
HAL Id: hal-01586380
https://hal.science/hal-01586380v1

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Semantic-driven, Flexible and Scalable
Framework for Peering and Querying e-Catalog

Communities
Boualem Benatallah, Mohand-Said Hacid, Hye-Young Paik, Christophe Rey,

Farouk Toumani

To cite this version:
Boualem Benatallah, Mohand-Said Hacid, Hye-Young Paik, Christophe Rey, Farouk Toumani. To-
wards Semantic-driven, Flexible and Scalable Framework for Peering and Querying e-Catalog Com-
munities. Information Systems, 2006, 31 (4-5), pp.266-294. �10.1016/j.is.2005.02.009�. �hal-01586380�

https://hal.science/hal-01586380v1
https://hal.archives-ouvertes.fr

Towards Semantic-driven, Flexible and

Scalable Framework for Peering and Querying

e-Catalog Communities

Boualem Benatallah a , Mohand-Said Hacid b , Hye-young Paik a

, Christophe Rey c , Farouk Toumani c

aCSE, University of New South Wales, Australia
bLIRIS, University Lyon I, France

cLIMOS, ISIMA, University Blaise Pascal, France

Abstract

Given that e-catalogs are often autonomous and heterogeneous, effectively integrat-
ing and querying them is a delicate and time-consuming task. More importantly,
the number of e-catalogs to be integrated and queried may be large and continu-
ously changing. Conventional approaches where the development of an integrated
e-catalog requires the understanding of each of the underlying catalog are inap-
propriate. In this paper, we use the concept of e-catalog communities and peer
relationships among them to facilitate the querying of a potentially large number
of dynamic e-catalogs. E-catalog communities are essentially containers of related
e-catalogs. We propose a flexible and user-centric query matching algorithm that
exploits both community descriptions and peer relationships to find e-catalogs that
best match a user query. The user query is formulated using a description of a given
community.

Key words:
E-catalogs communities, P2P and Networked Data Management, Semantic Web,
Query rewriting, Description logics

Email addresses: boualem@cse.unsw.edu.au (Boualem Benatallah),
mshacid@liris.univ-lyon1.fr (Mohand-Said Hacid), hpaik@cse.unsw.edu.au
(Hye-young Paik), rey@isima.fr (Christophe Rey), ftoumani@isima.fr (Farouk
Toumani).

Preprint submitted to Elsevier Science 13 October 2004

1 Introduction

Web portals, such as Expedia.com and Amazon.com, are becoming more and
more prominent feature of the World Wide Web. They offer tremendous oppor-
tunities for empowering users and organisations in various application domains
including electronic commerce, travel, intelligence information gathering and
analysis, digital government. For example, citizens and social workers will
be able to get timely information and services by accessing state and federal
government department Web portals [1]. Travellers will get timely information
and services from relevant sources such as route information, travel operations
schedule, and entertainment Web portals.

However, the technology to organize, search, integrate, and evolve these portals
has not kept pace with the rapid growth of the available information space. En-
joying the above benefits using current Web technologies is a time-consuming,
frustrating, and a very complex process for end users. Currently, users need to
access a large number of heterogeneous and distributed data sources in order
to become self-supported. For example, in digital government example, users
need access to several Web portals of different government offices separately,
manually filter and organise the search results to get the information about the
benefits they are entitled to. This ad-hoc process of searching and combining
required information sources has largely hampered a faster pace in allowing
users to automate their tasks. Clearly, to effectively realize the potential of
Web-based information access, there is a need for facilitating the integrated
access to relevant information sources.

At present, the mainstream approach for locating web resources is through
keyword-based search engines relying on information retrieval techniques. Al-
though search engines are certainly useful, they present fundamental draw-
backs such as lack of information-space organisation [2]. To effectively exploit
the Web’s expanding information sources, the emerging semantic web efforts
employ machine-understandable abstractions for the representation of resource
semantics. In particular, the semantic web promotes the use of ontologies as a
tool for reconciling semantic heterogeneity between web resources. Efforts in
this area include the development of ontology languages such as RDF, DAML,
OWL 1 .

Despite these early efforts, many of the semantic web objectives, including the
technology to organise, search, integrate, and evolve web-accessible resources,
remain difficult to achieve. Ontologies provide essential support for semantics
rich queries (e.g., data source vocabulary and structure aware queries). How-
ever, several critical issues must be addressed to realize the potential of the

1 http://www.w3.org/2001/sw/WebOnt/

2

semantic web vision [3]. In particular, the effective use of a potentially large
and dynamic collection of Web resources requires more scalable and flexible
information sharing and querying techniques, which leverages and seamlessly
extends current mainstream technologies and practices.

In this paper, without loss of generality, we use e-catalog portals (also called
e-catalogs or e-commerce portals) as representative Web information sources
to illustrate the infrastructure we propose to support information sharing and
querying over the Web. We present the design and implementation of the
WS-CatalogNet system: a Web services based information sharing middle-
ware infrastructure whose aims is to enhance the potential of e-catalogs by
focusing on scalability and flexible aspects of their sharing and access. Our re-
search in the WS-CatalogNet builds upon lessons learned in our previous work
on Web information integration [2,4], in order to provide a peer-to-peer and
semantic-based e-catalogs sharing middleware infrastructure through which:
(i) e-catalogs can be categorised and described using domain ontologies, (ii)
heterogeneous service ontologies can be linked via peer relationships, (iii) e-
catalogs selection caters for flexible and user-centric matching between user
queries and e-catalogs descriptions. In a nutshell, the salient features of WS-
CatalogNet are:

• Ontology-based Indexing of e-Catalogs: At present the main stream
approach for providing unified access to multiple e-catalogs is the ad-hoc
development of an integrated e-catalog by locating the e-catalogs to be
integrated, understanding their interfaces, and statically linking them to
the global or integrated e-catalog. This static approach is clearly tedious
and hardly scalable because of the volatility and size of the Web. We use
the concept of catalog community as a way of organizing and integrating
a potentially large number of dynamic e-catalogs. A catalog community is
a container of alternative e-catalogs (i.e., catalogs offering products of a
common domain such as community of Laptopsproviders or community
of Accommodationproviders). It provides an ontological description of de-
sired products (e.g., product categories, product attributes) without refer-
ring to any actual provider (e.g., Dell Computers, The Hilton Hotel). Actual
providers can register with any community of interest to offer the desired
products. The e-catalog communities allow for meaningful organization and
division of the information space.
• Peering e-Catalog Communities: Existing e-catalog organization tech-

niques usually use centralized categorization and indexing schemes, whereas
the participating e-catalogs are distributed and autonomous [5,6]. A cen-
tralized categorization and indexing model has several drawbacks including
scalability, flexibility, and availability [7,8]. In addition, it is not realistic
to assume that a global ontology that contains concepts used in all pos-
sible e-catalogs could exist. It is not realistic either to assume that there
will be on agreement on the vocabularies used by different ontologies. It is

3

important to provide mediation facilities between heterogeneous ontologies.
Given the highly dynamic and distributed nature of e-catalogs, we believe
that novel techniques involving peer-to-peer centric categorization and in-
dexing schemes will become increasingly attractive. Our approach features
the use of peer relationships among e-catalog communities to allow decen-
tralized sharing of e-catalogs information [9]. Query routing between com-
munities is based on query forwarding policies. Query forwarding policies
are high-level directives that define interaction modes among communities
based on different types of peer relationships (e.g., mappings among com-
munity descriptions are fully defined, partially described, not defined). The
objective is to achieve scalable information sharing and access through the
collaborative data sharing and query processing among peer communities.
• Flexible and User-centric Selection of Relevant e-Catalogs: Because

of the variety of e-catalogs offering similar information and the large number
of available e-catalogs, it is important to provide appropriate support to se-
lect those e-catalogs that are relevant to a specific user query before actually
querying them. In addition, e-catalog selection techniques should support
flexible matching since it is unrealistic to expect queries and e-catalog de-
scriptions to match exactly. In our approach, a user query is expressed using
descriptions from a community ontology. We formalize relevant e-catalog se-
lection as a new instance of the query rewriting problem [10,11], where a
user query is reformulated in terms of:
· a local query (i.e., the part of the user query that can be answered by

some e-catalogs registered with the actual community),
· the remaining part of the user query that cannot be answered by the actual

community (i.e, cannot be answered by e-catalogs which are registered
with the community and it is not possible to exactly determine which
peer communities can answer it).

Our approach for e-catalog selection develops novel and more advanced query
rewriring techniques for flexible and effective e-catalogs selection. Existing
query rewriting approaches, developped in the context of information integra-
tion systems (see [10] for a survey), assume the existence of global mediated
schema, as well as availability of the description of the underlying data source
capabilities. Given a user query expressed over the global schema, the data
sources that are relevant to answer the query are selected by means of a rewrit-
ing algorithm that allows to reformulate the user query into an equivalent or
maximally subsumed (contained) query whose definition refers only to source
descriptions. It should be noted that, an underlying assumption behind us-
ing such kind of operators (i.e., subsumption or equivalence) in a rewriting
algorithm is that the source descriptions are known a priori (i.e., they are
published in the mediator system).

The query rewriting techniques proposed in this paper go beyond subsump-
tion and equivalence between queries and e-catalog descriptions. First, our

4

approach enables partial matching between e-catalog descriptions and queries,
thereby allowing to cater for flexible selection of e-catalogs in environments
where : (i) the existence of one centralized schema or ontology is not realis-
tic (ii) descriptions of external e-catalogs (members of communities which are
accessible via peer relationships) are not known when processing a query at a
given community. In WS-CatalogNet, peer communities do not share the de-
scriptions of their respective members. In addition, a community may form a
peer relationship with another community without necessarily providing pre-
cise description of the mapping between its ontology and the ontology of the
peer community. As a consequence, processing a user query in such a context
requires the ability to select among the local members of a community those
e-catalogs that are able to answer a part of the query, as well as the ability
to compute the remaining part of the query that cannot be answered by the
actual community (i.e, cannot be answered by e-catalogs which are registered
with the community). The remaining part of a query can be forwarded to
peer communities for further processing. Second, we argue that in the pres-
ence of multiple possible alternative e-catalogs with overlapping or identical
functionality, users will discriminate these alternatives based on their Qual-
ity of Service (QoS). QoS is a broad concept that encompasses a number of
non-functional properties such as price and reputation [12]. A QoS-aware and
user-centric approach to e-catalogs selection is therefore needed.

