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I. INTRODUCTION

I N the signal processing community, multicomponent sig- nals (MCS), defined as a superposition of amplitudeand frequency-modulated (AM-FM) modes, have received considerable attention [START_REF] Kodera | Analysis of time-varying signals with small bt values[END_REF], [START_REF] Flandrin | Time-frequency/time-scale analysis[END_REF]. Indeed, they enable to very accurately represent a large class of signals arising from audio recordings (music, speech), meteorology, structural stability analysis [START_REF] Costa | Noise and poise: Enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy[END_REF]- [START_REF] Huang | A review on Hilbert-huang transform: Method and its applications to geophysical studies[END_REF], or medical data (electrocardiogram, thoracic and abdominal movement signals) [START_REF] Lin | Sleep apnea detection based on thoracic and abdominal movement signals of wearable piezo-electric bands[END_REF], [START_REF] Herry | Heart beat classification from single-lead ecg using the synchrosqueezing transform[END_REF]. Linear techniques, as for instance the short-time Fourier transform (STFT), are commonly used to characterize them in the TF plane. However, an inherent limitation of such methods, known as the "uncertainty principle", stipulates that one cannot localize a signal with arbitrary precision both in time and frequency. Many efforts have been made to cope with this issue and, a general methodology to sharpen TF representation, coined reassignment method (RM) was proposed [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF]. RM however does not allow for mode reconstruction, contrary to another phasebased technique called synchrosqueezing transform (SST), introduced in [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[END_REF]. Unfortunately, this technique cannot deal with MCS containing modes with strong frequency modulation and irregular amplitudes or Dirac impulses. Regarding the frequency modulation, a novel technique, called second order synchrosqueezing (VSST), was developed in [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF] and further theoretically studied in [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF]. Nevertheless, these techniques assuming the MCS is made of a fixed number of AM/FM modes, cannot deal with vanishing modes or Dirac impulses.

One key ingredient for mode reconstruction is the estimation of its TF signature, the knowledge of which enables definition of plenty different techniques other than those based D-H Pham and S. Meignen are with the Jean Kuntzmann Laboratory, University of Grenoble-Alpes, and CNRS, Grenoble 38041, France (email:duonghung.pham@imag.fr and sylvain.meignen@imag.fr).

on RM [START_REF] Meignen | A new algorithm for multicomponent signals analysis based on synchrosqueezing: With an application to signal sampling and denoising[END_REF], [START_REF] Oberlin | A novel time-frequency technique for multicomponent signal denoising[END_REF]. The type of modes sought conditions of the technique for TF signatures estimation: some approaches concentrate on ridge detection for AM/FM modes [START_REF] Delprat | Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies[END_REF], [START_REF] Newland | Ridge and phase identification in the frequency analysis of transient signals by harmonic wavelets[END_REF], while some others, using the properties of the reassignment vector (RV), can handle a wider class of TF signatures, the constraints on the modes being less stringent [START_REF] Lim | Sparse contour representations of sound[END_REF] [17]- [START_REF] Meignen | Fully adaptive mode decomposition from time-frequency ridges[END_REF]. In this latter case, the estimated TF signatures are then used to define basins of attraction (BAs) for the modes enabling their reconstruction. However, the just mentioned approaches based on RV fail to assess the TF signature associated with a noisy Dirac impulse. To improve the behavior of techniques based on RV on that type of modes while preserving their main characteristics on AM/FM modes is the aim of the present paper.

To do so, after having introduced some useful definitions in Section II, we recall that of RV and existing approaches based on the latter for TF signature estimation, in Section III. Then, we introduce, in Section IV, our new TF signature estimator based on the local orientation of RV, and then show how to perform mode reconstruction using BAs. Finally, numerical simulations in Section V demonstrate the improvement brought by the proposed new technique both on a complex simulated MCS and a real signal.

II. BASIC DEFINITIONS

For a given signal f ∈ L 2 (R), STFT corresponds to:

V g f (t, ω) = R f (u)g(u -t)e -i2πω(u-t) du, (1) 
where the window g is assumed to be real-valued. The spectrogram is then defined as |V g f (t, ω)| 2 . When f = δ t0 is a Dirac distribution at t 0 , the above definition can be extended using the duality product in the space of distributions as follows:

V g f (t, ω) = δ t0 , g(. -t)e -i2πω(.-t) = g(t 0 -t)e -i2πω(t0-t) .
(2) Note that, in such a case, the amplitude of STFT is the same whatever ω. In the sequel, we study MCSs defined as a superposition of modes:

f (t) = K k=1 f k (t) with f k (t) = A k (t)e i2πφ k (t) or f k = A k δ t k (3)
for some finite K ∈ N, a priori unknown. A k (t) and φ k (t) are respectively instantaneous amplitude (IA) and phase (IP), φ k (t) being referred to as the instantaneous frequency (IF) of mode f k at time t. Note also that, in our context, A k (t) needs not be continuous. Also, we define the TF signature of the first type of mode as (t, φ k (t)) while, for the Dirac impulse at t k , it corresponds to (t k , ω).

