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Université Grenoble Alpes
700 Avenue Centrale

Campus de Saint Martin d’Hères
38401 Domaine Universitaire de Saint-Martin-d’Hères.

Abstract

This paper addresses the analysis of the time-frequency technique so-called
the second-order synchrosqueezing transform derived from continuous wavelet
transform of multicomponent AM-FM signals. Such a technique is designed
to deal with the signals consisting of strong frequency modulation compo-
nents or modes. Before going into the details of this analysis, we revisit the
case where the modes are assumed to be with weak frequency modulation as
in the seminal paper of Daubechies et al. [1], but not assuming the wavelet
is compactly supported in the Fourier domain. The remainder of the paper
is devoted to the theoretical analysis of the second order wavelet-based syn-
chrosqueezing transform [2] and we then put forward its differences compared
with variants of the proposed technique. Numerical simulations assessing and
comparing the quality of the different synchrosqueezing operators conclude
the paper.
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1. Introduction

Many signals arising from audio recordings (music, speech), meteorology,
structural stability analysis [3, 4, 5], or medical data (electrocardiogram, tho-
racic and abdominal movement signals) [6, 7], can be modeled as a sum of
amplitude- and frequency-modulated (AM-FM) modes, called multicompo-
nent signals (MCS) [8]. Time-frequency (TF) analysis plays a central role for
characterizing such signals and, in that framework, numerous methods have
been developed for the last two decades. Standard linear methods, as for in-
stance the short-time Fourier transform (STFT) and the continuous wavelet
transforms (CWT), have been the most commonly used [9]. However, the
effectiveness of each method strongly depends on the nature of the modes
constituting the signal and is limited by the trade-off between time and fre-
quency resolution known as uncertainty principle. Several attempts were
made to overcome this shortcoming and one of them, called the reassignment
method (RM), received a considerable attention. The concept of RM dates
back to Kodera et al. [10] in the 1970’s and was further developed in [11],
where it was viewed as a means of improving the readability of TF represen-
tations. Unfortunately, RM suffers from an inherent limitation which is its
non invertibility, namely it does not allow for mode reconstruction.

In an independent work [1], Daubechies et al. introduced an adaptive
wavelet-based signal analysis method known as the synchrosqueezing trans-
form (WSST), an adaptation of RM enabling modes’ retrieval. An extension
of WSST to the TF representation given by STFT was proposed in [12], while
many other efforts were also devoted to explore the bidimensional case, as
for instance by using the monogenic synchrosqueezed wavelet transform [13],
other types of TF representations as the synchrosqueezed wavelet packet
transform [14, 15], or multi-taper approaches as in the ConceFT technique
[16]. In spite of all these advances, one major problem associated with syn-
chrosqueezing techniques in their original formulation is that they cannot
deal with MCS containing modes with strong frequency modulation, very
common in many fields of practical interest, as for instance chirps involved
in radar [17], speech processing [18], or gravitational waves [19, 20]. In this
regard, an adaptation of FSST to better handle that type of signals, known
as the second order synchrosqueezing transform (FSST2), was introduced in
[21] and its theoretical foundations settled in [22].

In the present paper, our goal is to extend FSST2 to the wavelet case.

2



To do so, after having recalled some useful definitions in Section 2, we re-
visit WSST assuming the analysis wavelet is not compactly supported in the
Fourier domain, in Section 3. This helps derive, in Section 4, the second
order wavelet-based synchrosqueezing transform (WSST2) and then prove
approximations results generalizing those related to WSST. In Section 5, we
then introduce variants of WSST2 which we finally compare with the latter,
both in terms of the quality of TF representation and mode reconstruction,
in Section 6.

2. Background

Before going in detail into the principle of WSST, the following section
presents several useful notation and definitions.

2.1. Fourier transform

The Fourier transform (FT) of a given signal f ∈ L1(R) is defined as:

f̂(η) = F{f}(η) =
∫
R
f(t)e−i2πηtdt. (1)

If f̂ is also integrable, f can be reconstructed through:

f(t) =
∫
R
f̂(η)ei2πηtdη. (2)

2.2. Continuous wavelet transform

Let us consider ψ ∈ L1(R) and f ∈ L∞(R), and then define for any time
t and scale a > 0, the continuous wavelet transform (CWT) of f by:

Wψ
f (t, a) = 1

a

∫
R
f(τ)ψ

(
τ − t
a

)∗
dτ. (3)

2.3. Multicomponent signal

In this paper, we will intensively study multicomponent signals (MCS)
defined as a superposition of AM-FM components or modes:

f(t) =
K∑
k=1

fk(t) with fk(t) = Ak(t)ei2πφk(t), (4)
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for some finite K ∈ N, Ak(t) and φ′k(t) are respectively instantaneous am-
plitude (IA) and frequency (IF) of mode fk satisfying: Ak(t) > 0, φ′k(t) > 0
and φ′k+1(t) > φ′k(t) for all t. Such a signal is fully described by its ideal TF
(ITF) representation defined as:

TIf (t, ω) =
K∑
k=1

Ak(t)δ (ω − φ′k(t)) , (5)

where δ denotes the Dirac distribution.

3. Wavelet-based synchrosqueezing transform (WSST)

3.1. WSST principle
The wavelet-based SST (WSST) was originally introduced in the context

of auditory signal analysis [23] and further studied mathematically in [1]. Its
principle is to sharpen the “blurred” representation given by the CWT by
using the following IF estimate at time t and scale a:

ω̂Wψ
f

(t, a) = <

 1
i2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

 , (6)

where <{Z} stands for the real part of complex number Z and ∂t is the
partial derivative with respect to t.

Indeed, Wψ
f (t, a) is reassigned to a new position (t, ω̂Wψ

f
(t, a)) using the

synchrosqueezing operator defining WSST, as follows:

Sγ,α
Wψ
f

(t, ω) = 1
C ′ψ

∫
A(γ,α)

Wψ
f (t, a)δ

(
ω − ω̂Wψ

f
(t, a)

)
da

a
, (7)

where A(γ, α) =
{
a ∈ [0, α] s.t. |Wψ

f (t, a)| > γ
}

, with γ some threshold, α
being defined later in the paper, and C ′ψ =

∫+∞
0 ψ̂∗(η)dη

η
<∞.

Since the coefficients of CWT are reassigned along the “scale” axis, WSST
preserves the causality property, thus making the kth mode approximately
reconstructed by integrating Sγ,α

Wψ
f

(t, ω) in the vicinity of the corresponding
ridge (t, 1

φ′
k
(t)) in the time-scale (TS) plane:

fk(t) ≈
∫
{ω,|ω−ϕk(t)|<d}

Sγ,α
Wψ
f

(t, ω)dω, (8)
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where ϕk(t) is an estimate of φ′k(t), which is often computed by a ridge extrac-
tion technique. Parameter d enables to compensate for both the inaccurate
approximation ϕk(t) of φ′k(t) and the error made by estimating the IF by
means of ω̂Wψ

f
(t, a).

3.2. WSST mathematical framework

WSST is supported by a solid mathematical framework [1], which we now
recall. Let us first define the class of chirp-like functions (signals) on which
one builds the theory:

Definition 1. Let ε > 0 and ∆ ∈ (0, 1). The set A∆,ε of multicomponent
signals with modulation ε and separation ∆ corresponds to signals defined in
(4) with fk satisfying:

Ak ∈ C1(R) ∩ L∞(R), φk ∈ C2(R),
inft∈R φ′k(t) > 0, supt∈R φ′k(t) <∞,M = maxk (supt∈R φ′k(t)) ,

Ak(t) > 0, |A′k(t)| ≤ εφ′k(t) ≤ εM, |φ′′k(t)| ≤ εφ′k(t) ≤ εM, ∀t ∈ R.

Further, the fks are separated with resolution ∆, i.e., for all k ∈ {1, . . . , K−
1} and all t

φ′k+1(t)− φ′k(t) ≥ ∆(φ′k+1(t) + φ′k(t)). (9)

Definition 2. Let h be a positive L1-normalized window belonging to C∞c (R),
define α = 1+∆

inft∈R φ′
1(t) , and consider γ, λ > 0, the wavelet-based synchrosqueez-

ing transform of f with threshold γ and accuracy λ is defined by:

Sλ,γ,α
Wψ
f

(t, ω) := 1
C ′ψ

∫
A(γ,α)

Wψ
f (t, a) 1

λ
h

ω − ω̂Wψ
f

(t, a)
λ

 da

a
. (10)

If λ → 0, then Sλ,γ,α
Wψ
f

(t, ω) tends, in the sense of distribution, to some value
which we formally write as in (7).

