate, we should obtain a demodulated signal fD with

constant frequency a/2. However, it is worth remarking that this demodulation procedure is only well

suited to a linear chirp, because it removes only second order terms. Therefore, to demodulate a more

general mode f(t) = A(t)ei2πφ(t), the following demodulation operator e−i2π(
∫ t
0
ψ(x)dx−ψ0t), where ψ0 is

some positive constant frequency, is a better choice since, no assumption is made about φ. Indeed, by

considering the signal

fD(t) = f(t)e−i2π(
∫ t
0
ψ(x)dx−ψ0t), (27)

one should get a signal with constant frequency ψ0. An illustration of this is shown in Figure 3, for

three different types of mode, where ψ0 is equal to 100 Hz. In that figure, we display the VSST of the

considered modes in the noise-free (resp. 0 dB) case, in the first (resp. second) row. In the bottom row of
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Figure 3. A: VSST of a linear chirp (noise-free case); B: VSST of a polynomial chirp (noise-free case); C: VSST of a mode
with sinusoidal phase (noise-free case); D: VSST of a linear chirp (noise level 0 dB case); E: VSST of a polynomial chirp
(0 dB case); F: VSST of a mode with sinusoidal phase (0 dB case); G: demodulated signal D; H: demodulated signal E; I:
demodulated signal F.

that figure, we display the VSSTs of the demodulated signals associated with the three modes represented

in the second row (Nf being taken equal to 8N in the ridge detection). Despite the high noise level, the

demodulation performs well.

Now, let us consider how this procedure works in the multicomponent case. We will illustrate this by

adopting a signal consisting of the three different modes, displayed in Figure 4 A. Then by applying

Algorithm 2 to the VSST computed with Nf = 8N , we obtain the estimates (ψ1, ψ2, ψ3), which are

subsequently used to compute three demodulated signals, as follows:

fD,k(t) = f(t)e−i2π(
∫ t
0
ψk(x)dx−ψ0t), k = 1, 2, 3. (28)
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The VSST of the three signals (fD,k)k=1,2,3 are shown in Figures 4 B to D, where the SNR in the

original signal equals 0 dB. It is worth noting that, in fD,k, only the kth mode is demodulated.
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Figure 4. A: Three modes signal (noise level 0 dB); B: VSST of fD,1; C: VSST of fD,2; D: VSST of fD,3.

B. Algorithm for Mode Extraction Based on Demodulation

The previous section has provided us with a means to demodulate any of the modes of the signal f ,

the number, K, of which is assumed to be known. With that in mind, the algorithm for mode extraction

can then be summarized as follows:

Algorithm 3
Compute the ridge estimates (ψ1, · · · , ψK) with Algorithm 2 applied to VSST.
for k = 1 to K do

1. Compute fD,k(t) = f(t)e−i2π(
∫ t
0
ψk(x)dx−ψ0t).

2. From TVfD,k , extract the ridge ψD,k corresponding to mode k of fD,k, by considering single
ridge detection in the frequency range [ψ0 −∆, ψ0 + ∆].

3. Reconstruct the kth mode of fD,k and then multiply it by the inverse of demodulation operator
to recover fk: fk(t) ≈

(∫
|ω−ψD,k(t)|<d TVfD,k(ω, t)dω

)
ei2π(

∫ t
0
ψk(x)dx−ψ0t).

Note here that the TF representation used to compute the ridge of fD,k and then mode k could

alternatively be T gf since the mode sought is demodulated, there is no need to take into account the

modulation at this stage. Indeed, the kth mode of signal fD,k should be a purely harmonic signal at

frequency ψ0 (see Figures 4 B to D for illustrations). Furthermore, while it is important to fix the frequency

resolution parameter Nf according to mode modulation for ridge estimation, to compute TVfD,k , Nf = N

is used because the mode k, extracted at step 3 of Algorithm 3, is a purely harmonic one.
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V. EVALUATION OF THE PERFORMANCE OF THE RECONSTRUCTION ALGORITHM

Before we assess the reconstruction technique proposed, we discuss how an optimal window length,

(which is crucial in all TF representations), might be determined. The emphasis is placed on the difficulty

of estimating this window length in a noisy context.

