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Abstract

In this paper, we construct a fully discrete numerical scheme for approxi-
mating a two-dimensional multiphasic incompressible fluid model, also called the
Kazhikhov-Smagulov model. We use a first-order time discretization and a split-
ting in time to allow us the construction of an hybrid scheme which combines a
Finite Volume and a Finite Element method. Consequently, at each time step,
one only needs to solve two decoupled problems, the first one for the density
and the second one for the velocity and pressure. We will prove the stability of
the scheme and the convergence towards the global in time weak solution of the
model.
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1 Introduction.

1.1 The model.

The Kazhikhov-Smagulov model, which can be deduced from the compressible Navier-
Stokes system, describes the motion of a viscous, incompressible mixture of two fluids
having different densities. The mixture is subject to a diffusion effect modeled by the
Fick’s law, which relates the velocity to the derivatives of the density. We assume that
the fluid fills the domain Ω ⊂ R2, a bounded open set with sufficiently regular boundary
Γ. We denote by n the unit outward normal on the boundary Γ and by [0, T ] the time
interval, for T > 0. With the notations Q

T
= (0, T )×Ω and Σ = (0, T )×Γ, we consider

the following model in Q
T
:


∂tρ+ div

(
ρu
)

= λ∆ρ,

ρ
(
∂tu+ (u · ∇)u

)
− λ(∇ρ · ∇)u+ λ div

(
ρ∇uT

)
− µ∆u+∇P = ρg,

divu = 0.

(1)

The unknowns are ρ : Q
T
→ R the density of the fluid, u : Q

T
→ R2 the incompressible

velocity field and P : Q
T
→ R the pressure of the fluid (a modified pressure). Moreover,

g stands for the gravity acceleration (but it can include further external forces) and the
parameters λ > 0 and µ > 0 represent mass diffusion and dynamic viscosity coefficients,
respectively (which are assumed to be constant). Given a vector a ∈ Rd, we set
diva =

∑d
i=1 ∂xiai; given a matrix valued function A, we denote div(A) the vector

having components
∑d

j=1 ∂xjAij. This model was derived and analyzed for the first
time by Kazhikhov and Smagulov [21].

We complete (1) with the boundary conditions:

∂ρ

∂n
(t,x) = 0, u(t,x) = 0, (t,x) ∈ Σ, (2)

and the initial conditions:

ρ(0,x) = ρ0(x), u(0,x) = u0(x), x ∈ Ω, (3)

where ρ0 : Ω → R and u0 : Ω → R2 are given functions, with divu0 = 0. Throughout
this paper, we assume the hypothesis:

0 < m ≤ ρ0(x) ≤M < +∞, x ∈ Ω. (4)
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1.2 Functional setup of the Kazhikhov-Smagulov model.

Let us introduce the following functional spaces (see for instance [22], [26] for their
properties):

V =
{
u ∈ D(Ω)2 : divu = 0 in Ω

}
,

V =
{
u ∈ H1

0(Ω) : divu = 0 in Ω
}
,

H =
{
u ∈ L2(Ω) : divu = 0 in Ω, u · n = 0 on Γ

}
,

L2
0(Ω) =

{
p ∈ L2(Ω) :

∫
Ω

p(x) dx = 0

}
.

We recall that V and H are the closures of V in H1
0(Ω) and L2(Ω) respectively and

(., .) denote the scalar product in L2(Ω) or L2(Ω). In V, the norms ‖ u ‖H1(Ω) and
‖ ∇u ‖L2(Ω) are equivalent.

Definition 1.1. A pair of functions (ρ,u) is called a weak solution of problem (1)-(2)-
(3) on Ω if and only if for any T > 0 the following assumptions are satisfied:

1. u ∈ L∞
(
0, T ; H

)
∩ L2

(
0, T ; V

)
,

ρ ∈ L2
(
0, T ;H1

)
∩ L∞(Q

T
),

0 < m ≤ ρ(t,x) ≤M < +∞, a.e. (t,x) ∈ Q
T
.