Remark 1. It is interesting to point out that parameter α did not appear
in the initial formulation of [1], but we will explain later why it is necessary.
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Theorem 1. Consider f ∈ A∆,ε, set ε̃ = ε
1
3 and let ψ be a non-compactly

supported wavelet in the Fourier domain but satisfying:
∣∣∣ψ̂(τ)(η)

∣∣∣ ≤ N0ε

when |η−1| > ∆, and
∫
{η s.t. |η−1|>∆}

∣∣∣ψ̂(τ)(η)
∣∣∣ dη
η
≤ N1ε̃, for some constants

N0 and N1.
Assuming (t, a) ∈ E = R× [0, α] with α introduced in Definition 2, then,

provided ε is sufficiently small, the following hold:

(a) |Wψ
f (t, a)| > ε̃ only when, there exists k ∈ {1, . . . , K}, such that (t, a) ∈

Zk := {(t, a), s.t. |aφ′k(t)− 1| < ∆}.

(b) For each k ∈ {1, . . . , K} and all (t, a) ∈ Zk for which holds |Wψ
f (t, a)| >

ε̃, one has:
|ω̂Wψ

f
(t, a)− φ′k(t)| ≤ ε̃. (11)

(c) Moreover, for each k ∈ {1, . . . , K}, there exists a constant D[1]
W such

that for any t ∈ R∣∣∣∣∣limλ→0

(∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃,α
Wψ
f

(t, ω)dω
)
− fk(t)

∣∣∣∣∣ ≤ D
[1]
W ε̃. (12)

Remark 2. This theorem gives a strong approximation result for the class
A∆,ε, tells us that the synchrosqueezing operator Sλ,ε̃,α

Wψ
f

is concentrated in
narrow bands around the curves (t, 1

φ′
k
(t)) in the TS plane and that the modes

fks can be reconstructed from Sλ,ε̃,α
Wψ
f

with a reasonably high accuracy.

The proof of this theorem, for a compactly supported wavelet in the
Fourier domain, was already proposed in [1] (with the slight difference that
parameter α was not considered). For non compactly supported wavelet in
the Fourier domain, the proof is similar in principle to that proposed for the
short-time Fourier transform based synchrosqueezing (FSST) in [22], except
of small changes that we will point out. The main ideas are briefly detailed
hereafter.

First, we introduce the following proposition that is useful to prove item (a)
of Theorem 1.
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Proposition 1. For any k ∈ {1, . . . , K} and (t, a) /∈ Zk, one has:∣∣∣Wψ
fk

(t, a)
∣∣∣ ≤ εE

[1]
W,k(t, a), (13)

where E[1]
W,k(t, a) = aMJ1,0+(πa2MJ2,0+N0)Ak(t) and Jn,p =

∫
R
|u|n|ψ(p)(u)|du.

Consequently, for any (t, a) ∈ Zk:∣∣∣Wψ
f (t, a)−Wψ

fk
(t, a)

∣∣∣ ≤ ε
∑
l 6=k

E
[1]
W,l(t, a) := εΩ[1]

W,k(t, a). (14)

Furthermore, for any k ∈ {1, . . . , K} and (t, a) ∈ R× R+, one has:∣∣∣Wψ
fk

(t, a)−Wψ
fk,1

(t, a)
∣∣∣ ≤ εΓ[1]

W,k,0(t, a), (15)

where Wψ
fk,1

(t, a) = fk(t)ψ̂(aφ′k(t))∗ and Γ[1]
W,k,0(t, a) = aMJ1,0+πa2MJ2,0Ak(t).

Proof. For each k ∈ {1, . . . , K}, a zeroth order Taylor expansion of the
amplitude and first order expansion of the phase of fk leads to:

fk(τ) = Ak(τ)ei2πφk(τ)

= Ak(t)ei2π[φk(t)+φ′
k(t)(τ−t)] + (Ak(τ)− Ak(t))ei2πφk(τ)

+ Ak(t)[ei2π[φk(t)+φ′
k(t)(τ−t)+

∫ τ
t
φ′′
k(x)(τ−x)dx] − ei2π[φk(t)+φ′

k(t)(τ−t)]]
= fk,1(τ) + fk,2(τ) + fk,3(τ).

Then, for any (t, a), the first term can be written as:

Wψ
fk,1

(t, a) = 1
a
Ak(t)ei2πφk(t)

∫
R
ei2πφ

′
k(t)(τ−t)ψ

(
τ − t
a

)∗
dτ = fk(t)ψ̂(aφ′k(t))∗.

The second term is bounded by:∣∣∣Wψ
fk,2

(t, a)
∣∣∣ ≤ 1

a

∫
R
|Ak(τ)− Ak(t)|

∣∣∣∣ψ (τ − ta

)∣∣∣∣ dτ
≤ εM

a

∫
R
|τ − t|

∣∣∣∣ψ (τ − ta

)∣∣∣∣ dτ = εaMJ1,0.

and the third term by:∣∣∣Wψ
fk,3

(t, a)
∣∣∣ ≤ 2πAk(t)

a

∫
R

(∫ τ

t
|φ′′k(u)||(τ − u)|du

) ∣∣∣∣ψ (τ − ta

)∣∣∣∣ dτ
≤ επMAk(t)

a

∫
R
|τ − t|2

∣∣∣∣ψ (τ − ta

)∣∣∣∣ dτ = επa2MJ2,0Ak(t).
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For (t, a) /∈ Zk, the assumptions on ψ lead to |Wψ
fk,1

(t, a)| ≤ εN0Ak(t).
Additionally, using the linearity of CWT, one gets (13), and inequality (14)
follows. Furthermore, if (t, a) ∈ R × R+, inequality (15) is also straightfor-
ward.

Remark 3. Note that E[1]
W,k(t, a), Ω[1]

W,k(t, a), and Γ[1]
W,k,0(t, a) are uniformly

bounded for (t, a) ∈ E because a is lower than α. In the seminal paper of
Daubechies [1], this constraint on a was missing.

Now we can prove item (a) of Theorem 1: Since E[1]
W,l(t, a) is bounded on E,

we can consider:

ε̃ ≤
∥∥∥∥∥

K∑
l=1

E
[1]
W,l(t, a)

∥∥∥∥∥
− 1

2

∞,E\
K⋃
l=1

Zl

, (16)

where ‖z(t, a)‖∞,X = sup(t,a)∈X |z(t, a)|. For (t, a) ∈ E \
K⋃
l=1

Zl, we immedi-
ately get:

|Wψ
f (t, a)| ≤ ε

K∑
l=1

E
[1]
W,l(t, a) ≤ ε̃.

Thus, if |Wψ
f (t, a)| > ε̃, there is at least one k such that (t, a) ∈ Zk. Further-

more, because of the separation condition on the modes, one can easily show
the Zks are disjoint sets, so k is unique.

Let us now consider the following proposition that is useful to prove item
(b) of Theorem 1.

Proposition 2. For (t, a) ∈ Zk, assuming ψ satisfies the hypotheses of The-
orem 2, one has:∣∣∣Wψ′

f (t, a) + i2πaφ′k(t)W
ψ
f (t, a)

∣∣∣ ≤ εB
[1]
W,k(t, a), (17)

where

B
[1]
W,k(t, a) = aMKJ0,0 + 2πa2MJ1,0

K∑
k=1
‖Ak‖∞

+ 2πa
∑
l 6=k

φ′l(t)E
[1]
W,l(t, a) + 2πaφ′k(t)Ω

[1]
W,k(t, a).
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Proof. Differentiating the CWT of f with respect to t, we get for any (t, a):

∂tW
ψ
f (t, a) = 1

a

K∑
k=1

∫
R
A′k(τ)ei2πφk(τ)ψ

(
τ − t
a

)∗
dτ

+ 1
a

K∑
k=1

∫
R
Ak(τ)i2πφ′k(τ)ei2πφk(τ)ψ

(
τ − t
a

)∗
dτ

= 1
a

K∑
k=1

∫
R
A′k(τ)ei2πφk(τ)ψ

(
τ − t
a

)∗
dτ

+ 1
a

K∑
k=1

∫
R
Ak(τ)i2π

[
φ′k(t) +

∫ τ

t
φ′′k(u)du

]
ei2πφk(τ)ψ

(
τ − t
a

)∗
dτ

= 1
a

K∑
k=1

∫
R
A′k(τ)ei2πφk(τ)ψ

(
τ − t
a

)∗
dτ + i2π

K∑
k=1

φ′k(t)W
ψ
fk

(t, a)

+ 1
a

K∑
k=1

∫
R
Ak(τ)i2π

(∫ τ

t
φ′′k(u)du

)
ei2πφk(τ)ψ

(
τ − t
a

)∗
dτ.