Our main contribution in this context is the characterization of several types
of flexible query rewritings and analysis of their associated computational
complexity. Given a user query expressed over a community ontology:

• We consider first the problem of computing those rewritings, called best
cover rewritings, that minimize the part of the query that cannot be an-
swered by the community. We show that such a rewriting, as well as a
best cover rewriting that minimize the number of the e-catalogs selected
for answering the query (called non redundant rewriting), can be computed
efficiently (i.e., in polynomial time).
• We show that computing all the non redundant rewritings can be done in

incremental subexponential time in the combined size of the query and the
number of the e-catalogs.
• We investigate the problem of computing the best cover rewritings that

maximize the user satisfaction with respect to a given Quality of Service
(QoS) criteria (e.g., communication cost, price, etc). We call such rewritings
best quality rewritings. We show that, the general problem of computing a
best quality rewriting is NP-hard. However in some particular cases which
depend on the characteristics of the QoS function, a best quality rewriting
can be computed efficiently.
• We propose a hypergraph-based algorithm to effectively compute all the

best quality rewritings of a given request and we describe first experimen-
tal results that show the performance of our algorithm using up to 660

5

e-catalogs.

The paper proceeds as follows. Section 2 presents the design overview of WS-
CatalogNet. Section 3 and 4 discuss the flexible query rewriting algorithms.
The implementation and evaluation of WS-CatalogNet are explained in section
5, followed by application scenarios in section 6. Discussions on the related
work are presented in section 7 and finally, section 8 concludes the paper with
final remarks.

2 WS-CatalogNet Framework

This section presents the WS-CatalogNet framework, a middleware infrastruc-
ture for flexible integration and querying of heteregeneous and autonomous
e-catalogs. We begin by describing the WS-CatalogNet metadata model and
then we present the cooperative query processing approach which is used to
select relevant e-catalogs in communities network.

To cope with the dynamic nature and size of the Web the WS-CatalogNet orga-
nizes the e-catalogs landscape in a network of e-catalog communities 2 [13,2].
Figure 1 shows the metamodel implemented by the WS-CatalogNet. A com-
munity is a container of e-catalogs of a specific domain that cater for similar
customer needs (e.g. e-marketplaces for hardware, vertical portals organized
on a special business topic, etc). A community is associated to an ontology
that provides a description of a spefic domain of interests. E-catalogs can
register themselves into a community as members by exporting (all or part
of) their descriptions. Moreover, to achieve interoperability across similar or
overlapping domains, communities themselves can be linked together as peers
based on inter-ontology relationships (a.k.a. peer relationship)).

The exported descriptions of community members are expressed in terms of
the community ontology (i.e., as views over the community ontology), thereby
WS-CatalogNet follows a LAV (Local As View)[14,10] approach for integrating
a community ontology with the descriptions of its members. This approach is
especially useful as a given community can have a potentially large number of
e-catalogs. Clearly, a GAV (Global as View) integration approach[14], where
the development of a community ontology requires the understanding of both
structure and semantics of all descriptions of community members, is hardly
applicable in e-catalog environments because of the dynamic nature and size
of the Web. Furthermore, the addition of a new member to the community
requires only the provision of the exported description of the member. It does
not requires any changes to the community ontology.

2 e-Catalog communities will be referred as communities in short

6

Community ontology

Exported
descriptions

Exported
descriptions Exported

descriptions

Exported
descriptions

E-catalog
provider

E-catalog
provider

E-catalog
provider

Community ontology

Exported
descriptions

Exported
descriptions Exported

descriptions

Exported
descriptions

Member
Registration

Member
Registration

Member
Registration

Member
Registration

Peer Relationship

W
S

-C
at

al
o

g
N

et
M

et
ad

at
a

P
ro

vi
d

er
so

u
rc

es

Fig. 1. Metadata representation of community networks

The second main component of the WS-CatalogNet framework is the cooper-
ative e-catalogs selection approach. In WS-CatalogNet, a community acts as
an entry point to query available e-catalogs: user queries are expressed over a
community ontology and re-formulated in terms of e-catalog descriptions. As
it can happen that a given (part) of a query cannot be answered by the actual
members of a community, queries can also be forwarded to peer communities.
The main purpose of query forwarding is to select a set of e-catalogs that,
when put together, can satisfy as much as possible the requirements of the
user query. For instance, if a community does not have members that provide
“warranty” information, it will ask its peers for e-catalogs which do.

In the remainder of this section, we discuss how the community networks are
formed, and then we introduce the cooperative e-catalogs selection.

2.1 Community Ontologies

As mentionned before, a community is a container of e-catalogs of a specific
domain (e.g. community of Flights providers). Communities provide means
for indexing availabe e-catalogs based on their domains and properties via
ontologies. We use a simple model based on e-catalog categories (e.g., Flights,
accommodation) that is powerful enough for practical applications. Indeed,
our analysis of a large number of e-commerce web portals (e.g., amazon.com
and expedia.com), confirms that the concept of e-catalog category is commonly
used to describe portal content and capabilities. Simplicity is important as
we target users who are not necessarily IT professionals. The ontology of a
community is described in terms of categories for the domain it represents.

7

A category is described by a set of attributes. Categories within an ontology
may be inter-related via the specialization (subsumption) relationship. For
example, the community FlightCenter may have a category Flights, which
is described using attributes such as arrival, departure, price, etc. (see
Figure 2).

��

DomesticFlights InternationalFlights Car

FuelIndicator

Holidays

Category Root

fromCountry, toCountry

fromCity, toCity, departure
arrival, cabibClass, price

destinationCity
offerDescription
totalPrice

RentCars

dropOfLocation, noOfDays
pickupLocation

Category
Member:

Qantas.com.au

Member:

RoundtheWorld

condition, route

STAFlightCentre

WordWideWeb

Flyhigh.com
Member:

Defn

Defn

Defn Defn

Defn

Airbag ...

Flights

Member
Definition

Defn

Member
Registration

Subsumption

specialService

Fig. 2. Community of FlightCentre, its categories and members

To provide formal semantics, necessary for precise and rigorous characteriza-
tion of queries over e-catalog communities, we propose to use a (concept) class
description language that belongs to the family of description logics (DLs) [15].
The proposed language is in fact a simple description logic that is designed
to represent ontology descriptions in terms of classes (unary predicates) and
attributes (binary predicates). Description logics are a family of logics that
were developed for modeling complex hierarchical structures and to provide a
specialized reasoning engine to do inferences on these structures. This is essen-
tial to provide formal foundations for the envisioned semantic Web paradigm.
Indeed, DLs have heavily influenced the development of some semantic Web
ontology languages (e.g., DAML-OIL or OWL). The main constructs of the
language used in this paper are illustrated below via examples.

In WS-CatalogNet, a community ontology is described in terms of classes
(unary predicates) and attributes (binary predicates). Class descriptions are
denoted by expressions formed by means of the following constructors:

• class conjunction (�), e.g., the description Travel � Accommodation de-
notes the class of products which are instances of the classes Travel and
Accommodation (e.g., a Hotel),
• the universal attribute quantification (∀R.C), e.g., the description
∀arrivalDate.Date denotes the class of products for which all the values
of the attribute arrivalDate are instances of the class Date (i.e., the data
type of the attribute arrivalDate is Date),
• the existential attribute quantification (∃R), e.g., the description ∃Price

denotes the class of products having at least one value for the attribute

8

Price.

It should be noted that, this language is a subset of the OWL language. For
clarity reasons, in this paper, we use the usual description logic syntax instead
of the OWL syntax.

Definition 1 (syntax and semantics of class descriptions.) Let CN
be a set of class names and A be a set of attribute names. Class descriptions
are inductively defined as follows:

• C is a class description for each class name C ∈ CN .
• Let C, D be class descriptions and R ∈ A an attribute name. Then C �D,
∀R.C and ∃R are class descriptions as well.

A model-theoretic semantics for this language is given by an interpretation
I = (∆I , ·I). It consists of a nonempty set ∆I , called the domain of the
interpretation, and an interpretation function ·I . The interpretation function
associates to each class name C ∈ CN a subset CI of ∆I , and to each attribute
name R ∈ R a binary relation RI ⊆ ∆I ×∆I . Additionally, the extension of
.I to arbitrary class descriptions has to satisfy the following equations:
(C �D)I = CI ∩DI , and
(∀R.C)I = {x ∈ ∆I |∀y : (x, y) ∈ RI ⇒ y ∈ CI}.
(∃R)I = {x ∈ ∆I |∃y : (x, y) ∈ RI}.

Based on this semantics, the notions of subsumption and equivalence between
class descriptions are defined as follows. Let C and D be class descriptions:

• C is subsumed by D (noted C � D) if CI ⊆ DI for all interpretation I.
• C is equivalent to D (noted C ≡ D) iff CI = DI for all interpretation I.

The basic concepts of the data model we use (i.e., community, category, at-
tribute, member definition, etc) are formally defined using the class description
language.

Category Definition. A category definition is specified as follows:
Cname ≡ CatDescr, where

• Cname is the name of the category,
• CatDescr is a class description that defines the category Cname.

For example, using the proposed language, the category Domestic Flights in
Figure 2 can be described as follows:

DomesticFlights ≡ Flights � ∀specialService.String �
∃specialService

This definition states that the category Domestic Flights inherits all the

9

attributes of the category Flights, and has one additional attribute, namely
specialService.

We would like to emphasize that the use of a formal language is transparent
to community providers and users. Indeed, WS-CatalogNet provides a graphi-
cal editor that supports a community providers in creating a community and
defining the community ontology (see Section 6). After the definition of an
ontology, the editor automatically generates the class descriptions of the on-
tology (i.e., class descriptions of all categories).

Using WordNet in Ontology Creation. It should be noted that, the
terms used in community ontology can be different from one community to an-
other. To help solve query mismatch problems, we use synonym-based match-
ing approach. As part of the community ontology, each category (respectively,
each attribute) is annotated with a list of synonyms. For example, for the cat-
egory Flight, synonyms may be air travel, air, trip. We use WordNet [16] to
assist community providers in annotating and extending community ontolo-
gies. WordNet defines a variety of semantic relationships between meanings
of terms. It can be used, e.g., to derive lexical ontology relationships between
terms to help the community provider annotate the ontology with the syn-
onyms, define attributes or to add sub categories. Some of such lexical ontology
relationships are:

• synonymy (similar relation): two categories (respectively, attributes) share
similar meanings. Hence, one is synonyms of the other. For example, the
synonymy construct of WordNet suggests that similar terms of the category
flight are air travel, trip and air.
• hypernymy (super-category relation): one category has broader meaning

than the other. Hence, one is super category of the other. For example, the
hypernymy construct of WordNet suggests that possible super-categories of
the category flight are trip, journey, travel.
• hyponymy (sub-category relation): one category has narrower meaning than

the other. Hence, one is sub category of the other. For example, the hy-
ponymy construct of WordNet suggests that possible sub-categories of the
category flight are domestic flight, international flight, nonstop flight.
• meronymy (part-of relation): A category can be described by several at-

tributes. For example, the meronymy construct of WordNet suggests that
the sub category Cars of the category Rentals can be described by the
attributes air bag, sunroof, airbrake, fuel type etc.