2. For all ϕ ∈ C1([0, T ];H1(Ω)) such that ϕ(T, .) = 0, one has:∫ T

0

{(
u · ∇ρ, ϕ

)
+ λ
(
∇ρ,∇ϕ

)
−
(
ρ, ∂tϕ

)}
dt =

(
ρ0, ϕ(0)

)
. (5)

3. For all φ ∈ C1([0, T ]; V) such that φ(T, .) = 0, one has:∫ T

0

{
−
(
u, ρ∂tφ+

(
(ρu− λ∇ρ) · ∇

)
φ
)

+ µ
(
∇u,∇φ

)
− λ
(
ρ∇uT ,∇φ

)}
dt

=

∫ T

0

(
ρg,φ

)
dt+

(
ρ0u0,φ(0)

)
.

(6)

Moreover, it is convenient to write the variational formulation of the problem. Let us
assume that (ρ,u, P ) is a sufficiently regular solution of (1)-(2)-(3). Multiplying the
equations (1) respectively by arbitrary test functions (ρ̄, ū, p̄) ∈ H1(Ω)×H1

0(Ω)×L2
0(Ω),

integrating over Ω and using Green’s theorem, adding to the momentum equation the
density equation where we choose ρ̄ = 1

2
u · ū and we integrate by parts the convective

and diffusive terms, finally we obtain the following formulation for a.e. t ∈ (0, T ):

d

dt

(
ρ, ρ̄
)

+ b
(
ρ, ρ̄,u

)
+ λ

(
∇ρ,∇ρ̄

)
= 0, ∀ρ̄ ∈ H1(Ω),(

ρ
∂u

∂t
, ū
)

+
1

2

(∂ρ
∂t
u, ū

)
+ a
(
ρ,u, ū

)
+ c
(
ρu− λ∇ρ,u, ū

)
+ d
(
ū, P

)
=
(
ρg, ū

)
, ∀ū ∈ H1

0(Ω),

d
(
u, p̄

)
= 0, ∀p̄ ∈ L2

0(Ω),

(7)
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where we have used the following notations:

• b
(
., ., .

)
, a
(
., ., .

)
and c

(
., ., .

)
are the trilinear forms defined by:

b(ρ, β,u) =

∫
Ω

div(ρu) β dx, ∀ρ ∈ H1(Ω) ∩ L∞(Ω), ∀β ∈ H1(Ω),∀u ∈ V,

a
(
ρ,u,v

)
= µ

(
∇u,∇v

)
− λ

∫
Ω

ρ∇uT : ∇v dx, ∀ρ ∈ H1(Ω), ∀u,v ∈ H1
0(Ω),

c
(
ω,u,v

)
=

1

2

[(
(ω · ∇)u,v

)
−
(
(ω · ∇)v,u

)]
, ∀ω ∈ V,∀u,v ∈ H1

0(Ω),

• d
(
., .
)

is the bilinear form defined by:

d
(
v, p
)

= −
(
p, divv

)
, ∀v ∈ H1

0(Ω),∀p ∈ L2
0(Ω).

The trilinear forms verify the following properties of continuity, coercivity and antisym-
metric:

a
(
ρ,u,u

)
≥ µ1 ‖ ∇u ‖2

L2(Ω)
, with µ1 = µ− λM > 0, ∀u ∈ H1

0(Ω), (8)

a
(
ρ,u,v

)
≤ C ‖ u ‖

H1(Ω)
‖ v ‖

H1(Ω)
, ∀u,v ∈ H1

0(Ω).

c
(
ω,u,v

)
≤ C ‖ ω ‖

L3(Ω)
‖ u ‖

H1(Ω)
‖ v ‖

H1(Ω)
,∀ω ∈ L3(Ω),∀u,v ∈ H1

0(Ω),

c
(
ω,u,v

)
= −c

(
ω,v,u

)
, ∀ω ∈ V,∀u,v ∈ H1

0(Ω),

c
(
ω,u,u

)
= 0, ∀ω ∈ V,∀u ∈ H1

0(Ω). (9)