Note that since ∂tWψ
f (t, a) = − 1

a
Wψ′

f (t, a), one may then write:
∣∣∣∣∣Wψ′

f (t, a) + i2πa
K∑
k=1

φ′k(t)W
ψ
fk

(t, a)
∣∣∣∣∣

≤
K∑
k=1

∫
R
|A′k(τ)|

∣∣∣∣ψ (τ − ta

)∣∣∣∣ dτ + 2π
K∑
k=1

∫
R
Ak(τ)

(∫ τ

t
|φ′′k(u)|du

) ∣∣∣∣ψ (τ − ta

)∣∣∣∣ dτ
≤ ε

(
aMKJ0,0 + 2πa2MJ1,0

K∑
k=1
‖Ak‖∞

)
.

From Proposition 1, we first have, when (t, a) ∈ Zk:∣∣∣Wψ′

f (t, a) + i2πaφ′k(t)W
ψ
fk

(t, a)
∣∣∣

≤ ε

aMKJ0,0 + 2πa2MJ1,0

K∑
k=1
‖Ak‖∞ + 2πa

∑
l 6=k

φ′l(t)E
[1]
W,l(t, a)

 ,
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and then,∣∣∣Wψ′

f (t, a) + i2πaφ′k(t)W
ψ
f (t, a)

∣∣∣
≤ ε

(
aMKJ0,0 + 2πa2MJ1,0

K∑
k=1
‖Ak‖∞

+2πa
∑
l 6=k

φ′l(t)E
[1]
W,l(t, a) + 2πaφ′k(t)Ω

[1]
W,k(t, a)

 ,
which results in (17).

Now, we can prove item (b) of Theorem 1.
One can write for (t, a) satisfying |Wψ

f (t, a)| > ε̃:

∣∣∣∣ω̂Wψ
f

(t, a)− φ′k(t)
∣∣∣∣ =

∣∣∣∣∣∣− 1
i2πa

Wψ′

f (t, a)
Wψ
f (t, a)

− φ′k(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
i2πa

Wψ′

f (t, a) + i2πaφ′k(t)W
ψ
f (t, a)

Wψ
f (t, a)

∣∣∣∣∣∣
≤ ε

B
[1]
W,k(t, a)∣∣∣2πaWψ

f (t, a)
∣∣∣ ≤ ε̃2B

[1]
W,k(t, a)
2πa .

By choosing

ε̃ ≤

∥∥∥∥∥∥ B
[1]
W,k(t, a)
2πa

∥∥∥∥∥∥
−1

∞,
K⋃
l=1

Zl

, (18)

because
B

[1]
W,k(t, a)
a

is bounded on
K⋃
l=1

Zl. For (t, a) ∈ Zk such that |Wψ
f (t, a)| >

ε̃, we immediately get: ∣∣∣∣ω̂Wψ
f

(t, a)− φ′k(t)
∣∣∣∣ ≤ ε̃. (19)

Let us now consider the following lemma, which is useful to prove item
(c) of Theorem 1.
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Lemma 1. Suppose that both (16) and (18) are satisfied, and that the fol-
lowing condition is also verified:

ε ≤ 1/8∆3(φ′1(t) + φ′2(t))3. (20)

Consider the following sets:

X = {a ∈ [0, α] s.t. |Wψ
f (t, a)| > ε̃ and |ω̂Wψ

f
(t, a)− φ′k(t)| ≤ ε̃},

Y = {a s.t. |Wψ
f (t, a)| > ε̃ and |aφ′k(t)− 1| < ∆},

then X = Y.

Proof. If a ∈ X, it is such that |Wψ
f (t, a)| > ε̃ and since (t, a) ∈ E, from (a),

(t, a) belongs to one Zk. If l 6= k, one would have:

|ω̂Wψ
f

(t, a)− φ′k(t)| ≥ |φ′l(t)− φ′k(t)| − |ω̂Wψ
f

(t, a)− φ′l(t)|

≥ ∆(φ′l(t) + φ′k(t))− ε̃.

Condition (20) implies that, for all k, l ∈ {1, . . . , K}: ∆ (φ′k(t) + φ′l(t)) > 2ε̃.
Thus, it leads to |ω̂Wψ

f
(t, a) − φ′k(t)| > ε̃, which contradicts a ∈ X. Hence,

l = k and X ⊂ Y. Conversely, if a ∈ Y, equation (19) immediately shows
a ∈ X, hence X = Y.

Coming back to the proof of item (c) of Theorem 1, we let t ∈ R and
note that Wψ

f (t, a) ∈ L∞(X). Then, since a > 0 on X, 1
a
Wψ
f (t, a) ∈ L1(X),

and, thus, using the same type of technique as in [1] (Estimate 3.9), one can
write:

lim
λ→0

(∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃,α
Wψ
f

(t, ω)dω
)

= 1
C ′ψ

∫
X
Wψ
f (t, a) da

a
.

11



From this, we deduce:∣∣∣∣∣limλ→0

(∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃,α
Wψ
f

(t, ω)dω
)
− fk(t)

∣∣∣∣∣
≤
∣∣∣∣∣ 1
C ′ψ

∫
{a s.t. |aφ′

k
(t)−1|<∆}

Wψ
f (t, a) da

a
− fk(t)

∣∣∣∣∣
+
∣∣∣∣∣ 1
C ′ψ

∫
{a s.t. |Wψ

f
(t,a)|≤ε̃ and |aφ′

k
(t)−1|<∆}

Wψ
f (t, a) da

a

∣∣∣∣∣
≤ 1∣∣∣C ′ψ∣∣∣

∫
{a s.t. |aφ′

k
(t)−1|<∆}

∣∣∣Wψ
f (t, a)−Wψ

fk
(t, a)

∣∣∣ da
a

+ 1∣∣∣C ′ψ∣∣∣
∫
{a s.t. |aφ′

k
(t)−1|<∆}

∣∣∣Wψ
fk

(t, a)−Wψ
fk,1

(t, a)
∣∣∣ da
a

+
∣∣∣∣∣ 1
C ′ψ

∫
{a s.t. |aφ′

k
(t)−1|<∆}

fk(t)ψ̂(aφ′k(t))∗
da

a
− fk(t)

∣∣∣∣∣+ ε̃∣∣∣C ′ψ∣∣∣ log
(

1 + ∆
1−∆

)

≤ 1∣∣∣C ′ψ∣∣∣
[∫
{a s.t. |aφ′

k
(t)−1|<∆}

Ω[1]
W,k(t, a)da

a
+
∫
{a s.t. |aφ′

k
(t)−1|<∆}

Γ[1]
W,k,0(t, a)da

a

+Ak(t)
∣∣∣∣∣
∫
η s.t. |η−1|>∆

∣∣∣ψ̂(τ)(η)∗
∣∣∣ dη
η

∣∣∣∣∣+ ε̃ log
(

1 + ∆
1−∆

)]

≤ 1∣∣∣C ′ψ∣∣∣

‖Ω[1]

W,k(t, a)‖
∞,

K⋃
l=1

Zl

+ ‖Γ[1]
W,k,0(t, a)‖

∞,
K⋃
l=1

Zl

+ 1

 log
(

1 + ∆
1−∆

)

+ max
k
‖Ak‖∞N1

]
ε̃ = D

[1]
W ε̃.

4. Second order wavelet-based SST (WSST2)

4.1. Second order IF estimate

Although WSST proves to be an efficient solution to enhance TF rep-
resentations, its applicability is restricted to a class of MCS composed of
slightly perturbed purely harmonic modes. To overcome this limitation, a
recent extension of WSST was introduced based on a more accurate IF esti-
mate, which is then used to define an improved synchrosqueezing operator,
called second-order wavelet-based synchrosqueezing transform (WSST2) [2].
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More precisely, a second-order local modulation operator is first defined
and then used to compute the new IF estimate. This modulation operator
corresponds to the ratio of the first-order derivatives, with respect to t, of
the reassignment operators, as explained in the following:

Proposition 3. Given a signal f ∈ L∞(R), the complex reassignment op-
erators ω̃Wψ

f
(t, a) and τ̃Wψ

f
(t, a) are respectively defined for any (t, a) s.t.