For the e-catalogs to be accessible through a community, they must regis-
ter with the community. When registering, the e-catalog provider supplies a
capability description which specifies the categories and attributes of the com-
munity ontology that are supported by the e-catalog. This form of information

10

is referred to as member definition or description. Thus, the registration pro-
cess allows an e-catalog and a community to form a MemberOf relationship.
Member definitions are also converted to class descriptions expressed using the
proposed class description language and stored in the community meta-data
repository (a repository used to store information about community ontology
and descriptions of its members).

A member definition specifies the query capabilities of a given e-catalog as
follows: Mname Dname ≡ MDescr where Mname Dname is a member definition
name made of Mname, a member name (i.e., an unique identifier of a mem-
ber), and Dname, the name of a description. MDescr is a class description that
specifies which products are actually provided by this member. For exam-
ple, the e-catalog flyhigh.com, which offers a range of flight information, can
be registered with the community FlightCentre using the following member
definition:

flyhigh.com International

≡ InternatioanlFlights

This definition states that flyhigh.com supports all attributes in the category
InternationalFlights as well as all attributes inherited from the category
Flights (as InternationalFlights is a sub-category of Flights). Note that,
each member can provide several definitions.

When registering with a community, member providers are in charge of pro-
viding and maintaining the exported descriptions of their e-catalogs as well as
the wrapping utilities required to translate user queries into e-catalog native
query models.

Community Definition. A community ontology consists of a tuple
CO = (C, S), where C is a set of category definitions and S is a set of com-
munity names that have peer relationships with the community. An e-catalog
community consists of a tuple CAT = (CO, M), where CAT is the community
name, CO is the community ontology, and M is a set of member definitions. We
assume that the set of class descriptions in a e-catalog community (i.e., cat-
egory definitions and member definitions) is acyclic, i.e., there does not exist
cyclic dependencies between class definitions.

It should be noted that, in our approach, it is also possible that, a community
provider (i) searches for an e-catalog which can be member of the community
on the Web, (ii) generates the corresponding WS-CatalogNet description of
the selected e-catalog, (iii) and register the e-catalog into the community. As
described in Section 5, this integration mode is implemented using the Froogle
search engine [17] (for searching potential e-catalogs) and our HTML2WS (a
custom tool that semi-automatically generates class descriptions from a native

11

e-catalog description). This approach is useful, for instance, when a community
provider observes that, the actual members are not answering queries related
to specific categories or attributes of the community ontology.

2.2 Peering e-Catalog Communities

In WS-CatalogNet, a community can form links (a.k.a. peer relationship) with
other communities. Once a link is formed, communities can forward queries
to each other. This enables sharing of data that is distributed among commu-
nities. To form a peer relationship, community providers uses the community
registry (hosted by WS-CatalogNet) to discover other communities whose do-
mains are relevant/smilar to their communities. Typically, a provider of a
community Ci may decide to form a peer relationship with another commu-
nity Cj if Ci has categories that are considered analogous, or interchangeable
to Cj’s categories (e.g., category Accommodation in community Travels and
category Budget Hotel in community Hotels).

The terms used in categories and attributes may be different from one commu-
nity to another. These differences need to be resolved for the communities to
collaborate in answering user queries (i.e. community Travels needs to know
how a query described in its own ontology should be translated into a query
described using the ontology of the peer community Hotels). Let us consider
that the provider of a community (noted Source) forms a peer relationship
with another community (noted Target). At this point, the provider is pre-
sented with the details of categories and attributes of the two communities.
She can then defines a mapping which defines how categories (respectively,
attributes) in Source are related to categories (respectively, attributes) in
Target. For flexibility, we consider three types of mappings:

• Full Mapping: Source provides explicit mapping description specifying
how the categories (respectively, attributes) in Source can be mapped to
categories (respectively, attributes) in Target. This mapping description is
stored in Source. Therefore, the query expressed in Source’s terms (i.e., Q)
can be translated into Target’s terms.
• Category Mapping: Source does not specify mapping description for

the attributes. In this case, the mapping only describes which category in
Source maps to which category in Target. When Source only has mappings
for categories, Source translate Q so that the category name is understood
by Target (see FROM clause in the query Q.1 given below) 3 . Then, for each
attribute in Q, a list of synonyms is attached (as shown in Q.1). Target will
use the synonyms to match the attributes.

3 The SQL-like syntax is used here for illustration purpose. We will show in Section
7, how queries are constructed in our approach

12

(Q.1) SELECT fromCity, toCity (destination)
FROM
Flights
WHERE
price (retail price, listed price) < 3000

• No Mapping: Source does not specify any explicit mapping description
with Target. In this case, it is left to Target to figure out how to answer
Source’s queries. When there is no mapping available, synonyms for at-
tributes (respectively for categories) are identified and attached to Q before
forwarding (as shown in Q.2).

(Q.2) SELECT fromCity, toCity (destination)
FROM
Flights (AirFares)
WHERE
price (retail price, listed price) < 3000

Target refers to the synonyms to find alternative attribute/category
names to match the terms in the query with Target’s own terms.

Using WordNet for Ontology Mapping. WordNet is also used to assist
community providers in defining mapping between ontologies of two commu-
nities. It can be used, e.g., to derive lexical ontology relationships between
categories (respectively attributes) of Source and Target. For example, let
us assume that the community FlightCentre is Source and the provider of
this community decides to map the category Flight to a related category in
the Target. WordNet would suggest terms such as trip, travel as hypernymy,
nonstop flights, international, domestic, connecting, etc as hyponymy. If such
categories exist in Target, the mapping can be described accordingly.

We are also investigating the possibility of using WordNet to automatically
derive possible mapping descriptions between the ontologies of two communi-
ties. The algorithm that produces the mapping uses the WordNet constructs
(e.g., synonymy, hypernymy, hyponymy) and distance metrics between terms.
It takes, from Source and Target, the categories, attributes and the anno-
tation (e.g., synonyms defined for them) as input. Then it generates possible
mapping descriptions of Source ontology to Target. For example, the sug-
gested mapping description might indicate that Flight category in Source is
similar to Air Travel in Target.

2.3 Cooperative Selection of Relevant e-Catalogs

We now describe how the peers collaboratively participate in a query an-
swering. The query interface in WS-CatalogNet lets the user easily formulate

13

a query (by pointing&clicking). A query is expressed in terms of categories
and attributes of a given community ontology. That is, the user will click a
category and then select attributes to be queried on, and specify values for
the attributes if desired (e.g., “category:domestic flights, attributes: fromCity,
toCity, cabinClass, price, values: cabinClass ≥ business, price ≤ 1000”). The
query interface automatically converts the user formulated query to a class
description.

Since a community does not store product data locally, processing the query
requires locating e-catalogs that are capable of answering the query. These
e-catalogs can be selected from the local members of the community or the
members of the peers. We propose a cooperative query processing technique
that consists of two steps: (i) identify combination of members whose query
capabilities, when put together, satisfy as much as possible the constraints
expressed in the query, (ii) answer the query by sending it to the selected
combination of members.

For the first step, we proposed a query rewriting algorithm, called Best Quality
Rewriting (BQR), which allows to identify: (i) the part of the query can be
answered by local members of the community and (ii) the part of the query
that cannot by be answered by local members and hence can be forwarded
to peer communities. The algorithm takes as input the community definition,
member definitions and the query (all in their class descriptions format) and
produces the following output:

(a) Qlocal: the part of the query Q that can be answered by the community’s
local members. It also gives the combination of the local members that
can answer all (or part of) the query. For each selected local member, we
compute the part of the query to be sent to the member.

(b) Qrest: the part of the query that cannot be answered by the local members.
This part of the query will be forwarded to peers. It should be noted that
the expected answers of the forwarding is the combination of the external
members that are capable of answering the part of the query.

Each community defines a forwarding policy that controls what should be
done with Qrest. The basic structure of a forwarding policy is as follows:

forwarding policy:
what theQuery|theRest
when empty|always|expand|busy
whom all|random m|[community...]
hop n

• what: This is used to decide which part of the query should be forwarded.
· theQuery: the original query Q is forwarded.
· theRest: the Qrest part of Q is forwarded.

14

• when: This is used to decide when the forwarding should be initiated
· empty: the query is forwarded only when the size of Qlocal is zero. That is,

there is no member that can answer the query.
· expand: the query is forwarded even when the size of Qlocal is not zero. This

is used when, for example, the community wishes to expand the number
of relevant e-catalogs that can answer the query.
· busy: the query is forwarded when the community is temporarily over-

loaded with many incoming queries. Each community has predefined value
that indicates number of allowed incoming queries per time unit.
· always: the query is always forwarded.
• whom: This is used to decide to whom the query is forwarded.
· all: all similar peer communities are selected for forwarding.
· random m: maximum m number of peers are randomly selected.
· [community...]: only the peers that appear in the community clause are

selected.
• hop: The hop limit is the number of subsequent forwardings that can occur

once the forwarding has been initiated.

The community collects the returned results from the peers and chooses the
best combination of members (local and external) based on the quality of the
members (e.g., reliability) and user preferences. After all necessary members
are selected, each of the selected member (both local and external) processes
parts of the query they are able process, and the results are returned to the
community. The community is responsible for performing the join operation
on the results before displaying them to the user 4 .

3 Community Query Rewriting

In this section, we discuss our approach for community query reformulation.
We propose a rewriting algorithm, called BQR 5 , that allows to reformu-
late a community query 6 Q, expressed as a class description over a com-
munity ontology, into queries that are expressed in terms of community mem-
ber definitions, as well as queries that cannot be answered by the commu-
nity local members. The algorithm takes as input an e-catalog community
CAT = (CO, M) and a query Q over the ontology CO and computes a set of
rewritings R(Q) = {ri(Q)}. A rewriting ri is a couple ri = (Qlocal, Qrest)
where:

4 It should be noted that, although important, the issue of assembling actual results
returned by selected catalogs, is outside the scope for this paper.
5 The readers are referred to [9] for details and proofs related to this algorithm.
6 We use the terms user query and community query interchangeably.

15

• Qlocal = {(qj , mj)} is a set of pairs (qj , mj) where qj is the part of the query
Q that can be answered by the member definition mj .
• Qrest is the part of the query Q that cannot be answered by the members

of the actual community.