III. RV BASED TF SIGNATURE ESTIMATION

A. RV Definition and Illustrations

The key idea of the reassignment method (RM) [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF] is to map a TF representation, as for instance the spectrogram, to the location corresponding to the TF signature of the nearest mode. This corresponds to the centroid of the distribution:

τf (t, ω) = t - 1 2π ∂ ω arg(V g f (t, ω)) ωf (t, ω) = 1 2π ∂ t arg(V g f (t, ω)) , (4) 
where arg(Z) is the argument of complex number Z. These can be computed through [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF]:

τf (t, ω) = t + V tg f (t, ω) V g f (t, ω) ωf (t, ω) = ω - 1 2π V g f (t, ω) V g f (t, ω) , (5) 
where V tg f , V g f are respectively STFTs of f computed with windows t → tg(t), g (t) and {Z} (resp. {Z}) is the real (resp. imaginary) part of the complex number Z. With this in mind, RV is then defined as [START_REF] Lim | Sparse contour representations of sound[END_REF]:

RV (t, ω) = τf (t, ω) -t, ωf (t, ω) -ω . (6) 
As an illustration, it is easy to see that for f = δ t0 , RV (t, ω) = (t 0 -t, 0): it has a component only along the time axis. Conversely, for a purely harmonic mode,

f (t) = e i2πω0t , one has V g f (t, ω) = ĝ(ω -ω 0 )e 2iπω0t
, where ĝ is the Fourier transform of g, and thus

V tg f (t, ω) V g f (t, ω)
= tg(ω-ω0) ĝ(ω-ω0) which is an imaginary complex number when g is even. Similarly, one has

V g f (t,ω) V g f (t,ω) = g (ω-ω0) ĝ(ω-ω0) = 2iπ(ω -ω 0 ), so that, RV (t, ω) = (0, ω 0 -ω)
: it has a component only along the frequency axis. Another simple case is that of a constant amplitude linear chirp, whose STFT reads [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]

: V g f (t, ω) = f (t)g(u)e iπφ (t)u 2 (ω -φ (t)). When g(t) = e -σπt 2
, the following two relations can be easily proven:

V tg f (t, ω) = 1 -2πσ + 2iπφ (t) (g(u)e iπφ (t)u 2 ) (ω -φ (t)) = i(ω -φ (t)) -σ + iφ (t) V g f (t, ω) V g f (t, ω) = -2πσV tg f (t, ω), leading to RV (t, ω) = (ω-φ (t)) √ σ 2 +φ (t) 2 (-φ (t), σ 2
). The IF of the mode being a straight line whose orientation is given by vector (1, φ (t)), RV is orthogonal to the ridge corresponding to the TF signature only if σ = 1 (the window is unitary in L 2 ). More generally it points to that ridge following the direction (-φ (t), σ 2 ). 

B. Definitions of Contour Points

This section reviews two existing approaches to define contour points, corresponding to the TF signature, based on the projection of RV in some specific direction. Indeed, we have just seen that RV points to the ridge associated with the TF signature of a mode, which means that, when crossing a ridge, RV undergoes a strong variation in its orientation. To determine the location of these sudden orientation changes, a first strategy was developed in [START_REF] Lim | Sparse contour representations of sound[END_REF], and consisted in projecting RV in a specific direction, given by an angle θ, and then in determining the location of the sign change of the projection. Thus, contour points (CPs) were defined as the zeros of RV (t, ω), v θ , where v θ is the unit vector in the direction θ, and ., . denotes the inner product. Note that the direction of projection θ being fixed a priori, the technique does not adapt well to the determination of CPs corresponding to varying orientations. To deal with this problem, an improved technique to compute CPs was proposed in [START_REF] Meignen | Adaptive multimode signal reconstruction from time-frequency representations[END_REF], [START_REF] Meignen | Time-frequency ridge analysis based on reassignment vector[END_REF]. It first consisted in remarking that, due to the discrete nature of the studied signals, RV should be viewed as a displacement on a grid not a vector of with real coordinates. Indeed, if the signal is supposed to be defined on 0, • • • , M -1, the STFT is evaluated at frequencies p N , p = 0, • • • , N -1 (N is the number of frequency bins), so the grid is indexed by (k, p), k denoting one time instant. By rounding to the nearest integers both in time and frequency the coordinates of RV, one obtains RV r and then defines a new set of CPs by projecting this vector as follows:

