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Abstract

This paper addresses the analysis of the time-frequency technique so-called the
second-order synchrosqueezing transform derived from continuous wavelet trans-
form of multicomponent AM-FM signals. Such a technique is designed to deal
with signals consisting of components (or modes) with strong frequency modu-
lation . Before going into the details of this analysis, we revisit the case where
the modes are assumed to be with weak frequency modulation as in the semi-
nal paper of Daubechies et al. [1], but not assuming the wavelet is compactly
supported in the Fourier domain. The remainder of the paper is devoted to the
theoretical analysis of the second order wavelet-based synchrosqueezing trans-
form and to numerical simulations emphasizing the differences between this new
synchrosqueezing transform and existing ones. An illustration of the benefits of
using this new synchrosqueezing operator for the analysis of gravitational wave
concludes the paper.

Keywords: Time-frequency analysis, reassignment, synchrosqueezing,
AM/FM, multicomponent signals.

1. Introduction

Many signals arising from audio recordings (music, speech), meteorology,
structural stability analysis [2, 3, 4], or medical data (electrocardiogram, tho-
racic and abdominal movement signals) [5, 6], can be modeled as a sum of
amplitude- and frequency-modulated (AM-FM) modes, called multicomponent
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signals (MCS) [7]. Time-frequency (TF) analysis plays a central role for char-
acterizing such signals and, in that framework, numerous methods have been
developed for the last two decades. Standard linear methods, as for instance
the short-time Fourier transform (STFT) and the continuous wavelet transform
(CWT), have been the most commonly used [8]. However, the effectiveness
of each method strongly depends on the nature of the modes constituting the
signal and is limited by the trade-off between time and frequency resolution
known as uncertainty principle. Several attempts were made to overcome this
shortcoming and one of them, called the reassignment method (RM), received a
considerable attention. The concept of RM dates back to Kodera et al. [9] in
the 1970’s and was further developed in [10], where it was viewed as a means
of improving the readability of TF representations. Unfortunately, RM suffers
from an inherent limitation which is its non invertibility, namely it does not
allow for mode reconstruction.

In an independent work [1], Daubechies et al. introduced an adaptive
wavelet-based signal analysis method known as the synchrosqueezing transform
(WSST), an adaptation of RM enabling modes’ retrieval. An extension of WSST
to the TF representation given by STFT, called STFT-based synchrosqueezing
transform (FSST), was proposed in [11], while efforts were put on exploring
the bidimensional case, as for instance by using the monogenic synchrosqueezed
wavelet transform [12], developing other types of TF representations as the syn-
chrosqueezed wavelet packet transform [13, 14], or multi-taper approaches as in
the ConceFT technique [15]. In spite of all these advances, one major problem
associated with synchrosqueezing techniques, in their original formulation, is
that they cannot deal with MCS containing modes with strong frequency mod-
ulation, very common in many fields of practical interest, as for instance chirps
involved in radar [16], speech processing [17], or gravitational waves [18, 19]. In
this regard, an adaptation of FSST to better handle that type of signals, known
as the second order synchrosqueezing transform (FSST2), was introduced in [20]
and its theoretical foundations settled in [21].

In the present paper, our goal is to build up a second order extension of
WSST for which we develop a mathematical analysis and discuss its practi-
cal implementation. To do so, after having recalled some useful definitions in
Section 2, we revisit WSST assuming the analysis wavelet is not compactly
supported in the Fourier domain, in Section 3. This helps derive, in Section 4,
the second order wavelet-based synchrosqueezing transform (WSST2) and then
prove approximations results generalizing those related to WSST. In Section
5, we detail the practical implementation of WSST2, and carry out numerical
experiments to compare, on simulated and real signals, the proposed approach
with existing synchrosqueezing transforms, in Section 6.
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2. Background

Before going in detail into the principle of WSST, we recall useful notation
and definitions.

The Fourier transform (FT) of a given signal f ∈ L1(R) is defined as:

f̂(η) = F{f}(η) =
∫
R
f(t)e−i2πηtdt. (1)

Let us consider a wavelet ψ ∈ L1(R) and a signal f ∈ L∞(R), and then
define for any time t and scale a > 0, the continuous wavelet transform (CWT)
of f by:

Wψ
f (t, a) = 1

a

∫
R
f(τ)ψ

(
τ − t
a

)
dτ, (2)

where Z denotes the complex conjugate of Z. If f and f̂ are in L1(R) and
f is continuous and analytic, i.e. f̂(η) = 0 if η < 0, and assuming C ′ψ =∫ +∞

0 ψ̂(η)dηη <∞, one has the following reconstruction formula:

f(t) = 1
C ′ψ

∫ +∞

0
Wψ
f (t, a)da

a
. (3)

In this paper, we will intensively study multicomponent signals (MCS) de-
fined as a superposition of AM-FM components or modes:

f(t) =
K∑
k=1

fk(t) with fk(t) = Ak(t)ei2πφk(t), (4)

for some finite K ∈ N, Ak(t) and φ′k(t) are respectively instantaneous ampli-
tude (IA) and frequency (IF) of mode fk satisfying: Ak(t) > 0, φ′k(t) > 0 and
φ′k+1(t) > φ′k(t) for all t. Such a signal is fully described by its ideal TF (ITF)
representation defined as:

TIf (t, ω) =
K∑
k=1

Ak(t)δ (ω − φ′k(t)) , (5)

where δ denotes the Dirac distribution.

3. Wavelet-based synchrosqueezing transform (WSST)

3.1. WSST principle

The wavelet-based SST (WSST) was originally introduced in the context
of auditory signal analysis [22] and further studied mathematically in [1]. Its
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principle is to sharpen the “blurred” representation given by the CWT by using
the following IF estimate at time t and scale a:

ω̂f (t, a) = <
{

1
i2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

}
, (6)

where <{Z} stands for the real part of complex number Z and ∂t is the partial
derivative with respect to t.

Indeed, Wψ
f (t, a) is reassigned to a new position (t, ω̂f (t, a)) using the syn-

chrosqueezing operator defining WSST, as follows:

Sγ
Wψ
f

(t, ω) =
∫
|Wψ

f
(t,a)|>γ

Wψ
f (t, a)δ (ω − ω̂f (t, a)) da

a
, (7)

with γ some threshold parameter.
Since the coefficients of CWT are reassigned along the “scale” axis, WSST

preserves the causality property, thus making the kth mode approximately re-
constructed by integrating Sγ

Wψ
f

(t, ω) in the vicinity of the corresponding ridge

(t, 1
φ′
k
(t) ) in the time-scale (TS) plane:

fk(t) ≈ 1
C ′ψ

∫
{ω,|ω−ϕk(t)|<d}

Sγ
Wψ
f

(t, ω)dω, (8)

where ϕk(t) is an estimate of φ′k(t), which is often computed by a ridge ex-
traction technique [23, 24]. Parameter d enables to compensate for both the
inaccurate approximation ϕk(t) of φ′k(t) and the error made by estimating the
IF by means of ω̂f (t, a).

3.2. WSST mathematical framework

WSST is supported by a solid mathematical framework [1], which we now
recall. Let us first define the class of chirp-like functions (signals) on which one
builds the theory:

Definition 1. Let ε > 0 and c > 0. The set Ac,ε of multicomponent signals
with modulation ε and separation c corresponds to signals defined in (4) with fk
satisfying:

Ak ∈ C1(R) ∩ L1(R) ∩ L∞(R), φk ∈ C2(R),
inft∈R φ′k(t) > 0, supt∈R φ′k(t) <∞,M = maxk (supt∈R φ′k(t)) ,

Ak(t) > 0, |A′k(t)| ≤ εφ′k(t) ≤ εM, |φ′′k(t)| ≤ εφ′k(t) ≤ εM, ∀t ∈ R.

Further, the fks are separated with resolution c, i.e., for all k ∈ {1, . . . ,K − 1}
and all t

φ′k+1(t)− φ′k(t) ≥ c(φ′k+1(t) + φ′k(t)). (9)
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In what follows ∆ denotes a real number in ]0, c
c+1 [.