Note that a query Q can lead to several alternative rewritings. For example,
the Qlocal part of a given query Q is not necessarily unique (e.g., a same part
qj of a query Q can be provided by different members). In section 3.2, we
introduce an utility function that can be used to select only those rewritings,
called best quality rewritings, that maximize the user satisfaction with respect
to a given Quality of Service criteria. In section 3.3, we show the computation
costs of computing one or all relevant rewritings.

In a nutshell, the query rewriting problem can be formally stated as follows:
Let C = {ci ≡ descriptioni, i ∈ [1, n]} be a set of class definitions corre-
sponding to member definitions, and let Q be a class definition that denotes
a community query. Then, can Q be reformulated as a conjunction of class
names E ≡ ci1 � . . . � cim, with 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, such
that E contains as much as possible of common information with Q? (E is
called a rewriting of Q using C.)

To formally define this kind of query rewriting, it is necessary to characterize
the notion of “extra information”, i.e., the information contained in one class
description and not contained in the other. For that, a difference or subtraction
operation on class descriptions is required. To tackle this issue, we use known
techniques in description logics [18] as described below.

3.1 Difference Operation on Class Descriptions.

An extension of description logics with a difference operation is studied in
[18]. Roughly speaking, the difference of two descriptions C and D, denoted
as C−D, is defined as being a description that contains all information which
is a part of the description C but not part of the description D. This definition
of difference operation requires that the second operand subsumes the first one.
However, in case the operands C and D are incomparable w.r.t the subsump-
tion relationship, then the difference C −D can be computed by determining
the least common subsumer of C and D, that is, C−D := C−lcs(C, D), where
lcs(C, D) denotes the least common subsumer of C and D. A least common
subsumer of a set of (concept) class descriptions corresponds to the most spe-
cific description which subsumes all the given descriptions [15]. In the sequel,
for a sake of clarity we use the expression C −D to denote C − lcs(C, D).

Teege [18] provides sufficient conditions to characterize the logics where the
difference operation is always semantically unique (i.e., the result of C − D

16

is unique modulo the equivalence of descriptions) and can be implemented in
a simple syntactical way by constructing the set difference of sub-terms in a
conjunction. From the results presented in [18], we can derive the following
properties of our class description language:

• Each class description C can be expressed using a normal form, called
Reduced Clause Form (RCF), as a conjunction of atomic clauses (e.g.,
A1 � . . .�Am). In our language, a RCF of a class description C is obtained
using the following normalization process:
· unfolding C (i.e., replacing each class name that appears in C by its

description until no more defined class name occurs in C).
· recursively rewriting each description ∀R.(B � D), where B, D are class

descriptions, that appear in the description C into the equivalent descrip-
tion ∀R.B � ∀R.D.
As the set of class descriptions in a community is acyclic, the normal-

ization process is guaranteed to terminate. At the end of the normalization
process, each conjunct that appears in the normal form of the description
C constitutes an atomic clause of C.
• The difference between two class descriptions C and D can be computed

using the simple set difference operation between the sets of atomic clauses
of C and D.

Moreover, we define the size |C| of a class description C as being the number
of clauses in its RCF. Note that, in the used language, a given class description
has only one RCF.

3.2 Problem Statement.

Now let us introduce some basic definitions to formally define the query
rewriting problem in the context of e-catalog communities. Let C = {ci ≡
descriptioni, i ∈ [1, n]} be a set of class definitions corresponding to mem-
ber definitions of a given e-catalog community, and Q be a query over the
community ontology.

Definition 2 (query rewriting) A rewriting of Q using C is a conjunction
E = ci1 � . . .� cim, with 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, of some class
names cij from C such that:

Q− E �≡ Q.

Hence, a rewriting of a query Q using C is defined as being a conjunction of
class names occurring in C that shares some information with Q. We use the
expression restE(Q) = Q − E, to denote the part of a query Q that cannot
be answered by the rewriting E (i.e., the Qrest part of Q, if E is selected as

17

relevant to answer Q). In practical situations, however, we are not interested in
all kinds of rewritings. Therefore, we define additional criteria to characterize
the notion of relevant rewritings. For example, it is clearly not interesting to
consider those rewritings that do not minimize the Qrest part of the query Q.
That is, the part of Q that cannot be answered by the local members.

Definition 3 (best cover rewriting) A conjunction E of some class names
ci from C is a best cover rewriting of Q using C iff:

• E is a rewriting of Q using C.
• there does not exist a rewriting E ′ of Q using C such that: |(restE′(Q)| <
|restE(Q)|.

Best cover rewritings correspond to those rewritings that minimize the size
of Qrest part of a query Q. Hence, they are clearly relevant rewritings in
practical situations. However, usually it may not be interesting or efficient to
compute all the possible best cover rewritings. The following two definitions
characterize, among the best cover rewritings, those that are more relevant in
practical situations.

Definition 4 (non redundant rewriting) A conjunction E = ci1�. . .�cim ,
with 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, is a non redundant rewriting of
Q using C iff:

• E is a best cover rewriting of Q using C.
• ∀j ∈ [1, m], E ′ = ci1� . . .�cij−1

�cij+1
� . . .�cim is not a best cover rewriting

of Q using C.

Definition 4 states that it is not possible to remove any class name from the
description of a non redundant rewriting without modifying the Qrest of the
query Q. In other words, the notion of non redundant rewriting characterizes
those rewritings that select only the local members that minimize the size of
the Qrest part of the query Q. Such rewritings allow minimizing the number of
e-catalogs that will be selected for providing the answer to a given community
query. This may be useful, for example, to minimize the communication cost.

Finally, Definition 5 given below characterizes the notion of best quality rewrit-
ing, i.e., a rewriting that maximize the user satisfaction with respect to a given
set of Quality of Service (QoS) criteria. We assume that there is a scoring
function, denoted qual(E), that returns a positive value which measures the
quality of the rewriting E (i.e., the higher the value of qual(E), the higher the
quality of E). This can be, for example, a multi-attribute utility function that
computes a quality score of an e-catalog based on pre-defined non-functional
properties of the e-catalog (e.g., reliability, query execution time) [12]. Further
discussion about the used QoS model is outside the scope of this paper due
to space reasons (e.g., see [12] for more details about QoS modeling).

18

Definition 5 (best quality rewriting) A conjunction E of some class
names ci from C is a best quality rewriting of Q using C iff:

• E is a best cover rewriting of Q using C.
• there doesn’t exist a rewriting E ′ of Q using C such that qual(E) < qual(E ′).

Best quality rewritings are defined as being the highest quality rewritings that
minimize the size of Qrest (as they are also best cover rewritings).

3.3 Mapping Rewritings to Hypergraph Transversals

In this section, we investigate the computational problems associated to our
proposed query rewritings (e.g., computing all the best quality rewritings of
a query Q). To achieve this task, we provide a full characterization of query
rewriting in terms of hypergraph transversals. Hypergraphs and related mini-
mal transversals generation problems have been deeply studied in recent years
(e.g., see [19,20]) and have proved to be useful in a large number of appli-
cations in many areas of Computer Science, including Distributed Systems,
Databases, and Artificial Intelligence [21]. Our motivation in using hyper-
graphs is to reuse and adapt existing techniques in hypergraph theory to solve
the computational issues related to our proposed query rewritings. First, we
look at the computation of each kind of rewriting (e.g., best quality rewrit-
ings) and determine the complexity for obtaining a solution for it. Then, in
the next section, we propose a hypergraph-based algorithm for computing the
best quality rewritings of a query Q using a set of class definitions C.

Let us first recall some basic definitions regarding hypergraphs. For more
details about hypergraphs theory, we refer the reader to [19,20].

Definition 6 (hypergraph and transversals) [20]
An hypergraph H is a pair (Σ, Γ) of a finite set Σ = {V1, . . . , Vn} and a set Γ
of subsets of Σ. The elements of Σ are called vertices, and the elements of Γ
are called edges. A set T ⊆ Σ is a transversal of H if for each ε ∈ Γ, T ∩ε �= ∅.
A transversal T is minimal if no proper subset T ′ of T is a transversal. The
set of the minimal transversals of an hypergraph H is noted Tr(H).

We formulate rewritings computation as a problem of finding hypergraph
transversals. Given a query Q and a set of class definitions C = {ci ≡
descriptioni, i ∈ [1, n]}, the first step is to build an associated hypergraph
HCQ as follows:

• each class ci in C is associated to a vertex Vci
in the hypergraph HCQ. Thus

Σ = {Vci
, i ∈ [1, n]}.

• each clause A in the normal form description of the description of the query

19

Q is associated to an edge, noted wA, in the hypergraph HCQ. The edge is
labeled by those classes that have in their RCFs a clause A′ that is equivalent
to A.

For the sake of clarity, we introduce the following notation: for any set of
vertices X = {Vcl

, . . . , Vcq} ⊆ Σ, we use the expression EX ≡ cl � . . . � cq

to denote the class definition obtained from the conjunction of class names
corresponding to the vertices in X. Inversely, for a rewriting E ≡ cl � . . . �
cq, we use the expression XE = {Vcl

, . . . , Vcq} to denote the set of vertices
corresponding to the class names in E.

Using lemmas 1 and 2 given below, we show that computing a best cover
rewriting of Q using C (i.e., a rewriting that minimizes the Qrest) amounts to
computing a transversal of HCQ by considering only the non empty edges.

Lemma 1 (characterization of the minimal rest) Let HCQ = (Σ, Γ) be
the hypergraph built from a set of class definitions C and a RCF of a query
Q = A1 � . . . �Ak. The minimal rest (i.e., the rest whose size is minimal) of
rewriting Q using C is: Restmin ≡ Aj1 � . . . � Ajl

, ∀ji ∈ [1, k] | wAji
= ∅.

From the previous lemma, we know that the minimal rest of a query Q using
C is always unique and is equivalent to Restmin. Hence, a given rewriting E
of Q using C is a best cover rewriting if and only if restE(Q) ≡ Restmin.

Lemma 2 (characterization of best cover rewritings) Let ̂HCQ =
(Σ, Γ′) be the hypergraph built by removing the empty edges from HCQ. A
rewriting E ≡ ci1 � . . .� cim, where 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, is
a best cover rewriting of Q using C iff XE = {Vcij

, j ∈ [1, m]} is a transversal

of ĤCQ.

This lemma characterizes the best cover rewritings in terms of hypergraph
transversals. The following characterization of non redundant rewritings can
be straightforwardly derived from lemma 2.

