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FROM RANDOM PARTITIONS

TO FRACTIONAL BROWNIAN SHEETS

OLIVIER DURIEU AND YIZAO WANG

Abstract. We propose discrete random-field models that are based on ran-

dom partitions of N2. The covariance structure of each random field is deter-
mined by the underlying random partition. Functional central limit theorems

are established for the proposed models, and fractional Brownian sheets, with

full range of Hurst indices, arise in the limit. Our models could be viewed as
discrete analogues of fractional Brownian sheets, in the same spirit that the

simple random walk is the discrete analogue of the Brownian motion.

1. Introduction

In this paper, we propose random-field models that are based on random parti-
tions, and show that their partial-sum random fields scale to fractional Brownian
sheets. Our motivation came from three recent papers, one by Hammond and
Sheffield [12] and two by the authors and collaborator [3, 9], where it was shown
that fractional Brownian motions and some operator-scaling Gaussian random fields
(that can be viewed as random-field generalizations of fractional Brownian motions,
see [4]) may arise as the scaling limits of certain stochastic models, the depen-
dence structure of which is essentially determined by certain random partitions of
N = {1, 2, . . .}. We start by briefly recalling the results in one dimension.

The two papers [9, 12] established functional central limit theorems for fractional
Brownian motions based on two different random partitions. In each model, there
is an underlying random partition of the integers {1, . . . , n}, and conditioning on
the random partition, ±1-valued random spins X1, . . . , Xn are assigned, in certain
ways to be specified later. The advantage of taking random spins is that in this
way, the covariances of the partial sums are determined by the underlying random
partitions. By appropriately choosing the random partition and the assignment
rule of random spins, the partial sum Sn = X1 + · · · + Xn scales to a fractional
Brownian motion as n→∞ in the form of

(1.1)

{
Sbntc

nHL(n)

}
t∈[0,1]

⇒
{
BHt
}
t∈[0,1]

in D([0, 1]) as n→∞, where L is a slowly varying function at infinity and BH on
the right-hand side above denotes the fractional Brownian motion with Hurst index
H ∈ (0, 1), a centered Gaussian process with covariance function

Cov(BHs ,BHt ) =
1

2

(
t2H + s2H − |t− s|2H

)
, s, t ≥ 0.
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Throughout, ⇒ stands for convergence in distribution and D([0, 1]) for the space
of càdlàg functions equipped with the Skorohod topology [5].

The models in [9, 12] are different in both the underlying random partitions and
the ways of assigning ±1 spins, and they lead to different ranges of Hurst index:
H ∈ (0, 1/2) in [9] and H ∈ (1/2, 1) in [12]. The partial sum Sn can be interpreted
as a correlated random walk and provides a simple discrete counterpart to the
fractional Brownian motion, in the same spirit that the simple random walk can be
viewed as the discrete counterpart of the Brownian motion.

In view of the non-standard normalization nHL(n) in (1.1) instead of n1/2 for Sn
of the i.i.d. random variables, such models are sometimes referred to as having long-
range dependence [26, 30]. Moreover, the fractional Brownian motion in the limit
characterizes the non-negligible dependence at macroscopic scale of the discrete
model when H 6= 1/2 (recall that B1/2 is a standard Brownian motion). Such
limit theorems are of special interest for the study of long-range dependence, as
they often reveal different types of dynamics underlying certain common long-range
dependence phenomena. Namely, drastically different models may lead to the same
stochastic process with long-range dependence, and fractional Brownian motions
often show up in such limit theorems. Fractional Brownian motions, first considered
by Kolmogorov [18] and studied rigorously by Mandelbrot and Van Ness [21], are
arguably the most important stochastic processes in the investigation of long-range
dependence: it is well known now that fractional Brownian motions arise in limit
theorems on models from various areas, including finance [17], telecommunications
[23], interacting particle systems [25], aggregation of correlated random walks [10],
just to mention a few.

Results in [9, 12] provide a new class of examples for long-range dependence:
they may arise in the presence of certain random partitions. Such a point of view,
to the best of our knowledge, has been rarely explored before. Our motivation is
to demonstrate that the random-partition mechanism behind the long-range de-
pendence phenomena in the aforementioned papers remains at work in a natural
random-field setup. The generalization of aforementioned one-dimensional random
partitions to high dimensions, however, is far from being unique. A first attempt
has been successfully worked out in [3], where certain operator-scaling Gaussian
random fields appear in the limit (see Remark 3.4).

Here we continue to explore other possibilities of random-field extensions. In
particular, we shall propose three random-field extensions of the one-dimensional
models, and show that the partial sums of proposed models scale to fractional
Brownian sheets. Our limit theorems shall cover the full range of Hurst indices for
the fractional Brownian sheets. This is in sharp contrast to the previous random-
field model investigated earlier in [3], where the limit random fields are most of
the time not fractional Brownian sheets. This reflects the fact that the random
partitions considered here are essentially different from the ones considered in [3],
and hence our models and limit theorems here complement the ones therein.

Recall that a fractional Brownian sheet with Hurst index H = (H1, H2) ∈ (0, 1)2

is a multi-parameter zero-mean Gaussian process {BHt }t∈R2
+

with covariance

Cov(BHs ,BHt ) =

2∏
q=1

1

2

(
t2Hq
q + s2Hq

q − |tq − sq|2Hq
)
, t, s ∈ R2

+.
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Fractional Brownian sheets are random-field generalizations of fractional Brownian
motions proposed by Kamont [15]. These are centered Gaussian processes that are
operator-scaling (generalization of self-similarity to random fields, see e.g. [4]) and
with stationary rectangular increments. In the special case H1 = H2 = 1/2, the
fractional Brownian sheet becomes the standard Brownian sheet, the random-field
generalization of Brownian motion. For other Hurst indices, fractional Brownian
sheets exhibit anisotropic long-range dependence. Representation and path proper-
ties of these random fields have been extensively investigated. See for example the
recent survey by Xiao [33]. Stochastic partial differential equations driven by frac-
tional Brownian sheets have also been studied (see e.g. [13, 24]). At the same time,
fractional Brownian sheets are not the only operator-scaling random fields with
stationary rectangular increments. There are other random fields with long-range
dependence which could also be viewed as generalization of fractional Brownian
motions. Limit theorems for fractional Brownian sheets and other Gaussian ran-
dom fields with long-range dependence, however, have not been as much developed
as for fractional Brownian motions. Recent developments in this direction include
for examples limit theorems for linear random fields [19, 32], for set-indexed fields
[2], and for aggregated models [29, 31].

Now we describe our models, which are extensions of the one-dimensional models
in [9, 12] to two dimensions, in more details. For these one-dimensional models,
we first introduce a random partition of N into different components, where each
component may have possibly an infinite number of elements. Next, given a random
decomposition {Ck}k∈N of N, for each component C we sample XC = {Xi}i∈C
according to a specific assignment rule, applied in an independent manner to all
components {XCk}k∈N. For these models, each Xi takes the values ±1 only. We
consider two possible assignment rules:

Identical assignment rule. Assign the same values for all Xi in the same component.
The identical value is either 1 or −1, with equal probabilities.

Alternating assignment rule. Assign ±1 values in an alternating manner with re-
spect to the natural order on N, for Xi in the same component. Given a compo-
nent, there are two such ways of assigning ±1 values, and one of them is chosen
with probability 1/2. For example, given a component C = {1, 2, 5}, the alter-
nating assignment rule assigns (1,−1, 1) or (−1, 1,−1) with equal probabilities to
(X1, X2, X5).

In particular, the Hammond–Sheffield model in [12] is based on a random par-
tition of N induced by a random forest with infinite components, each being an
infinite tree, and the identical assignment rule (the random forest induces actually
a random partition of Z). The model in [9] is based on an exchangeable random
partition on N [27] induced by a certain infinite urn scheme and the alternating
assignment rule. It is a modification of a model originally investigated in Karlin
[16], and hence we refer to the model as the randomized Karlin model. The two
models will be recalled in full detail in later sections. Note that this framework of
building stationary sequences based on random partitions and assignment rules also
includes the example of independent ±1 spins, of which the partial-sum process is
well known to scale to a Brownian motion. To achieve this it suffices to take the
finest partition of N, that is, each component corresponds exactly to one element
from N, and then apply either assignment rule (the two are the same in this case).
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Our random-field models are based on random partitions of N2 obtained as
the product of two independent random partitions of N. Namely, let C(q) =
{C(q)

i }i∈N, q = 1, 2, be two partitions of N. Let C = C(1) × C(2) denote the par-
tition of N2 whose components are the Cartesian products C(1)

i ×C
(2)

j for all i, j ∈ N
(e.g. {1, 2} × {1, 3} = {(1, 1), (1, 3), (2, 1), (2, 3)} is a subset of N2). Once the ran-
dom partition is given, one of the two assignment rules is applied in each direction.
Figure 1 illustrates the product of partitions (left), the alternating assignment rule
(middle), and an assignment rule of mixed type (right).

Figure 1. A component from a product of partitions. Left: com-
ponent {1, 2, 4, 5, 6}×{1, 2, 4, 6, 7}. Middle: alternating assignment
rule of 1 (black) and −1 (white) values. Right: mixture of identical
assignment rule in horizontal direction and alternating assignment
rule in vertical direction.

We shall investigate the partial-sum random fields of three ±1-valued models,
each converging to fractional Brownian sheets in a different regime in terms of the
Hurst indices. The contributions of the paper are summarized here.

(i) In Section 2 we propose a generalization of the randomized Karlin model and
show that the partial-sum random field scales to a fractional Brownian sheet with
H ∈ (0, 1/2)2.

(ii) In Section 3 we propose a generalization of the Hammond–Sheffield model and
show that the partial-sum random field scales to a fractional Brownian sheet with
H ∈ (1/2, 1)2.

(iii) In Section 4 we propose a model that can be viewed as a combination of the
Hammond–Sheffield model and the randomized Karlin model, and show that the
partial-sum random field scales to a fractional Brownian sheet with H ∈ (1/2, 1)×
(0, 1/2).

More specifically, our main results Theorems 2.2, 3.3, and 4.1 are limit theorems
in the form of

1

ZH(n)

 ∑
i∈[1,bn·tc]

Xi


t∈[0,1]2

⇒
{
BHt
}
t∈[0,1]2

in D([0, 1]2) as min(n1, n2)→∞, where ZH(n) is an appropriate normalization de-
pending on the model (and hence on H). Our models can thus be viewed as discrete
counterparts of fractional Brownian sheets. Throughout, for any element a ∈ R2,
we write a = (a1, a2) and for any a, b ∈ Z2, we write [a, b] = ([a1, b1]× [a2, b2])∩Z2
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the set of points in the rectangle [a1, b1]× [a2, b2] with integer coordinates. We also
use the notation bn · tc = (bn1t1c , bn2t2c) where b·c stands for the integer part.

The proofs for the two-dimensional randomized Karlin model and the other two
models are completely different. For the randomized Karlin model, conditioning on
the partition structure, the partial sums become sums of i.i.d. random variables.
For the other two models, the proof is based on a martingale central limit theo-
rem due to McLeish [22], already used for the one-dimensional Hammond–Sheffield
model. However, the proofs for two-dimensional models are much more demanding
than their one-dimensional counterpart, as in general, the martingale central limit
theorem does not work as well for random fields as for stationary sequences, as
pointed out by Bolthausen [7] already in the 80s. Indeed, for the one-dimensional
Hammond–Sheffield model, the normalized partial sum Sn = X1 + · · ·+Xn can be
expressed as

Sn
bn

=
1

bn

∑
j∈Z

bn,jX
∗
j

for a stationary sequence of martingale differences {X∗j }j∈Z and some coefficients

bn,j , with b2n =
∑
j∈Z b

2
n,j . This is a remarkable representation at the heart of the

proof; see [3] (the proof in [12] did not use directly this convenient presentation, but
applied nevertheless an argument by martingale approximation). Then, to prove
the weak convergence, by McLeish’s central limit theorem, the key step is to show

(1.2) lim
n→∞

1

b2n

∑
j∈Z

b2n,j(X
∗
i )2 = Var(X∗0 ) in probability.