Definition 2. Let h be a positive L1-normed window belonging to C∞0 (R), the
set of compactly supported C∞ functions on R, and consider γ, λ > 0. The
wavelet-based synchrosqueezing transform of f (WSST) with threshold γ and
accuracy λ is defined by:

Sλ,γ
Wψ
f

(t, ω) :=
∫
|Wψ

f
(t,a)|>γ

Wψ
f (t, a) 1

λ
h

(
ω − ω̂f (t, a)

λ

)
da

a
. (10)

If λ→ 0, then Sλ,γ
Wψ
f

(t, ω) tends, in the sense of distribution, to some value which
we formally write as in (7).

Theorem 1. Consider f ∈ Ac,ε, set ε̃ = ε
1
3 and let ψ be a non-compactly

supported wavelet in the Fourier domain satisfying:
∣∣∣ψ̂(η)

∣∣∣ ≤ N0ε when |η−1| >

∆, and
∫
|η−1|>∆

∣∣∣ψ̂(η)
∣∣∣ dη
η
≤ N1ε̃, for some constants N0 and N1.

Assuming (t, a) ∈ E = R ×
[
0, 1+∆

inft∈R φ′1(t)

]
, then, provided ε is sufficiently

small, the following hold:

(a) |Wψ
f (t, a)| > ε̃ only when, there exists k ∈ {1, . . . ,K}, such that (t, a) ∈

Zk := {(t, a), s.t. |aφ′k(t)− 1| < ∆}.

(b) For each k ∈ {1, . . . ,K} and all (t, a) ∈ Zk for which holds |Wψ
f (t, a)| > ε̃,

one has:
|ω̂f (t, a)− φ′k(t)| ≤ ε̃. (11)

(c) Moreover, for each k ∈ {1, . . . ,K}, there exists a constant D1 such that
for any t ∈ R∣∣∣∣∣ limλ→0

(
1
C ′ψ

∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃
Wψ
f

(t, ω)dω
)
− fk(t)

∣∣∣∣∣ ≤ D1ε̃. (12)

It is worth noting that WSST framework for a compactly supported wavelet
in the Fourier domain was already studied in [1]. It is however useful for real-
time applications [25] to extend this result to non compact wavelet in the Fourier
domain framework as is illustrated by Theorem 1.

The main steps for the proof of the latter are detailed hereafter. First, we
introduce the following proposition that is useful to prove item (a) of Theorem
1.

Proposition 1. For any (t, a) ∈ R× R+, one has:∣∣∣∣∣Wψ
f (t, a)−

K∑
k=1

fk(t)ψ̂(aφ′k(t))

∣∣∣∣∣ ≤ εE0(t, a), (13)

5



where Ep(t, a) = aMKJ1,p+πa2MJ2,p
K∑
k=1

Ak(t) and Jn,p =
∫
R
|u|n|ψ(p)(u)|du.

The proof of Proposition 1 is available in Section Appendix A1.
Now we can prove item (a) of Theorem 1: since E0(t, a) is bounded on E,

we can consider:

ε̃ ≤ 1√
2

min

‖E0(t, a)‖−
1
2
∞,E ,

∥∥∥∥∥N0

K∑
k=1

Ak(t)

∥∥∥∥∥
− 1

2

∞,E

 (14)

where ‖z(t, a)‖∞,X = sup(t,a)∈X |z(t, a)|. For (t, a) ∈ E \
K⋃
l=1

Zl, we immediately

get |Wψ
f (t, a)| ≤ ε̃. Thus, if |Wψ

f (t, a)| > ε̃, there is at least one k such that
(t, a) ∈ Zk. Furthermore, because of the separation condition on the modes,
one can easily show the Zks are disjoint sets, so k is unique.

Remark 1. Note that E0(t, a) is uniformly bounded for (t, a) ∈ E because a is
lower than α. In the seminal paper of Daubechies [1], this constraint on a was
missing.

Let us now detail the proof of item (b) of Theorem 1. Writing Proposition
1 with wavelet ψ′ we get for any (t, a) ∈ R× R+:∣∣∣∣∣Wψ′

f (t, a) +
K∑
k=1

fk(t)2iπaφ′k(t)ψ̂(aφ′k(t))

∣∣∣∣∣ ≤ εE1(t, a),

with E1(t, a) being defined at the end of Proposition 1. Thus, if (t, a) ∈ Zk, one
gets:

∣∣∣Wψ′

f (t, a) + fk(t)2iπaφ′k(t)ψ̂(aφ′k(t))
∣∣∣ ≤ ε

2πN0a
∑
l 6=k

φ′l(t)Al(t) + E1(t, a)

 .

Note that since ∂tW
ψ
f (t, a) = − 1

aW
ψ′

f (t, a), one can right for (t, a) ∈ Zk
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satisfying |Wψ
f (t, a)| > ε̃:

|ω̂f (t, a)− φ′k(t)| =

∣∣∣∣∣<
{

1
2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

− φ′k(t)
}∣∣∣∣∣

=

∣∣∣∣∣<
{

1
i2πa

Wψ′

f (t, a) + i2πaφ′k(t)Wψ
f (t, a)

Wψ
f (t, a)

}∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
i2πa

Wψ′

f (t, a) + 2iπaφ′k(t)fk(t)ψ̂(aφ′k(t))
Wψ
f (t, a)

∣∣∣∣∣∣+

∣∣∣∣∣∣φ
′
k(t)Wψ

f (t, a)− φ′k(t)fk(t)ψ̂(aφ′k(t))
Wψ
f (t, a)

∣∣∣∣∣∣
≤ ε̃2

N0
∑
l 6=k

(φ′l(t) + φ′k(t))Al(t) + E1(t, a)
2πa + φ′k(t)E0(t, a)

 .

By putting, Bk(t, a) = N0
∑
l 6=k(φ′l(t)+φ′k(t))Al(t)+ E1(t,a)

2πa +φ′k(t)E0(t, a), and
remarking it is bounded on E, we may choose :

ε̃ ≤ min
k
‖ Bk(t, a)‖−1

∞,E , (15)

so that for (t, a) ∈ Zk such that |Wψ
f (t, a)| > ε̃, we immediately get:

|ω̂f (t, a)− φ′k(t)| ≤ ε̃. (16)

Let us now introduce the following lemma, which is useful to prove item (c)
of Theorem 1.

Lemma 1. Suppose that both (14) and (15) are satisfied, and that the following
condition is also verified:

ε ≤ 1/8c3(φ′1(t) + φ′2(t))3. (17)

Consider the following sets:

X = {a s.t. |Wψ
f (t, a)| > ε̃ and |ω̂f (t, a)− φ′k(t)| ≤ ε̃},

Y = {a s.t. |Wψ
f (t, a)| > ε̃ and |aφ′k(t)− 1| < ∆},

then X = Y.

The proof of Lemma 1 is available in available in [1] .
Coming back to the proof of item (c) of Theorem 1, let t ∈ R and note that

Wψ
f (t, a) ∈ L∞(X). Then, since a > 0 on X, 1

aW
ψ
f (t, a) ∈ L1(X), and, thus,
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using the same type of technique as in [1] (Estimate 3.9), one gets:∣∣∣∣∣ limλ→0

(
1
C ′ψ

∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃
Wψ
f

(t, ω)dω
)
− fk(t)

∣∣∣∣∣ =

∣∣∣∣∣ 1
C ′ψ

∫
X
Wψ
f (t, a)da

a
− fk(t)

∣∣∣∣∣
≤

∣∣∣∣∣ 1
C ′ψ

∫
|aφ′

k
(t)−1|<∆

Wψ
f (t, a)da

a
− fk(t)

∣∣∣∣∣+

∣∣∣∣∣ 1
C ′ψ

∫
|Wψ

f
(t,a)|≤ε̃∩|aφ′

k
(t)−1|<∆

Wψ
f (t, a) da

a

∣∣∣∣∣
≤ 1∣∣∣C ′ψ∣∣∣

∫
|aφ′

k
(t)−1|<∆

∣∣∣Wψ
f (t, a)− fk(t)ψ̂(aφ′k(t))

∣∣∣ da
a

+ Ak(t)∣∣∣C ′ψ∣∣∣
∫
|aφ′

k
(t)−1|≥∆

∣∣∣ψ̂(aφ′k(t))
∣∣∣ da
a

+

ε̃ log
(

1 + ∆
1−∆

)]

≤ 1∣∣∣C ′ψ∣∣∣
∫
|aφ′

k
(t)−1|<∆

ε(E0(t, a) +N0
∑
l 6=k

Al(t))
da

a
+Ak(t)N1ε̃+ ε̃ log

(
1 + ∆
1−∆

)
≤ ε̃ 1∣∣∣C ′ψ∣∣∣

[
‖Ak‖∞N1 + 2 log

(
1 + ∆
1−∆

)]
≤ D1ε̃

which ends up proving the theorem.