Lemma 3 (characterization of non redundant rewritings) A rewrit-
ing E ≡ ci1 � . . . � cim, with 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, is a
non redundant rewriting of Q using C iff XE = {Vcij

, j ∈ [1, m]} is a minimal

transversal of ĤCQ.

Now let us consider the characterization of the best quality rewritings. Al-
though, a detailed description of the used quality model is outside the scope
of this paper, we assume l essential quality criteria (e.g., reliability, execution
time) that are common to all community members:

q = {q1, q2, . . . , ql} (1)

20

Therefore, we assume that for each potential member ci, there is a quality
vector q(ci) which represents the goodness of selecting this member in relation
to all essential quality criteria. This vector is defined as:

q(ci) = (q1(ci), q2(ci), . . . , ql(ci)) (2)

For simplicity, we assume that the value of each qk(ci) has been scaled to [0,
1] and the higher the value is, the higher the quality is.

Finally, to be able to evaluate the quality of a given rewriting, we assume that
there is a function f , called optimization function, that computes the quality
of a set of member definitions based on their respective quality vectors. More
precisely, given a rewriting E ≡ ci1 � . . .� cim , the quality of E is determined
as follows:

qual(E) = f(q(ci1), . . . , q(cim))

As before, we assume that the function f is scaled to [0, 1] and the higher the
value is, the higher the quality of the rewriting is. Let us now characterize the
notion of quality of a rewriting in the context of hypergraphs.

Definition 7 (quality of a set of vertices)
Let X = {Vci

, . . . , Vcj
} be a set of vertices of the hypergraph HCQ. We define

the notion of a quality of a set of vertices as: qual(X) = f(q(ci), . . . , q(cj)).

Computing the best quality rewritings consists of determining, from the best
cover rewritings, the ones that have the highest quality (See definition 5). In
a hypergraph, this computation can be characterized as follows.

Lemma 4 (characterization of best quality rewritings) A rewriting
E ≡ ci1 � . . . � cim, with 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, is a best
quality rewriting of Q using C iff:

• XE = {Vcij
, j ∈ [1, m]} is a transversal of ĤCQ,

• there doesn’t exist a transversal XE′ of ̂HCQ such that
qual(XE) < qual(XE′).

3.4 Illustrating Example

To illustrate the proposed rewriting approach, let us consider the following
member definitions of the community FlightCenter depicted at Figure 2:

21

Quantas DomesticFlights ≡ DomesticFlights

Quantas IntFlights ≡ InternationalFlights

Flyhigh Flights ≡ RoundtheWorld

STA Flights ≡ ∃fromCity � ∀fromCity.String � ∃toCity �
∀toCity.String � ∃price � ∀price.Float

In this example, the e-catalog Quantas registers two member definitions,
namely Quantas DomesticFlights and Quantas IntFlights, that respec-
tively provide all the attributes of the categories DomesticFlights and
InternationalFlights of the FlightCenter community. The e-catalog
Flyhigh provides all the attributes of the category RoundtheWorld while the
e-catalog STA only provides the attributes fromCity, toCity and price of the
category Flights.

Let us consider now the following query which is expressed over the ontology
of the community FlightCenter:

Q ≡ ∃ fromCity � ∀ fromCity.String � ∃ toCity � ∀ toCity.String
� ∃ price � ∀ price.Float � ∃ cabinClass � ∀ cabinClass.String
� ∃ travelInsurance � ∀ travelInsurance.String

The associated hypergraph HT Q = (Σ, Γ) (see Figure 3) consists of the
following sets of vertices and edges:

Σ = {VQuantas DomesticF lights, VQuantas IntF lights, VF lyhigh F lights, VSTA F lights}

Γ = {e1 = w(∃fromCity), e2 = w(∀fromCity.String), e3 = w(∃toCity), e4 = w(∀toCity.String),

e5 = w(∃price), e6 = w(∀price.Float), e7 = w(∃cabinClass), e8 = w(∀cabinClass.String),

e9 = w(∃travelInsurance), e10 = w(∀travelInsurance.String)}

We can see that no member definition provides the edges w∃travelInsurance

and w∀travelInsurance.String because w∃travelInsurance = w∀travelInsurance.String = ∅.
Since these are the only empty edges in Γ, the best cover rewritings of Q
using the member definitions of the FlightCenter community have exactly
the following rest: Qrest ≡ ∃travelInsurance � ∀travelInsurance.String.
If we consider the hypergraph ̂HT Q, any subset Σ that contains the ver-
tices VQuantas DomesticF lights, VQuantas IntF lights or VF lyhigh F lights is a transver-

sal of the hypergraph ĤT Q and hence constitutes a best cover rewrit-

ing of Q. The minimal transversals of ̂HT Q are: {VQuantas DomesticF lights},
{VQuantas IntF lights} and {VF lyhigh F lights} . Therefore, the definitions of
Quantas (i.e., Quantas DomesticF lights and Quantas IntF lights) and
F lyhigh (i.e., F lyhigh F lights) constitute three non redundant rewritings

22

VFlyhigh_Flights

VQuantas_IntFlights

VQuantas_DomesticFlights

VSTA_Flights

e
2

e
1

e
3

e
4

e
5

e
6

e7

e8

e9

e10

Fig. 3. Example of a hypergraph.

of the query Q. A specific quality scoring function can be used to rank these
rewritings and determine the best quality rewritings of Q.

3.5 Complexity Analysis.

Based on known results in hypergraphs theory [20], we provide hereafter com-
plexity analysis with respect to the computation of the proposed query rewrit-
ings.

Let C be a set of class definitions and Q be a community query. Let n be the
total number of class definitions in C and m = |Q| be the size of a query Q.

• A best cover rewriting of Q using C can be computed in time O(m).
• A non redundant rewriting can be computed in time O(m.n).
• Computing all the non redundant rewritings:

From lemma 3, this problem amounts to computing the minimal transver-
sals of a hypergraph. It is known that computing the minimal transversals
of an hypergraph is inherently exponential since the size of the outputs
(i.e., the number of the minimal transversals) is exponential in the input
size [20]. However, whether there is an output-polynomial time algorithm
(i.e., an algorithm that works in polynomial time if the number of minimal
transversals is taken into account) for computing the minimal transversals of
a hypergraph is still an open problem. In [22], it is shown that the generation
of hypergraph transversals, and hence computation of minimal transversals,
can be done in incremental subexponential time kO(logk), where k is the com-
bined size of the hypergraph (i.e., the number of the vertices and the edges)
and the number of minimal transversals. To the best of our knowledge, this

23

is the best theoretical upper time bound for computing minimal transversals
of a hypergraph.
• The general problem of computing a best quality rewriting is NP-hard. This

result is based on a polynomial reduction of the NP-hard problem of finding
a minimal cardinality transversal of a hypergraph [20] to a particular in-
stance of the problem of computing the best quality rewritings. However, in
some particular cases, depending on the characteristics of the optimization
function f , best quality rewritings can be computed efficiently. For example,
in the case of additive functions, it suffices to select from each edge of the
considered hypergraph the member with the highest quality score to obtain
a best quality rewriting. Hence, in this case a best quality rewriting can be
computed in time O(m.n).

4 Computing Best Quality Rewritings

In this section, we describe an algorithm, called BestQRC, for computing
best quality rewritings. Let C = {ci ≡ descriptioni, i ∈ [1, n]} be a set of
class definitions and Q be a class definition that denotes a community query.
The BestQRC computes the best rewritings of the query Q using C with
respect to a given optimization function f . We recall that the function f
is defined on a set of quality vectors q(ci), where ci denotes a class name.
Each class name corresponds to a member definition name. When designing
this algorithm, we considered an optimization function f that satisfies the
following requirements 7 :

(R1) f is strictly monotonic (i.e, Y ⊂ Y ′ implies that f(Y) > f(Y ′), where Y, Y ′

denote sets of quality vectors). This means that the higher the number of
selected sources (i.e, local members), the lower the quality of the rewriting.
Consequently, in this case, the best quality rewritings should be selected
among the non redundant rewritings.

(R2) f is a global optimization function in the sense that it must be performed on
the whole rewriting to get its quality score (i.e., f(Y) cannot be computed
incrementally using a given intermediary result f(Y ′) where Y ′ ⊂ Y).

These two requirements lead to a computation problem that is hard to deal
with. Indeed, based on the analysis presented in the previous section and with
respect to the requirement (R2), it can be shown that computing best quality
non redundant rewritings in this case is an NP-hard problem. However, these
two requirements also correspond to a likely realistic and desirable situations.

7 The requirements (R1) and (R2) are inspired from a real life situation encoun-
tered during the application of our work in the context of an European project (cf.
section 5).

24

Based on the analysis presented in the previous section, it can be shown that
computing best quality non redundant rewritings can be mapped to finding
the minimal transversals, with maximal quality, of the hypergraph ̂HCQ.

A classical algorithm for computing the minimal transversals of a hypergraph
is presented in [19,20]. Using this algorithm, computing the minimal transver-
sals with the highest quality scores consists of (i) computing all the minimal
transversals, and then (ii) choosing those transversals that have the highest
quality scores. The BestQRC algorithm presented below makes the following
improvements (i.e., optimizations) with respect to the classical algorithm:

(1) it reduces the number of candidates in the intermediary steps by gener-
ating only the minimal transversals, and

(2) it uses, at the intermediary steps, a combinatorial optimization tech-
nique, namely Branch-and-Bound [23], in order to prune those candidate
transversals which will not generate transversals with a maximal quality.

Algorithm 1 Algorithm BestQRC (skeleton)

Require: a query Q = A1 � . . .�Ak provided by its RCF and an e-catalog community
CAT = (CO,M), with CO = (C,S).

Ensure: The set R(Q) = {r(Q)} of the best quality rewritings of Q using M .
1: Let C = M .
2: Build the associated hypergraph HCQ = (Σ,Γ).
3: compute Qrest = Aj1 � . . . �Ajl

, ∀ji ∈ [1, k] such that wAji
= ∅.

4: Build the associated hypergraph ĤCQ = (Σ,Γ′).
5: R(Q)← ∅ – Initialization of the best quality rewriting set.
6: Tr← ∅ – Initialization of the minimal transversal set.
7: Compute a minimal transversal Y of ĤCQ

8: QualEval← qual(Y). – Initialization of QualEval
9: for all edge ε ∈ Γ′ do

10: Tr ← the new generated set of the minimal transversals. – Using Theo-
rem 1.