Wψ
f (t, a) 6= 0 as:

ω̃Wψ
f

(t, a) = 1
i2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

τ̃Wψ
f

(t, a) =
∫
R τf(τ) 1

a
ψ( τ−t

a
)∗dτ

Wψ
f (t, a)

= t+ a
W tψ
f (t, a)

Wψ
f (t, a)

,

(21)

(22)

which are defined provided tψ and ψ′ are in L1(R). Then, the second-order
local complex modulation operator q̃t,Wψ

f
(t, a) is defined by:

q̃t,Wψ
f

(t, a) =
∂tω̃Wψ

f
(t, a)

∂tτ̃Wψ
f

(t, a) , whenever ∂tτ̃Wψ
f

(t, a) 6= 0. (23)

In that case, the definition of the improved IF estimate associated with
the TF representation given by CWT is derived as:

Definition 3. Let f ∈ L∞(R), the second-order local complex IF estimate of
f is defined as:

ω̃
[2]
t,Wψ

f

(t, a) =


ω̃Wψ

f
(t, a) + q̃t,Wψ

f
(t, a)(t− τ̃Wψ

f
(t, a)) if ∂tτ̃Wψ

f
(t, a) 6= 0

ω̃Wψ
f

(t, a) otherwise.

(24)

Then, its real part ω̂[2]
t,Wψ

f

(t, a) = <{ω̃[2]
t,Wψ

f

(t, a)} is the desired IF estimate.

It was demonstrated in [2] that <
{
q̃t,Wψ

f
(t, a)

}
= φ′′(t) when f is a Gaus-

sian modulated linear chirp, i.e. f(t) = A(t)ei2πφ(t) where both log(A(t)) and

13



φ(t) are quadratic. Also, <{ω̃[2]
t,Wψ

f

(t, a)} is an exact estimate of φ′(t) for this
kind of signals. For a more general mode with Gaussian amplitude, its IF
can be estimated by <{ω̃[2]

t,Wψ
f

(t, a)}, in which the estimation error only in-
volves the derivatives of the phase with orders larger than 3. Furthermore,
ω̃Wψ

f
(t, a) and q̃t,Wψ

f
(t, a) can be computed by means of only five CWTs as

follows:

Proposition 4. Let f ∈ L∞(R), ω̃Wψ
f

(t, a) and q̃t,Wψ
f

(t, a) can be written as:

ω̃Wψ
f

(t, a) = − 1
i2πa

Wψ′

f (t, a)
Wψ
f (t, a)

q̃t,Wψ
f

(t, a) = 1
i2πa2

Wψ′′

f (t, a)Wψ
f (t, a)−Wψ′

f (t, a)2

W tψ
f (t, a)Wψ′

f (t, a)−W tψ′

f (t, a)Wψ
f (t, a)

,

(25)

(26)

where t 7→ Wψ′
,W tψ,Wψ′′

,W tψ′ are respectively CWTs of f computed with
windows ψ′, tψ, ψ′′, tψ′ all in L1(R).

Proof. These expressions are easily derived using ∂ptWψ
f (t, a) =

(
− 1
a

)p
Wψ(p)

f (t, a).

The second-order WSST (WSST2) is then defined by simply replacing
ω̂Wψ

f
(t, a) by ω̂[2]

t,Wψ
f

(t, a) in (7):

Sγ,α
2,Wψ

f

(t, ω) := 1
C ′ψ

∫
A(γ,α)

Wψ
f (t, a)δ

(
ω − ω̂[2]

t,Wψ
f

(t, a)
)
da

a
, (27)

and fk is finally retrieved by replacing Sγ,α
Wψ
f

(t, ω) by Sγ,α
2,Wψ

f

(t, ω) in (8).

4.2. Mathematical foundations for WSST2

This section begins with the definition of another class of chirp-like func-
tions, larger than A∆,ε and that can be successfully dealt with WSST2:

Definition 4. Let ε > 0 and ∆ ∈ (0, 1). The set A[2]
∆,ε of multicomponent

signals with second order modulation ε and separation ∆ corresponds to the
signals defined in (4) satisfying:

14



(a) fk is such that Ak and φk satisfy the following conditions:

Ak(t) ∈ C2(R) ∩ L∞(R), φk(t) ∈ C3(R),
φ′k(t), φ′′k(t), φ′′′k (t) ∈ L∞(R),

Ak(t) > 0, inf
t∈R

φ′k(t) > 0, sup
t∈R

φ′k(t) <∞, M = max
k

(
sup
t∈R

φ′k(t)
)
,

|A′k(t)| ≤ εφ′k(t) ≤ εM, |A′′k(t)| ≤ εφ′k(t) ≤ εM,

and |φ′′′k (t)| ≤ εφ′k(t) ≤ εM ∀t ∈ R.

(b) the φks satisfy the following separation condition

φ′k+1(t)− φ′k(t) ≥ ∆(φ′k+1(t) + φ′k(t)),∀t ∈ R , ∀k ∈ {1, . . . , K − 1}.

Now, let us define the second order WSST as follows:

Definition 5. Let h be a positive L1-normalized window belonging to C∞c (R),
and consider γ, λ > 0, the second order WSST of f with threshold γ and
accuracy λ is defined by:

Sλ,γ,α
2,Wψ

f

(t, ω) := 1
C ′ψ

∫
A(γ,α)

Wψ
f (t, a) 1

λ
h

ω − ω̂
[2]
t,Wψ

f

(t, a)

λ

 da

a
. (28)

In Section 3, we showed that, for functions f ∈ A∆,ε, a good IF estimate
was given by ω̂Wψ

f
(t, a) and the approximation theorem followed. Here, to

assess the approximation property of the second order WSST we have just
introduced, we consider f ∈ A[2]

∆,ε for which we are going to prove that
ω̂

[2]
Wψ
f

(t, a) is a good IF estimate. The approximation theorem is as follows:

Theorem 2. Consider f ∈ A[2]
∆,ε, set ε̃ = ε1/6. Let ψ be a wavelet satisfying,

for r ∈ {0, 1} and p ∈ {0, 1},
∣∣∣F{τ rψ(p)(τ)e−iπφ′′

k(t)a2τ2}(η)
∣∣∣ ≤ KW,r,pε when

|η − 1| > ∆, and
∫
{η s.t. |η−1|>∆}

∣∣∣F{ψ(τ)e−iπφ′′
k(t)a2τ2}(η)∗

∣∣∣ dη
η
≤ KW,3ε̃, for

some constants KW,r,p and KW,3 and where F denotes the Fourier transform.
Assuming (t, a) ∈ E, then, provided ε is sufficiently small, the following

hold:
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(a) |Wψ
f (t, a)| > ε̃ on E only when, there exists k ∈ {1, . . . , K}, such that

(t, a) ∈ Zk := {(t, a), s.t. |aφ′k(t)− 1| < ∆}.

(b) For each k ∈ {1, . . . , K} and for all (t, a) ∈ Zk, for which hold |Wψ
f (t, a)| >

ε̃ and |∂tτ̃Wψ
f

(t, a)| > ε̃, one has

|ω̂[2]
t,Wψ

f

(t, a)− φ′k(t)| ≤ ε̃. (29)

(c) Moreover, for each k ∈ {1, . . . , K}, there exists a constant D[2]
W such

that ∣∣∣∣∣
(

lim
λ→0

∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃,α
2,Wψ

f

(t, ω)dω
)
− fk(t)

∣∣∣∣∣ ≤ D
[2]
W ε̃. (30)

Remark 4. It is worth noting that the same study carried out on in the
STFT context required hypotheses on the window used that did not involve
the frequency [22] [see Theorem 4] contrary to the wavelet case where the
hypotheses involve the scale a.

The proof of Theorem 2 is available in Section Appendix .