4. Second order wavelet-based SST (WSST2)

4.1. Second order IF estimate

Although WSST proves to be an efficient solution to enhance TF represen-
tations, its applicability is restricted to a class of MCS composed of slightly
perturbed purely harmonic modes. To overcome this limitation, a recent ex-
tension of WSST was introduced based on a more accurate IF estimate, which
is then used to define an improved synchrosqueezing operator, called second-
order wavelet-based synchrosqueezing transform (WSST2) [26], and our goal is
to carry out its mathematical study.

More precisely, we first define a second-order local modulation operator,
which is then used to compute the new IF estimate. This modulation operator
corresponds to the ratio of the first-order derivatives, with respect to t, of the
reassignment operators, as explained in the following:

Proposition 2. Given a signal f ∈ L∞(R), the complex reassignment operators
ω̃f (t, a) and τ̃f (t, a) are respectively defined for any (t, a) s.t. Wψ

f (t, a) 6= 0 as:

ω̃f (t, a) = 1
i2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

τ̃f (t, a) =
∫
R τf(τ) 1

aψ( τ−ta )dτ
Wψ
f (t, a)

= t+ a
W tψ
f (t, a)

Wψ
f (t, a)

,

(18)

(19)
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which are defined provided tψ and ψ′ are in L1(R). Then, the second-order local
complex modulation operator q̃t,f (t, a) is defined by:

q̃t,f (t, a) = ∂tω̃f (t, a)
∂tτ̃f (t, a) , whenever ∂tτ̃f (t, a) 6= 0. (20)

Remark 2. It is interesting to note that using partial derivatives with respect
to a instead of t, one can obtain a new second-order local modulation opera-
tor q̃a,f (t, a) = ∂aω̃f (t, a)

∂aτ̃f (t, a) , whose properties are exactly the same as those of

q̃t,f (t, a).

In this regard, the definition of the improved IF estimate associated with
the TF representation given by CWT is derived as:

Definition 3. Let f ∈ L∞(R), the second-order local complex IF estimate of f
is defined as:

ω̃
[2]
f (t, a) =

{
ω̃f (t, a) + q̃t,f (t, a)(t− τ̃f (t, a)) if ∂tτ̃f (t, a) 6= 0
ω̃f (t, a) otherwise.

(21)

Then, its real part ω̂[2]
f (t, a) = <{ω̃[2]

f (t, a)} is the desired IF estimate.

It was shown in [26] that <{q̃t,f (t, a)} = φ′′(t) when f is a Gaussian mod-
ulated linear chirp, i.e. f(t) = A(t)ei2πφ(t) where both log(A(t)) and φ(t) are
quadratic. Also, <{ω̃[2]

f (t, a)} is an exact estimate of φ′(t) for this kind of sig-
nals. For a more general mode with Gaussian amplitude, its IF can be estimated
by <{ω̃[2]

f (t, a)}, in which the estimation error only involves the derivatives of
the phase with orders larger than 3. Furthermore, ω̃f (t, a) and q̃t,f (t, a) can be
computed by means of only five CWTs as follows:

Proposition 3. Let f ∈ L∞(R), ω̃f (t, a) and q̃t,f (t, a) can be written as:

ω̃f (t, a) = − 1
i2πa

Wψ′

f (t, a)
Wψ
f (t, a)

(22)

q̃t,f (t, a) = 1
i2πa2

Wψ′′

f (t, a)Wψ
f (t, a)−Wψ′

f (t, a)2

W tψ
f (t, a)Wψ′

f (t, a)−W tψ′

f (t, a)Wψ
f (t, a)

, (23)

where t 7→ Wψ′ ,W tψ,Wψ′′ ,W tψ′ are respectively CWTs of f computed with
wavelets ψ′, tψ, ψ′′, tψ′ all in L1(R).

Proof. These expressions are easily derived using ∂ptW
ψ
f (t, a) =

(
− 1
a

)p
Wψ(p)

f (t, a).

9



The second-order WSST (WSST2) is then defined by simply replacing ω̂f (t, a)
by ω̂[2]

f (t, a) in (7):

Sγ
2,Wψ

f

(t, ω) :=
∫
|Wψ

f
(t,a)|>γ

Wψ
f (t, a)δ

(
ω − ω̂[2]

f (t, a)
) da
a
, (24)

and fk is finally retrieved by replacing Sγ
Wψ
f

(t, ω) by Sγ
2,Wψ

f

(t, ω) in (8).

4.2. Mathematical foundations for WSST2

This section begins with the definition of another class of chirp-like functions,
larger than Ac,ε and that can be successfully dealt with WSST2:

Definition 4. Let ε > 0. The set A[2]
c,ε of multicomponent signals with second

order modulation ε and separation c corresponds to the signals defined in (4)
satisfying:

(a) fk is such that Ak and φk satisfy the following conditions:

Ak(t) ∈ C2(R) ∩ L1(R) ∩ L∞(R), φk(t) ∈ C3(R),
φ′k(t), φ′′k(t), φ′′′k (t) ∈ L∞(R),

Ak(t) > 0, inf
t∈R

φ′k(t) > 0, sup
t∈R

φ′k(t) <∞, M = max
k

(
sup
t∈R

φ′k(t)
)
,

|A′k(t)| ≤ εφ′k(t) ≤ εM, |A′′k(t)| ≤ εφ′k(t) ≤ εM,

and |φ′′′k (t)| ≤ εφ′k(t) ≤ εM ∀t ∈ R.

(b) the φks satisfy the following separation condition

φ′k+1(t)− φ′k(t) ≥ c(φ′k+1(t) + φ′k(t)),∀t ∈ R , ∀k ∈ {1, . . . ,K − 1}.

As previously mentioned, ∆ is some value in ]0, c
c+1 [. Now, let us define

WSST2 as follows:

Definition 5. Let h be a positive L1-normed window belonging to C∞0 (R), and
consider γ, λ > 0, WSST2 of f with threshold γ and accuracy λ is defined by:

Sλ,γ
2,Wψ

f

(t, ω) :=
∫
|Wψ

f
(t,a)|>γ

Wψ
f (t, a) 1

λ
h

(
ω − ω̂[2]

f (t, a)
λ

)
da

a
. (25)

In Section 3, we showed that, for functions f ∈ Ac,ε, a good IF estimate
was given by ω̂f (t, a) and the approximation theorem followed. Here, to assess
the approximation property of WSST2 we have just introduced, we consider
f ∈ A[2]

c,ε for which we are going to prove that ω̂[2]
f (t, a) is a good IF estimate.

The approximation theorem is as follows:

10



Theorem 2. Consider f ∈ A[2]
c,ε, set ε̃ = ε1/6. Let ψ be a wavelet satisfying, for

all k = 1, · · · ,K, r ∈ {0, 1} and p ∈ {0, 1},

∣∣∣∣∣F{τ rψ(p)(τ)e
−iπ

φ′′
k

(t)

φ′2
k

(t)
η2τ2

}(η)

∣∣∣∣∣ ≤
Nr,pε when |η− 1| > ∆, and

∫
|η−1|>∆

∣∣∣∣∣F{ψ(τ)e
−iπ

φ′′
k

(t)

φ′2
k

(t)
η2τ2

}(η)

∣∣∣∣∣ dηη ≤ N2ε̃, for

some constants Nr,p and N2.
Assuming (t, a) ∈ E, then, provided ε is sufficiently small, the following hold:

(a) |Wψ
f (t, a)| > ε̃ on E only when, there exists k ∈ {1, . . . ,K}, such that

(t, a) ∈ Zk := {(t, a), s.t. |aφ′k(t)− 1| < ∆}.

(b) For each k ∈ {1, . . . ,K} and for all (t, a) ∈ Zk, for which hold |Wψ
f (t, a)| >

ε̃ and |∂tτ̃f (t, a)| > ε̃, one has

|ω̂[2]
t,f (t, a)− φ′k(t)| ≤ ε̃. (26)

(c) Moreover, for each k ∈ {1, . . . ,K}, there exists a constant D2 such that∣∣∣∣∣
(

lim
λ→0

1
C ′ψ,k

∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃
2,Wψ

f

(t, ω)dω
)
− fk(t)

∣∣∣∣∣ ≤ D2ε̃, (27)

with C ′ψ,k =
∫ ∞

0
F{ψ(τ)e

−iπ
φ′′
k

(t)

φ′2
k

(t)
η2τ2

}(η)dη
η

.