11: Remove from Tr the transversals whose quality is less than QualEval.
12: end for
13: for all X = {Vci1

, . . . Vcim
} ∈ Tr such that qual(X) = QualEval do

14: Qlocal = {(qip , cip), p ∈ [1,m]}, where qip = Aj1 � . . . � Ajl
, ∀ji ∈

[1, k] such that Vcip
∈ wAji

.
15: R(Q) = R(Q) ∪ {r(Q) = (Qlocal, Qrest)}
16: end for
17: return R(Q)

The first optimization generates minimal transversals at each iteration (line
10 of the algorithm). We use a necessary and sufficient condition (provided
by Theorem 1 described below) to describe a pair (Xi, cj) that will generate
a non minimal transversal at iteration i, where Xi is a minimal transversal
generated at iteration i−1 and cj is a vertex of the ith edge. Details and proofs

25

of Theorem 1 are presented in [9].

Theorem 1
Let Tr(H) = {Xi, i = 1..m} be the set of minimal transversals of the hyper-

graph H, and E = {cj, j = 1..n} be an edge of H. Assume that H′ = H ∪ E.
Then, we have : Xi ∪ {cj} is a non-minimal transversal of H′ ⇔ there exists
a minimal transversal Xk of H such that Xk ∩ E = {cj} and Xk \ {cj} ⊂ Xi

The second optimization consists of a Branch-and-Bound like enumeration of
transversals. First, a simple heuristic is used to efficiently compute the quality
of a good transversal (i.e., a transversal expected to have a high quality). The
quality score is stored in the variable QualEval (line 8 of the algorithm). As
we consider candidates in intermediate steps, any candidate transversal that
has a quality score less than QualEval is eliminated from the set Tr of the
candidate minimal transversals (line 11). As the optimization function f is
strictly monotonic, the quality score of an eliminated candidate transversal
cannot be better than that of an already computed minimal transversal.

At the end of the algorithm (lines 13 to 16), each computed minimal transver-
sal X ∈ Tr is translated into a rewriting r(Q) = (Qlocal, Qrest) which con-
stitutes a best quality non redundant rewriting of the query Q using C. The
Qrest part of a query is computed at the beginning of the algorithm (line 3).
The Qlocal part of a given rewriting is computed as follows (lines 14 and 15):
for vertices Vcip

in the transversal X, a pair (qip , cip) is created and added to
the Qlocal part of the actual rewriting if cip is a member definition name. The
associated query qip consists of the conjunction of the clauses Aj of the query
Q such that the corresponding hypergraph edge wAj

contains the vertices Vcip
.

5 WS-CatalogNet Implementation

To evaluate our approach, we have implemented a prototype called WS-
CatalogNet, which is a web service based environment for building e-catalog
communities [24]. Web services [25] are emerging as promising technology for
the effective automation of application integration across networks and or-
ganisations. They build upon XML, as vehicle for exchanging messages across
applications, and upon the three major standards WSDL (Web Service De-
scription Language), UDDI (Universal Description, Discovery and Integra-
tion), and SOAP, which provide the building blocks for service description,
discovery, and interaction.

WS-CatalogNet has been implemented using Java and web service technolo-
gies. We used a toolkit, the IBM Web Services Development Kit 5.0 (WSDK),
which has supports for the web service protocols (e.g. UDDI, WSDL and

26

SOAP). The toolkit also provides several components for developing Web ser-
vices. In particular, we used the UDDI Java API (UDDI4J) to access a private
UDDI registry (i.e. hosted by the WS-CatalogNet), as well as the WSDL gen-
eration tool for creating the WSDL documents and SOAP service descriptors
for catalog communities and the product catalogs.

The general architecture of WS-CatalogNet contains three main components
(see Figure 4): Community Manager, Member Manager and Cooperative Query
Manager. These components are built on a panel of libraries and packages
that the authors have either developed or integrated into WS-CatalogNet (e.g.
HTML2WS: HTML to Web Service Wrapper, BQR: Best Query Rewriting al-
gorithm and WordNet). In WS-CatalogNet, both e-catalogs and communities

Fig. 4. WS-CatalogNet Architecture

are represented as web services. In UDDI registry, every web service is as-
signed to a tModel. A tModel provides a semantic classification of a service’s
functionality and a canonical description of its interface. We have designed
specific tModels for e-catalogs and for communities. In Table 1, we list few of
the operations in the tModels 8 .

When building a community, the community provider has to download three
special classes named QueryProcessor, QueryRouter and ResultAssembler,
which are provided by our system. The class QueryProcessor provides meth-
ods for processing the community queries. It implements the BestQRC rewrit-
ing algorithm. Community metadata (i.e., descriptions of categories, members,
mapping and forwarding policies) are stored as XML documents. The class
QueryRouter provides methods for routing queries based on the forwarding
policies and the peer mappings. The class ResultAssembler provides meth-
ods for combining and selecting relevant e-catalogs. All classes are lightweight
and the only infrastructure that they require are standard Java libraries, a
JAXP-compliant XML parser, and a SOAP server.

8 For clarity reason, we omit detailed signature of the operations.

27

Table 1
Main operations in tModel for members and communities

Operations for
Member M

Description

Query() Invoked to query M

GetInterface() Invoked to get the categories of M and their de-
scriptions

Operations for Com-
munity C

Description

Query() To query C

GetInterface() To get the categories of C and their descriptions

ForwardQuery() To forward queries to other communities

AddPeer() To add a peer community

RemovePeer() To remove a peer community

RegisterMember() To register a member with a community

Performance evaluation. In order to evaluate the performance of the
BestQRC algorithm, we built a simulation testbed. In this testbed, we have
implemented the two optimizations presented in section 4 as two separate
options of the BestQRC algorithm, namely option Pers for the optimization
provided by the theorem 1 and option BnB for the optimization that uses
the Branch-and-Bound technique. We have then evaluated up to 6 versions
of the BestQRC algorithm corresponding to different combinations of these
optimization options. The simulation testbed includes a tool, based on the
IBM XML Generator (http://www.alphaworks.ibm.com/tech/xmlgenerator),
that generates random XML-based test community schemas, member defini-
tions and community queries. All experiments have been performed using a
PC with a Pentium III 500 MHz and 384 Mo of RAM.

We have considered three test scenarios with differences in the size of com-
munity schema, number of e-catalogs, and the size of query expressions (see
Table 2).

Table 2
Configurations

Configurations Case
1

Case
2

Case
3

Number of defined categories in communities 365 1334 3405

Number of e-catalogs 366 660 570

Number of (atomic) clauses in the query 6 33 12

28

We have run the 6 versions of the BestQRC algorithm on the test cases.
The overall execution time results are given in Figure 5 9 . This figure shows

4 1
46

40
50

16
 91
4 7
63

16
 93
0 6
05

10
0 9
95

10
0 5
54

19
1

14
 48
8 9
24

33
2 2
68

10
 36
7 7
28

18
0

31
 96
6

15
 33
2

1 9
13

31
 50
5

1

10

100

1000

10000

100000

1000000

10000000

100000000

Case 1 Case 2 Case 3

m
il
li
s
e
c
o
n
d
s

1 32 4 5 6 7 8
> 43 200 000
(> 12 hours)

> 43 200 000
(> 12 hours)

1 : BnB: false,
Pers: false,
BnB1

2 : BnB: false,
Pers: false,
BnB2

3 : BnB: false,
Pers: true,
BnB1

4 : BnB: false,
Pers: true,
BnB2

5 : BnB: true,
Pers: false,
BnB1

6 : BnB: true,
Pers: false,
BnB2

7 : BnB: true,
Pers: true,
BnB1

8 : BnB: true,
Pers: true,
BnB2

(1s)

(10s)

(1m n40s)

(16m n40s)

(2h46m n40s)

(27h46m n40s)
(̃ 4h43m n)

(̃ 1m n40s)

(̃ 4h)

(̃ 2h53m n)

(̃ 5m n30s)

5 6 7 8 5 6 7 8

Fig. 5. Execution time

that for cases 1 and 3 (respectively, case 2), there is at least a version of
the algorithm that runs in less than two seconds (respectively, in less than
30 seconds). Although Figure 5 shows that there are significant differences in
performance between the different versions of the algorithm, it is worth noting
that in each case, there is at least one efficient version of the algorithm even
when community schema is quite large (i.e., large number of categories).

It should be noted that this preliminary experiment only concerns the per-
formance of the rewriting algorithm. Other experiments include performance
and scalability simulation studies that involve interactions (i.e., forwarding
queries) in a network of communities formed via peer relationships and re-
structuring of this network to improve its effectiveness. These experiments are
reported in [26]. We are also investigating a simulation framework for eval-
uating more advanced features of the proposed query rewriting techniques
including QoS aspects.

9 Note that versions 1 and 2 of the algorithm (respectively, 3 and 4) are similar as
both run BestQRC without BnB, and what distinguishes 1 from 2 (respectively, 3
from 4) is the way the option BnB is implemented (BnB1 or BnB2).

29

6 Application Scenario

We have used WS-CatalogNet to deploy an application in tourism domain. The
scenario involves a number communities and members providing various travel
related information. The communities built include FlightCenter which
provides international/domestic flight information; TouristAttractionInfo
which provides information about tourist attractions in the world; CarRentals
which provides rental cars information; Accommodations which provides ac-
commodation information; TravelPortals which provides various general
information related to travel. A few of the members include: Qantas.com,
STAFlightCentre, Virginblue.com.au, Europa.com, etc. All of them are reg-
istered with one or two communities.

In the scenario, WS-CatalogNet provides the user with an integrated environ-
ment where (i) new communities can be created, (ii) e-catalog providers can
discover and join communities of interests, (iii) community providers can dis-
cover other communities to form peer relationships, and (iv) users can access
travel information via communities.

6.1 Developing Communities Net

We show the community FlightCenter as an example for creating a commu-
nity. The categories and attributes of the community FlightCenter are shown
in Figure 2. As shown in Figure 6, the community provider defines the ontology
(i.e., hierarchy of the categories and their attributes) of the community using
Community Manager. For example, the Add Category operation lets the user
add DomesticFlights as sub category of Flights. Using the Add Attribute

operation, the user adds attributes such as fromCity and toCity to the cat-
egory Flights.

Fig. 6. Creating categories

30

Figure 7 illustrates how WordNet is used to assist in creating sub cate-
gories semi-automatically. After creating the category RentCars, the provider
chooses Add Category with WordNet operation to create a sub category Car

of RentCars. WordNet proposes five meanings of the word Car. For each mean-
ing, it suggests Car’s sub categories, and synonyms. The provider chooses the
appropriate meaning that suits his/her intention, and customises the suggested
sub categories, synonyms of Car (e.g. by removing unwanted sub categories,
or editing synonyms, etc.). Figure 7 shows WordNet suggested description for
the first meaning (Meaning 1) of Car (e.g. Convertible, Coupe, Limousine,
Sedan, etc.) and its synonyms (e.g. auto, automobile, etc.) After the cat-
egory Car is created, the provider uses Add Attributes with WordNet op-
eration to discover possible attributes of Car. WordNet may propose a large
list of attributes, and their synonyms (e.g. accelerator, airbag, sunroof, etc.).
The provider customises the proposed attributes list (e.g, by removing un-
wanted attributes, or adding synonyms, etc.) and confirms the creation of
attributes. Figure 8 shows the final Car category description with sub cat-
egories, attributes, and synonyms. After editing the community ontology,

Fig. 7. Creating categories using WordNet

Community Manager editor generates the corresponding class descriptions.