5. Variants of second-order SST

5.1. Wavelet-based modulation operator using differentiation with respect to
scale

By using partial derivatives with respect to a instead of t, a new second-
order local modulation operator q̃a,Wψ

f
(t, a) showing the same properties as

those of q̃t,Wψ
f

(t, a) can be obtained as follows:

Definition 6. Given a signal f ∈ L∞(R), the second-order local complex
modulation operator q̃a,Wψ

f
is defined by:

q̃a,Wψ
f

(t, a) =
∂aω̃Wψ

f
(t, a)

∂aτ̃Wψ
f

(t, a) whenever ∂aτ̃Wψ
f

(t, a) 6= 0, (31)

where ω̃Wψ
f

(t, a) and τ̃Wψ
f

(t, a) are respectively defined in (21).
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Proposition 5. Let f ∈ L∞(R), q̃a,Wψ
f

(t, a) can be written as:

q̃a,Wψ
f

(t, a) = 1
i2πa2

W
(tψ′)′

f (t, a)Wψ
f (t, a)−Wψ′

f (t, a)W tψ′

f (t, a)
W tψ
f (t, a)W tψ′

f (t, a)−W t2ψ′

f (t, a)Wψ
f (t, a)

(32)

Proof. The expression is derived using ∂aWψ
f (t, a) = −1

a
Wψ
f (t, a)−1

a
W tψ′

f (t, a),
since we have:

∂aω̃Wψ
f

(t, a) = 1
i2πa2

W
(tψ′)′

f (t, a)Wψ
f (t, a)−Wψ′

f (t, a)W tψ′

f (t, a)
Wψ
f (t, a)2

∂aτ̃Wψ
f

(t, a) =
W tψ
f (t, a)W tψ′

f (t, a)−W t2ψ′

f (t, a)Wψ
f (t, a)

Wψ
f (t, a)2

Then, a new IF estimate having the same properties as ω̃[2]
t,Wψ

f

(t, a) is
introduced as:

Definition 7. Let f ∈ L∞(R), the second-order local complex IF estimate of
signal f is defined by:

ω̃
[2]
a,Wψ

f

(t, a) =


ω̃Wψ

f
(t, a) + q̃a,Wψ

f
(t, a)(t− τ̃Wψ

f
(t, a)) if ∂aτ̃Wψ

f
(t, a) 6= 0

ω̃Wψ
f

(t, a) otherwise.

Then, its real part ω̂[2]
a,Wψ

f

(t, a) = <{ω̃[2]
a,Wψ

f

(t, a)} is the desired IF estimate.

It can again be shown that <{q̃a,Wψ
f

(t, a)} is an exact estimate of the

modulation for a Gaussian modulated linear chirp, while ω̂[2]
a,Wψ

f

(t, a) exactly
estimates the instantaneous frequency in such a case. A variant of second-
order WSST is then defined by simply replacing ω̂Wψ

f
(t, a) by ω̂

[2]
a,Wψ

f

(t, a) in
(7):

Sγ,α
2,a,Wψ

f

(t, ω) := 1
C ′ψ

∫
A(γ,α)

Wψ
f (t, a)δ

(
ω − ω̂[2]

a,Wψ
f

(t, a)
)
da

a
, (33)

and fk is finally retrieved by replacing Sγ,α
Wψ
f

(t, ω) by Sγ,α
2,a,Wψ

f

(t, ω) in (8).
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Remark 5. The approximation theorem for this variant can be derived sim-
ilarly to Theorem 2, except item (b) uses condition |∂aτ̃Wψ

f
(t, a)| > ε̃ instead

of |∂tτ̃Wψ
f

(t, a)| > ε̃.

5.2. STFT-based modulation operators

Originally introduced as a post-processing method applied to the CWT,
SST can alternatively be applied to STFT with some minor changes to obtain
FSST [21, 24]. Like WSST, FSST suffers from a somewhat limiting appli-
cability due to the hypotheses of weak frequency modulation for the modes
making up the signal. To better take into account the frequency modulation,
an extension of FSST was introduced, based on a more accurate IF estimate
computed using a second-order local modulation operator [25, 26]. This new
synchrosqueezing operator was then theoretically studied in [22]. For the
sake of consistency, we briefly recall the definition of FSST2, based on the
STFT, whose definition follows:

Definition 8. Given a signal f ∈ L∞(R) and a window g ∈ L1(R), the
(modified) STFT of f is defined by:

V g
f (t, η) =

∫
R
f(τ)g(τ − t)e−2iπη(τ−t)dτ. (34)

The complex reassignment operators ω̃V g
f

(t, η) and τ̃V g
f

(t, η) then respec-
tively correspond, for any (t, η) such that V g

f (t, η) 6= 0, to:

ω̃V g
f

(t, η) =
∂tV

g
f (t, η)

2iπV g
f (t, η) = η − 1

i2π
V g′

f (t, η)
V g
f (t, η)

τ̃V g
f

(t, η) = t−
∂ηV

g
f (t, η)

2iπV g
f (t, η) = t+

V tg
f (t, η)
V g
f (t, η) . (35)

and, the second-order local complex modulation operator q̃t,V g
f

(t, η) to:

q̃t,V g
f

(t, η) =
∂tω̃V g

f
(t, η)

∂tτ̃V g
f

(t, η) whenever ∂tτ̃V g
f

(t, η) 6= 0

= 1
i2π

V g′′

f V g
f −

(
V g′

f

)2

V tg
f V

g′

f − V
tg′

f V g
f

, (36)
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where V g
f denotes V g

f (t, η) and V g′

f , V
tg
f , V

g′′

f , V tg′

f are respectively STFTs of
f computed with windows t 7→ g′(t), tg(t), g′′(t) and tg′(t) (which are all
supposed to be in L1(R)).

It was already demonstrated in [22] that <{ω̃[2]
t,V g

f
(t, η)} is a perfect esti-

mate of the frequency modulation for a Gaussian modulated linear chirp. In
that case, the definition of the improved associated IF estimate was derived
as:

ω̃
[2]
t,V g

f
(t, η) =


ω̃V g

f
(t, η) + q̃t,V g

f
(t, η)(t− τ̃V g

f
(t, η)) if ∂tτ̃V g

f
(t, η) 6= 0

ω̃V g
f

(t, η) otherwise.

Then, its real part ω̂[2]
t,V g

f
(t, η) = <{ω̃[2]

t,V g
f

(t, η)} is the desired IF estimate.
FSST2 was then defined by:

T γ2,V g
f

(t, ω) = 1
g∗(0)

∫
{η s.t. |V g

f
(t,η)|>γ}

V g
f (t, η)δ

(
ω − ω̂[2]

t,V g
f

(t, η)
)
dη, (37)

and mode fk was finally retrieved through:

fk(t) ≈
∫
{ω,|ω−ϕk(t)|<d}

T γ2,V g
f

(t, ω)dω. (38)

In a recent paper [27], the authors of this paper proposed another modu-
lation operator q̃η,V g

f
(t, η), showing the same properties as those of q̃t,V g

f
(t, η),

and derived using the partial derivatives with respect to η instead of t.
Proposition 6. The second-order modulation operator q̃η,V g

f
(t, η) is defined

by:

q̃η,V g
f

=
∂ηω̃V g

f
(t, η)

∂η τ̃V g
f

(t, η) whenever ∂η τ̃V g
f

(t, η) 6= 0,

= 1
i2π

V g
f V

(tg)′

f − V g′

f V
tg
f

V g
f V

t2g
f −

(
V tg
f

)2

= 1
i2π

(V g
f )2 + V tg′

f V g
f − V

g′

f V
tg
f

V g
f V

t2g
f −

(
V tg
f

)2 , (39)

where V g
f denotes V g

f (t, η) and V g′

f , V
tg
f , V

tg′

f are respectively STFTs of f com-
puted with windows t 7→ g′(t), tg(t), tg′(t) and t2g(t), all supposed to be in
L1(R).
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A new IF estimate having the same properties as ω̃[2]
t,V g

f
(t, η) is introduced

as follows:

Definition 9. Let f ∈ L∞(R), the second-order local complex IF estimate of
signal f is defined by:

ω̃
[2]
η,V g

f
(t, η) =


ω̃V g

f
(t, η) + q̃η,V g

f
(t, η)(t− τ̃V g

f
(t, η)) if ∂η τ̃V g

f
(t, η) 6= 0

ω̃V g
f

(t, η) otherwise.
(40)

Then, its real part ω̂[2]
η,V g

f
(t, η) = <{ω̃[2]

η,V g
f

(t, η)} is the desired IF estimate.

Remark 6. If g(t) = e−λt
2 for some λ > 0, then one can easily check that

q̃t,V g
f

= q̃η,V g
f

, whatever f . It is also easy to show that ω̂[2]
η,V g

f
(t, η) is an exact

instantaneous frequency estimate for Gaussian modulated linear chirp.

Remark 7. The approximation theorems for this new type of second order
FSST based on STFT can be derived similarly to what was done for FSST2
(see [22]) except that the approximation of the chirp rate is now valid only
when ∂η τ̃V g

f
(t, η) is not too small.