This requires already an involved argument in one dimension; see [12, Lemma 3.2]
and [3, Lemma 7].

In two dimensions, the situation becomes even more complicated as now the
partial sum Sn =

∑
i∈[1,n]Xi is expressed (Proposition 3.6 below) as

Sn
bn

=
1

b(1)n1

∑
j∈Z

b(1)n1,j
Uj,n2

,

where {Uj,n2
}j∈Z is a stationary martingale-difference sequence with respect to the

filtration corresponding to the first direction. The new difficulty of the random-field
models comes from the fact that the martingale differences now also depend on n2
and the dependence structure of the random partition in the second direction. To
overcome the new difficulty, at the core of our proofs for the counterpart of (1.2)
is a decoupling argument. See Section 3.4.

We conclude the introduction with a few remarks.

Remark 1.1. If one searches for a similar random field that scales to a fractional
Brownian sheet with Hurst index 1/2 in one direction, one can modify the proposed
model by taking instead the finest partition (each integer consists of a component)
in that direction. Such a model and its analysis are much easier. The details are
omitted.

Remark 1.2. It will become clear that our constructions are not limited to two
dimensions only. Our limit theorems could also be extended accordingly to high
dimensions, where the limit random fields cover fractional Brownian sheets with
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all legitimate indices. For high-dimensional models and the corresponding limit
theorems, the analysis can be carried out by an induction argument, but will be
notationally heavy. Therefore, in this paper we focus on two dimensions, and only
discuss the high dimension in Remark 4.4 at the end.

Remark 1.3. Our application of martingale central limit theorem is of a different
nature from and much more complicated than the one for the other random-field
extension in [3] (see Remark 3.4). There the partial sum can be expressed as a
linear random field in the form of

(1.3)
Sn
bn

=
1

bn

∑
j∈Zd

bn,jX
∗
j , n ∈ Nd,

with a stationary sequence of martingale differences {X∗j }j∈Zd in the lexicographical
order for all d ∈ N, whence the analysis becomes dimension-free. To the best of our
knowledge, the model in [3] is one of the very rare examples in the literature where
a one-dimensional sequence of stationary martingale differences can be elegantly
embedded into the presentation of the partial sums of a high-dimensional random
field. In general, embedding with respect to the lexicographical order could be
formidable [8], and the simple representation (1.3) seems rather a coincidence.

Acknowledgements. The authors would like to thank two anonymous referees
for their careful reading and helpful comments. YW’s research was partially sup-
ported by the NSA grants H98230-14-1-0318 and H98230-16-1-0322, the ARO grant
W911NF-17-1-0006, and Charles Phelps Taft Research Center at University of
Cincinnati.

2. Randomized Karlin model

In this section we introduce the two-dimensional randomized Karlin model, and
show that the partial-sum random field scales to a fractional Brownian sheet with
Hurst index H ∈ (0, 1/2)2.

2.1. One-dimensional model. We first recall the one-dimensional randomized
Karlin model [9, 16]. Let {Yn}n∈N be i.i.d. random variables with common distri-
bution µ on N. They induce a partition Π∞ of N by setting in the same equivalent
class (component), denoted by i ∼ j, if and only if Yi = Yj . Intuitively, imagine
that we throw balls consecutively and independently into boxes labeled by N, and
set Yn = ` if the n-th ball falls into the box with label `. This event occurs with
probability p` = µ({`}), and i ∼ j if and only if the balls at round i and j fall
in the same box. The partition obtained this way is an infinite exchangeable ran-
dom partition of N, sometimes referred to as the partition generated by random
samplings, or the paintbox partition [27]. Many estimates of this random partition
that we apply here can be found in [11, 16].

Throughout, we assume that {p`}`∈N is a non-increasing sequence (this can al-
ways be assumed because the attached value of each label is irrelevant) and that
for some α ∈ (0, 1),

(2.1) ν(x) = max{` ≥ 1 : p` ≥ 1/x} ∼ xαL(x), as x→∞,

where L is a slowly varying function at∞. Without loss of generality L is assumed
to be bounded away from 0 and ∞ on every compact set in (0,∞). For example,
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the condition (2.1) is satisfied (with L ≡ 1) when

pk ∼ k−1/α, as k →∞.

The law of (X1, . . . , Xn) given the partition Πn of the set {1, . . . , n} induced by
Y1, . . . , Yn is then determined by the alternating assignment rule. To express the
alternating assignment rule explicitly, we introduce

(2.2) Yn,` =

n∑
i=1

1{Yi=`}, ` ∈ N,

representing the number of balls in the box ` after the first n sampling. Then, the
law of (X1, . . . , Xn) given the partition can be equivalently determined by letting
{εn}n∈N be i.i.d. random variables, independent of Π∞, with common distribution
P(ε1 = −1) = P(ε1 = 1) = 1/2 and setting for each n ∈ N,

(2.3) Xn = ε`(−1)Yn,`+1, if Yn = `.

Originally, Karlin [16] obtained a central limit theorem for the non-randomized
model, with ε` ≡ 1. The functional central limit theorem of the partial-sum process
Sn = X1 + · · ·+Xn was established in [9].

Later in Section 4, we shall need a functional central limit theorem for a slightly
more general version of the one-dimensional Karlin model. We say that {Xn}n∈N
is a generalized one-dimensional Karlin model, if instead of (2.3) we have

Xn = Z`ε`(−1)Yn,`+1, if Yn = `,

for i.i.d. random variables {Z`}`∈N with some common distribution ν, independent
from Y and ε. In this way, given the partition induced by {Yn}n∈N, Xi = Xj if
i ∼ j, and otherwise Xi and Xj are independent and identically distributed as Z1ε1.

Proposition 2.1. For the generalized one-dimensional randomized Karlin model
with µ satisfying (2.1) with α ∈ (0, 1) and a slowly varying function L, for a
distribution ν with bounded support, we have{

Sbntc

nα/2L(n)1/2

}
t∈[0,1]

⇒ σα

{
Bα/2t

}
t∈[0,1]

in D([0, 1]) as n→∞, with

σ2
α = Γ(1− α)2α−1Var(X1).

The proof of this result is omitted here, as it can be obtained by following the
same strategy as in the proof of Theorem 2.2, the functional central limit theorem
for two-dimensional randomized Karlin model to be introduced below. This result
could also follow from a multivariate functional central limit theorem for the one-
dimensional randomized Karlin model established in [9, Theorem 2.2, Corollary 2.8],
where the limit corresponds to a decomposition of fractional Brownian motion into
a bi-fractional Brownian motion and another smooth self-similar Gaussian process
due to Lei and Nualart [20]. In [9], only the randomized one-dimensional Karlin
model was addressed, although the same proof applies to the generalized model
with ν having bounded support, too.
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2.2. Two-dimensional model and main result. We next describe the two-
dimensional randomized Karlin model. For each q = 1, 2, consider Y (q) = {Y (q)

n }n∈N
as i.i.d. sampling from a certain probability measure µq satisfying (2.1) with αq ∈
(0, 1) and a slowly varying function Lq. Assume that Y (1), Y (2) are independent.
Then, each Y (q) induces an infinite exchangeable random partition on N and for each
n, let Y (q)

n,` be the corresponding statistics as in (2.2) before. Write Yn = (Y (1)
n1
, Y (2)
n2

)

and for every pair n,m ∈ N2, set

n ∼m, if Yn = Ym.

In this way, equivalent subclasses (components) of N2 are indexed by labels ` ∈
N2. This gives the random partition of N2 as the product of the two partitions
determined by Y (1) and Y (2). Given the partition induced by {Yi}i∈[1,n], the law
of {Xi}i∈[1,n] is determined by the alternating assignment rule in both directions.
This is equivalent to set, letting {ε`}`∈N2 be i.i.d. random variables taking values
in {−1, 1} with equal probabilities,

Xn = ε`

2∏
q=1

(−1)
Y

(q)
nq,`q

+1
, if Yn = `.

The so-obtained random field {Xn}n∈N2 is referred to as the two-dimensional ran-
domized Karlin model.

With a little abuse of language, for n ∈ N2, we refer to {Yi}i∈[1,n] as the first

n samplings. We write n→∞ for min(n1, n2)→∞ and we write nα =
∏2
q=1 n

αq
q

and L(n) =
∏2
q=1 Lq(nq).

The main result of this section is the following.

Theorem 2.2. For the two-dimensional randomized Karlin model with µq satisfy-
ing (2.1) with αq ∈ (0, 1) and slowly varying functions Lq for q = 1, 2, we have{

Sbn·tc

|n|α/2L(n)1/2

}
t∈[0,1]2

⇒ σα

{
Bα/2t

}
t∈[0,1]2

in D([0, 1]2) as n→∞, with σ2
α =

∏2
q=1 Γ(1− αq)2αq−1.

2.3. Auxiliary estimates. Here we provide some useful estimates on the one-
dimensional randomized Karlin model that we shall use in the proof of Theorem 2.2.
Recall Yn,` in (2.2) and let

Kn =

∞∑
`=1

1{Yn,`>0} and Kn,r =

∞∑
`=1

1{Yn,`=r}, for all r ∈ N,

denote the number of occupied boxes and number of boxes occupied with r balls,
respectively, after n samplings. The statistics of Kn and Kn,r (independent from
ε`) have been studied in [16] already, where a similar model with ε` replaced by
constant 1 was investigated. We summarize some results on Kn and Kn,r below
that will be needed later. In the sequel, Γ denotes the gamma function and for
r ≥ 1 and α ∈ (0, 1), we write

pα(r) =
α(1− α) · · · (r − 1− α)

r!
.

Observe that
∑∞
r=1 pα(r) = 1 and

∑∞
r=1 pα(2r − 1) = 2α−1.
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Lemma 2.3. Under the assumption (2.1), we have

lim
n→∞

Kn

nαL(n)
= Γ(1− α),(2.4)

lim
n→∞

Kn,r

nαL(n)
= Γ(1− α)pα(r),(2.5)

lim
n→∞

∑∞
r=1Kn,2r−1

nαL(n)
= Γ(1− α)2α−1,(2.6)

where the convergences hold almost surely and also in Lp for all p > 0.

Proof. (i) For the almost sure convergence in the three limits above, see [11, Corol-
lary 21 and discussion after Proposition 2] and [16, Theorem 9].

(ii) To prove the Lp convergence, we prove (2.4) holds in Lp for p > 0. This
and the facts that 0 ≤ Kn,r ≤ Kn and 0 ≤

∑
r≥1Kn,2r−1 ≤ Kn then imply

the Lp convergence in (2.5) and (2.6). For (2.4), it suffices to prove the uniform
integrability of the sequence (Kp

n/(n
αL(n))p)n≥1. This follows, writing Φn = EKn,

from the asymptotic equivalence (see [11, Proposition 17])

(2.7) Φn ∼ Γ(1− α)nαL(n), as n→∞,

the fact that for every m ∈ N, there exist a constant Cm, such that for all n ∈ N,

(2.8) EKm
n ≤ CmΦmn ,

and then an application of the de la Vallée Poussin criterion for uniform integra-
bility: (Kn/(n

αL(n)))n∈N is bounded in Lm for m > p. To see (2.8), we need the
following lemma.

Lemma 2.4. For n ∈ N, for all k ∈ N and `1, . . . , `k ∈ N distinct,

P(Yn,`1 > 0, . . . , Yn,`k > 0) ≤
k∏
q=1

P(Yn,`q > 0).