A. Automatic Window Length Determination
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Figure 5. A: Rényi entropy associated with the VSST of Figure 4 A (but with no noise) as a function of parameter σ, and with
various frequency resolutions; B: same as A but with a SNR equal to 5 dB; C: same as A but with a SNR equal to 0 dB; D:
same as A but with a SNR equal to -5 dB

To determine an optimal window length, we consider that g is Gaussian, i.e. g(x) = 1√
2πσ

e−
x2

2σ2 , so

that its length is controlled by parameter σ. In our framework, we seek the value of that parameter leading

to the most concentrated representation. Following [19][20], this concentration can be measured on the

VSST by means of the Shannon entropy:

HS(σ) = −
Nf/2−1∑
p=0

N−1∑
n=0

|TV g
f ( NNf

p
T , tn)|

‖TV g
f ‖1

log2(
|TV g

f ( NNf
p
T , tn)|

‖TV g
f ‖1

), (29)
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or the Rényi entropy:

HR(σ) =
1

1− α
log2

Nf/2−1∑
p=0

N−1∑
n=0

(
|TV g

f ( NNf
p
T , tn)|

‖TV g
f ‖1

)α , (30)

whose behaviors are reported to be very similar [19], and in which ‖TV g
f ‖1 =

Nf/2−1∑
p=0

N−1∑
n=0
|TV g

f ( NNf
p
T , tn)|.

To determine σ in this manner is particularly relevant, but only when the noise level is relatively low.

Indeed, looking at Figures 5 A to C, representing the Rényi entropy (with α equal to 3) of the VSST of

the signal f displayed in Figure 4 A, one notices that it exhibits a local minimum at a specific value for σ

at noise level lower than 0 dB, and the optimal value is relatively stable for these cases. Note also that, in

such a case, the result is not dependent on the frequency resolution. We note here that the Rényi entropy

is computed by considering that the second order reassignment operator reassigns only the coefficients

V g
f (η, t) such that |Re

{
V g
f (η, t)

}
| > γ1 or |Im

{
V g
f (η, t)

}
| > γ2, where γ1 (resp. γ2) is the standard

deviation of Re
{
V g
f (η, t)

}
(resp.Im

{
V g
f (η, t)

}
). The choice for such a threshold is motivated by the

fact that the STFT of a zero mean white Gaussian noise is also a zero mean Gaussian process.

However, the technique based on Rényi entropy to determine the optimal σ no longer works in a very

noisy context, see Figure 5 D, in particular because it does not take into account the number K of modes.

Since Algorithm 3 performs better when the ridge detection is efficient, it is natural to define the optimal

value σ as the one that concentrates the most the information on the K detected ridges. This could be

measured by introducing the following quantity:

ER(σ) =

K∑
k=1

N−1∑
n=0
|TV g

f (ψk(tn), tn)|2

Nf/2−1∑
p=0

N−1∑
n=0
|TV g

f ( NNf
p
T , tn)|2

, (31)

where ER stands for "energy on the ridge", bearing in mind the dependence on σ is contained in g. ER

actually corresponds to the proportion of the total energy located on the ridges. We depict ER(σ) for

the same signal as before, for different noise levels, and for Nf = N in Figure 6. We notice, first, that

the optimal value is close to that given by the Rényi entropy for noise levels lower than 0 dB, and that

the information located on the ridge becomes less and less significant as the noise level increases. What

is interesting with this technique is that, in contrast to the Rényi entropy, it offers us a means to find a

relevant σ at noise levels as high as -5 dB. Such a technique will thus be used to determine the optimal σ

in very noisy situations. Finally, note that similar results can be obtained by considering different values

of Nf .
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time

0 0.2 0.4 0.6 0.8

fr
e

q
u

e
n

cy

0

50

100

150

200

250

300

350

400

450

500

A
d

0 2 4 6 8 10

S
N

R
 o

u
t

25

30

35

40

45

50

55

rec f
1
 (optimal demod)

rec f
2
 (optimal demod)

rec f
1
 (demod, N

f
 = N)

rec f
2
 (demod, N

f
 = N)

B

d
0 2 4 6 8 10

S
N

R
 o

u
t

34

36

38

40

42

44

46

48

50

52

rec f
1
 (optimal demod)

rec f
2
 (optimal demod)

rec f
1
 (demod, N

f
 = 4N)

rec f
2
 (demod, N

f
 = 4N)