6. Numerical analysis of the behavior of WSST2 and comparisons

In this section, we provide numerical experiments to demonstrate the ef-
ficiency of our new second order wavelet-based synchrosqueezing transform
(WSST2) compared with other existing synchrosqueezing transforms on sim-
ulated signals. More precisely, we carry out a comparison in terms of concen-
tration and accuracy of the TF representations obtained. For that purpose,
we start with considering a complex simulated MCS (f) composed of three
components: a linear chirp (f1), an hyperbolic chirp (f2) and an exponential
chirp (f3) with Gaussian modulated amplitudes, whose instantaneous fre-
quencies are respectively linear (φ′′(t) ∝ cst), hyperbolic (φ′′(t) ∝ φ′(t)2) and
exponential (φ′′(t) ∝ φ′(t)). Note that f1 behaves locally as a Gaussian mod-
ulated linear chirp, while both f2 and f3 contain strong nonlinear frequency
modulations.

In our simulations, f is sampled over time interval [0, 1] with a sampling
rate M = 1024 Hz. An arbitrary threshold γ = γ0 = 0.001 is set for noise-free
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signals (the results between relatively insensitive to that threshold). Also,
we use the complex Morlet wavelet (resp. Gaussian window) to compute
the CWT (resp. STFT), which depends on a parameter σW = 5 (resp.
σF = 0.05) as follows:

ψ̂(η) = σ
1
2
W e
−πσ2

W (1−η)2 and ĝ(η) = σ
1
2
F e
−πσ2

F η
2
.

Note that when using Morlet wavelet (resp. Gaussian window), the chirp rate
estimates q̃t,Wψ

f
and q̃a,Wψ

f
(resp. q̃t,V g

f
and q̃η,V g

f
) show the same behavior on

f , therefore we only display experiments on q̃t,Wψ
f

and q̃t,V g
f

for the sake of
simplicity. Further, the wavelet-based (resp. STFT-based) synchrosqueezing
transforms are represented on a logarithmic (resp. linear) scale. The Matlab
codes for synchrosqueezing transforms and the scripts leading to all figures
of this paper can be found https://github.com/phamduonghung/WSST2.

In Figures 1 (a), (b) and (c), we display respectively the real part of the
three components along with their amplitudes, and, in Figure 1 (d), the real
part of the whole signal.
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Figure 1: (a), (b) and (c): real part of f1, f2, and f3 respectively with Gaussian modulated
amplitudes A1, A2 and A3 superimposed; (d): real part of f .

We then display, still in the noise-free context, the CWT and STFT
of f in the first column of Figure 2. Then, on the other two columns of
this figure, the reassigned versions of the STFT and CWT given by some
synchrosqueezing transforms mentioned in this paper are depicted.
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Figure 2: First row, (a): modulus of the CWT of f ; (b): WSST; (c) WSST2; Second row,
(d): modulus of the STFT of f ; (e): FSST; (f): FSST2. Threshold γ0 = 0.001.

Analyzing these figures, we first remark that, as expected, FSST leads
to a relatively sharp TF representation for the linear chirp f1, that looks
similar to the ones given by WSST2 and FSST2, and much better than
that corresponding to WSST. However, FSST fails to reassign the STFT
of f2 and f3 correctly where the IFs of these modes have non negligible
frequency modulations. In contrast, the reassigned representations of f2
and f3 provided by WSST are much more concentrated at these locations.
Moreover, it is of interest to remark that the quality of the representation
corresponding to WSST seems not to depend on the scale for f2 contrary
to what happens with f3. Actually, this phenomenon is confirmed by the
study available in [28], ch. 4, which says that to obtain a representation
with constant quality, the mode must satisfy a constant ratio φ′′/φ′2, which
corresponds to a hyperbolic chirp. Finally, it can be seen that for f2 and
f3, both WSST2 and FSST2 seem to behave very similarly when considering
either of the three studied modes, and result in compact TF representations.

For a better understanding of the performance improvement brought by
the use of WSST2 over other studied methods, we introduce a quantitative
comparison of all these techniques from the angle of energy concentration
of TF representations carried out both on noise-free and noisy signals, and
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then a measure of their localization accuracy by means of the Earth mover’s
distance (EMD).
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Figure 3: (a) Normalized energy as a function of the number of sorted TF coefficients for
f1. Abscissa corresponds to the number of coefficients over the size M of the signal; (b):
same as (a) but for f2 ; (c): same as (a) but for f3. Threshold γ0 = 0.001.

6.1. Evaluation of TF concentration

The TF concentration is one of the outstanding features used for evaluat-
ing the performance of the different TF techniques. To quantify this feature,
an appealing method first introduced in [26] and then applied successfully in
[27] is used in this paper. The main aim of such a method is to measure the
energy concentration by considering the proportion of the latter contained in
the first nonzero coefficients associated with the highest amplitudes, which
we call normalized energy. When computed on a mono-component signal,
the faster it increases towards 1 with the number of coefficients involved, the
more concentrated the TF representation. In Figure 3 (a), we depict the nor-
malized energy corresponding to the reassignment of the STFT of f1 using
different techniques, with respect to the number of coefficients kept divided
by the length of f1 (which corresponds to the sampling rate M in our case).
From this figure, it can be checked again that, for f1, the energy is perfectly
localized when using both WSST2 and FSST2, since they require only one
coefficient per time instant to recover the signal energy, while WSST and
FSST need more coefficients (5 and 2 respectively). The same computations
carried out on f2 and f3 show that WSST2 still better performs than the
other methods, especially WSST or FSST.

To further challenge the different TF reassigned techniques in the presence
of noise, we consider a noisy signal fζ(t) = f(t)+ζ(t), where ζ(t) is a complex
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Figure 4: (a) Normalized energy as a function of the number of sorted TF coefficients for
noisy f1 (SNR= 0dB); (b): same as (a) but for noisy f2 (at level 0dB); (c): same as (a)
but for noisy f3 (at level 0dB).

white Gaussian process with variance Var (<{ζ(t)}) = Var (={ζ(t)}) = σ2
ζ ,

where ={Z} is the imaginary part of complex number Z. Furthermore, the
noise level is measured by the Signal-to-Noise Ratio (SNR):

SNRintput[dB] = 20 log10
‖f‖2

‖fζ − f‖2
, (41)

where ‖.‖2 is the l2 norm. Note also that in this noisy context, one of the
well-known issue regarding the use of SST is the choice of an appropriate
threshold γ on Wψ

f (t, a) or V g
f (t, η) in the definition of the synchrosqueezing

operator to allow for signal denoising and a fair comparison between the
different tested methods. Here, we propose a technique enabling adaptive
determination of the threshold γ as a function of the noise level. Such a
technique exploits the linearity of CWT and the fact that, for a fixed scale
a, one has:

std
(
<
{
Wψ
ζ (t, a)

})
= σζ

1√
a
‖ψ‖2 and std

(
=
{
Wψ
ζ (t, a)

})
= σζ

1√
a
‖ψ‖2 ,

where std is the standard deviation. Thus, if one chooses a threshold γW =
2σζ 1√

a
‖ψ‖2 for CWT, keeping only the coefficients satisfying:

∣∣∣< {Wψ
fζ

(t, a)
}∣∣∣ >γW = 2σζ

1√
a
‖ψ‖2 ,

and
∣∣∣= {Wψ

fζ
(t, a)

}∣∣∣ >γW = 2σζ
1√
a
‖ψ‖2 ,
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in the synchrosqueezing transforms guarantees an efficient noise removal.
The same arguments applied to STFT lead to keeping only the coefficients
satisfying: ∣∣∣< {V g

fζ
(t, η)

}∣∣∣ >γF = 2σζ ‖g‖2 ,

and
∣∣∣= {V g

fζ
(t, η)

}∣∣∣ >γF = 2σζ ‖g‖2 ,

in the definition of the synchrosqueezing transform.
Using the just defined threshold, we carry out the same numerical ex-

periments regarding energy concentration as in the noise-free case, but each
mode being contaminated by a white Gaussian noise (SNR = 0dB). The re-
sults displayed in Figure 4 exhibit a slightly slower growth of the normalized
energy since the coefficients corresponding to noise, that the above technique
cannot completely eliminate, are spread out over the whole TF or TS planes.
However, the normalized energy is still more concentrated using WSST2 than
the other methods,so that the former proves to be the most competitive of
the tested reassignment techniques, even in the presence of heavy noise.
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Figure 5: (a): EMD corresponding to different TF representations of f1 either given by
RM, FSST2, FSST3 or FSST4; (b): same as (a) but for f2; (c): same as (a) but for f3.