α(k, p) := RV r (k, p N ), v θr(k, p N ) mod π = 0 (7) with θ r (k, p N ) the argument of RV r (k, p N ) (we consider (θ r (k, p N ) mod π) ∈ [0, π[).
This alternative allows to define a new type of CPs that no longer depends on a fixed angle θ. However, this technique, called M 1 in the sequel, suffers from some serious limitations [START_REF] Meignen | Fully adaptive mode decomposition from time-frequency ridges[END_REF]. Firstly, special structures are created in the vicinity of the zeros of the spectrogram since the mod π computation induces α(k, p) to be zero on horizontal TF lines crossing the zeros. Secondly, it is not capable of detecting vertical ridges, still because of the mod π factor, which generates numerical instabilities. All these phenomena are respectively illustrated in Figure 1 (a) and (b) (the CPs are practically chained by considering level zero contours of α(k, p) using contourc MATLAB function).

IV. NEW ADAPTIVE DETERMINATION OF CONTOURS POINTS AND BASINS OF ATTRACTION

A. Contour Estimation Based on Local RV Orientation

The applicability of the just recalled approaches based on the projection of RV r to compute CPs is hindered by the fact that the orientation of RV r , in the vicinity of the TF signature of a mode, fluctuates, and all the more so that the noise level increases. This section introduces a new adaptive algorithm that uses a criterion based on a local rather than punctual orientation of RV r to define a direction of projection. More precisely, the direction of projection for each RV r is defined by considering a squared neighborhood centered at the point of study instead of considering only one single grid point as introduced [START_REF] Meignen | Adaptive multimode signal reconstruction from time-frequency representations[END_REF], [START_REF] Meignen | Time-frequency ridge analysis based on reassignment vector[END_REF]. This results in a much more robust estimation of the TF signature of modes like Dirac impulses, even at high noise level, while maintaining a good behavior for AM/FM modes.

We first investigate the impact of viewing RV as a displacement on a grid and not a vector with real coordinates. To do so, we depict the distributions of the argument of RV or RV r (both taken modulo π), respectively in Figures 2 (a),(b), when the signal is a white Gaussian noise. We remark that the argument of RV (modulo π) is almost uniformly distributed in all directions while RV r (modulo π) clearly favors four directions: 0, π/4, π/2 and 3π/4. Despite these four orientations are not informative if one considers the whole TF plane, we are going to see they are features enabling definition of new local direction of projection for RV r , called local projection angles (LPAs). These help improve the performance of the estimator of TF signatures based on the projection of RV. We define, at each grid point (p, k), LPA as the most frequent value of θ r in a squared neighborhood of size (2T s + 1) 2 centered at the point of study. We then project RV r on the direction given by LPA and define the new CPs as the zeros of the projection, as summarized in the following algorithm (the mode function returns the most frequent value in an array):

We are going to show that the direction of projection is stabilized by using the proposed local estimation. T s , controlling the size of the neighborhood, should have a great impact on

Algorithm 1 LPA Algorithm 1: Input: RV r 2: θ r := mod (arg(RV r ), π), [M, N ] := size(RV r ) 3: for (k, p) ∈ {0, • • • , M -1} × {0, • • • , N -1} do 4: tmp = θ r (max(0, k -T s ) : min(M -1, k + T s ), 5: max(0, p -T s ) : min(N -1, p + T s )) 6: lpa(k, p/N ) = mode(tmp) 7:
α(k, p) := RV r (k, p/N ), v lpa(k,p/N ) 8: Define CPs as the zeros of α CPs computation and will be further studied in Section V ( M 1 corresponds to T s = 0).

B. Determination of Basins of Attraction Using RV and Mode Reconstruction

Using the just estimated modes' TF signatures, the basin of attraction (BA) associated with a mode, is defined as in [START_REF] Meignen | Time-frequency ridge analysis based on reassignment vector[END_REF], [START_REF] Meignen | Fully adaptive mode decomposition from time-frequency ridges[END_REF]. Once the BAs are computed, each corresponding mode f i is reconstructed through:

f i (t) = 1 g(0) (t,ω)∈Bi V g f (t, ω)dω, (8) 
where B i ⊂ R 2 is the BA associated with mode i.