1.3 Known results.

Many authors treat the mathematical analysis of the Kazhikhov-Smagulov model in
three-dimensional domains. We can refer for instance to [21, 1, 2]. In [21, 1], under
assumption (4) and if the constants λ, µ, m, M are such that λ < 2µ(M −m)−1, the
authors prove the existence of a weak solution of the problem (1)-(2)-(3), when u0 ∈ H,
ρ0 ∈ H1(Ω) and g ∈ L2

(
0, T ; L2(Ω)

)
. In [2], the existence and uniqueness of a weak

solution of (1)-(2)-(3) is proved under assumption (4) but without any restriction on the
constant λ. In [23], under de condition λ/µ small enough, the existence and uniqueness
of the global solution is proved in the two-dimensional case. Moreover, it is showed
the convergence (as λ → 0) towards a weak solution of the Navier-Stokes system for
nonhomogeneous fluids in two- and three-dimensional domains. Recently, in [4, 5] the
authors prove the existence of a regular (resp. strong) solution of a two-dimensional
generalized Kazhikhov-Smagulov model.

Concerning the numerical study, there exists few numerical schemes in order to approx-
imate the problem (1). Some adequate choices can be found in [17, 18, 19, 20, 3], where
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the authors propose a fully discrete numerical scheme consists of C0 finite element spa-
tial approximation for all unknowns (density, velocity and pressure) combined with the
backward Euler method in time. In [18] the authors obtain unconditional stability and
convergence results for the two-dimensional case, by applying a truncating operator in
the terms depending on the density. A conditionally stable and convergent numerical
scheme is obtained in [19] for the three-dimensional case. In this work, the authors
prove an approximate maximum principle bounding by excess and defect the discrete
density with respect to the upper and lower bound of the initial density. Also, they
study the asymptotic behavior of the numerical scheme as the diffusion parameter λ
goes to zero, obtaining convergence towards a weak solution of the density-dependent
Navier-Stokes problem. In [20], under hypotheses of regularity for the data and the
exact solution, the authors present optimal error estimates of a linearized fully discrete
scheme for the three-dimensional case. For the complete three-dimensional Kazhikhov-
Smagulov model with O(λ2) terms added in (1)2, the existence of regular solutions and
some error estimates are given in [17], by assuming smallness conditions on the data.
An extension of the results in [19] for the complete model with O(λ2) terms is obtained
in [3], where the treatment of the O(λ2) terms requires special attention. Finally, an-
other numerical scheme is developed in [12] by using a backward Euler scheme together
with the method of characteristics for the volume fraction of the denser fluid, and a
mixed finite element method in space for velocity and pressure.

The finite volume schemes are widely used for the numerical resolution of linear or
non-linear conservation laws (see [13, 24, 27] for instance). The discrete maximum prin-
ciple, implying the L∞-stability of a numerical scheme, is very important in the study
of conservation laws. Indeed, the maximum principle is the first fundamental physical
property of the problem that a suitable numerical scheme must faithfully reproduce. In
[14], a convergence result for the numerical solution of a nonlinear convection-diffusion
problem was investigated. The authors use a combined finite volume-finite element
scheme, where the nonlinear convective terms are discretized by a monotone finite vol-
ume scheme and the diffusion term is approximated using conforming piecewise linear
finite elements. In [15], the authors pursue this approach. The discrete maximum prin-
ciple is necessary and it requires the use of triangulations of a weakly acute type. Under
this assumption, the analysis of the error estimates of this combined finite volume-finite
element scheme is achieved. Let us mention also the review paper by Droniou [11]
which concerns various finite volume methods for solving diffusion equation on general
meshes. The development of an hybrid finite volume-finite element scheme was firstly
introduced in [7] and used in [6], in order to compute the numerical solution of the
variable density incompressible Navier-Stokes system. Using a splitting in time, this
hybrid scheme combines a finite volume method to discretize the density equation and
a mixed finite element method to compute the velocity field and the pressure. In [6],
the L∞-stability was obtained under an explicit CFL condition by introducing a second
order finite volume scheme with multislope gradient reconstruction in order to solve
transport equation on unstructured meshes with local refinements. Recently, the hy-
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brid finite volume-finite element scheme was extended in [8] to the numerical simulation
of powder–snow avalanches by solving the two-dimensional model (1).