Also, being a web service, a community in WS-CatalogNet implements a stan-
dard set of operations which can be invoked by the user or other communities
(e.g., addCategory(), addPeer(), queryCommunity() etc.). The final step of
community creation involves generating the WSDL which contains details of
the standard operations (e.g., signature of the operations) and the commu-
nity ontology (i.e., categories and attributes). The newly created community
is deployed and registered in a private UDDI hosted by WS-CatalogNet.

31

Fig. 8. Creating attributes using WordNet

6.2 Peering Communities

The provider of FlightCenter searches for other communities
using Community Manager. When s/he selects the community
TouristAttractionInfo, the Community Manager displays categories
and attributes of the selected community. To create a peer relationship, the
administrator maps the category Holidays in the community FlightCenter

to the category holidaysOffers of TouristAttractionInfo community
using the interface shown in Figure 9.

6.3 Registering Members

The provider of the e-catalog STAFlightCenter uses the Member Manager to
display the ontology of FlightCenter community. To register with this com-
munity (as shown in Figure 2), the provider chooses FlightCenter’s cate-
gories and attributes that s/he can support. Then s/he maps these attributes
to his/her own attributes (i.e., the member definitions). Figure 9 shows the
member definitions of STAFlightCenter over the community FlightCentre.

Similarly to the community creation, after editing the member definitions, the
Member Manager generates the corresponding class descriptions. For example,
for the member STAFlightCenter, the following description is generated:

STAFlightCenter Domestic ≡ DomesticFlights

STAFlightCenter Holiday ≡ Holidays

32

Fig. 9. Defining STAFlightCenter member

This definition states that this member supports all attributes in the categories
DomesticFlights and Holidays.

WS-CatalogNet also provides community providers with ability to discover
potential members on the Web and register them with their communities.
For example, say that the provider of the FlightCenter community requires
members for the category InternationalFlights. In Member Manager, the
provider clicks on this category and uses the Froogle 10 search engine to dis-
cover URLs of product catalogs (e-catalog portals) that match this cate-
gory. Froogle returns top ten URLs matching the keywords international

flights. Assume that, among others, the provider chooses Qantas.com prod-
uct catalog. Then, s/he can use HTML2WS 11 to annotate the Qantas.com
web portal, and determine Qantas.com attributes (e.g. Price, FlightNo,
DepartureTime, etc.). Figure 10 shows the first step of the wrapper in ac-
tion, where the provider of community FlightCentre extracts the possible
attributes (i.e., price, departure, FlightNo, From, To, etc.) of the member
Qantas.com from its actual HTML output. Finally, HTML2WS generates a
web service that will wrap Qantas.com. The generated Qantas.com web ser-
vice can be registered trough the Member manager as described above (see
Figure 9).

6.4 Querying Communities Net

As shown in Figure 11, the user displays the FlightCenter community and ex-
presses, by pointing&clicking, a query, say “category:InternationalFlights, at-

10 Froogle (froogle.google.com) (c.f., figure 10) is a search engine for discovering
product catalog portals.
11 A tool that semi-automatically generates a web service from a web portal.

33

Fig. 10. The HTML2WS: HTML to Web Service Wrapper Tool

Fig. 11. Expressing a query on FlightCenter

tributes: fromCity=Sydney, toCity=Paris, price ≤ 2000, travelInsurance: full
”). The Query Manager generates the following class description corresponding
to the user query:

Q ≡ ∃ fromCity � ∀ fromCity.String � ∃ toCity � ∀
toCity.String � ∃ price � ∀ price.Float � ∃ travelInsurance

� ∀ travelInsurance.String

34

Fig. 12. Querying FlightCenter using BQR

From the query written in class description, the Query Manager uses the
Best Quality Rewriting algorithm to process the query. In this case, the lo-
cal member STAFlightCenter is selected as a relevant e-catalog (i.e., Qlocal)
to answer the user query (it provides the attributes: fromCity, toCity and
price) (Figure 12). The Qrest part of the query contains only the attribute
(travelInsurance). In this scenario, a predefined forwarding policy is used
to route queries among communities.

7 Related Work

In this section, we examine work done information sharing and querying across
multiple sources. We also overview related efforts in Web services and semantic
Web areas.

7.1 Information Sharing

Existing e-catalogs and data integration approaches typically rely on a global
schema integration style [6,27,10,28]. For instance, [5] proposes an e-catalog in-
tegration approach, in which all categories of products are organised in a single
graph structure and each leaf links to source catalog’s product attribute tree
which represent local catalog’s product classification scheme. In the context
of data integration, two main approaches have been investigated depending
on how the relationship between the global schema and the sources is defined:

35

the GAV (Global As View) approach [29] defines the global schema as a set of
views over the data sources while the LAV (Local As View) approach [30,31]
defines the sources as a set of views over the global schema. Each of these two
approaches has advantages and drawbacks. It is well known that query rewrit-
ing is easier in the context of a GAV approach while a LAV approach is more
flexible (i.e., it enables easy addition of new sources). WS-CatalogNet follows
a LAV approach to define the mappings between a community ontology and
the exported descriptions of the community members (i.e., member definitions
are expressed as views over the community ontology). As mentioned before, a
GAV approach, where the development of an integrated schema requires the
understanding of both structure and semantics of all schemas of sources to
be integrated, is hardly scalable because of the potentially large number and
dynamic nature of available e-catalogs.

P2P information sharing is currently a very active research and development
area. From information sharing point of view, the first generation of P2P sys-
tems (e.g., Gnutella, Napster) focused on files sharing (e.g., music, video clips).
An interesting survey on files sharing P2P architectures is presented in [32].
Query routing among peers in such approaches is discussed [33]. These systems
support limited querying capabilities (e.g., keyword based search). Effective
data sharing requires support for more structured querying capabilities to ex-
ploit the inherent semantics in data ([34,35]). [36] proposes a super-peer based
routing [37] in RDF-based P2P information sources. The proposed approach
focuses on indexing RDF resources.

Few approaches that leverage database-like information sharing and querying
techniques in P2P environments emerged recently [38,34,39,40]. PeerDB [8]
uses a relational model to describe the schema of a peer data source. Relations
and attributes are associated to keywords (i.e, synonyms of relation and at-
tribute names). PeerDB uses an Information Retrieval (IR) approach for query
routing to avoid the explicit specifications of mapping among peer schemas.
The issues of information space organisation and flexible query rewriting are
not considered. Piazza [7] considers the issue of schema mediation in P2P en-
vironments. It uses a relational model to describe peer schemas. It proposes a
language for specifying mappings among peers. It also proposes a query refor-
mulation algorithm for the proposed mediation framework. [35] proposes the
notions of mutant query plan (MQP) and multi-hierarchy namespaces to sup-
port query processing in P2P environments. A MQP includes verbatim XML
encoded data, references to actual resource locations (URL) and references
to abstract resource names (URN). A peer can mutate an incoming MQP by
either resolving URNs to URLs, or substituting a sub-plan with the evaluated
XML encoded data. [41] presents the framework that allows for unifying Web
services and peer-to-peer computing technologies together. The framework is
based on the idea of super-peers which act as registries of web services that
have similar behaviours. The super-peers could be compared with the concept

36

of communities in WS-CatalogNet. However, different types of relationships
between super-peers and specification of forwarding policies are not discussed
in [41]. [41] does not consider partial matching between service descriptions
and requests.

Other complementary research proposals include [34,42], which focus on gen-
erating mappings between schemas and schema change management aspects
in integrated environments.

7.2 Concept and Query Rewriting

From the technical point of view, our e-catalog selection technique belongs to
the general framework of rewriting using terminologies proposed in [11]. This
framework is defined as follows:

• Given a terminology T (i.e., a set of class descriptions), a class description
Q that does not contain class names defined in T and a binary relation ρ
between class descriptions, can Q be rewritten into a description E, built
using (some) of the names defined in T , such that QρE ?
• Additionally, some optimality criterion is defined in order to select the rel-

evant rewritings.

Already investigated instances of this problem are the minimal rewriting prob-
lem [11] and rewriting queries using views [31,43,10].

Minimal rewriting is concerned with the problem of rewriting a concept de-
scription Q into a shorter but equivalent description (hence, ρ is equivalence
modulo T and the size of the rewriting is used as the optimality criterion).
Here, the focus is on determining a rewriting that is shorter and more readable
than the original description.

The problem of rewriting queries using views has been intensively investigated
in the database area (see [10] for a survey). The purpose here is to rewrite a
query Q into a query expression that uses only a set of views V. Two types of
rewritings have been studied:

• Maximally-contained rewritings where ρ is the subsumption and the opti-
mality criterion is the inverse subsumption. This kind of rewriting plays an
important role in many applications such as information integration and
data warehousing.
• Equivalent rewriting where ρ is the equivalence and the optimality criterion

is minimization of the cost of the corresponding query plan. This kind of
rewriting has been mainly used for query optimization purposes.

37

The e-catalog selection technique proposed in this paper can be viewed as a
new instance of the problem of rewriting concepts using terminologies where:

• ρ correponds to the notion of cover (hence, it is neither equivalence nor
subsumption), and
• the optimality criterion is a quality function.

In our approach, the proposed selection technique finds rewritings that ‘best
match’ a given query with respect to a quality function, where the relationships
between a query and its rewritings goes beyond containment or equivalence.
We believe that there is a need for such a flexible query rewriting approach to
cope with the high dynamicity and heterogeneity of the Web-based environ-
ments.

7.3 Web Services and Semantics Web

Current mainstream web services infrastructure has serious limitations with
respect to meeting the challenges of automation of Web information shar-
ing. For example, UDDI provides limited search facilities, supporting only
keyword-based search of businesses, services, category names, and identifiers
(i.e. so-called tModels). To cope with this limitation, emerging approaches rely
on semantic web technology, and in particular web ontology languages such
as DAML-OIL or OWL [44,45], to support service description and discov-
ery [46]. Unfortunately, ongoing research in this area focuses on matchmaking
techniques based on simple subsumption and equivalence relationships. Our
approach, on the other hand, builds upon existing ontology description lan-
guages to develop novel and more advanced techniques including: (i) ontology
and peer-to-peer indexing schemes imparting domain-based and scalable or-
ganisation of a potentially large number of e-catalogs, (ii) advanced matching
techniques which go beyond subsumption and equivalence between queries and
e-catalog descriptions and allow flexible and efficient selection of e-catalogs
through partial matching.