Proof. To prove the desired result, it suffices to show

(2.9) P(Yn,`k > 0 | Yn,`1 > 0, . . . , Yn,`k−1
> 0) ≤ P(Yn,`k > 0),

for all k ≥ 2 and `1, . . . , `k ∈ N distinct. Observe that

P(Yn,`k > 0 | Yn,`1 > 0, . . . , Yn,`k−1
> 0)

= 1− P(Yn,`k = 0)
P(Yn,`1 > 0, · · · , Yn,`k−1

> 0 | Yn,`k = 0)

P(Yn,`1 > 0, . . . , Yn,`k−1
> 0)

.

The ratio after P(Yn,`k = 0) is larger than one, and this yields (2.9) and hence
the desired result. To see this, let {Y ∗n }n∈N be another collection of i.i.d. random
variables, taking values i ∈ N \ {`k} with probability p∗i = pi/(1− p`k). Then, the
ratio above equals

P(Y ∗n,`1 > 0, . . . , Y ∗n,`k−1
> 0)

P(Yn,`1 > 0, . . . , Yn,`k−1
> 0)

≥ 1.

�
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Now to obtain (2.8), it suffices to observe that

EKm
n =

∑
`1,...,`m

P(Yn,`1 > 0, . . . , Yn,`m > 0)

≤
m∑
k=1

Ck,m
∑

`1,...,`k
`i 6=`j ,i6=j

k∏
q=1

P(Yn,`q > 0) ≤
m∑
k=1

Ck,mΦkn,

for some constants Ck,m > 0, and recall that Φn ↑ ∞ as n→∞. �

We also need to work with partitions generated between two times m and n,
that is, the partitions generated by Ym+1, . . . , Yn. For this purpose, we introduce
Y ∗m,n,` =

∑n
i=m+1 1{Yi=`},

K∗m,n =

∞∑
`=1

1{Y ∗m,n,`>0} and K∗m,n,r =

∞∑
`=1

1{Y ∗m,n,`=r}.

We need the following lemma.

Lemma 2.5. Under the assumption (2.1), with probability one for all s, t ∈ [0, 1],
s < t, the following limits hold:

lim
n→∞

K∗bnsc,bntc

nαL(n)
= (t− s)αΓ(1− α),(2.10)

lim
n→∞

∑∞
i=rK

∗
bnsc,bntc,i

nαL(n)
= (t− s)αΓ(1− α)

∞∑
i=r

pα(i),(2.11)

lim
n→∞

K∗bnsc,bntc,r

nαL(n)
= (t− s)αΓ(1− α)pα(r),(2.12)

lim
n→∞

∑∞
i=1K

∗
bnsc,bntc,2i−1

nαL(n)
= (t− s)αΓ(1− α)2α−1.(2.13)

Proof. To prove the desired results, it suffices to establish them for fixed s and t;
the results then hold for a countable dense set of [0, 1] with probability one, and by
continuity for all s, t ∈ [0, 1] with probability one.

Observe that
(2.14)

K∗bnsc,bntc
d
= Kbntc−bnsc and K∗bnsc,bntc,r

d
= Kbntc−bnsc,r, for all r ∈ N,

where ‘
d
=’ stands for equality in distribution. By Lemma 2.3, it follows immediately

that all convergences hold in probability. To strengthen to the almost sure sense,
we apply a monotonicity argument as in [11, Proposition 2].

From now on, we fix s, t ∈ [0, 1], s < t. We first prove (2.10). Let Vn = VarKn

and, as before, Φn = EKn. By [11, Lemma 1 and Proposition 17],

Vn ∼ Γ(1− α)(2α − 1)nαL(n), as n→∞.

Therefore, for nm =
⌊
m2/α

⌋
, by (2.14) and the Borel–Cantelli lemma, we have

lim
n→∞

K∗bnmsc,bnmtc

Φbnmtc−bnmsc
= 1 almost surely.
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Thus, by (2.7),

lim
m→∞

K∗bnmsc,bnmtc

nαmL(nm)
= (t− s)αΓ(1− α) almost surely.

Furthermore, for m large enough, we have bnmsc < bnm+1sc < bnmtc < bnm+1tc,
and since Φn is increasing,

K∗bnm+1sc,bnmtc

Φbnm+1tc−bnmsc
≤

K∗bnsc,bntc

Φbntc−bnsc
≤

K∗bnmsc,bnm+1tc

Φbnmtc−bnm+1sc
, for all nm ≤ n ≤ nm+1.

Since

lim
m→∞

Φbnm+1tc−bnmsc

Φbnmtc−bnm+1sc
= 1,

it follows that (2.10) holds with probability one. The same argument holds for
(2.11), which implies (2.12). At last, (2.13) follows from (2.11) and (2.12). �

2.4. Proof of Theorem 2.2. The main idea behind the proof is that conditioning
on the underlying partitions, the partial sum Sn can be represented as a sum of
independent ±1-valued random variables, for which limit theorems follow immedi-
ately. We illustrate this idea by first proving a central limit theorem of the model.
We let N (0, σ2) denote the Gaussian distribution with mean zero and variance σ2.

Proposition 2.6. For the two-dimensional randomized Karlin model, if µq satis-
fies (2.1) with αq ∈ (0, 1) and slowly varying functions Lq for q = 1, 2, then

Sn
|n|α/2L(n)1/2

⇒ N (0, σ2
α),

as n→∞, with σ2
α =

∏2
q=1 Γ(1− αq)2αq−1.

Proof. Let Sn,` be the sum over all the spins Xi associated to the box `:

Sn,` =
∑
i∈[1,n]

Xi1{Yi=`}.

Because of the alternating assignment rule, Sn,` ∈ {−1, 0, 1}, and Sn,` = 0 if and
only if the number of variables Xi associated to the box ` after n samplings is
even. We are therefore interested in the number of boxes having an odd number
of balls after n samplings. To give an expression of this number, to be denoted by

K̃n below, we first remark that the number of boxes with an odd number of balls
from samplings Y (q) equals

∞∑
`=1

1{
Y

(q)
n,` odd

} =

∞∑
i=1

K(q)

n,2i−1,

where K(q)

n,i =
∑∞
`=1 1{

Y
(q)
n,`=i

}. It follows that

(2.15) K̃n =

2∏
q=1

 ∞∑
iq=1

K(q)

nq,2iq−1

 .

Therefore,

(2.16) Sn | K̃n
d
=

K̃n∑
i=1

ε′i,
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where the left-hand side is understood as the conditional distribution of Sn given

K̃n, and on the right-hand side {ε′n}n∈N are i.i.d. copies of ε1. Introduce furthermore

the σ-field Y = σ(Y (1), Y (2)), and observe that K̃n is Y measurable. Now, by
Lemma 2.3,

lim
n→∞

Var(Sn | Y)

|n|αL(n)
= lim
n→∞

2∏
q=1

∑∞
iq=1K

(q)

nq,2iq−1

n
αq
q Lq(nq)

=

2∏
q=1

σ2
αq

= σ2
α a.s.

Therefore, we obtain the conditional central limit theorem

Sn
|n|α/2L(n)1/2

∣∣∣∣ Y ⇒ N (0, σ2
α), as n→∞,

and the desired annealed version follows. �

To prove Theorem 2.2, we prove the convergence of finite-dimensional distribu-
tions and tightness separately.

Proof of convergence of finite-dimensional distributions. For m ∈ N fixed, consider
λ1, . . . , λm ∈ R, and t(r) = (t(r)1 , t(r)2 ) ∈ [0, 1]2 for r = 1, . . . ,m. Writing

(2.17) nt = (bn1t1c, bn2t2c), for all t ∈ [0, 1]2, n ∈ N2,

we set

Ŝn =

m∑
r=1

λrSn
t(r)

, n ∈ N2.

Similarly as before and using the Cramér–Wold device [14, Corollary 4.5], to show
the convergence of finite-dimensional distributions, it suffices to show the following
conditional central limit theorem:

Ŝn
σα|n|α/2L(n)1/2

∣∣∣∣∣ Y ⇒
m∑
r=1

λrBα/2t(r)
,

as n → ∞. For this purpose, we first remark that given Y, Ŝn is the sum of K̃n
independent random variables corresponding to the K̃n boxes that have at least
one ball from the first n samplings, and that each such random variable is bounded

by |λ1| + · · · + |λm| uniformly. At the same time, we know that K̃n → ∞ almost
surely, as n → ∞. Therefore, to establish the conditional central limit theorem it
remains to show that the variance

Var(Ŝn | Y) =

m∑
r=1

m∑
r′=1

λrλr′EY(Sn
t(r)

Sn
t(r
′)

)

converges to the corresponding one of the fractional Brownian sheet as n → ∞,
after normalization. Here and in the sequel, we write EY(·) = E(· | Y). This part
is established in Lemma 2.7. �

Lemma 2.7. With the same notation as in (2.17), for all n ∈ N2, t, s ∈ [0, 1]2,

lim
n→∞

EY(SntSns)

σ2
α|n|αL(n)

=

2∏
q=1

1

2
(|tq|αq + |sq|αq − |tq − sq|αq ) .



FROM RANDOM PARTITIONS TO FRACTIONAL BROWNIAN SHEETS 13

Proof. We first consider the case of the one-dimensional model described in Sec-
tion 2.1. We write, for n ∈ N, t, s ∈ [0, 1],

(2.18) EY(Snt
Sns

) =
1

2
EY
[
S2
nt

+ S2
ns
− (Snt

− Sns
)2
]
,

where Sn =
∑n
i=1Xi, nt = bntc, and ns = bnsc. We saw in the proof of Propo-

sition 2.6 that EYS2
n =

∑∞
i=1Kn,2i−1, and thus Lemma 2.3 yields that, almost

surely,

(2.19) lim
n→∞

EYS2
nt

nαL(n)
= tασ2

α.

For n > n′, by a similar argument as in the proof of Proposition 2.6, we see that

Sn − Sn′ | Y
d
=

K̃∗
n,n′∑
i=1

ε′i, with K̃∗n,n′ =

∞∑
i=1

K∗n,n′,2i−1,

where {ε′i} are i.i.d. copies of ε1. In this way,

EY(Snt − Sns)2 =

∞∑
i=1

K∗nt,ns,2i−1,

and by (2.13),

lim
n→∞

EY(Snt − Sns)2

nαL(n)
= |t− s|ασ2

α almost surely.

Combining this, (2.18) and (2.19), we have thus proved

lim
n→∞

EY(Snt
Sns

)

σ2
α|n|αL(n)

=
1

2
(|t|α + |s|α − |t− s|α) .

For the two-dimensional model, we start by introducing a different model. Let
{ε̃(q)k }q=1,2, k∈N be i.i.d. random variables taking values ±1 with equal probabilities

and set ε̃n =
∏2
q=1 ε̃

(q)
nq

. Now, assign

(2.20) X̃n =

2∏
q=1

ε̃(q)`q (−1)
Y

(q)
nq,`q if Yn = `,

and set S̃n =
∑
i∈[1,n] X̃i. Although {X̃n}n∈N2 is different from {Xn}n∈N2 , observe

that for all i, j ∈ N2,

(Xi, Xj) | Y
d
= (X̃i, X̃j) | Y.

Indeed, this follows from the fact that (ε`, ε`′)
d
= (ε̃`, ε̃`′), for all `, `′ ∈ N2. (Note

that {ε`}`∈Nd and {ε̃`}`∈Nd do not have the same joint distributions, although the
fact that they have the same bivariate distributions serves our purpose.)
It follows that

EY(SntSns) = EY(S̃nt S̃ns).