1.4 Main results.

The objective of this work is to study the Kazhikhov-Smagulov model (1) in a fully
discrete setting by coupling finite volumes to approximate the density and finite ele-
ments to approximate the velocity and pressure. Let h > 0, we denote by Th a parti-
tion of Ω composed of conforming and isotropic triangles. We take Wh ×Vh × Yh ⊂
H1(Ω) ×H1

0(Ω) × L2
0(Ω) the finite elements spaces associated to density, velocity and

pressure, respectively. In order to simplify the notations, we restrict our study to the
case of a uniform time discretization of [0, T ], but all the results given in this work can
be extended without any difficulty to the case of a general time discretization. Let N
be a positive integer, then we define ∆t = T/N the time step and (tn = n∆t)Nn=0 the
partition of [0, T ]. Moreover, we consider the following stability condition:

0 < ∆t ≤ c0 h, (10)

where c0 > 0 is a constant which is independent of h and ∆t, but depends on the
velocity field u ∈ Vh. Obviously, (10) is a typical CFL condition often used for the
numerical solution of conservation laws (see [24]). Let

(
ρnh,u

n
h

)
∈ Wh × Vh be the

approximations of density and velocity at time tn. We denote by ρh,∆t and uh,∆t the
piecewise constant functions in time taking values ρnh and unh on (tn−1, tn], respectively.
Thus, the following main result will be proved:

Theorem 1.2. There exists a convergent subsequence of
(
ρh,∆t,uh,∆t

)
(denoted in the

same way) as (h,∆t) → 0 towards the (unique) weak solution
(
ρ,u

)
of problem (1)-

(2)-(3) in the sense of Definition 1.1, when µ− λM > 0 and (10) are verified.

The outline of the paper is organized as follows. In section 2 we describe the hybrid
finite volume-finite element scheme, in particular we introduce the finite volume scheme
and its properties in the vertex-based framework. In section 3 we study the stability
of the numerical scheme. Then, we deduce the weak and weak∗ convergences results in
section 4. Afterwards, we establish the compactness arguments for the discrete density
and velocity that provide the strong convergence results in section 5. Finally, section 6
is devoted to the passage to the limit, concluding the proof of Theorem 1.2.

2 Description of the numerical schemes.

This section is devoted to the development of an hybrid finite volume-finite element
scheme. We recall that finite volume schemes are widely used for the numerical solution
of conservation laws (see [13]), whereas finite element methods are naturally applied
to approximate the solution of diffusive problems (i.e. elliptic or parabolic problems,
see [10, 16]). The idea of combined finite volume and finite element methods was used
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in various works concerning numerical computation of conservation laws. The idea
behind this approach is to match the finite volume discretization of convective terms
with the finite element discretization of diffusive terms. For the theoretical analysis of
these combined schemes we refer to [15] and references therein. In our case, the hybrid
finite volume-finite element scheme combines a finite volume approach to approximate
the mass conservation equation and a finite element method to solve the momentum
equation and the divergence free condition.

At first, we present the triangular mesh of Ω, the discrete spaces associated to den-
sity, velocity and pressure, and we set our assumptions on the discretization of the
Kazhikhov-Smagulov model (1). Second, we focus on the development of the finite
volume scheme to approximate the convection-diffusion equation, and we introduce the
properties of the discrete density. Finally, we define the fully discrete scheme by us-
ing finite volume and finite element methods to approximate all unknowns (density,
velocity, pressure) of Kazhikhov-Smagulov model.