V. NUMERICAL EXPERIMENTS

This section investigates the properties of the proposed algorithm for mode TF signature identification, signal denoising and mode reconstruction. Let us first consider a simulated MCS composed of three components: a Dirac impulse, a cosine chirp, and a purely harmonic mode. This signal is then contaminated by an additive white Gaussian noise (Signal-to-Noise Ratio (SNR) 0 dB, MCS is sampled at a rate N = 1024Hz on [0, 1] and STFT is computed with the Gaussian window σ = 1). We first display in Figure 3 (a) the spectrogram of the signal. Then, we depict respectively in Figures 3 (b) and (c) the basins of attraction along with the first 10 contours computed with method M 1 and the algorithm based on LPA. It is clear that the former cannot detect the Dirac impulse, whereas the latter manages to capture the TF structures associated with the three modes. Finally, we illustrate in Figure 3 (d) the reconstruction of the signal by selecting the coefficients associated with the three most energetic BAs (in cyan, orange and blue for decreasing energy order) displayed in Figure 3 (c). The output SNR after reconstruction are 9.6, 12.5 and 10.5 dB for the cosine chirp, Dirac impulse, and purely harmonic mode respectively, meaning that the algorithm not only estimates the modes but also performs some kind of denoising. The issue we now discuss is how to choose an appropriate parameter T s for a specific signal so as to compute CPs efficiently. The measure we use is the energy contained in the first K most energetic BAs with respect to T s :

A. Numerical Results

E f (T s ) = K i=1 (t,ω)∈BA Ts i |V g f (t, ω)| 2 , (9) 
where BA Ts i is the ith BA. The larger the quantity E f , the better the computation of CPs (provided K is meaningful for the studied signal). In Figure 4 (a), we display E f (T s ) for K = 3, for the MCS of Figure 3 (a), and at three different noise levels (SNR = 0, 5 and 10 dB). We remark that E f fluctuates when T s is small whatever the noise level and then stagnates when some particular value for T s is reached. The reason for such a behavior is that when T s is small and for the Dirac impulse, the neighborhood is too small to enable the determination of a stable direction of projection. As a result, only part of the contour associated with the Dirac impulse is taken into account in the first three contours resulting in a lower E f . As an illustration, BAs associated with the first 10 contours when T s = 6 and T s = 30 are shown in Figure 4 We now illustrate our new technique on a bat echolocation signal, made of 400 samples recorded at 143 Hz, to which a white Gaussian noise is added such that the input SNR equals 5.0 dB. The spectrogram of the noisy bat signal is displayed in Figure 5 (a). Then, it can be seen from Figure 5 (b) that the BAs corresponding to the three main components of the echolocation signal are well estimated by LPA algorithm, enabling the reconstruction of the three detected modes (Figure 5 (c)). Finally, we compare the total resulting signal with the original noise-free signal. The output SNR of the final reconstruction is 10.9 dB, which confirms the potential interest of our new technique for the denoising of real MCSs.

VI. CONCLUSION

In this letter, we have introduced a new technique to estimate the TF signatures or contours of the modes of multicomponent signals by projecting the reassignment vector along its local orientation. We then defined basins of attraction as the set of coefficients associated with these contours and used the former to reconstruct the modes. The technique proves to be efficient to reconstruct non AM/FM modes like Dirac impulses or discontinuous modes even at high noise level and can be profitably used to denoise real multicomponent signals as, for instance, bat echolocation calls.
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 1 Fig. 1. (a): a close-up of a zero of the spectrogram and its corresponding contour computed with method M 1 ; (b): STFT of a noisy Dirac impulse (SNR = 0 dB) along with the first 10 contours computed with method M 1 , which clearly point out the failure of the method in detecting the vertical ridge.
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 2 Fig. 2. (a): Histogram of the argument of RV modulo π, for a white Gaussian noise; (b): Same as (a) but with RV having its coordinates rounded to the nearest integers both in time and frequency (RVr), prior to histogram computation.

Fig. 3 .

 3 Fig. 3. (a): spectrogram of the simulated signal (SNR 0 dB); (b): BAs associated with the first 10 contours computed by method M 1 ; (c): same as (a) but computed with LPA algorithm (with Ts = 30); (d): reconstructed signal based on the coefficients contained in the three most energetic BAs depicted in (c) along with the original noise-free signal.
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 4 Fig. 4. (a): Energy contained in the three most energetic BAs computed by LPA algorithm on Fig.3 (a) for different values of Ts and noise levels; (b): BAs and the first 10 contours computed by LPA algorithm with Ts = 6.
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 5 Fig. 5. (a): the spectrogram; (b): BAs associated with the first 3 contours computed with LPA algorithm; (c): three reconstructed modes based on the coefficients contained in the three most energetic BAs depicted in (b); (d): reconstructed signal along with the original noise-free signal.