However, EY(S̃nt S̃ns) is much easier to compute. From (2.20), X̃i can be written
as

X̃i =

2∏
q=1

X̃(q)

iq
, if Yi = `, with X̃(q)

iq
= ε̃(q)`q (−1)

Y
(q)
iq,`q

+1
, q = 1, 2.
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In this way, one can write

S̃n =
∑
i∈[1,n]

2∏
q=1

X̃(q)

iq
=

2∏
q=1

nq∑
iq=1

X̃(q)

iq
=

2∏
q=1

S̃(q)

nq
with S̃(q)

n =

n∑
i=1

X̃(q)

i .

Observe that {X̃(1)

i }i∈N and {X̃(2)

i }i∈N are independent and each S̃(q)
n is the partial

sum of a one-dimensional Karlin model with parameter αq. Therefore,

EY(S̃nt S̃ns)

|n|αL(n)
=

2∏
q=1

EY
(
S̃(q)

bnqtqcS̃
(q)

bnqsqc

)
n
αq
q Lq(nq)

→ σ2
α

d∏
q=1

1

2
(|tq|αq + |sq|αq − |tq − sq|αq ) , as n→∞.

�

Proof of tightness. Applying a criterion of Bickel and Wichura [1], it suffices to
establish for some p > 0, γ > 1,

(2.21) E
(
|Sm|
|n|α/2

)p
≤ C

2∏
q=1

(
mq

nq

)γ
, for all m,n ∈ N2,m ≤ n.

To do so, pick p > max(2/α1, 2/α2). Recall that, given Y, Sm is the sum of K̃m
independent copies of ε1. We infer

E|Sm|p = EEY(|Sm|p) ≤ E
[
CpEYK̃p/2

m

]
= CpEK̃p/2

m ,

where we used Burkholder’s inequality, and Cp is a positive constant depending
only on p. The expectation on the right-hand side above is then bounded from
above by, recalling (2.15),

EK̃p/2
m =

2∏
q=1

E

 ∞∑
iq=1

K(q)

mq,2iq−1

p/2

≤
2∏
q=1

E(K(q)

mq
)p/2.

Now, for each q, the expectation can be uniformly bounded by Cqm
αqp/2
q Lq(mq)

p/2

for some constant Cq > 0 by Lemma 2.3. Therefore,

E
(
|Sm|
|n|α/2

)p
≤ Cp

2∏
q=1

Cq

(
mq

nq

)γ′ (
Lq(mq)

Lq(nq)

)p/2
with γ′ = min(α1, α2)p/2 > 1. To conclude, we choose δ > 0 such that γ =
γ′ − δp/2 > 1 and we apply Potter’s Theorem (see [6, Theorem 1.5.6]) to bound
from above Lq(mq)/Lq(nq) by C(mq/nq)

−δ. The inequality (2.21) follows and we
have thus proved the tightness. �

3. Hammond–Sheffield model

In this section, we introduce the two-dimensional Hammond–Sheffield model and
show that the partial-sum random field scales to a fractional Brownian sheet with
Hurst index in (1/2, 1)2.
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3.1. One-dimensional model. We first recall the model in one dimension. Let µ
be a probability measure on N satisfying

µ({n, n+ 1, . . . }) ∼ n−αL(n)

with α ∈ (0, 1/2) and L a slowly varying function at infinity. Let {Ji}i∈Z be
i.i.d. random variables with distribution µ and consider the random graph G =
G(V,E) with vertex set V = Z and edge set E = {(i, i − Ji)}i∈Z. In words, for
each vertex i ∈ Z, a random jump Ji is sampled independently from µ and the
vertex i is connected to the vertex i− Ji. For each vertex i, the largest connected
subgraph of G containing i is a tree with an infinite number of vertices. Each such
tree is referred to as a component of Z. It was shown in [12] that for α ∈ (0, 1/2),
the random graph G almost surely has infinitely many components, each being an
infinite tree. The random forest G obtained this way induces a random partition
of Z, so that i and j are in the same component, denoted by i ∼ j, if and only
if they are in the same tree. In the sequel, it is convenient to work with ancestral
lines defined as the random sets

Ai = {j ∈ Z : ∃ j = j0 < j1 < · · · < jk = i, s.t. (j`−1, j`) ∈ E, ` = 1, . . . , k} ∪ {i},
for all i ∈ Z. So, i ∼ j if and only if Ai ∩Aj 6= ∅.

We now apply the identical assignment rule. This entails that marginally
P(Xi = −1) = P(Xi = 1) = 1/2, and conditioning on G = σ{Ji, i ∈ Z}, Xi = Xj

if Ai ∩ Aj 6= ∅, and Xi1 , . . . , Xik are independent for any i1, . . . , ik such that
Ai1 , . . . , Aik are mutually disjoint. The one-dimensional Hammond–Sheffield model
is the stationary process {Xi}i∈Z constructed this way.

The following notations and results from [12] will be used in our two-dimensional
model. Let, for k ∈ Z,

qk = P(0 ∈ Ak),

so qk = 0 for k < 0. It is proved in [12, Lemma 3.1] that with the choice of µ above
and α ∈ (0, 1/2),

∑∞
k=0 q

2
k <∞, and for Sn =

∑n
i=1Xi,

(3.1) Var(Sn) ∼ Cα∑
k≥0 q

2
k

n2α+1L(n)−2, as n→∞,

with

(3.2) Cα =
sin(πα)

πα(2α+ 1)Γ(1− 2α)
.

We shall however need a slightly more general version when working with the
two-dimensional model later. We say that {Xi}i∈Z is a generalized one-dimensional
Hammond–Sheffield model with distribution ν on R if it is built using ν as the
common marginal distribution instead of the symmetric law on {−1, 1}. That is,
the underlying random partition is the same as before and, conditioning on the
random partition, the identical assignment rule is applied (Xi = Xj if i ∼ j and
Xi and Xj are independent otherwise) with each Xi having the same marginal
distribution ν.

Proposition 3.1. For the generalized one-dimensional Hammond-Sheffield model
with a centered distribution ν with bounded support,{

Sbntc

nHL(n)−1

}
t∈[0,1]

⇒

(
Cα∑
k≥0 q

2
k

)1/2 {
BHt
}
t∈[0,1]
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in D([0, 1]) with H = α+ 1/2.

Remark 3.2. The results in [12] concern only ν supported on {−1, 1}. The re-
laxation of ν to bounded law does not affect most of the proof, which is based on
a martingale central limit theorem. The boundedness is sufficient for certain er-
godicity of the sequence of martingale differences ([12, Lemma 3.2] and [3, Lemma
7]), and the rest of the proof would remain unchanged. As the proof for the two-
dimensional model will follow the same strategy but is much more involved, we
therefore skip the proof of Proposition 3.1 here.

3.2. Two-dimensional model and main result. We now generalize Hammond–
Sheffield model to two dimensions. Again the first step is to construct a random
partition of Z2. This random partition is taken as the product of independent
random partitions from one-dimensional Hammond–Sheffield models, each with
jump distribution µr, r = 1, 2 respectively, satisfying

(3.3) µr({n, n+ 1, . . . }) ∼ n−αrLr(n), as n→∞

with αr ∈ (0, 1/2) and slowly varying function Lr at infinity. For r = 1, 2, let
{A(r)

i }i∈Z be the ancestral lines corresponding to each random partition. In par-
ticular, {A(1)

i }i∈Z and {A(2)

i }i∈Z are independent. We then introduce the ancestral
lattices Ai, i ∈ Z2, as

Ai =
{
j ∈ Z2 | j1 ∈ A(1)

i1
, j2 ∈ A(2)

i2

}
= A(1)

i1
×A(2)

i2
.

For the partition of Z2 obtained by product, we have i ∼ j if and only if Ai∩Aj 6= ∅.
Once the random partition is given, the identical assignment rule is applied. That
is, given {Ai}i∈Z2 , Xi = Xj if Ai∩Aj 6= ∅, and if Ai1 , . . . , Aik are mutually disjoint,
Xi1 , · · · , Xik are i.i.d. with common distribution the uniform law on {−1, 1}. The
so-constructed {Xi}i∈Z2 is referred to as the two-dimensional Hammond–Sheffield
model in the sequel.

We write for n ∈ Z2, qn = P(0 ∈ An), and q(r)
n = P(0 ∈ A(r)

n ), r = 1, 2. Because
of independence,

qn = q(1)

n1
q(2)

n2
,

and then
∑
n∈Z2 q2n <∞ when (α1, α2) ∈ (0, 1/2)2. The main result of this section

is the following functional central limit theorem, where as before nα =
∏2
r=1 n

αr
r

and L(n) =
∏2
r=1 Lr(nr).

Theorem 3.3. For the two-dimensional Hammond–Sheffield model, suppose (3.3)
holds with α1, α2 ∈ (0, 1/2) and slowly varying functions L1, L2 respectively. For
Sn =

∑
i∈[1,n]Xi, we have{

Sbn·tc

|n|HL(n)−1

}
t∈[0,1]2

⇒ σα
{
BHt
}
t∈[0,1]2

in D([0, 1]2), as n→∞, where BH is a fractional Brownian sheet with Hurst index
H with Hr = αr + 1/2, r = 1, 2, and

σ2
α =

Cα1
Cα2∑

n∈Z2 q2n
.

with Cα defined in (3.2).
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Remark 3.4. Another natural extension of the Hammond–Sheffield model has
been addressed in [3], where the random graph indexed by Z in the original model is
generalized to high dimensions by having i.i.d. jumps attached to vertices indexed by
Zd and allowing each jump to take values in Nd. With appropriate choice of the law
of the jumps, the limit random fields therein are of different types from fractional
Brownian sheets most of the time (even when fractional Brownian sheets arise in
the limit, they are degenerate in the sense that at least one of the Hurst indices
is either 1/2 or 1 [3, Section 5.2]), and a so-called scaling-transition phenomenon
[28, 29] occurs. In particular, the partial sum of interest therein is still over a
rectangular region that increases to infinity, although for the same model (i.e. with
fixed law of the jumps) various limits arise, depending on the relative growing rate
of each direction of the increasing rectangle.

The rest of this section is devoted to the proof of Theorem 3.3. The strategy
is to express the partial sum of the variable Xi as a weighted sum of martingale
differences in the first direction and to apply a theorem of McLeish [22] for tri-
angular arrays of martingale differences. The hard part lies in the analysis of the
second direction, where we shall apply results for the generalized one-dimensional
Hammond–Sheffield model.

3.3. Representation via martingale differences. Introduce for each m ∈ Z,
the σ-algebra of the past in the first direction F (1)

m = σ{Xi : i1 < m, i2 ∈ Z} and
the operators

P (1)

m (·) = E(· | F (1)

m+1)− E(· | F (1)

m ), m ∈ Z.

Observe that P (1)
m (Y ) ∈ F (1)

m+1 and E(P (1)
m (Y ) | F (1)

m ) = 0 for any bounded random
variable Y . Introduce

(3.4) X∗j = P (1)

j1
(Xj) = Xj − E(Xj | F (1)

j1
), j ∈ Z2.

By definition, for all j2 ∈ Z, {X∗j }j1∈Z is a martingale-difference sequence with

respect to the filtration {Fj1}j1∈Z. Denoting by {J (1)

j }j∈Z the random jumps in the

first direction and observing that for all j ∈ Z2,

Xj =
∑
k≥1

1{
J

(1)
j1

=k
}X(j1−k,j2),

we obtain another representation of X∗j as

(3.5) X∗j = Xj −
∑
k≥1

p(1)

k X(j1−k,j2), j ∈ Z2,

where p(1)

k = µ1({k}), k ∈ N. Recall that qn = 0 if min(n1, n2) < 0. We have the
following results.

Lemma 3.5. (i) For all m ∈ Z, n ∈ Z2, P (1)
m (Xn) = q(1)

n1−mX
∗
(m,n2)

.