Remark 3. It is worth mentioning that the constant C ′ψ,k involved in the re-
construction process depends on mode k and is definitely different from C ′ψ as
soon as the modulation is non zero. Similarly, in the STFT context [21] [see
Theorem 4]: the constant g(0) in the reconstruction formula should actually be
viewed as

∫
R F{g(τ)e−iπφ′′k (t)τ2}(η)dη.

The proof of Theorem 2 is available in Section Appendix B.

5. Numerical Implementation of WSST2

This section details the numerical implementation of WSST2. The signal
f is assumed to be defined on [0, 1] and then uniformly discretized at time
tm = m/n with m = 0, . . . , n − 1 and n = 2L, L ∈ N. First, we discretize Wψ

f

at (m/n, aj), where aj = 2j/nv
n , j = 0, . . . , Lnv with the “voice number” nv

being a user-defined parameter controlling the number of scales (nv = 32 or 64
in practice). The Discrete Wavelet Transform (DWT) of f is computed in the
Fourier domain as follows:

Wψ
f (tm, aj) ≈W ψ̂

d,f (m, j) :=
(
F−1
d

((
Fd(f)� ψ̂j,.

)))
m
, (28)
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where Fd(f) (resp. F−1
d ) denotes the standard (resp. inverse) Discrete Fourier

Transform (DFT) (resp. iDFT), � the elementwise multiplication, and ψ̂j,q =
ψ̂(ajq) with q = 0, . . . , n− 1.

With this in mind, we compute the complex estimate of the second-order
modulation operator q̃t,f defined as in (23), as follows:

q̃d,t,f (m, j) =
i2π

(
W ψ̂
d,f (m, j)W ξ2ψ̂

d,f (m, j)−
(
W ξψ̂
d,f (m, j)

)2
)

a2
j

[(
W ψ̂
d,f (m, j)

)2
+W ψ̂

d,f (m, j)W ξψ̂′

d,f (m, j)−W ψ̂′

d,f (m, j)W ξψ̂
d,f (m, j)

] ,

where W ξ2ψ̂
d,f , W ξψ̂

d,f , W ξψ̂′

d,f , W ψ̂′

d,f denote respectively DWTs of f computed
using the wavelets ξ 7→ ξ2ψ̂, ξ 7→ ξψ̂, ξ 7→ ξψ̂′, and ξ 7→ ψ̂′. For instance
(ξψ̂)j,q = (ajq)ψ̂(ajq).

Introducing ω̃d,f (m, j) =
W ξψ̂
d,f (m, j)

ajW
ψ̂
d,f (m, j)

and τ̃d,f (m, j) = t+ aj
i2π

W ψ̂′

d,f (m, j)

W ψ̂
d,f (m, j)

,

enables the definition of a discrete version of a second-order complex IF estimate
of f :

ω̃
[2]
d,f (m, j) =

{
ω̃d,f (m, j) + q̃d,t,f (m, j)(t− τ̃d,f (m, j)) if ∂tτ̃d,f (m, j) 6= 0
ω̃d,f (m, j) otherwise,

where ∂tτ̃d,f (m, j) =
(
W ψ̂
d,f

(m,j)
)2

+W ψ̂
d,f

(m,j)W ξψ̂′
d,f

(m,j)−W ψ̂′
d,f

(m,j)W ξψ̂
d,f

(m,j)

W ψ̂
d,f

(m,j)2
. We

then take the real part ω̂[2]
d,f (m, j) = <{ω̃[2]

d,f (m, j)}, which leads to the desired
discrete IF estimate.
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(b)

Figure 1: (a), (b): modulus of STFT and WT of three constant frequency modes f1, f2, and
f3, with lines corresponding to the frequencies where the transforms are actually computed
(linear scale for STFT and exponential one for WT).

We now show how to compute compute WSST2. First, we highlight how
the frequency domain is split when performing second order synchrosqueezing

12



transform. First we remark that each scale aj is the inverse of frequency fj =
1/aj = 2−j/nvn. Putting fLnv = 0 and f−1 = +∞, we define frequency bins
corresponding to the wavelet representation as Wj =

[
fj+1+fj

2 ,
fj+fj−1

2

[
, where

0 ≤ j ≤ Lnv−1. With this in mind, the second order synchrosqueezing operator
is implemented as follows:

Sγd,2,f (m/n, fj) =
∑
Gd(j)

W ψ̂
d,f (m, l) log(2)

nv
, (29)

where Gd(j) =
{

0 ≤ l ≤ Lnv − 1 s.t. ω̂
[2]
d,f (m, l) ∈ Wj and |W ψ̂

d,f (m, l)| > γ
}
.

Finally, each mode fk is retrieved by summing Sγd,2,f along the frequency
axis in the vicinity of the kth mode. More precisely, one has, for each tm,

fk(m/n) ≈ 1
C ′d,ψ,k

∑
l∈Υk(m)

Sγd,2,f (m,ωl), (30)

where Υk(m) is a set of indices corresponding to a small frequency band located
around the ridge curve of kth mode, which is selected by ridge extraction method
[23, 24], and C ′d,ψ,k is a discrete approximation of C ′ψ,k.

Remark 4. It is important to remark here that the set Υk(m) is computed
via ridge extraction on the wavelet representation, so that the accuracy of the
reconstruction of the mode depends on the frequency band the mode leaves in.
Indeed the size ofWj−1 is 21/nv the size ofWj , meaning the accuracy of the set
Υk(m) depends on the frequency of mode k. On the contrary, this is not the case
when considering a synchrosqueezing operator based on STFT, for which one
uses a uniform sampling of the frequency axis. With STFT, the length of the
frequency bins is 1, while the length ofWj is smaller than 1 for large j and much
bigger for small ones. This is illustrated in Figure 1, where we consider three
constant frequency modes: on that figure, we draw a line at each frequency used
in the computation of CWT and STFT (along with the transforms themselves).
We notice that while the error associated with IF estimation by ridge extraction
is bounded by 1 for STFT, it depends on the frequency for CWT (the average
IF estimation error associated with ridge extraction ranges from 0.55, 1.74 and
3.34 for f1, f2 and f3 respectively) .

6. Numerical analysis of the behavior of WSST2 and comparisons

In this section, we provide numerical experiments to demonstrate the effi-
ciency of our new transform WSST2 compared with other existing synchrosqueez-
ing transforms including WSST, FSST, and FSST2 [21, 24, 27]. More precisely,
we carry out a comparison in terms of concentration and accuracy of the TF
representations obtained. For that purpose, we start with considering a complex
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simulated MCS (f) composed of three components: a linear chirp (f1), an hy-
perbolic chirp (f2) and an exponential chirp (f3) with Gaussian modulated am-
plitudes, whose instantaneous frequencies are respectively linear (φ′′(t) ∝ cst),
hyperbolic (φ′′(t) ∝ φ′(t)2) and exponential (φ′′(t) ∝ φ′(t)). Note also that f1
behaves locally as a Gaussian modulated linear chirp that is mathematically
proved to be perfectly handled by both FSST2 and WSST2, while the other
two components contain strong nonlinear frequency modulations.

In our simulations, f is uniformly sampled over time interval [0, 1] with a
sampling rate M = 1024 Hz. An arbitrary threshold γ = γ0 = 0.001 is set for
noise-free signals (the results obtained relatively insensitive to that threshold).
Also, we use the complex Morlet wavelet (resp. Gaussian window) to compute
the CWT (resp. STFT), which depends on a parameter σW = 5 (resp. σF =
0.05) (these values are optimally selected by the Renyi entropy method [24]):

ψ(t, σW ) = 1
√
σW

e
−π t2

σ2
W ei2πt and g(t, σF ) = σ

− 1
2

F e
−π t2

σ2
F .

In addition, the wavelet-based (resp. STFT-based) synchrosqueezing trans-
forms are represented on a logarithmic (resp. linear) scale. The Matlab codes
for synchrosqueezing transforms and the scripts leading to all figures of this
paper can be found https://github.com/phamduonghung/WSST2.

In Figures 2 (a), (b) and (c), we display respectively the real part of the
three components along with their amplitudes, and, in Figure 2 (d), the real
part of the whole signal.