8 Conclusions

Our work provides complementary contributions to related work on Web in-
formation sharing and querying. We focus on providing support for achieving
effective and efficient access to e-catalogs resident data. Since scalability is of
great importance in e-catalog environments, the information space is organised
in communities that are inter-related using peer relationships. The model that
we use to describe community ontologies relies on simple concepts (categories

38

and attributes) that we found to be useful and commonly used to describe e-
catalogs content and capabilities. We consider different types of peer relation-
ships between communities (i.e, companionship and similarity relationships).
Such flexibility allows to establish different interaction types among commu-
nities. The specification of mappings in our approach combines: (i) IR style
where no explicit mapping description is provided (synonym-based matching
approach) and (ii) full mapping description when it is possible or desired (e.g.,
in the case of companionship relationships). We formalised e-catalogs selection
as a rewriting process for e-catalog communities. Query routing among peer
communities is based on forwarding policies. We proposed a novel hypergraph-
based algorithm to effectively select relevant e-catalogs for a given query. The
proposed algorithm finds rewritings that ‘best match’ a given query with re-
spect to a quality function, where the relationships between a query and its
rewritings goes beyond containment or equivalence. We believe that there is
a need for such a flexible query rewriting approach to cope with the high
dynamicity and heterogeneity of the Web-based environments.

Our ongoing work concerns developing and evaluating self-monitoring and
adaptation techniques. We believe that in large and dynamic environments,
e-catalog communities should be self-adaptive in the sense that, mappings
among their ontologies should be restructured over time to improve the ef-
fectiveness of the overall communities network. This will enable e-catalogs
networks to be adaptive and responsive to the ways users interact with the
e-catalogs and communities thereby increasing their usability. Another in-
teresting future research direction of our is to study load balancing among
services communities in order to improve the performance of query answering
in a communities network.

References

[1] B. Medjahed, A. Rezgui, A. Bouguettaya, M. Ouzzani, Infrastructure for E-
Government Web Services, IEEE Internet Computing 7 (1) (2003) 58–65.

[2] A. Bouguettaya, B. Benatallah, L. Hendra, M. Ouzzani, J. Beard, Supporting
Dynamic Interactions among Web-based Information Sources, IEEE TKDE
12 (5) (2000) 779–801.

[3] D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini, Synthesizing an
Integrated Ontology, IEEE Internet Computing 7 (5) (2003) 42–51.

[4] H. Paik, B. Benatallah, Building Adaptive E-Catalogs Based on User
Interaction Patterns, IEEE Intelligent Systems, IEEE Society.

[5] S. Navathe, H. Thomas, M. S. A., A. Datta, A Model to Support E-Catalog
Integration, in: IFIP Conference on Database Semantics, Hong Kong, 2001.

39

[6] G. Yan, W. Ng, E. Lim, Product Schema Integration for Electronic Commerce–
A Synonym Comparison Approach, IEEE TKDE 14 (3).

[7] A. Halevy, Z. Ives, D. Suciu, I. Tatarinov, Schema Mediation in Peer Data
Management Systems, in: ICDE’03, Bangalore, India, 2003.

[8] W. Ng, B. Ooi, K. Tan, A. Zhou, PeerDB: A P2P-based System for Distributed
Data Sharing, in: ICDE’03, Bangalore, India, 2003.

[9] B. Benatallah, M.-S. Hacid, H.-Y. Paik,
C. Rey, F. Toumani, Peering and Querying e-Catalog Communities (extended
version), ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/0319.pdf (2003).

[10] A. Y. Halevy, Answering queries using views: A survey, VLDB Journal 10 (4)
(2001) 270–294.

[11] F. Baader, R. Küsters, R. Molitor, Rewriting Concepts Using Terminologies,
in: KR’00, Colorado, USA, 2000, pp. 297–308.

[12] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q. Sheng, Quality-driven
Web Service Composition, in: WWW’03, Budapest, Hungary, 2003.

[13] H. Paik, B. Benatallah, R. Hamadi, Dynamic Restructuring of E-Catalog
Communities Based on User Interaction Patterns, WWW Journal 5 (4) (2002)
325–366.

[14] J. D. Ullman, Information integration using logical views, in: F. N. Afrati, P. G.
Kolaitis (Eds.), Database Theory - ICDT ’97, 6th International Conference,
Delphi, Greece, January 8-10, 1997, Proceedings, Springer, 1997, pp. 19–40.

[15] F. Baader, D. Calvanese, D. McGuinness, e. D. Nardi andP. Patel-Schneider,
The Description Logic Handbook. Theory, Implementation and Applications,
Cambridge University Press, 2003.

[16] Wordnet, www.cogsci.princeton.edu/∼wn/.

[17] Froogle, froogle.google.com.

[18] G. Teege, Making the difference: A subtraction operation for description logics,
in: KR’94, San Francisco, CA, 1994.

[19] C. Berge, Hypergraphs, Vol. 45 of North Holland Mathematical Library, Elsevier
Science Publishers B.V., 1989.

[20] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and
related problems, SIAM Journal on Computing 24 (6) (1995) 1278–1304.

[21] G. G. T. Eiter, Hypergraph Transversal Computation and Related Problems in
Logic and AI, in: S. Flesca, S. Greco, N. Leone, G. Ianni (Eds.), JELIA 2002,
Cosenza, Italy,, Vol. 2424 of LNCS, Springer, 2002, pp. 549–564.

[22] M. Freidman, L. Khachiyan, On the complexity of dualization of monotone
disjunctive normal forms, Journal of Algorithms 21 (1996) 618–628.

40

[23] G. Nemhauser, L. Wolsey, Integer and Combinatorial Optimization, John
Wiley&Sons (New York), 1988.

[24] K. Baina, B. Benatallah, H. Paik, F. Toumani, C. Rey, A. Rutkowska,
H. Susanto, WS-CatalogNet: An Infrastructure for Creating, Peering, and
Querying e-Catalog Communities, in: Proc. of 30th International Conference on
Very Large Data Bases (VLDB 2004), Toronto, Canada, 2004, demonstration
paper, to appear.

[25] F. Casati, M.-C. Shan, D. G. (editors), The VLDB Journal: Special Issue on
E-Services, 10(1), Springer-Verlag Berlin Heidelberg (2001).

[26] H. young Paik, Community Based Integration and Adaptation of Electronic
Catalogs, PHD Thesis, University of New South Wales, Sydney, Australia
(March 2004).

[27] J. Ullman, Information integration using logical views, Theor. Comput. Sci.
239 (2) (2000) 189–210.

[28] M. Lenzerini, Data Integration: A Theoretical Perspective, in: L. Popa (Ed.),
PODS’02, Madison, Wisconsin, USA, 2002, pp. 233–246.

[29] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,
J. Ullman, V. Vassalos, J. Widom, The tsimmis approach to mediation: Data
models and languages, Journal of Intelligent Information Systems (JIIS) 8 (2)
(1997) 117–132.

[30] A.Y.Levy, A. .Rajaraman, J. Ordille, Querying Heterogeneous Information
Sources Using Source Descriptions, in: VLDB’96, Mumbai (Bombay), India,
Morgan Kaufmann, 1996, pp. 251–262.

[31] C. Beeri, A. Levy, M.-C. Rousset, Rewriting Queries Using Views in Description
Logics, in: L. Yuan (Ed.), PODS’97, New York, USA, 1997, pp. 99–108.

[32] B. Yang, H. Garcia-Molina, Comparing Hybrid Peer-to-Peer Systems, in:
VLDB’01, Rome, Italy, 2001.

[33] A. Crespo, H. Garcia-Molina, Routing Indices For Peer-to-Peer Systems, in:
ICDCS’02, Vienna, Austria, 2002.

[34] P. Bernstein, F. Giunchigiloa, A. Kementsietsidis, J. Mylopoulos, L. Serafini,
I. Zaihrayeu, Data Management for Peer-to-Peer Computing: A Vision, in:
WebDB’02, Madison, Wisconsin, 2002.

[35] V. Papadimos, D. Maier, K. Tufte, Distributed Query Processing and Catalogs
for Peer-to-Peer Systems, in: CIDR’03, Asilomar, CA, 2003.

[36] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst,
A. Lser, Super-Peer-Based Routing and Clustering Strategies for RDF- Based
Peer-To-Peer Networks, in: WWW’03, Budapest, Hungary, 2003.

[37] B. Yang, H. Garcia-Molina, Designing a Super-Peer Network, in: ICDE’03,
Bangalore, India, 2003.

41

[38] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, The Chatty Web: Emergent
Semantics Through Gossiping, in: WWW’03, Budapest, Hungary, 2003.

[39] D. Calvanese, G. D. Giacomo, M. Lenzerini, R. Rosati, Logical foundations of
peer-to-peer data integration, in: PODS’04 (to appear), 2004.

[40] F. Goasdoué, M.-C. R. V. Lattès, Querying Distributed Data through
Distributed Ontologies: A Simple but Scalable Approach, IEEE Intelligent
Systems 18 (5) (2003) 60–65.

[41] M. Papazoglou, B. Kramer, J. Yang, Leveraging Web-Services and Peer-to-Peer
Networks, in: CAiSE’03, Klagenfurt, Austria, 2003.

[42] A. Kementisietsidis, M. Arenas, R. Miller, Mapping Data in Peer-to-Peer
Systems: Semantics and Algorithmic Issues, in: ACM SIGMOD’03, San Diego,
CA, 2003.

[43] F. Goasdoué, M.-C. R. V. Lattès, The Use of CARIN Language and Algorithms
for Information Integration: The PICSEL System, IJICIS 9 (4) (2000) 383–401.

[44] D. Fensel, C. Bussler, and A. Maedche. Semantic Web Enabled Web Services. In
International Semantic Web Conference, Sardinia, Italy, pages 1-2, Jun. 2002.

[45] Ian Horrocks. DAML+OIL: A Reasonable Web Ontology Language. In Proc.
of the EDBT’2002 Prague, Czech Republic, pages 2-13, Mar. 2002.

[46] M. Paolucci, T. Kawmura, T. Payne, K. Sycara, Semantic matching of web
services capabilities, in: Proceedings of the First International Semantic Web
Conference, 2002.

42