(ii) For all n ∈ Z2,

Xn =
∑
m≤n1

q(1)

n1−mX
∗
(m,n2)

,

where the sum converges in L2. Furthermore Var(X∗0) = (
∑
k≥0(q(1)

k )2)−1.
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Proof. (i) For m ∈ Z, write

Xn = Xn1{
m∈A(1)

n1

} +Xn1{
m 6∈A(1)

n1

}.
Observe that

Xn1{
m∈A(1)

n1

} = X(m,n2)1
{
m∈A(1)

n1

}
and {m ∈ A(1)

n1
} is independent of F (1)

m+1. It then follows that

P (1)

m

(
Xn1{

m∈A(1)
n1

}) = P (1)

m

(
X(m,n2)

)
P
(
m ∈ A(1)

n1

)
= X∗(m,n2)

q(1)

n1−m.

On the other hand,

E
(
Xn1{

m6∈A(1)
n1

} ∣∣∣∣ F (1)

m+1

)
= E

(
Xn1{

m6∈A(1)
n1

} ∣∣∣∣ F (1)

m

)
,

and thus

P (1)

m

(
Xn1{

m 6∈A(1)
n1

}) = 0.

(ii) By stationarity, it suffices to prove this for X0. For n ∈ N, write

0∑
m=−n

P (1)

m (X0) =

0∑
m=−n

q(1)

m X∗(m,0).

Since {X∗(m,0)}m∈Z is a stationary martingale-difference sequence, we have that

EX∗(m,0) = 0 and E(X∗(m,0)X
∗
(n,0)) = 0 if m 6= n. Then,

(3.6)

E

(
0∑

m=−n
P (1)

m (X0)

)2

= Var(X∗0)

n∑
m=0

(q(1)

m )2 → Var(X∗0)
∑
m≥0

(q(1)

m )2, as n→∞.

Here the assumption α1 ∈ (0, 1/2) entails that
∑
m≥0 (q(1)

m )2 <∞.

On the other hand, let J (1)

0 ∈ N denote the random jump at 0 in the first
direction. One can write, in view of (3.5),

X∗0 =
∑
`∈N

(
1{

J
(1)
0 =`

} − p(1)

`

)
X(−`,0).

Thus,

Var(X∗0) =
∑
`,`′∈N

P
(
A(1)

−` ∩A
(1)

−`′ 6= ∅
)
E
[(

1{
J

(1)
0 =`

} − p(1)

`

)(
1{

J
(1)
0 =`′

} − p(1)

`′

)]
=
∑
`,`′∈N

P
(
A(1)

−` ∩A
(1)

−`′ 6= ∅
) (
−p(1)

` p
(1)

`′ + p(1)

` 1{`=`′}
)

= 1−
∑
`,`′∈N

p(1)

` p
(1)

`′ P
(
A(1)

−` ∩A
(1)

−`′ 6= ∅
)

= 1− P
(
A(1)

0 ∩ Ã
(1)

0 6= {0}
)
,

where Ã(1)

0 is an independent copy of A(1)

0 . Therefore,

Var(X∗0) = P
(
A(1)

0 ∩ Ã
(1)

0 = {0}
)
.
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Combining with (3.6), we have

lim
n→∞

E

(
0∑

m=−n
P (1)

m (X0)

)2

= P
(
A(1)

0 ∩ Ã
(1)

0 = {0}
) ∑
m≥0

(q(1)

m )2.

We thus have the convergence in L2 by the fact that EX2
0 = 1 and

(3.7) P
(
A(1)

0 ∩ Ã
(1)

0 = {0}
)

=
1∑

m≥0 (q(1)
m )2

.

Indeed, observe that∑
m≥0

(q(1)

m )2 =
∑
m≥0

P
(
−m ∈ A(1)

0 ,−m ∈ Ã(1)

0

)
= E

∣∣∣A(1)

0 ∩ Ã
(1)

0

∣∣∣ ,
and remark that |A(1)

0 ∩ Ã
(1)

0 |, the cardinality of intersection of the two independent

ancestral lines, is a geometric random variable with rate θ = P(A(1)

0 ∩ Ã
(1)

0 = {0}).
Thus E|A(1)

0 ∩ Ã
(1)

0 | = 1/θ, which proves (3.7). �

Introduce b(1)n,j =
∑n
i=1 q

(1)

i−j , n ∈ N, j ∈ Z. From the preceding lemma, we have

for all n ∈ N2,

Sn =
∑
i∈[1,n]

Xi =
∑
j1∈Z

b(1)n1,j1

n2∑
j2=1

X∗j .

Further, for each n ∈ N, the sequence (
∑n
j2=1X

∗
j )j1∈Z is a martingale-difference

sequence with respect to the filtration {F (1)

j1
}j1∈Z. Denoting (b(1)n )2 =

∑
j∈Z(b(1)n,j)

2,

by (3.1), we obtain

(3.8) (b(1)n )2 ∼ Cα1
n2α1+1L1(n)−2, as n→∞.

Now introduce similarly b(2)n,j =
∑n
i=1 q

(2)

i−j and (b(2)n )2 =
∑
j∈Z(b(2)n,j)

2, for n ∈ N,
j ∈ Z. In summary, we have shown the following.

Proposition 3.6. In the notation above,

(3.9)
Sn
bn

=
1

b(1)n1

∑
j1∈Z

b(1)n1,j1
Uj1,n2

with

(3.10) Uj1,n2 =
1

b(2)n2

n2∑
j2=1

X∗j

and

(3.11) b2n = (b(1)n1
)2(b(2)n2

)2 ∼ Cα1Cα2n
2α+1L(n)−2, as n→∞.

Note that again, for each n ∈ N, {Uj,n}j∈Z is a stationary martingale-difference
sequence with respect to the filtration {F (1)

j }j∈Z.
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3.4. A central limit theorem. Instead of proving directly the convergence of
finite-dimensional distributions, we prove the following central limit theorem first,
in order to better illustrate the key ideas of the proof.

Proposition 3.7. For the two-dimensional Hammond–Sheffield model, suppose
(3.3) holds with α1, α2 ∈ (0, 1/2) and slowly varying functions L1, L2 respectively.
We have

Sn
bn
⇒ N (0, σ2), as n→∞,

where σ2 = (
∑
k≥0 q

2
k)−1.

The rest of this subsection is devoted to the proof of this proposition. With
the representation in (3.9), by McLeish’s martingale central limit theorem [22], it
suffices to show

(3.12) sup
n∈N2

E

sup
j∈Z

(
b(1)n1,j

b(1)n1

)2

U2
j,n2

 <∞,

(3.13) lim
n→∞

sup
j∈Z

(
b(1)n1,j

b(1)n1

)2

U2
j,n2

= 0 in probability,

and

(3.14) lim
n→∞

∑
j∈Z

(
b(1)n1,j

b(1)n1

)2

U2
j,n2

= EX∗20 in probability.

We start with the following observation.

Lemma 3.8. For α1 ∈ (0, 1/2), we have

lim
n→∞

sup
j∈Z

b(1)n,j

b(1)n
= 0.

Proof. By Lemma 8 in [3], it suffices to prove that
∑
j∈Z

(
(b(1)n,j)

2 − (b(1)n,j+1)2
)

=

o((b(1)n )2), which follows from
∑
j∈Z

(
b(1)n,j − b

(1)

n,j+1

)2
= o((b(1)n )2) by the Cauchy–

Schwarz inequality. To see the latter, observe that∑
j∈Z

(
b(1)n,j − b

(1)

n,j+1

)2
=
∑
j∈Z

(
q(1)

n−j − q
(1)

−j
)2 ≤ 2

∑
j∈Z

(q(1)

j )2 <∞.

�

We also need uniform bounds on the moments of Uj,n. To facilitate we introduce
a representation of Uj,n as a weighted sum of martingale differences in the second
direction. Let F (2)

m = σ{Xi | i1 ∈ Z, i2 < m} and P (2)
m (·) = E(· | F (2)

m+1)−E(· | F (2)
m ),

m ∈ Z. We set

(3.15) X∗∗n = P (2)

n2
(X∗n) = X∗n − E(X∗n | F (2)

n2
).

For all n1 ∈ Z, (X∗∗n )n2∈Z is a martingale-difference sequence with respect to the
filtration (F (2)

n2
)n2∈Z. Proceeding as in Lemma 3.5, we obtain that for all n ∈ N2,

X∗n =
∑
m≤n2

P (2)

m (X∗n) =
∑
m≤n2

q(2)

n2−mX
∗∗
(n1,m),
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where the sum converges in L2. We thus have, for all n ∈ N, j1 ∈ Z,

(3.16) Uj1,n =
1

b(2)n

∑
j2∈Z

b(2)n,j2X
∗∗
j .

Further,

Var(X∗∗0 ) =
Var(X∗0)∑
k≥0 (q(2)

k )2
=

1∑
k≥0 q

2
k

.

Lemma 3.9. (i) For all n ∈ N, EU2
0,n =

(∑
k∈Z2 q2k

)−1
<∞.

(ii) For all p ≥ 1, supn∈N EU2p
0,n <∞.

Proof. Part (i) is a direct consequence of (3.15): we have E(X∗∗n X
∗∗
m ) = 0 for

n 6= m and thus

Var(U0,n) = Var(X∗∗0 ) =
1∑
k≥0 q

2
k

.

For (ii), using that (X∗∗(0,n))n∈Z is a martingale-difference sequence, by Burkholder’s

inequality, writing ‖ · ‖p = (E| · |p)1/p, for some constant Cp depending only on p,

‖U0,n‖2p ≤ Cp

∥∥∥∥∥∥
∑
j∈Z

(b(2)n,j)
2

(b(2)n )2
X∗∗2(0,j)

∥∥∥∥∥∥
1/2

p

≤ Cp

∑
j∈Z

(b(2)n,j)
2

(b(2)n )2

∥∥X∗∗20

∥∥
p

1/2

= Cp ‖X∗∗0 ‖2p .

Then (ii) follows since X∗∗0 is bounded. �

Now, we establish the conditions of McLeish’s theorem.

For (3.12), by the inequality supj |aj | ≤
∑
j |aj |, the left-hand side is bounded

by EU2
0,n = (

∑
k≥0 q

2
k)−1 <∞ by Lemma 3.9 (i).

For (3.13), for all ε > 0, one has

P

max
j∈Z

(
b(1)n1,j

b(1)n1

)2

U2
j,n2

> ε

 ≤∑
j∈Z

P

(b(1)n1,j

b(1)n1

)2

U2
j,n2

> ε


≤
∑
j∈Z

(
b(1)n1,j

b(1)n1

)4
E|U0,n2

|4

ε2
.

Lemma 3.8 and Lemma 3.9 (ii) then yield (3.13).

Condition (3.14) is much harder to establish. We shall prove the corresponding
L2-convergence, which will follow from

(3.17) lim
n→∞

1

(b(1)n1)4

∑
j1,j′1∈Z

(b(1)n1,j1
)2(b(1)n1,j′1

)2Cov
(
U2
j1,n2

, U2
j′1,n2

)
= 0.
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For this purpose, we first provide an approximation of X∗j as follows. Introduce,

for each integer K ≥ 1, for all j ∈ Z2,

X∗j,K = Xj −
K∑

k1=1

p(1)

k X(j1−k,j2).

Recalling (3.5), observe that

|X∗0 −X∗0,K | ≤
∞∑

k=K+1

p(1)

k → 0, as K →∞.

Then, define

(3.18) Uj1,n,K =
1

b(2)n

n∑
j2=1

X∗j,K , for n,K ∈ N, j1 ∈ Z.

Note that {Uj,n,K}j∈Z for every K,n ∈ N is again a stationary martingale-difference
sequence with respect to the filtration {F (1)

j }j∈Z. We shall need the following
uniform bounds.