0 0.2 0.4 0.6 0.8 1

-2

0

2 Re(f
1
) A

1

(a)
0 0.2 0.4 0.6 0.8 1

-2

0

2 Re(f
2
) A

2

(b)

0 0.2 0.4 0.6 0.8 1

-2

0

2 Re(f
3
) A

3

(c)
0 0.2 0.4 0.6 0.8 1

-2

0

2 Re(f)

(d)

Figure 2: (a), (b) and (c): real part of f1, f2, and f3 respectively with Gaussian modulated
amplitudes A1, A2 and A3 superimposed; (d): real part of f .

We then display, still in the noise-free context, the STFT and CWT of
f in the first column of Figure 3. Then, on the other two columns of this
figure, the reassigned versions of CWT and STFT given by the aforementioned
synchrosqueezing transforms are depicted.
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Figure 3: First row, (a): modulus of the STFT of f ; (b): FSST; (c): FSST2 ; Second row,
(d): modulus of the CWT of f ; (e): WSST; (f) WSST2. Threshold γ0 = 0.001.

Analyzing these figures, we first remark that, as expected, FSST leads to a
relatively sharp TF representation for the linear chirp f1, that looks similar to
the ones given by WSST2 and FSST2, and much better than that corresponding
to WSST. It is worth mentioning here that this worse representation is related to
the scale discretization and not to the quality of the IF estimate as will be shown
latter. We shall also remark that FSST fails to reassign correctly the STFT of
f2 and f3 where their frequency modulations are non-negligible. In contrast,
the reassigned representations of f2 and f3 provided by WSST are much more
concentrated at these locations. Moreover, it is also of interest to remark that
the quality of the representation corresponding to WSST seems not to depend
on the scale for f2 contrary to what happens with f3. Finally, for f2 and f3,
both WSST2 and FSST2 seem to behave very similarly when considering either
of the three studied modes, and result in compact TF representations. We first
study the stability of IF estimation with FSST and WSST on a linear chirp and
then switch to that of WSST on an hyperbolic chirp.

6.1. Stability of IF estimation with FSST and WSST on a linear chirp
To explain the different behaviors of STFT and WSST when applied to a

linear chirp, we introduce some materials regarding regarding STFT, and the
IF estimator used by FSST. STFT is defined by:

V gf (t, η) =
∫
R
f(τ)g(τ − t)e−2iπη(τ−t)dτ, (31)

and the instantaneous frequency estimator used in FSST, by

ω̂f,F (t, η) = <

{
1
i2π

∂tV
g
f (η, t)

V gf (η, t)

}
. (32)
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Note that we add a subscript F in the definition of this estimator to mean that
it is related to the Fourier transform. With this in mind, we introduce the linear
chirp hc(t) = Ae2iπφ(t). It was proven in [21] that if |η − φ′(t)| < ∆ then, when
STFT is performed with gσF (t, σF ) that

|ω̂hc,F (t, η)− φ
′
(t)| ≤ ∆

∣∣∣1− 1
1+σ4

F
φ′′ (t)2

∣∣∣ ≤ ∆, (33)

which means that this IF estimation is stable for all t.
Similarly, we study the quality of the estimate ω̂hc(t, a), for which we have

the following result:
Theorem 3. If one performs the decomposition with the Morlet wavelet ψ(t, σW )
if | 1a − φ

′(t)| ≤ ∆ then:

|ω̂hc(t, a)− φ
′
(t)| ≤ ∆, (34)

meaning the IF estimation is stable for all t.

Proof. In such a case, one has, using a second order Taylor expansion of the
phase of hc:

Wψ
hc

(t, a) =
∫
R
Ae2iπφ(τ)σ−1

W e
− π

σ2
W

( τ−ta )2

e−2iπ( τ−ta )dτ

= hc(t)aσ−1
W F

{
e
−π
[

1
σ2
W

−ia2φ
′′

(t)
]
u2
}

(1− aφ′(t))

= hc(t)aσ−1
W

(
1
σ2
W

− ia2φ
′′
(t)
)− 1

2

e

[
−πσ2

W
(1−aφ

′
(t))2

1−iσ2
W
a2φ′′ (t)

]
.

With that expression, one can compute the estimate, bearing in mind that φ′′(t)
is constant and =(z) is the imaginary part of complex number z:

ω̂hc(t, a) = <

{
1
i2π

∂tW
ψ
hc

(t, a)
Wψ
hc

(a, t)

}
= 1

2π=
{
∂tW

ψ
hc

(t, a)
Wψ
hc

(t, a)

}

= 1
2π=

{
hc
′
(t)

hc(t)
+ 2πσ2

Waφ
′′(t)(1− aφ′(t))

1− iσ2
Wa

2φ′′(t)

}

= 1
2π=

{
2iπφ

′
(t)
}

+
(
σ2
Waφ

′′(t)(1− aφ′(t))
1 + σ4

Wa
4φ′′(t)2 (σ2

Wa
2φ
′′
(t))
)
.

From this one derives:

⇒ |ω̂hc(t, a)− φ
′
(t)| =

∣∣∣∣∣∣
σ4
Wa

4φ
′′(t)

2 ( 1
a − φ

′(t)
)

1 + σ4
Wa

4φ′′(t)2

∣∣∣∣∣∣ .
If | 1a − φ

′(t)| ≤ ∆ then |ω̂hc(t, a)− φ′(t)| ≤ ∆
∣∣∣1− 1

1+σ4
W
a4φ′′ (t)2

∣∣∣ ≤ ∆.
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6.2. Stability of IF estimation with WSST on a hyperbolic chirp

In this section, we show that WSST is well behaved when applied to an hy-
perbolic chirp, as suggested by Figure 3 (e). We show, in the following theorem,
the stability of IF estimation with ω̂f (t, a), when a Cauchy wavelet is used for
the decomposition (the proof for the Morlet wavelet still needs to be carried
out).

Theorem 4. Let f be an hyperbolic chirp defined by f(t) = tiα for 0 < t
and any α in R, and consider the estimate ω̂f (t, a) computed using the Cauchy
wavelet with parameter 1. Then, if | 1a − φ

′(t)| ≤ ∆, we have

|ω̂f (t, a)− φ
′
(t)| ≤ ∆. (35)

Proof. First, let us recall the definition of the Cauchy wavelet of order β, a
strictly positive real,

gβ(t) = Γ(β + 1)(1− i2πt)−(1+β), (36)

where for any complex z with strictly positive real part, Γ(z) =
∫ +∞

0 tz−1e−tdt.
Note that when β is an integer, gβ admits the following Fourier transform

ĝβ(η) = ηβe−ηH(η) with H the Heaviside function. So, even if ĝβ is not com-
pactly supported, it has a fast decay (the behavior of ĝβ being similar for non
integer β).

First, let us first consider f(t) = tαH(t), for any α > −1 and let us compute
its wavelet transform with the Cauchy wavelet with β > α:

W
gβ
f (t, a) = 1

a

∫ ∞
0

ταgβ

(
τ − t
a

)
dτ

= aβΓ(β + 1)
∫ ∞

0
τα

1
(a+ i2π(τ − t))−(1+β) dτ

= aβΓ(β + 1)
∫ ∞

0
τα
(

−i
(−2πt− ia) + 2πτ

)1+β
dτ

= aβΓ(β + 1)
∫ ∞

0
τα
(
−i

z + 2πτ

)1+β
dτ,

with z = −2πt − ia, so that the wavelet transform can be viewed as analytic
function in z.

Now, assuming z is a positive integer, one can rewrite the wavelet transform,
making the appropriate change of variable, as:

W
gβ
f (t, a) = (2π)−α−1aβΓ(β + 1)(−i)1+βzα−β

∫ ∞
0

τα
(

1
1 + τ

)1+β
dτ

= (2π)−α−1aβΓ(β + 1)(−i)1+βzα−βB(α+ 1, β − α)

= (2π)−α−1aβΓ(β + 1)B(α+ 1, β − α)e−iπ
1+β

2 zα−β ,
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where B is the beta function. The expression is then also true when z is complex
using the analytic continuation theorem.

Now using the analytic continuation theorem with variable α we have for
the hyperbolic chirp f(t) = tiαH(t), α ∈ R:

W
gβ
f (t, a) = (2π)−iα−1aβΓ(β + 1)B(iα+ 1, β − iα)e−iπ

1+β
2 ziα−β ,

= (2π)−iα−1aβΓ(β + 1)B(iα+ 1, β − iα)e−iπ
1+β

2 (−2πt− ia)iα−β .