Although quite informative, the normalized energy as illustrated in Fig-
ure 4 does not deliver any insight into the accuracy of the reassigned trans-
forms. The latter can alternatively be quantified by measuring the dissimi-
larity between the resultant TF representations and the ideal one by means
of the Earth mover’s distance (EMD), a procedure already used in the syn-
chrosqueezing context in [16]. The EMD is a sliced Wasserstein distance,
commonly used in optimal transport, which allows for the comparison of two
probability distributions. More precisely, it consists in computing the 1D
EMD between the resultant TF representations and the ideal one, for each
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individual time t, and then take the average over all t to define the global
EMD. A smaller EMD means a better TF representation concentration to
the ground truth and less noise fluctuations. In Figures 5 (a), (b) and (c),
we display, respectively for the three modes already tested, the evolution of
EMD with respect to the noise level, for TF representations given either by
WSST, WSST2, FSST or FSST2. This study tells us that, for modes f1 and
f2, WSST2 always achieves the best performance whatever the input SNR.
Moving to f3, WSST2 performs similarly to WSST at high noise level and
is more accurate at low noise level, while it consistently outperforms FSST
and FSST2. These results confirm the interest of using WSST2 on many
different types of signals, even at high noise level noise.

6.2. Evaluation of mode reconstruction performance

Table 1: Accuracy of mode retrieval in the noise-free case

FSST FSST2 WSST WSST2

Mode f1 13.2 31.3 4.72 43.1

Mode f2 1.68 17.4 6.03 23.6

Mode f3 0.60 18.5 12.4 27.0

MCS f 3.09 19.8 6.48 27.1

Table 2: Accuracy of mode retrieval in the noisy case, (at noise level 0dB)

FSST FSST2 WSST WSST2

Mode f1 4.99 6.21 4.11 8.23

Mode f2 2.42 6.51 5.71 8.67

Mode f3 0.80 4.18 5.90 6.63

MCS f 2.55 5.41 5.08 7.83

As discussed above, the variants of second order SST proposed in this
paper leading to significantly better TF representations, this should translate
into better performance in terms of mode reconstruction. Let us first briefly
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recall that fk is retrieved from the TF representation of f given by the
WSST2 (other SSTs have the same mode retrieval procedure) through:

fk(t) ≈
∫
{ω,|ω−ϕk(t)|<d}

Sγ,α
2,Wψ

f

(t, ω)dω, (42)

Note that ϕk(t) is the estimate of φ′k(t) given by the ridge detector (see
[29] for details on such a technique used in this paper), and d is an integer
parameter (because the frequency resolution is here associated with integer
location) used to compensate for the inaccuracy of the estimate ϕk(t) and
also for the errors caused by approximating the IF by ω̂

[2]
t,Wψ

f

(t, a). We first
analyze the performance of the reconstruction procedure by considering the
information on the ridge only, i.e. we take d = 0. For that purpose, we
measure the output SNR, defined by SNRoutput = 20 log10

‖f‖2
‖fr − f‖2

, where

fr is the reconstructed signal. In Table 1, we display this output SNR for
modes f1, f2, f3 and also for f , using either FSST, FSST2, WSST or WSST2
for mode reconstruction. Further, we carry out the same experiments, but
each mode is embedded in a white Gaussian noise at a noise level 0dB. The
resultant accuracies for such a reconstruction are displayed in Table 2. From
these results, we can see that the improvement brought by using WSST2 is
clear and coherent with the previous study of the accuracy of the proposed
new TF representations.

7. Conclusion

This paper introduced a novel synchrosqueezing transform for analyzing
multicomponent signals made of strongly frequency-modulated modes, based
on the continuous wavelet transform. It simply consists of a refinement of the
instantaneous frequency estimate, computed using a second-order expansion
of the phase. After having revisited the case of first-order synchrosqueezing,
releasing the hypothesis of a wavelet compactly supported in the frequency
domain, we proved a novel approximation theorem involving the proposed
new synchrosqueezing transform applied to multicomponent signals made of
strongly modulated modes. Numerical experiments showed the benefits of
taking into account frequency modulation for both representation and recon-
struction purposes. Future work should now be devoted to the theoretical
analysis of the behavior of the proposed representations when applied to
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noisy signals, as was done in [30, 31] for the original WSST. In this regard,
it would also be of interest to study the behavior of the transform when the
type of noise is non Gaussian.

Appendix

Theorem 2 is a generalization of Theorem 1, so the proof of the former is
in principle similar to that of the latter. Proposition 1 generalizes into:

Proposition 7. For any k ∈ {1, . . . , K}, any r ∈ {0, 1} and p ∈ {0, 1}, and
(t, a) /∈ Zk, one has: ∣∣∣∣W trψ(p)

fk
(t, a)

∣∣∣∣ ≤ εE
[2]
W,k,r,p(t, a), (43)

with E
[2]
W,k,r,p(t, a) = ar+1MJr+1,p + (π3a

r+3MJr+3,p + KW,r,p)Ak(t). Conse-
quently, for any (t, a) ∈ Zk:∣∣∣∣W trψ(p)

f (t, a)−W trψ(p)

fk
(t, a)

∣∣∣∣ ≤ ε
∑
l 6=k

E
[2]
W,l,r,p(t, a) := εΩ[2]

W,k,r,p(t, a).(44)

Furthermore, for any k ∈ {1, . . . , K}, any r ∈ {0, 1} and p ∈ {0, 1}, and
(t, a) ∈ R× R+, one has:∣∣∣∣W trψ(p)

fk
(t, a)−W trψ(p)

fk,1
(t, a)

∣∣∣∣ ≤ εΓ[2]
W,k,r,p(t, a), (45)

where W trψ(p)

fk,1
(t, a) = fk(t)F{τ rψ(p)(τ)eiπφ′′(t)a2τ2}(aφ′(t))∗ and Γ[2]

W,k,r,p(t, a) =
ar+1MJr+1,p + π

3a
r+3MJr+3,pAk(t).

Proof. Following the same steps as the proof of Proposition 1, but using a
zeroth order Taylor expansion of the amplitude and second order expansion
of the phase of fk, one has:

fk(τ) = Ak(τ)ei2πφk(τ)

= Ak(t)ei2π[φk(t)+φ′
k(t)(τ−t)+ 1

2φ
′′
k(t)(τ−t)2] + (Ak(τ)− Ak(t))ei2πφk(τ)

+ Ak(t)
[
ei2π[φk(t)+φ′

k(t)(τ−t)+ 1
2φ

′′
k(t)(τ−t)2+ 1

2

∫ τ
t
φ′′′
k (x)(τ−x)2dx]

−ei2π[φk(t)+φ′
k(t)(τ−t)+ 1

2φ
′′
k(t)(τ−t)2]

]
= fk,1(τ) + fk,2(τ) + fk,3(τ).
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Then, for any (t, a) ∈ R× R+,

W trψ(p)

fk,1
(t, a) = fk(t)

a

∫
R
eiπφ

′′
k(t)(τ−t)2

(
τ − t
a

)r
ψ(p)

(
τ − t
a

)∗
ei2πφ

′
k(t)(τ−t)dτ

= fk(t)F{τ rψ(p)(τ)eiπφ′′
k(t)a2τ2}(aφ′k(t))∗,∣∣∣∣W trψ(p)

fk,2
(t, a)

∣∣∣∣ ≤ 1
a

∫
R
|Ak(τ)− Ak(t)| |τ − t|r

∣∣∣∣ψ(p)
(
τ − t
a

)∣∣∣∣ dτ
= εar+1MJr+1,p,

and

|W trψ(p)

fk,3
(t, a)| ≤ πAk(t)

a

∫
R

(∫ τ

t
|φ′′′(x)||τ − x|2 dx

)
|τ − t|r

∣∣∣∣ψ(p)
(
τ − t
a

)∣∣∣∣ dτ.
= ε

π

3a
r+3MAk(t)Jr+3,p.

For (t, a) /∈ Zk, the assumptions on ψ lead to |W trψ(p)

fk,1
(t, a)| ≤ εKW,r,pAk(t).

As a result, one gets the inequalities (43) and (44). Also, for (t, a) ∈ R×R+,
one easily get (45).

(a) Now, if (t, a) ∈ E \
K⋃
l=1

Zl, we immediately get:

|Wψ
f (t, a)| ≤ ε

K∑
l=1

E
[2]
W,l,0,0(t, a) ≤ ε̃,

when ε̃ is sufficiently small, which proves item (a) of Theorem 2. Indeed, one
can find ε̃ such that:

ε̃ ≤
∥∥∥∥∥

K∑
l=1

E
[2]
W,l,0,0(t, a)

∥∥∥∥∥
− 1

2

∞,E\
K⋃
l=1

Zl

, (46)

because E[2]
W,l,0,0(t, a) is bounded on E \

K⋃
l=1

Zl.