Lemma 3.10. (i) For all p ≥ 1 and K ≥ 1,

sup
n∈N

E|U0,n,K |2p <∞.

(ii) For all p ≥ 1,
lim
K→∞

sup
n∈N

E|U0,n − U0,n,K |2p = 0.

Proof. This lemma can be established in the same way as for Lemma 3.9 before by
proving that for all p ≥ 1, there exists a finite constant Cp depending on p only,
such that for all n,K ∈ N,

E|U0,n,K |2p ≤ CpE|X∗0,K |2p

E|U0,n − U0,n,K |2p ≤ CpE|X∗0 −X∗0,K |2p.
�

Now, to prove (3.17), we first show that for all ε > 0, one can choose K ∈ N
large enough such that

(3.19)
∣∣Cov

(
U2
0,n, U

2
j,n

)
− Cov

(
U2
0,n,K , U

2
j,n,K

)∣∣ < ε, for all n, j ∈ N.
To see this, we first bound∣∣E(U2

0,nU
2
j,n)− E(U2

0,n,KU
2
j,n,K)

∣∣
≤ E

∣∣U2
0,n(U2

j,n − U2
j,n,K)

∣∣+ E
∣∣(U2

0,n − U2
0,n,K)U2

j,n,K

∣∣ .
The first term on the right-hand side is bounded, applying the Cauchy–Schwarz
inequality twice, by(

E|U0,n|4
)1/2 (E|Uj,n + Uj,n,K |4

)1/4 (E|Uj,n − Uj,n,K |4)1/4 .
By Lemma 3.10, this expression converges to 0 uniformly in n, as K → ∞. The
second term can be treated similarly. Therefore (3.19) follows for K large enough
and hence to show (3.17) it suffices to establish, for K large enough,

(3.20) lim
n→∞

1

(b(1)n1)4

∑
j1,j′1∈Z

(b(1)n1,j1
)2(b(1)n1,j′1

)2Cov
(
U2
j1,n2,K , U

2
j′1,n2,K

)
= 0.
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For this purpose, we shall establish the following lemma.

Lemma 3.11. For all K ∈ N, ε > 0, there exist integers LK,ε, NK,ε, such that∣∣Cov(U2
0,n,K , U

2
j,n,K)

∣∣ < ε, for all j > LK,ε, n > NK,ε.

Given this result, observe that the left-hand side of (3.20) without taking the
limit is bounded by, writing

∑
j′1∈Z

=
∑
|j1−j′1|≤LK,ε

+
∑
|j1−j′1|>LK,ε

for each j1 ∈
Z,

(3.21) CLK,ε
∑
j1∈Z

(
b(1)n1,j1

b(1)n1

)2

sup
j′1∈Z

(
b(1)n1,j′1

b(1)n1

)2

+
1

(b(1)n1)4

∑
j1,j′1∈Z

(b(1)n1,j1
)2(b(1)n1,j′1

)2ε

≤ CLK,ε sup
j′1∈Z

(
b(1)n1,j′1

b(1)n1

)2

+ ε,

for all n2 > NK,ε. This and Lemma 3.8 give (3.20) and hence the third condition
of McLeish’s central limit theorem (3.14). Therefore, the proof of Proposition 3.7
is completed. It remains to prove Lemma 3.11.

Proof of Lemma 3.11. Introduce, for each K ∈ N, j ∈ Z, the event

(3.22) R(1)

j,K =


 ⋃
i∈{−K+1,...,0}

A(1)

i

 ∩
 ⋃
i′∈{j−K+1,...,j}

A(1)

i′

 = ∅

 .

We have limj→∞ P(R(1)

j,K) = 1 for all K. This comes from

P(A(1)

0 ∩A
(1)

j 6= ∅) ≤
∑
k≥0

P(−k ∈ A(1)

0 ,−k ∈ A(1)

j )

≤
∑
k≥0

q(1)

k q(1)

j+k ≤

∑
k≥0

(q(1)

k )2

1/2∑
k≥0

(q(1)

j+k)2

1/2

,

and the fact that
∑
k≥0(q(1)

j+k)2 → 0 as j →∞. We now write

(3.23) E(U2
0,n,KU

2
j,n,K) = E

(
U2
0,n,KU

2
j,n,K1

R
(1)
j,K

)
+ E

(
U2
0,n,KU

2
j,n,K1

(R
(1)
j,K)c

)
.

The second term on the right-hand side, by applying the Cauchy–Schwarz inequality
twice and Lemma 3.10, can be bounded uniformly in n by CP((R(1)

j,K)c)1/2, which

goes to zero as j → ∞ (C is a positive constant). So, it suffices to show that the
first term on the right-hand side above can be controlled to be arbitrarily close to
(EU2

0,n,K)2 for j,K large enough.
For this purpose, the key idea is to decouple the underlying partitions in the first

direction U0,n,K and Uj,n,K . Otherwise, notice that the two are dependent for all
choices of j and K. For the decoupling, first notice that the law of the partition
in the first direction are determined by the law of those ancestral lines involved in
the definition of R(1)

j,K . To proceed we introduce a copy of {A(1)

j }j∈Z, denoted by

{Ã(1)

j }j∈Z, independent of the original two-dimensional Hammond–Sheffield model.

Introduce the product partition G̃ of Z2 as in the original model, but instead

induced by {Ã(1)

j }j∈Z and {A(2)

j }j∈Z. Then, define {X̃j}j∈Z2 as before on G̃ by

identical assignment rule. Define similarly X̃∗i , X̃
∗
i,K , Ũj,n and Ũj,n,K as before,
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based on G̃. These are identically distributed copies of the corresponding quantities
of the original model. Define

(3.24) R̃(1)

j,K =


 ⋃
i∈{−K+1,...,0}

A(1)

i

 ∩
 ⋃
i′∈{j−K+1,...,j}

Ã(1)

i′

 = ∅

 .

We first remark that P(R(1)

j,K) = P(R̃(1)

j,K) for j ≥ K and

(U0,n,K , Uj,n,K)
∣∣∣ R(1)

j,K
d
=
(
U0,n,K , Ũj,n,K

) ∣∣∣ R̃(1)

j,K ,

where each side is understood as the conditional distribution of a bivariate random
vector. Therefore, we have

E
(
U2
0,n,KU

2
j,n,K1

R
(1)
j,K

)
= E

(
U2
0,n,KŨ

2
j,n,K1

R̃
(1)
j,K

)
= E

(
U2
0,n,KŨ

2
j,n,K

)
− E

(
U2
0,n,KŨ

2
j,n,K1

(R̃
(1)
j,K)c

)
= E

(
U2
0,n,KŨ

2
0,n,K

)
− E

(
U2
0,n,KŨ

2
j,n,K1

(R̃
(1)
j,K)c

)
(3.25)

where in the last expression above, again the second term above is bounded by

CP((R̃(1)

j,K)c)1/2, uniformly in n, for some positive constant C. To sum up, by

(3.23) and (3.25) we arrive at the fact that there exists a constant LK,ε such that

(3.26)
∣∣∣E (U2

0,n,KU
2
j,n,K

)
− E

(
U2
0,n,KŨ

2
0,n,K

)∣∣∣ ≤ ε

2
, for all j > LK,ε, n ∈ N.

Finally, we will prove that

(3.27) lim
n→∞

Cov
(
U2
n,0,K , Ũ

2
n,0,K

)
= 0.

This and (3.26) shall yield that there exists an integer NK,ε such that∣∣∣E(U2
0,n,KŨ

2
0,n,K

)
− (EU2

0,n,K)2
∣∣∣ < ε

2
, for all n ∈ Nk,ε,

and complete the proof of the lemma.
It remains to show (3.27). We start by establishing a conditional central limit

theorem for U0,n,K , given the ancestral lines A(1)

−K+1, . . . , A
(1)

0 . We shall actually

only need the random partition on {−K + 1, . . . , 0}, denoted by G(1)

K , induced by
these ancestral lines. Recall the definition of U0,j,K in (3.18). We have
(3.28)

U0,n,K =
1

b(2)n

n∑
j=1

X∗(0,j),K =
1

b(2)n

n∑
j2=1

X(0,j2) −
K∑
j1=1

p(1)

j1
X(−j1,j2)

 ≡ 1

b(2)n

n∑
j=1

Xj ,

where we introduce Xj = X∗(0,j),K to simplify the notation. Note that X depends

on K.
Here we need the crucial remark that, given G(1)

K , {Xi}i∈Z is a generalized one-
dimensional Hammond–Sheffield model, with a marginal law as the conditional law
of X∗0,K given G(1)

K , and hence with bounded support (Remark 3.2). To see this, the

second expression of U0,n,K in (3.28) is more convenient: by definition of the two-
dimensional model, it suffices to examine the partition of {−K+1, . . . , 0}×N. Recall
that the product partition is obtained by Cartesian products. It then follows that
Xi ≡ Xj if i ∼ j with respect to the random partition G(2) of the second direction
of the model, and otherwise Xi and Xj are i.i.d. Note that this observation remains
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true if we condition on G(1)

K first; the marginal law will depend on G(1)

K , but remains
bounded. Then, Proposition 3.1 tells that

(3.29)

 1

b(2)n

bntc∑
i=1

Xi


t∈[0,1]

∣∣∣∣∣∣∣ G(1)

K ⇒ σK
{
BHt
}
t∈[0,1] ,

where H = α2 + 1/2 and

σ2
K =

E(X2
1 | G

(1)

K )∑
k≥0(q(2)

k )2
=

E(X∗20,K | G
(1)

K )∑
k≥0(q(2)

k )2
.

See Appendix A for our notations for conditional limit theorems. We only need
t = 1 to deal with U0,n,K in the central limit theorem here, but for the proof of
finite-dimensional distributions later, we shall need the above conditional functional
central limit theorem. In particular, (3.29) yields that

U0,n,K | G(1)

K ⇒ σK · N (0, 1).

Introduce similarly G̃(1)

K based on {Ã(1)

−K+1, . . . , Ã
(1)

0 }. By the same approach de-
scribed above, we can show that

(3.30)
(
U0,n,K , Ũ0,n,K

) ∣∣∣ G(1)

K , G̃(1)

K ⇒
(
σKZ, σ̃KZ̃

)
,

where Z and Z̃ are two independent standard normal random variables and σ̃2
K =

E(X̃∗20,K | G̃
(1)

K )(
∑
k≥0(q(2)

k )2)−1. To establish the joint convergence, by the Cramér–
Wold device it suffices to consider, for all a, b ∈ R,

aU0,n,K + bŨ0,n,K

∣∣∣ G(1)

K , G̃
(1)

K
d
=

1

b(2)n

n∑
i=1

(
aX∗(0,i),K + bX̃∗(0,i),K

) ∣∣∣∣∣ G(1)

K , G̃
(1)

K ,

where X̃∗(0,i),K is defined similarly as X∗(0,i),K , and the two are assumed to be

conditionally independent given {A(2)

j }j∈Z. Again, given G(1)

K and G̃(1)

K , the process{
Xi
}
i∈N ≡

{
aX∗(0,i),K + bX̃∗(0,i),K

}
i∈N

is a generalized one-dimensional Hammond–Sheffield model. The normalized partial
sum

∑n
i=1 Xi/b(2)n then converges to a normal distribution, with variance equal to

Var
(
X1

∣∣∣ G(1)

K , G̃
(1)

K

)
= E

[(
aX∗(0,i),K + bX̃∗(0,i),K

)2 ∣∣∣∣ G(1)

K , G̃
(1)

K

]
= a2σ2

K + b2σ̃2
K .