Note that this expression is valid for any positive β, regardless of α
Using that expression for the wavelet transform, we may then write:

ω̂f (t, a) = 1
2πI

[
∂tW

gβ
f (t, a)

W
gβ
f (t, a)

]
= I

[
−(iα− β)(2πt+ ia)−1] = α2πt+ aβ

a2 + 4π2t2

Thus one can deduce:
∣∣ω̂f (t, a)− α

2πt
∣∣ = |ω̂f (a, t)− φ′(t)| =

∣∣∣ β
a−

α
2πt

1+4π2( ta )2

∣∣∣ .
Finally, if | 1a − φ

′(t)| ≤ ∆ and β = 1: |ω̂f (t, a)− φ′(t)| ≤ ∆
1+4π2( ta )2 ≤ ∆.

6.3. Evaluation of TF concentration

The TF concentration is one of the outstanding features used for evaluating
the performance of the different TF techniques. To quantify this, an appealing
method first introduced in [27] and then applied successfully in [24] is used in this
paper. The main aim of such a method is to measure the energy concentration by
considering the proportion of the latter contained in the first nonzero coefficients
associated with the highest amplitudes, which we call normalized energy. When
computed on a mono-component signal, the faster it increases towards 1 with the
number of coefficients involved, the more concentrated the TF representation. In
Figure 4 (a), we depict the normalized energy corresponding to the reassignment
of the STFT of f1 using different techniques, with respect to the number of
coefficients kept divided by the length of f1 (which corresponds to the sampling
rate M in our case). Not surprisingly, the energy of f1 is perfectly localized
when using either WSST2 or FSST2, since they require only one coefficient per
time instant to recover the signal energy, while WSST and FSST need more
coefficients (5 and 2 respectively). The same computations carried out on f2
and f3 show that WSST2 still better performs than the other three methods,
especially WSST or FSST.

To further challenge the different TF reassigned techniques in the presence
of noise, we consider a noisy signal fζ(t) = f(t) + ζ(t), where ζ(t) is a complex
white Gaussian process with variance Var (<{ζ(t)}) = Var (={ζ(t)}) = σ2

ζ .
Furthermore, the noise level is measured by the Signal-to-Noise Ratio (SNR):

SNRintput[dB] = 20 log10
‖f‖2

‖fζ − f‖2
, (37)
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Figure 4: (a) Normalized energy as a function of the number of sorted TF coefficients for f1.
Abscissa corresponds to the number of coefficients over the size M of the signal; (b): same as
(a) but for f2 ; (c): same as (a) but for f3. Threshold γ0 = 0.001.
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Figure 5: (a) Normalized energy as a function of the number of sorted TF coefficients for
noisy f1 (SNR= 0dB); (b): same as (a) but for noisy f2 (at level 0dB); (c): same as (a) but
for noisy f3 (at level 0dB).

where ‖.‖2 is the l2 norm. Note also that, in this noisy context, one of the well-
known issue regarding the use of SST is the choice of an appropriate threshold
γ on Wψ

f (t, a) or V gf (t, η) in the definition of the synchrosqueezing operator to
allow for signal denoising and a fair comparison between the different tested
methods. Here, we propose a technique enabling adaptive determination of
the threshold γ as a function of the noise level. Such a technique exploits the
linearity of CWT and the fact that, for a fixed scale a, one has:

std
(
<
{
Wψ
ζ (t, a)

})
= σζ

1√
a
‖ψ‖2 and std

(
=
{
Wψ
ζ (t, a)

})
= σζ

1√
a
‖ψ‖2 ,

where std is the standard deviation. Thus, if one chooses a threshold γW =
3
√

2σζ 1√
a
‖ψ‖2 for CWT, keeping only the coefficients satisfying:

∣∣∣Wψ
fζ

(t, a)
∣∣∣ >

γW in the wavelet-based synchrosqueezing transforms guarantees an efficient
noise removal. Note that the normalization factor

√
2 is used because we

threshold the modulus of CWT rather than its real or imaginary parts. The
same arguments apply to STFT by keeping only the coefficients such that∣∣∣V gfζ (t, η)

∣∣∣ > γF = 3
√

2σζ ‖g‖2. In real-life applications, threshold level γW and
γF are unknown and need to be estimated. For example, a robust estimator is
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proposed in [28]:

γ̂W =
median

a

∣∣∣<{Wψ
fζ

(t, a)
}∣∣∣

0.6745 and γ̂F =
median

η

∣∣∣<{V gfζ (t, η)
}∣∣∣

0.6745 ,

where median represents the median of the coefficients.
Using the just defined thresholds, we carry out the same numerical experi-

ments regarding energy concentration as in the noise-free case, each mode being
this time contaminated by a white Gaussian noise (SNR = 0dB). The results
displayed in Figure 5 exhibit a slightly slower growth of the normalized energy
since the coefficients corresponding to noise, that the above technique cannot
completely eliminate, are spread out over the whole TF or TS planes. How-
ever, the normalized energy is still more concentrated when using WSST2 than
the other methods, even for mode f1 when compared with FSST2. These facts
clearly show that the representation provided by the former technique is the
most concentrated, even in heavy noise situations.
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Figure 6: (a): EMD corresponding to different TF representations of f1 given by the syn-
chrosqueezing transforms; (b): same as (a) but for f2; (c): same as (a) but for f3.

Although quite informative, the method based on normalized energy does not
deliver any insight into the location accuracy of the reassigned transforms. The
latter can alternatively be quantified by measuring the dissimilarity between the
resultant TF representations and the ideal one by means of the Earth mover’s
distance (EMD), a procedure already used in the synchrosqueezing context in
[15]. The EMD is a sliced Wasserstein distance, commonly used in optimal
transport, which allows for the comparison of two probability distributions.
More precisely, it consists in computing the 1D EMD between the resultant
TF representations and the ideal one, for each individual time t, and then
take the average over all t to define the global EMD. A smaller EMD means
a better TF representation concentration to the ground truth and less noise
fluctuations. In Figures 6 (a), (b) and (c), we display, respectively for the
three modes already tested, the evolution of EMD with respect to the noise
level, for TF representations given either by WSST, WSST2, FSST or FSST2.
For linear chirp f1, WSST2 always achieves the best performance of the TF
concentration to the ground truth whatever the input SNR, even compared with
FSST2. Moving to f2 and f3, WSST2 performs similarly to WSST at high noise
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level and is more accurate at low noise level, while it consistently outperforms
FSST and FSST2. These results confirm the interest of using WSST2 on many
different types of signals, even in the presence of heavy noise.

6.4. Evaluation of mode reconstruction performance

Table 1: Accuracy of mode retrieval in the noise-free case

FSST FSST2 WSST WSST2
Mode f1 8.77 29.4 4.57 50.3
Mode f2 2.64 18.4 8.12 22.9
Mode f3 0.646 18.1 14.6 30.4
MCS f 3.18 20.0 7.11 27.2

Table 2: Accuracy of mode retrieval in the noisy case, (at noise level 0dB)

FSST FSST2 WSST WSST2
Mode f1 4.46 6.01 3.76 6.65
Mode f2 2.62 4.84 4.58 6.00
Mode f3 0.46 3.07 3.06 3.41
MCS f 2.38 4.59 3.80 5.34

As discussed above, the variants of second order SST proposed in this paper
leading to significantly better TF representations, this should translate into
better performance in terms of mode reconstruction. Let us first briefly recall
that fk is retrieved from the TF representation of f given by the WSST2 (other
SSTs have the same mode retrieval procedure) through:

fk(m/n) ≈ 1
C ′d,ψ,k

Sγd,2,f (m,ϕk(m/n)), (38)

where ϕk(m/n) is the estimate of φ′k(m/n) given by the ridge detector (see [23]
for details on such a technique used in this paper). This means that we only
use the information on the ridge to reconstruct the mode. For that purpose,

we measure the output SNR, defined by SNRoutput = 20 log10
‖f‖2

‖fr − f‖2
, where

fr is the reconstructed signal. In Table 1, we display this output SNR for
modes f1, f2, f3 and also for f , using either FSST, FSST2, WSST or WSST2
for mode reconstruction. Further, we carry out the same experiments, but
each mode is embedded in a white Gaussian noise at a noise level 0dB. The
resultant accuracies for such a reconstruction are displayed in Table 2. From
these results, we can see that the improvement brought by using WSST2 is clear
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and consistent with the previous study of the accuracy of the proposed new TF
representations.