Now, we introduce the following propositions that are useful to prove item
(b) of Theorem 2.
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Proposition 8. For (t, a) ∈ Zk and p ∈ {0, 1}, assuming ψ satisfies the
hypotheses of Theorem 2, one has:∣∣∣∣Wψ(p+1)

f (t, a) + i2πa
(
φ′k(t)W

ψ(p)

f (t, a) + aφ′′k(t)W
tψ(p)

f (t, a)
)∣∣∣∣ ≤ εB

[2]
W,k,p(t, a),

(47)
where

B
[2]
W,k,p(t, a) = aMKJ0,p + πa3MJ2,p

K∑
k=1
‖Ak‖∞

+2πa
∑
l 6=k

(
φ′l(t)E

[2]
W,l,0,p(t, a) + |φ′′l (t)|E

[2]
W,l,1,p(t, a)

)
+2πa

(
φ′k(t)Ω

[2]
W,k,0,p(t, a) + |φ′′k(t)|Ω

[2]
W,k,1,p(t, a))

)
.

Proof. Doing the same thing as the proof of Proposition 2, but using a zeroth
order Taylor expansion of the amplitude and second order expansion of the
phase of fk, one has:

∂tW
ψ(p)

f (t, a) = 1
a

K∑
k=1

∫
R
A′k(τ)ei2πφk(τ)ψ(p)

(
τ − t
a

)∗
dτ

+ i2π
K∑
k=1

φ′k(t)W
ψ(p)

fk
(t, a) + i2πa

K∑
k=1

φ′′k(t)W
tψ(p)

fk
(t, a)

+ 1
a

K∑
k=1

∫
R
Ak(τ)i2π

(∫ τ

t
(τ − u)φ′′′k (u)du

)
ei2πφk(τ)ψ(p)

(
τ − t
a

)∗
dτ.

Note that since ∂tWψ(p)

f (t, a) = − 1
a
Wψ(p+1)

f (t, a), one may then write:
∣∣∣∣∣W (p+1)

f (t, a) + i2πa
K∑
k=1

(
φ′k(t)W

ψ(p)

fk
(t, a) + aφ′′k(t)W

tψ(p)

fk
(t, a)

)∣∣∣∣∣
≤ ε

(
aMKJ0,p + πa3MJ2,p

K∑
k=1
‖Ak‖∞

)
.
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From Proposition 7, we first have, when (t, a) ∈ Zk:∣∣∣∣Wψ(p+1)

f (t, a) + i2πa
(
φ′k(t)W

ψ(p)

fk
(t, a) + aφ′′k(t)W

tψ(p)

fk
(t, a)

)∣∣∣∣
≤ ε

(
aMKJ0,p + πa3MJ2,p

K∑
k=1
‖Ak‖∞

+2πa
∑
l 6=k

(
φ′l(t)E

[2]
W,l,0,p(t, a) + |φ′′l (t)|E

[2]
W,l,1,p(t, a)

) ,
and then,∣∣∣∣Wψ(p+1)

f (t, a) + i2πa
(
φ′k(t)W

ψ(p)

f (t, a) + aφ′′k(t)W
tψ(p)

f (t, a)
)∣∣∣∣

≤ ε

(
aMKJ0,p + πa3MJ2,p

K∑
k=1
‖Ak‖∞

+2πa
∑
l 6=k

(
φ′l(t)E

[2]
W,l,0,p(t, a) + |φ′′l (t)|E

[2]
W,l,1,p(t, a)

)
+2πa(φ′k(t)Ω

[2]
W,k,0,p(t, a) + |φ′′k(t)|Ω

[2]
W,k,1,p(t, a))

)
,

which results in (47).

Proposition 9. For any (t, a) ∈ Zk such that |Wψ
f (t, a)| > ε̃ and |∂tτ̃Wψ

f
(t, a)| >

ε̃ one has:
|q̃t,Wψ

f
(t, a)− φ′′k(t)| ≤ ε̃. (48)
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Proof.

|φ′′k(t)− q̃t,Wψ
f

(t, a)|

=

∣∣∣∣∣∣ 1
2πa2

Wψ′

f

[
Wψ′

f + i2πa2φ′′k(t)W
tψ
f

]
−Wψ

f

[
Wψ′′

f + i2πa2φ′′k(t)W
tψ′

f

]
W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
2πa2

Wψ′

f

[
Wψ′

f + i2πa
(
φ′k(t)W

ψ
f + aφ′′k(t)W

tψ
f

)]
W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
2πa2

Wψ
f

[
Wψ′′

f + i2πa
(
φ′k(t)W

ψ′

f + aφ′′k(t)W
tψ′

f

)]
W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣∣∣∣
≤ εB

[2]
W,k,0(t, a)

∣∣∣∣∣∣ 1
2πa2

Wψ′

f

W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣∣∣∣
+ εB

[2]
W,k,1(t, a)

∣∣∣∣∣∣ 1
2πa2

Wψ
f

W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣∣∣∣
≤ ε̃3

B[2]
W,k,0(t, a)

2πa2 |Wψ′

f |+
B

[2]
W,k,1(t, a)

2πa2 |Wψ
f |

 ≤ ε̃,

if ε̃ is sufficiently small, because
B

[2]
W,k,0(t, a)
a2 ,

B
[2]
W,k,1(t, a)
a2 , Wψ′

f and Wψ
f are

all bounded on Zk.

Now we can prove item (b) of Theorem 2.

(b) According to definition of ω̃[2]
t,Wψ

f

(t, a) in (24), one has

ω̃
[2]
t,Wψ

f

(t, a) = ω̃Wψ
f

(t, a) + q̃t,Wψ
f

(t, a)(t− τ̃Wψ
f

(t, a)).
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It follows that for (t, a) ∈ Zk, such that |Wψ
f (t, a)| > ε̃ and |∂tτ̃Wψ

f
(t, a)| > ε̃∣∣∣∣ω̃[2]

t,Wψ
f

(t, a)− φ′k(t)
∣∣∣∣

=

∣∣∣∣∣∣ 1
i2πa

Wψ′

f (t, a) + i2πaφ′k(t)W
ψ
f (t, a) + i2πa2φ′′k(t)W

tψ
f (t, a)

Wψ
f (t, a)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣a
(
q̃t,Wψ

f
(t, a)− φ′′k(t)

)
W tψ
f (t, a)

Wψ
f (t, a)

∣∣∣∣∣∣∣∣
≤ ε

B
[2]
W,k,0(t, a)∣∣∣2πaWψ

f (t, a)
∣∣∣ + a

∣∣∣∣q̃t,Wψ
f

(t, a)− φ′′k(t)
∣∣∣∣ ∣∣∣W tψ

f (t, a)
∣∣∣∣∣∣Wψ

f (t, a)
∣∣∣

≤ ε
B

[2]
W,k,0(t, a)∣∣∣2πaWψ

f (t, a)
∣∣∣

+ aε̃3

∣∣∣(B[2]
W,k,0(t, a)|Wψ′

f |+B
[2]
W,k,1(t, a)|Wψ

f |
)∣∣∣ ∣∣∣W tψ

f (t, a)
∣∣∣∣∣∣Wψ

f (t, a)
∣∣∣ ≤ ε̃

when ε̃ is sufficiently small.
(c) The proof of item (c) of Theorem 2 is exactly the same as in the

weak modulation case, except that we use, at the very end of the proof, the
hypothesis:∣∣∣∣∣ 1

C ′ψ

∫
{η s.t. |η−1|>∆}

F{ψ(τ)e−iπφ′′
l (t)a2τ2}(η)∗dη

η

∣∣∣∣∣ ≤ K3ε̃

C ′ψ
for any l,

and
1
|C ′ψ|

∣∣∣∣∣
∫
{a s.t. |aφ′

k
(t)−1|<∆ and |Wψ

f
(t,a)|≤ε̃}

Wψ
f (t, a)da

a

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
C ′ψ

∣∣∣∣∣ log
(

1 + ∆
1−∆

)
ε̃

to compute D[2]
W :

D
[2]
W = 1∣∣∣C ′ψ∣∣∣


‖Ω[2]

W,k,r,p(t, a)‖
∞,

K⋃
l=1

Zl

+ ‖Γ[2]
W,k,r,p(t, a)‖

∞,
K⋃
l=1

Zl

+ 1

 log
(

1 + ∆
1−∆

)

+ max
k
‖Ak‖∞K3

]
,

which also finishes the proof.
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