C
d

0 2 4 6 8 10

S
N

R
 o

u
t

20

25

30

35

40

45

50

55

rec f
1
 (optimal demod)

rec f
2
 (optimal demod)

rec f
1
 (direct)

rec f
2
 (direct)

rec f
1
 (demod, N

f
 = 8N)

rec f
2
 (demod, N

f
 = 8N)

D

Figure 7. A: VSST of a two mode signal; B: mode reconstruction ("rec fi" corresponds to reconstructed mode fi) when ridges
used in Algorithm 3 computed with Nf = N , along with the reconstruction when the IFs of the mode are assumed to be known
in Algorithm 3 ("optimal demod" in the figure); C: Same as B, but when Nf = 4N in the ridge computation; D: Same as B,
but when Nf = 8N in the ridge computation
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Figure 8. A: VSST of a two mode signal; B: mode reconstruction ("rec fi" corresponds to reconstructed mode fi) when ridges
used in Algorithm 3 are computed with Nf = N , along with the reconstruction when the IFs of the mode are assumed to be
known in Algorithm 3 ("optimal demod" in the figure); C: Same as B, but when Nf = 4N in the ridge computation; D: Same
as B, but when Nf = 8N in the ridge computation

B. Reconstruction Procedure: Noise-free Case

In this section, we illustrate the improvement offered by Algorithm 3 in terms of the quality of the

reconstructed modes in the noise free case to enable the impact of parameter selection to be considered.

Our test signals are displayed in Figures 7 A and 8 A. The window used to build the TF representation

is Gaussian and its length is optimized as explained in the previous subsection. Then, ridge detection

and mode reconstruction are performed using a small value for γ in the definition of the reassignment

operator (typically γ = 10−3), since in such a case, all the non zero coefficients are related to the signal.

Since the ridge computation is influenced by the frequency resolution, we investigate the impact of

Nf used in ridge computation on mode reconstruction. Also, to show that to use demodulation results

in a more compact TF representation than by the original VSST method, the role of d, used both in

reconstruction formula (16) and Algorithm 3, is investigated. To assess how the ridge detection impacts

mode reconstruction, we also compute the mode reconstruction assuming the IFs of the modes are known.
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We study two types of signals which are depicted in Figure 7 A and 8 A. The results for the first type

are depicted in Figures 7 B to D and represent the output SNR defined, for mode i, as 20 log10( ‖fi‖2
‖fi−f̂i‖2

),

where the norm is the l2 norm and f̂i is the ith mode reconstructed using Algorithm 3, and when the

frequency resolution used in the ridge detection varies (in the different figures we use the term "demod").

In each case, we also display the reconstruction results using the true IFs of the modes in Algorithm 3

(in the figures we use the term "optimal demod"). We note that, as expected, for Nf = 8N the results are

very close to those obtained assuming knowledge of the IFs of the modes, as illustrated in Figure 7 D. We

also display the results obtained by reconstructing the modes directly using formula (16): whatever the

value of d the reconstruction is better when using Algorithm 3. Also, since the signal studied is slightly

modulated, to choose a sufficiently large Nf for ridge estimation is crucial. Similar conclusions can be

drawn from the study of the signal whose VSST is displayed in Figure 8 A: first, to increase Nf clearly

improves the reconstruction results, and, then, when Nf = 8N , the results are close to those that would

be obtained if the IFs of the modes were known. Also, we again remark that the results are far better

than direct reconstruction. In this case however, and since the modes are more modulated than those of

Figure 7 A, the impact of Nf on ridge computation and then mode reconstruction is less important.
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Figure 9. A: SNR after reconstruction for mode f1 of the signal whose VSST is depicted in Figure 7 A using either the direct
reconstruction (direct) or Algorithm 3 (demod), and for d = 0 or d = 5 in both cases; B: Same as A but for mode f2 of the
same signal; C: SNR after reconstruction for mode f1 of the signal whose VSST is depicted in Figure 8 A using either the
direct reconstruction (direct) or Algorithm 3 (demod), and for d = 0 or d = 5 in both cases; of the same signal; D: Same as C
but for mode f2 of that signal

January 13, 2017 DRAFT



19

C. Reconstruction Procedure: Noisy Case

In this section, we investigate the sensitivity to noise of our new method for mode retrieval, considering

again the two types of signals displayed in Figures 7 A and 8 A. From the study of the noise-free case,

ridge computation leads to good reconstruction when Nf = 8N , so we retain this value in the simulations

that follow. Again we use a Gaussian window with the optimal window length σ computed as before,

and with threshold γ = 10−3.