6.5. Application to Gravitational-wave Signal

This section investigates an application of our new technique on the anal-
ysis of a transient gravitational-wave signal. Its first observation was made in
September 2015 and was announced by the LIGO and Virgo collaborations in
February 2016 [19], and was named GW150914. Such a signal, detected by
the LIGO detector in Hanford Washington, closely matches the predictions of
general relativity for a gravitational wave emanating from the inward spiral and
merger of a pair of black holes and the subsequent “ringdown” of the single
resulting black hole. In our simulations, we use a Gaussian window and the
Morlet wavelet with respective optimal values σF = 0.05 and σW = 1. In Fig-
ure 7 (a) and (c), we depict the modulus of STFT and CWT of the gravitational
wave signal, then in Figure 7 (b) and (d), we display the modulus of FSST2
and WSST2 along with the ridges extracted from these TF representations. We
notice that while ridge extraction performed on FSST2 misses the ”ringdown”
effect, such is not the case with WSST2.
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Figure 7: Illustration of the TF representations of the gravitational-wave event GW150914,
(a): observed Hanford signal; (b): STFT; (c): FSST2; (d): WSST2.
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7. Conclusion

This paper introduced a novel synchrosqueezing transform for analyzing mul-
ticomponent signals made of strongly frequency-modulated modes, based on the
continuous wavelet transform. It simply consists of a refinement of the instan-
taneous frequency estimate, computed using a second-order expansion of the
phase. After having revisited the case of first-order synchrosqueezing, releas-
ing the hypothesis of a wavelet compactly supported in the frequency domain,
we proved a novel approximation theorem involving the proposed new syn-
chrosqueezing transform applied to multicomponent signals made of strongly
modulated modes. In this regard we put forward a novel reconstruction tech-
nique for the modes. Numerical experiments showed the benefits of taking into
account frequency modulation for both representation and reconstruction pur-
poses, and also the better performance of second order reassignment based on
wavelet compared to that based on STFT. Future work should now be devoted
to the theoretical analysis of the behavior of the proposed representations when
applied to noisy signals, as was done in [29, 30] for the original WSST. In this
regard, it would also be of interest to study the behavior of the transform when
the type of noise is non Gaussian.

Appendix A1: Proof of Proposition 1

Proof. For each k ∈ {1, . . . ,K}, a zeroth order Taylor expansion of the ampli-
tude and first order expansion of the phase of fk leads to:

fk(τ) = Ak(τ)ei2πφk(τ)

= Ak(t)ei2π[φk(t)+φ′k(t)(τ−t)] + (Ak(τ)−Ak(t))ei2πφk(τ)

+Ak(t)[ei2π[φk(t)+φ′k(t)(τ−t)+
∫ τ
t
φ′′k (x)(τ−x)dx] − ei2π[φk(t)+φ′k(t)(τ−t)]]

= fk,1(τ) + fk,2(τ) + fk,3(τ).

Then, for any (t, a), the first term can be written as:

Wψ
fk,1

(t, a) = 1
a
Ak(t)ei2πφk(t)

∫
R
ei2πφ

′
k(t)(τ−t)ψ

(
τ − t
a

)
dτ = fk(t)ψ̂(aφ′k(t)).

The second term is bounded by:∣∣∣Wψ
fk,2

(t, a)
∣∣∣ ≤ 1

a

∫
R
|Ak(τ)−Ak(t)|

∣∣∣∣ψ(τ − ta
)∣∣∣∣ dτ

≤ εM

a

∫
R
|τ − t|

∣∣∣∣ψ(τ − ta
)∣∣∣∣ dτ = εaMJ1,0.
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and the third term by:∣∣∣Wψ
fk,3

(t, a)
∣∣∣ ≤ 2πAk(t)

a

∫
R

(∫ τ

t

|φ′′k(u)||(τ − u)|du
) ∣∣∣∣ψ(τ − ta

)∣∣∣∣ dτ
≤ επMAk(t)

a

∫
R
|τ − t|2

∣∣∣∣ψ(τ − ta
)∣∣∣∣ dτ = επa2MJ2,0Ak(t).

Writing |Wψ
f −

K∑
k=1

Wψ
fk,1
| = |

K∑
k=1

(Wψ
fk,2

+Wψ
fk,3

)|, we obtain the desired result.

Appendix B: Proof of Theorem 2

Theorem 2 is a generalization of Theorem 1, so the proof of the former is in
principle similar to that of the latter. Proposition 1 generalizes into:

Proposition 4. For any k ∈ {1, . . . ,K}, any r ∈ {0, 1} and p ∈ {0, 1}, and
(t, a) ∈ R× R+, one has:∣∣∣∣∣W τrψ(p)(τ)

f (t, a)−
K∑
k=1

fk(t)F{τ rψ(p)(τ)e−iπφ′′k (t)a2τ2}(aφ′k(t))

∣∣∣∣∣ ≤ εEr,p(t, a),

(39)

with Er,p(t, a) = ar+1MKJr+1,p + π
3 a

r+3MJr+3,p
K∑
k=1

Ak(t).

Proof. Following the same steps as the proof of Proposition 1, but using a zeroth
order Taylor expansion of the amplitude and second order expansion of the phase
of fk, one has:

fk(τ) = Ak(τ)ei2πφk(τ)

= Ak(t)ei2π[φk(t)+φ′k(t)(τ−t)+ 1
2φ
′′
k (t)(τ−t)2] + (Ak(τ)−Ak(t))ei2πφk(τ)

+Ak(t)
[
e
i2π[φk(t)+φ′k(t)(τ−t)+ 1

2φ
′′
k (t)(τ−t)2+ 1

2

∫ τ
t
φ′′′k (x)(τ−x)2dx]

−ei2π[φk(t)+φ′k(t)(τ−t)+ 1
2φ
′′
k (t)(τ−t)2]

]
= fk,1(τ) + fk,2(τ) + fk,3(τ).

Then, for any (t, a) ∈ R× R+, one has:

W
τrψ(p)(τ)
fk,1

(t, a) = fk(t)F{τ rψ(p)(τ)e−iπφ′′k (t)a2τ2}(aφ′k(t)),∣∣∣W τrψ(p)(τ)
fk,2

(t, a)
∣∣∣ ≤ εar+1MJr+1,p,
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and
|W τrψ(p)(τ)

fk,3
(t, a)| ≤ επ3 a

r+3MAk(t)Jr+3,p,

from which one easily gets the inequality (39).

Item (a) follows from this proposition remarking that if (t, a) ∈ E \
K⋃
l=1

Zl:

|Wψ
f (t, a)| ≤ ε(E0,0(t, a) +N0,0

K∑
k=1

Ak(t)) ≤ ε̃,

when ε̃ is sufficiently small, i.e.:

ε̃ ≤ 1√
2

min

‖ E0,0(t, a)‖−
1
2
∞,E ,

∥∥∥∥∥ N0,0

K∑
k=1

Ak(t)

∥∥∥∥∥
− 1

2

∞,E

 (40)

because E0,0(t, a) is bounded on E.
Now, to prove item (b) of Theorem 2, we remark that Proposition 4 rewrites

for any (t, a) ∈ R× R+:∣∣∣∣∣W τrψ(p)(τ)
f (t, a)−

K∑
k=1

W
τrψ(p)(τ)
fk,1

(t, a)

∣∣∣∣∣ ≤ εEr,p(t, a), (41)

which rewrites when r = 0 using an integration by parts:∣∣∣∣∣Wψ(p)

f (t, a) + 2iπa
K∑
k=1

(
aφ′′k(t)W τψ(p−1)(τ)

fk,1
(t, a) + φ′k(t)Wψ(p−1)

fk,1
(t, a)

)∣∣∣∣∣ ≤ εE0,p(t, a).