Hence, (3.30) follows as before by Proposition 3.1.
As a consequence of (3.30), we arrive at(

U0,n,K , Ũ0,n,K

)
⇒
(
σKZ, σ̃KZ̃

)
, as n→∞,

where now σK and σ̃K are random variables, and all four random variables on the
right-hand side are independent. By the boundedness of σK , σ̃K and the uniform

integrability of U4
n,0,K and Ũ4

n,0,K , it follows that

lim
n→∞

Cov
(
U2
n,0,K , Ũ

2
n,0,K

)
= Cov

(
σ2
KZ

2, σ̃2
KZ̃

2
)

= 0.

This completes the proof of (3.27). �
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3.5. Proof of Theorem 3.3.

Proof of convergence of finite-dimensional distributions. We use Cramér–Wold de-
vice. For m ∈ N, let λ1, . . . , λm ∈ R and t(1), . . . , t(m) ∈ [0, 1]2 be fixed. For n ∈ N2,
denote nt(1) , . . . ,nt(m) ∈ N2 as before in (2.17) and to shorten the notation, the
two coordinates of nt(r) are denoted by n1(r) =

⌊
n1t

(r)

1

⌋
and n2(r) =

⌊
n2t

(r)

2

⌋
respectively, t(r) being fixed. We have for all n ∈ N2,

1

bn

m∑
r=1

λrSn
t(r)

=
1

b(1)n1

∑
j1∈Z

m∑
r=1

λrb
(1)

n1(r),j1
Uj1,n2(r),

where Uj1,n2(r) is defined as in (3.10). One can show as before that{
m∑
r=1

λrb
(1)

n1(r),j
Uj,n2(r)

}
j∈Z

is a martingale-difference sequence with respect to {F (1)

j }j∈Z. Therefore we ap-
ply the central limit theorem of McLeish as in Section 3.4. The two conditions
corresponding to (3.12) and (3.13) can be verified similarly as before. The third
condition (3.14) becomes

lim
n1→∞

1

(b(1)n1)2

∑
j∈Z

(
m∑
r=1

λrb
(1)

n1(r),j1
Uj,n2(r)

)2

=
Var

(∑m
r=1 λrBHt(r)

)
(
∑
k≥0 q

2
k)2

in probability.

This shall follow from
(3.31)

lim
n1→∞

1

(b(1)n1)2

∑
j∈Z

b(1)n1(r),j
b(1)n1(r′),j

Uj,n2(r)Uj,n2(r′) =
Cov(BH

t(r)
,BH
t(r
′))

(
∑
k≥0 q

2
k)2

in probability,

for all r, r′ ∈ {1, . . . ,m}. We do so again by computing the L2-convergence. Remark
first that

E

 1

(b(1)n1)2

∑
j∈Z

b(1)n1(r),j
b(1)n1(r′),j

Uj,n2(r)Uj,n2(r′)


=

1

(b(1)n1)2

∑
j1∈Z

b(1)n1(r),j1
b(1)n1(r′),j1

1

(b(2)n2)2

∑
j2∈Z

b(2)n2(r),j2
b(2)n2(r′),j2

Var(X∗∗0 )

∼ Cov
(
BHt(r) ,B

H
t(r
′)

)
Var(X∗∗0 ) as n→∞,

where X∗∗0 is defined as in (3.15) and the asymptotic follows from the identity∑
j∈Z

b(m)

n(r),jb
(m)

n(r′),j =
1

2

[
(b(m)

n(r))
2 + (b(m)

n(r′))
2 − |b(m)

n(r) − b
(m)

n(r′)|
2
]

=
1

2

[
(b(m)

n(r))
2 + (b(m)

n(r′))
2 − (b(m)

|n(r)−n(r′)|)
2
]
, m = 1, 2,

and (3.8). Therefore, to show (3.31), it suffices to prove, as a counterpart of (3.20),

lim
n→∞

1

(b(1)n1)4

∑
j,j′∈Z

b(1)n1(r),j
b(1)n1(r′),j

b(1)n1(r),j′
b(1)n1(r′),j′

· Cov
(
Uj,n2(r),KUj,n2(r′),K , Uj′,n2(r),KUj′,n2(r′),K

)
= 0,
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which, as in (3.21), shall follow from the following lemma. The proof of convergence
of finite-dimensional distributions is thus completed. �

Lemma 3.12. For all K ∈ N, ε > 0, there exists LK,ε, NK,ε, such that∣∣Cov
(
U0,n2(r),KU0,n2(r′),K , Uj,n2(r),KUj,n2(r′),K

)∣∣ < ε, for all j > LK,ε, n2 > NK,ε.

Proof. By the same idea as in the proof of Lemma 3.11, it suffices to show

lim
n2→∞

Cov
(
U0,n2(r),KU0,n2(r′),K , Ũ0,n2(r),KŨ0,n2(r′),K

)
= 0.

As a consequence of (3.29), instead of (3.30) we now have(
U0,n2(r),K , U0,n2(r′),K , Ũ0,n2(r),K , Ũ0,n2(r′),K

) ∣∣∣ G(1)

K , G̃
(1)

K

⇒
(
σKBH2

t
(r)
2

, σKBH2

t
(r′)
2

, σ̃KB̃H2

t
(r)
2

, σ̃KB̃H2

t
(r′)
2

)
,

where BH2 and B̃H2 are i.i.d. copies of fractional Brownian motion with Hurst index
H2 = α2 + 1/2, σK and σ̃K are as before. This completes the proof. �

Proof of tightness. Again, applying Bickel–Wichura’s criterion [1] and using (3.11),
the tightness will follow from the existence of a real γ > 1 such that

E
(
Sm
bn

)2

≤ C
2∏
q=1

(
mq

nq

)γ
, for all m ≤ n.

Let δ > 0 be such that γ = 2 min(α1, α2) + 1− δ > 1. Using the representation of
Sm as in (3.9) and the representation of U0,n as in (3.16), applying Burkholder’s
inequality twice, we get

E
(
Sm
bn

)2

≤ C
(
b(1)m1

b(1)n1

)2(b(2)m2

b(2)n2

)2

‖X∗∗0 ‖22 ≤ C
2∏
q=1

(
mq

nq

)2αq+1
Lq(nq)

Lq(mq)
.

We obtain the desired result by Potter’s bound Lq(nq)/Lq(mq) ≤ C(mq/nq)
−δ. �

4. Combining Hammond–Sheffield model and Karlin model

In this section, we combine a one-dimensional Hammond–Sheffield model and a
one-dimensional randomized Karlin model together, and show that the combined
model converges weakly to a fractional Brownian sheet with Hurst indices H1 ∈
(1/2, 1) and H2 ∈ (0, 1/2).

4.1. Model and main result. Consider two random partitions from the one-
dimensional Hammond–Sheffield model and the randomized Karlin model, re-
spectively. Assume the two random partitions are independent. Namely, let
G(1) = G(E, V ) be the underlying random forest structure of the Hammond–
Sheffield model generated by a distribution µ1, and let {A(1)

j }j∈Z be the associated

ancestral lines. Let {Y (2)

j }j∈N be i.i.d. random variables with common distribution

µ2. Suppose µi, i = 1, 2 are probability measures on N satisfying (3.3) and (2.1)
respectively with α1 ∈ (0, 1/2) and α2 ∈ (0, 1). Assume G(1) and {Y (2)

j }j∈N are
independent. Now, consider the product of the two random partitions. This is the
random partition of Z× N determined by

i ∼ j if and only if A(1)

i1
∩A(1)

j1
6= ∅ and Y (2)

i2
= Y (2)

j2
.



28 OLIVIER DURIEU AND YIZAO WANG

Next, given the partition, we apply the identical assignment rule in the first
direction, and the alternating assignment rule in the second (see Figure 1, right).
Given a collection of components determined by G(1) and {Y (2)

n }n∈N, we assign
values XC = {Xj}j∈C as follows. Let {εC}C be a collection of i.i.d. random variables
taking values in {−1, 1} with equal probabilities, indexed by different components
C. For each C fixed, express this as

C = C(1) × {j(2)` }`∈N with 1 ≤ j(2)1 ≤ j
(2)

2 ≤ · · · ,
and set

Xj = (−1)`+1εC , for j = (j1, j2) ∈ C, j2 = j(2)` .

The random field {Xj}j∈Z×N constructed this way is referred to as the two-
dimensional combined model. The main result of this section is the following
invariance principle for Sn =

∑
i∈[1,n]Xi.

Theorem 4.1. For the two-dimensional combined model with α1 ∈ (0, 1/2), α2 ∈
(0, 1), and slowly varying functions L1, L2 respectively,{

Sbn·tc

nH1
1 nH2

2 L1(n1)−1L2(n2)1/2

}
t∈[0,1]2

⇒ σα
{
BHt
}
t∈[0,1]2

in D([0, 1]2), as n→∞, with H1 = α1 + 1/2 ∈ (1/2, 1), H2 = α2/2 ∈ (0, 1/2), and

σ2
α =

Cα1
Γ(1− α2)2α2−1∑
j≥0(q(1)

j )2
,

for Cα1
defined in (3.2) and q(1)

j = P(0 ∈ A(1)

j ), j ∈ Z.

4.2. Proof of Theorem 4.1. The proof follows the same strategy as for the two-
dimensional Hammond-Sheffield model in Sections 3.3 and 3.4. We first introduce
the sequence {X∗j }j∈Z defined as in (3.4) by

X∗j = Xj − E(Xj | F (1)

j1
), j ∈ Z,

where F (1)

j = σ{Xi | i1 < j, i2 ∈ N}. Note that, to draw a parallel with Sections 3.3
and 3.4, we keep the same notation but the variables X∗j here are different from the
preceding section since the dependence in the second direction is given by a partition
from the Karlin model. Nevertheless, for any j2 ∈ N, the sequence {Xj}j1∈Z is a
martingale-difference sequence with respect to {F (1)

j1
}j1∈Z. So, Lemma 3.5 remains

valid here (the proof is exactly the same) and we thus have

Sn =
∑
j1∈Z

b(1)n1,j1

n2∑
j2=1

X∗j ,

with b(1)n,j =
∑n
k=1 q

(1)

k−j defined as before. Recall from (3.8) that

(b(1)n )2 =
∑
j∈Z

(b(1)n,j)
2 ∼ Cα1n

2α1+1L1(n)−2, as n→∞.

Because of the alternating assignment rule in the second direction, we need to

consider the number K̃(2)
n =

∑∞
i=1K

(2)

n,2i−1 of odd-occupancy boxes, that is the

number of values appearing an odd number of times among {Y (2)

1 , . . . , Y (2)
n }. Recall

from Lemma 2.3 that

(a(2)

n )2 = EK̃(2)

n ∼ Γ(1− α2)2α2−1nα2L2(n), as n→∞.
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This time, for all n ∈ N2, we can write

Sn

b(1)n1a
(2)
n2

=
1

b(1)n1

∑
j∈Z

b(1)n1,j1
Uj1,n2

with Uj1,n2
=

1

a(2)
n2

n2∑
i=1

X∗j .

This is the counterpart of Proposition 3.6, representing the normalized partial sum
of interest as a weighted linear process with stationary martingale-difference inno-
vations.

We then introduce, for all K ≥ 1, the approximations

X∗j,K = Xj −
K∑
k=1

p(1)

k X(j1−k,j2) and Uj1,n,K =
1

a(2)
n

n∑
j2=1

X∗j,K ,

for all j1 ∈ Z, j2 ∈ N, n ∈ N.

Proof of convergence of finite-dimensional distributions. This can be done as in
Section 3.4 by the use of Cramér–Wold device and McLeish’s theorem [22]. For
this purpose, we only need to show that the conclusions of Lemmas 3.9, 3.10, 3.11,
and 3.12 are still valid with respect to the newly defined X∗j , X∗j,K , Uj1,n2

and
Uj1,n2,K . For the sake of convenience, we restate Lemmas 3.9 and 3.10 in Lemma
4.2 below, and restate Lemma 3.11 in Lemma 4.3 below. The core arguments of
Lemma 3.12 are all in Lemma 3.11 and we therefore omit the proof. �

Lemma 4.2. (i) For all n ∈ N, EU2
0,n = (

∑
k≥0 q

2
k)−1 <∞.