The results displayed in the first row of Figure 9, represent the output SNR associated with mode

reconstruction, when d = 0 or d = 5, respectively for the first and second mode of Figure 7 A, with

respect to global input SNR. We note the following based on these observations: whatever the noise

level, the mode reconstruction is improved by using Algorithm 3 rather than direct reconstruction; the

discrepancy in terms of reconstruction performance between the two types of techniques increases when

the noise level is decreasing; the gain of demodulating first is not that important because VSST is

optimized for linear chirps.

Switching to the study of the signal of Figure 8 A, the benefit of using the demodulation procedure

is much clearer: when a mode is very different from a linear chirp, the demodulation procedure greatly

improve the reconstruction results. Finally, we remark that, as in the noise-free case, the parameter d

plays a crucial role in the quality of the reconstruction, and that by demodulating first, we obtain a more

concentrated representation since, for a given d, the reconstruction is always better using demodulation

than without.

D. Application to Real Data: VSST versus EMD and limitations

Here we consider the reconstruction of a bat echolocation signal whose VSST is shown in Figure 10 A.

Assuming the number of modes is three, which is consistent with the representation in the aforementioned

figure (there is actually a fourth mode but due to aliasing effect we do not take it into account), we perform

ridge extraction on the VSST (the extracted ridges are also depicted in the figure) and then compute the

different modes by either using VSST or by demodulating first. In this regard, we study the influence of

parameter d and frequency resolution on the reconstruction.

Since the signal studied is real, and as Algorithm 3 applies to complex signal, we first consider the

Hilbert transform of the signal before applying that algorithm. Then, the length of the signal N not

being a power of 2, we use N1 = 2blog2(N)c+1, and its multiples, to define the different frequency

resolutions subsequently used in the ridge detection. As previously, we investigate the impact of the

frequency resolution used in the ridge estimation, on signal reconstruction. For this purpose, we compute

the output SNR associated with the reconstruction of the signal by summing the first three modes. The
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results depicted in Figure 10 B, again show the benefit of demodulating first the signal compared to

direct computation, the improvement brought by using a higher frequency resolution being much less

obvious than in controlled situations such as those studied before. In spite of this reconstruction results

are satisfactory, some information is lost when considering the reconstructed signal obtained using only

the first three modes. This problem arises because for real-world signals, such as the bat signal considered

here, the number of modes is not constant over time: i.e. some modes vanish but the ridge estimation

assumes that the modes will persist throughout the data record. This is a failing of many methods and is

topic of current research. For comparison purposes we depict the VSST of the first three intrinsic mode

functions (IMF) obtained with the empirical mode decomposition (EMD) [21], which is an alternative

technique to extract the modes of a multicomponent signal, on Figure 11 A, B and C. From these figures,

we note that the modes obtained are not related to the TF content of the signal depicted in Figure 10 A

since the TF structure based on modes corresponding to TF ridges is completely broken.
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Figure 10. A: VSST of a bat echolocation call along with the corresponding ridges, B: reconstructed signal based on VSST
and assuming the number of modes equals 3
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Figure 11. A: VSST of the first IMF obtained corresponding to signal whose VSST is depicted on Figure 10 A; B: second
IMF; C: third IMF
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VI. CONCLUSIONS

In this paper, we have introduced a new algorithm for the retrieval of the modes of a multicomponent

signal from the study of some time-frequency representations. It is based on a novel technique for ridge

estimation followed by a demodulation procedure. By using an appropriate frequency resolution, it is

possible to compensate for the discretization of the frequencies induced by the use of FFTs in the

computation of the TF representations, and thus obtained reliable IF estimates. The simulation carried

out on test signals show that, by demodulating the signal first using these IF estimates, the associated

time-frequency representation is sharpened and that the accuracy of the reconstruction is much better than

when direct reconstruction is performed, both in noiseless and noisy situations. Simulations performed

on real signals where the number of modes may vary with time however show the limits of signal

reconstruction based on ridge extraction, and is a challenging issue we will address in the near future.
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