(42)

From equation (41), we deduce that if (t, a) ∈ Zk,

∣∣∣W τrψ(p)(τ)
f (t, a)−W τrψ(p)(τ)

fk,1
(t, a)

∣∣∣ ≤ ε
Er,p(t, a) +

∑
l 6=k

Al(t)Nr,p

 . (43)

Proposition 5. For any (t, a) ∈ Zk such that |Wψ
f (t, a)| > ε̃ and |∂tτ̃f (t, a)| > ε̃

one has:
|q̃t,f (t, a)− φ′′k(t)| ≤ ε̃. (44)
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Proof. For any (t, a) ∈ Zk one has, using (42) and (43):

|φ′′k(t)− q̃t,f (t, a)|

=

∣∣∣∣∣∣ 1
2πa2

Wψ′

f

[
Wψ′

f + i2πa(aφ′′k(t)W tψ
f + φ′k(t)Wψ

f )
]
−Wψ

f

[
Wψ′′

f + i2πa(aφ′′k(t)W tψ′

f + φ′k(t)Wψ′

f )
]

W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
2πa2

Wψ′

f

[
Wψ′

f + i2πa(aφ′′k(t)W tψ
fk,1

+ φ′k(t)Wψ
fk,1

)
]
−Wψ

f

[
Wψ′′

f + i2πa(aφ′′k(t)W tψ′

fk,1
+ φ′k(t)Wψ′

fk,1
)
]

W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣∣∣∣
+1
a

∣∣∣aφ′′k(t)Wψ′

f (W tψ
f −W

tψ
fk,1

)
∣∣∣+ φ′k(t)

∣∣∣Wψ
f −W

ψ
fk,1

∣∣∣+
∣∣∣aφ′′k(t)Wψ

f (W tψ′

f −W tψ′

fk,1
)
∣∣∣+ φ′k(t)

∣∣∣Wψ′

f −W
ψ′

fk,1

∣∣∣∣∣∣W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣
=

∣∣∣∣∣∣ 1
2πa2

Wψ′

f (Wψ′

f −W
ψ′

fk,1
)−Wψ

f (Wψ′′

f −Wψ′′

fk,1
)

W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣∣∣∣
+1
a

∣∣∣aφ′′k(t)Wψ′

f (W tψ
f −W

tψ
fk,1

)
∣∣∣+ φ′k(t)

∣∣∣Wψ
f −W

ψ
fk,1

∣∣∣+
∣∣∣aφ′′k(t)Wψ

f (W tψ′

f −W tψ′

fk,1
)
∣∣∣+ φ′k(t)

∣∣∣Wψ′

f −W
ψ′

fk,1

∣∣∣∣∣∣W tψ
f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣
≤
ε

((∣∣∣∣Wψ′
f

2πa2

∣∣∣∣+
∣∣∣φ′k(t)

a

∣∣∣)E0,1(t, a) +
∣∣∣∣ Wψ

f

2πa2

∣∣∣∣E0,2(t, a)|+
∣∣∣φ′′k(t)Wψ′

f

∣∣∣E1,0(t, a) + φ′k(t)
a E0,0(t, a) + |φ′′k(t)|E1,1(t, a)

)
∣∣∣W tψ

f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣
+ε

∑
l 6=k

Al(t)
((∣∣∣∣Wψ′

f

2πa2

∣∣∣∣+
∣∣∣φ′k(t)

a

∣∣∣)N0,1 +
∣∣∣∣ Wψ

f

2πa2

∣∣∣∣N0,2|+
∣∣∣φ′′k(t)Wψ′

f

∣∣∣N1,0 + φ′k(t)
a N0,0 + |φ′′k(t)|N1,1

)
∣∣∣W tψ

f Wψ′

f −W
tψ′

f Wψ
f

∣∣∣
≤
ε

((∣∣∣∣Wψ′
f

2πa2

∣∣∣∣+
∣∣∣φ′k(t)

a

∣∣∣)E0,1(t, a) +
∣∣∣∣ Wψ

f

2πa2

∣∣∣∣E0,2(t, a)|+
∣∣∣φ′′k(t)Wψ′

f

∣∣∣E1,0(t, a) + φ′k(t)
a E0,0(t, a) + |φ′′k(t)|E1,1(t, a)

)
ε̃3

+ε

∑
l 6=k

Al(t)
((∣∣∣∣Wψ′

f

2πa2

∣∣∣∣+
∣∣∣φ′k(t)

a

∣∣∣)N0,1 +
∣∣∣∣ Wψ

f

2πa2

∣∣∣∣N0,2|+
∣∣∣φ′′k(t)Wψ′

f

∣∣∣N1,0 + φ′k(t)
a N0,0 + |φ′′k(t)|N1,1

)
ε̃3 ≤ ε̃,

if ε̃ is sufficiently small, the last inequality being obtained by remarking the
numerator is bounded on E. Note also, that |φ′′k(t)− q̃t,f (t, a)| is of the order of
ε̃3 if ε is sufficiently small.

Proof of item (b): according to definition of ω̃[2]
t,f (t, a) in (21), one has:

ω̃
[2]
t,f (t, a) = ω̃f (t, a) + q̃t,f (t, a)(t− τ̃f (t, a)).
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It follows that for (t, a) ∈ Zk, such that |Wψ
f (t, a)| > ε̃ and |∂tτ̃f (t, a)| > ε̃∣∣∣ω̃[2]

t,f (t, a)− φ′k(t)
∣∣∣

=

∣∣∣∣∣ 1
i2πa

Wψ′

f (t, a) + i2πaφ′k(t)Wψ
f (t, a) + i2πa2φ′′k(t)W tψ

f (t, a)
Wψ
f (t, a)

∣∣∣∣∣
+

∣∣∣∣∣a (q̃t,f (t, a)− φ′′k(t))W tψ
f (t, a)

Wψ
f (t, a)

∣∣∣∣∣
≤

1
2πa

∣∣∣Wψ′

f (t, a)−Wψ′

fk,1
(t, a)

∣∣∣+ φ′k(t)
∣∣∣Wψ

f (t, a)−Wψ
fk,1

(t, a)
∣∣∣+ a |φ′′k(t)|

∣∣∣W tψ(t)
f (t, a)−W tψ(t)

fk,1
(t, a)

∣∣∣
Wψ
f (t, a)

+

∣∣∣∣∣a (q̃t,f (t, a)− φ′′k(t))W tψ
f (t, a)

Wψ
f (t, a)

∣∣∣∣∣
≤ ε̃5

 1
2πa (E0,1 +

∑
l 6=k

Al(t)N0,1)

+ φ′k(t)

E0,0 +
∑
l 6=k

Al(t)N0,0

+ a |φ′′k(t)|

E0,1 +
∑
l 6=k

Al(t)N1,1)


+

∣∣∣∣∣a (q̃t,f (t, a)− φ′′k(t))W tψ
f (t, a)

ε̃

∣∣∣∣∣ ≤ ε̃
when ε̃ is sufficiently small.

Proof of item (c): It is exactly the same as in the weak modulation case
(item (c) of Theorem 1), except that we use, at the very end of the proof, the
following hypotheses:∣∣∣∣∣ limλ→0

(
1

C ′ψ,k

∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃
2,Wψ

f

(t, ω)dω
)
− fk(t)

∣∣∣∣∣ =

∣∣∣∣∣ 1
C ′ψ,k

∫
X
Wψ
f (t, a)da

a
− fk(t)

∣∣∣∣∣
≤

[∣∣∣∣∣ 1
C ′ψ,k

∫
|aφ′

k
(t)−1|<∆

Wψ
f (t, a)da

a
− fk(t)

∣∣∣∣∣+

∣∣∣∣∣ 1
C ′ψ,k

∫
|Wψ

f
(t,a)|≤ε̃∩|aφ′

k
(t)−1|<∆

Wψ
f (t, a) da

a

∣∣∣∣∣
]

≤ 1∣∣∣C ′ψ,k∣∣∣
[∫
|aφ′

k
(t)−1|<∆

∣∣∣Wψ
f (t, a)− fk(t)F{ψ(τ)e−iπφ′′k (t)a2τ2}(aφ′k(t))

∣∣∣ da
a

+

Ak(t)
∫
|aφ′

k
(t)−1|≥∆

∣∣∣F{ψ(τ)e−iπφ′′k (t)a2τ2}(aφ′k(t))
∣∣∣ da
a

+ ε̃ log
(

1 + ∆
1−∆

)]

≤ 1∣∣∣C ′ψ,k∣∣∣
ε∫

|aφ′
k
(t)−1|<∆

E0,0(t, a) +N0,0
∑
l 6=k

Al(t)

 da

a
+ +ε̃(1 +Ak(t)N2) log

(
1 + ∆
1−∆

) ≤ D2ε̃.
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