(ii) For all p ∈ N and K ∈ N, EU2p
0,n and EU2p

0,n,K are uniformly bounded.

(iii) For all p ≥ 1, limK→∞ supn∈N E|U0,n − U0,n,K |2p = 0.

Proof. Denoting by G(1) and Y (2) the σ-fields generated by G(1) and {Y (2)

j }j∈N re-

spectively, as for (2.16), we see that for all n ∈ N, j1 ∈ N,

n∑
j2=1

X∗j

∣∣∣∣∣∣ G(1),Y (2) d
=

K̃(2)
n∑
i=1

ε′i

∣∣∣∣∣∣ G(1),

where the random variables {ε′i}i∈N are conditionally independent given G(1), inde-
pendent of Y (2), and for all i ∈ N, the conditional distribution ε′i | G(1) is the same
as the conditional distribution X∗0 | G(1). Note in the identity above, without the
conditioning on G(1), the {ε′i}i∈N on the right-hand side are no longer independent.
We can thus write

E
(
U2
0,n

∣∣ G(1),Y (2)
)

=
1

(a(2)
n )2

E


 n∑
j2=1

X∗j

2
∣∣∣∣∣∣∣ G(1),Y (2)


=

1

(a(2)
n )2

E


K̃(2)

n∑
i=1

ε′i

2
∣∣∣∣∣∣∣ G(1),Y (2)

 =
K̃(2)
n

(a(2)
n )2

E
(
ε′20 | G(1)

)
,

Thus

E
(
U2
0,n

)
= Var(X∗0) <∞, uniformly in n.

This proves the first part.
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For the second part, for all p ≥ 1, by Burkholder’s inequality we have

E
(
U2p
0,n

∣∣∣ G(1),Y (2)

)
≤ Cp

(
K̃(2)
n

(a(2)
n )2

)p
E(X∗2p0 | G(1)).

Note that E(K̃(2)
n /(a(2)

n )2)p is uniformly bounded by Lemma 2.3. Similarly,

E
(
U2p
0,n,K

∣∣∣ G(1),Y (2)

)
≤ Cp

(
K̃(2)
n

(a(2)
n )2

)p
E(X∗2p0,K | G

(1)).

For the third part, we have

E
(
|U0,n,K − U0,n|2p

∣∣ G(1),Y (2)
)
≤ Cp

(
K̃(2)
n

(a(2)
n )2

)p
E(|X∗0,K −X∗0 |2p | G(1))→ 0,

as K →∞. �

Lemma 4.3. For all K ∈ N, ε > 0, there exists integers LK,ε, NK,ε, such that∣∣Cov(U2
0,n,K , U

2
j,n,K)

∣∣ < ε, for all j > LK,ε, n > NK,ε.

Proof. To proceed we introduce a copy of {A(1)

j }j∈Z, denoted by {Ã(1)

j }j∈Z, inde-

pendent of the original model and we defined a new field {X̃j}j∈Z based on the

combined model involving {Ã(1)

j }j∈Z and the same {Y (2)

j }j∈N as the original model.

Then X̃j , X̃
∗
j , X̃∗j,K , Ũj,n, and Ũj,n,K are defined as the corresponding statistics of

the combined model based on {Ã(1)

j }j∈Z and {Y (2)

j }j∈N. In particular, these random
variables are identically distributed as the variables Xj , X

∗
j , X

∗
j,K , U0,n and U0,n,K ,

respectively, and they are conditionally independent from them given Y (2). As in
the proof of Lemma 3.11, observe that

(U0,n,K , Uj,n,K) | R(1)

j,K
d
=
(
U0,n,K , Ũj,n,K

) ∣∣∣ R̃(1)

j,K ,

for R(1)

j,K and R̃(1)

j,K defined as in (3.22) and (3.24). Therefore we see that to prove
the desired result it suffices to show that for all K ≥ 1,

lim
n→∞

Cov
(
U2
0,n,K , Ũ

2
0,n,K

)
= 0,

corresponding to (3.27). Let G(1)

K be the random partition of {−K + 1, . . . , 0}
induced by G(1) and note that

U0,n,K | G(1)

K
d
=

1

a(2)
n2

n∑
i=1

X∗(0,i),K

∣∣∣∣∣ G(1)

K ≡
1

a(2)
n2

n∑
i=1

Xi

∣∣∣∣∣ G(1)

K ,

where again we write Xi = X∗(0,i),K for the sake of simplicity. Here, conditionally

given G(1)

K , {Xi}i∈N is a generalized one-dimensional randomized Karlin model.
Indeed, for i 6∼ j with respect to {Y (2)

j }j∈N, the random variables Xi and Xj are

conditionally independent given G(1)

K and Y (2), and for i ∼ j, letting ` denote the
number of integers in the component between i and j (say i < j without loss of
generality, so ` = {k : i < k < j, Y (2)

k = Y (2)

i = Y (2)

j }), we have Xi = (−1)`+1Xj
given G(1)

K and Y (2).
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Similarly, let G̃(1)

K be the random partition of {−K + 1, . . . , 0} induced by G̃(1).
Then for all a, b ∈ R,

aU0,n,K + bŨ0,n,K

∣∣∣ G(1)

K , G̃
(1)

K
d
=

1

a(2)
n2

n∑
i=1

(
aX∗(0,i),K + bX̃∗(0,i),K

) ∣∣∣∣∣ G(1)

K , G̃
(1)

K ,

where {
Xi
}
i∈N ≡

{
aX∗(0,i),K + bX̃∗(0,i),K

}
i∈N

,

given G(1)

K and G̃(1)

K , this time is a generalized one-dimensional randomized Karlin

model. Since {Xi}i∈N has bounded and centered marginal distribution, we can thus
apply Proposition 2.1 for generalized one-dimensional randomized Karlin model.
The variance of the limit normal distribution is then

E
(
X2

1

∣∣∣ G(1)

K , G̃
(1)

K

)
= a2Var

(
X∗0,K

∣∣ G(1)

K

)
+ b2Var

(
X̃∗0,K

∣∣∣ G̃(1)

K

)
= a2σK + b2σ̃K .

It follows that, by the Cramér–Wold device,(
U0,n,K , Ũ0,n,K

)
⇒
(
σKZ, σ̃KZ̃

)
,

where Z and Z̃ are standard normal random variables and the four random vari-
ables are independent. To conclude, we deduce that limn→∞ Cov(U2

0,n,K , Ũ
2
0,n,K) =

Cov(σ2
KZ

2, σ̃2
KZ̃

2) = 0, which imply the desired result. �

Proof of tightness. Again, we proceed using Bickel–Wichura’s criterion [1]. Observe
that for all n ∈ N, {Uj,n}j∈Z is a martingale-difference sequence with respect to
{F (1)

j }j∈Z. By Burkholder’s inequality, for all p ≥ 1, for all n,m ∈ N2,

E
(

Sm

b(1)n1a
(2)
n2

)2p

≤ Cp
(

a(2)
m2

b(1)n1a
(2)
n2

)2p

E

∑
j∈Z

(b(1)m1
)2U2

j,m2

p

≤ Cp
(
b(1)m1

b(1)n1

)2p(a(2)
m2

a(2)
n2

)2p

EU2p
0,n.

Using that EU2p
0,n is bounded uniformly in n and that(

b(1)m1

b(1)n1

)2p(a(2)
m2

a(2)
n2

)2p

∼ mH1
1 L−11 (m1)

nH1
1 L−11 (n1)

mH2
2 L2(m2)

nH2
2 L2(n2)

, as n→∞,

we can conclude as for the other models, dealing with the slowly varying functions
by using Potter’s bound. �

Remark 4.4. As we have seen, the proof follows the same structure as for the
two-dimensional Hammond–Sheffield model. In fact, our models have their natu-
ral generalizations to high dimensions (d ≥ 2), and the proof will follow the same
strategy. The generalization of the model to high dimensions, based on indepen-
dent random partitions and assignment rules in different directions, is intuitively
obvious. However, it is notationally heavy to introduce. We only briefly explain
how the proof would go. If in all directions the random partition is the same
as the one in the one-dimensional Karlin model, then the same proof as Theo-
rem 2.2, by first conditioning on the partition, shall work. If at least in one di-
rection, say the first, the random partition and assignment rule are the ones of
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the one-dimensional Hammond–Sheffield model, then the same strategy as in two-
dimensional Hammond–Sheffield model and the combined model shall work, by first
writing

1

bn
Sn1,...,nd

=
1

b(1)n1

∑
j1∈Z

b(1)j1,n1
Uj1,n2,...,nd

,

with {Uj1,n2,...,nd
}j1∈Z a stationary sequence of martingale differences. The analysis

of this martingale-difference sequence shall need results for generalized (d − 1)-
dimensional models (to be defined properly first). To complete the details of this
strategy would require an induction argument.

Appendix A. Conditional convergence

We follow the notations of Kallenberg [14, Chapter 5]. Let (Ω,A,P) be a prob-
ability space, (S,S) be a Borel space and (T, T ) be a measurable space. Let ξ, η
be two random elements in S, T respectively. A regular conditional distribution of
ξ given η is defined as a random measure ν of the form

ν(η,B) = P(ξ ∈ B | σ(η)), almost surely, B ∈ S,

where ν is a probability kernel from (T, T ) to (S,S): ν(·, B) is T -measurable for all
B ∈ S, and ν(t, ·) is a probability measure on (S,S) for all t ∈ T . Under the previous
regularity assumption on the space (S,S) and (T, T ), such a probability kernel ν
exists, and is unique almost everywhere P ◦ η−1 [14, Theorem 5.3]. Furthermore,
for all measurable function f on (S × T,S × T ), with E|f(ξ, η)| <∞,

E(f(ξ, η) | σ(η)) =

∫
ν(η, ds)f(s, η), almost surely.

See for example [14, Theorem 5.4].
Some of our results are in the form of conditional (functional) limit theorems

for the random field given underlying the random partition. The random partition,
denoted by η here, and the random field {Xi}i∈Zd , d ∈ N are defined on a common
probability space (Ω,A,P). Let {Zn}n∈N be a sequence of real-valued random
variables (the normalized partial sum with appropriate normalization) in the same
probability space. Then, let νn(η, ·) denote the regular conditional distribution of
Zn given η. With G = σ(η), we write for some G-measurable random variable V
(possibly a constant),

Zn | G ⇒ V · N (0, 1),

if νn(η(ω), ·) as n → ∞ converges to the standard normal distribution multiplied
by V (ω) almost surely. That is, for all bounded continuous functions h : R→ R,

lim
n→∞

∫
h(z)νn(η(ω), dz) =

∫
h(z)

1√
2π
e−z

2/2dz · V (ω), almost surely.

In this case we say that the conditional central limit theorem holds.
The conditional functional central limit theorem is interpreted in a similar way.

Let Z = {Z(t)}t∈T and Zn = {Zn(t)}t∈T , n ∈ N with T = [0, 1]d, d ∈ N, be real-
valued stochastic processes in D(T ) equipped with the Skorohod topology, defined
in the same probability space. We write

{Zn(t)}t∈T | G ⇒ V · {Z(t)}t∈T ,
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if, letting νn(η, ·) denote this time the regular conditional distribution of Zn given
η and µZ denote the distribution of Z, both as probability measures on D(T ), for
all bounded and continuous function h from D(T ) to R,

lim
n→∞

∫
D(T )

h(ζ)νn(η(ω), dζ) =

∫
D(T )

h(ζ)µZ(dζ) · V (ω) almost surely.
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