2.1 Mesh definitions.

The discretization of the Kazhikhov-Smagulov model (1) will be carried out on an
unstructured triangular mesh. Let h > 0, we denote by Th a partition of the polygonal
domain Ω composed of conforming and isotropic triangles. The triangulation Th is
called a basic (or primal) mesh. By h(T ) we denote the length of the longest side of
the triangle T ∈ Th, and put

h = max
T∈Th

h(T ).

We suppose the following assumptions for the triangulations {Th}h>0 of Ω [15, 14]:

(A1) Let {Th}h>0 be a regular family of triangulations of Ω.

(A2) The triangulations Th are of weakly acute type. In other words, the magnitude of
all angles of all T ∈ Th is less than or equal to π/2.

(A3) The triangulations Th verify the following inverse assumption:

h ≤ c h(T ), ∀ T ∈ Th,

where c > 0 is constant independent of h.

According to [10, Chap.3, § 3.1, Remark 3.1.3], assumptions (A1) and (A3) imply the
existence of a constant c > 0 independent of h, such that

h2 ≤ c |T |, ∀ T ∈ Th, (11)

where |T | = area of T ∈ Th.
Now, let Mh = {Mi, i ∈ J} be the set of all vertices of the triangulation Th, (J is
a suitable index set, of cardinality #J). The set Eh of the edges of Th is made of
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straight segments [MiMj] joining two vertices of Mh. Let us construct the dual mesh
Ch = {Ci, i ∈ J} over the basic mesh Th, which defines a second partition of Ω. The
dual finite volume Ci associated with each vertex Mi ∈Mh is a closed polygon obtained
in the following way: we join the barycenter of every triangle T ∈ Th which share the
vertex Mi with the middle point of every side of T containing Mi. If Mi ∈ Mh ∩ ∂Ω,
then we complete the boundary of Ci by the segments joining Mi with the middle point
of boundary sides that contain Mi. Ci is often called the vertex-based control volume
around the node Mi. Accordingly, we have⋃

T∈Th

T = Ω̄ =
⋃
i∈J

Ci. (12)

Moreover, if we denote |Ci| = area of Ci ∈ Ch, then, we have

|Ci| =
∑

T,Mi∈T

|T |
3
. (13)

For i ∈ J , let V(i) = {j ∈ J, Cj is a neighbor of Ci}. Let i ∈ J and j ∈ V(i), we define
by Tij,1 and Tij,2 two neighboring triangles of Th sharing the common edge [MiMj]. We
denote B1 (resp. B2) the barycenter of Tij,1 (resp. Tij,2) and Mij the middle of [MiMj].
Then, we put

Γij,1 = [MijB1] and Γij,2 = [MijB2].

If Mi ∈ Mh ∩ ∂Ω, we have only one neighboring triangle of Th sharing the common
edge [MiMj]. In this case, we denote B1 the barycenter of Tij and B2 the middle of
[MiMj]. Then, we put Γij,2 = [MiB2] ⊂ ∂Ω.

We denote nij,1 (resp. nij,2) the unit outward normal to Ci along Γij,1 (resp. Γij,2) and
|Γij,1| (resp. |Γij,2|) the length of the segment Γij,1 (resp. Γij,2). For every Ci ∈ Ch, the
boundary of Ci is

∂Ci =
⋃

j∈V(i)

(
Γij,1 ∪ Γij,2

)
. (14)

Obviously, we have

|Γij,l| ≤
h

2
, for l = 1, 2. (15)

Consequently, there exists a constant c1 > 0, such that∣∣∂Ci∣∣ ≤ c1h, ∀i ∈ J. (16)

Also, (13), (11) and (16) imply the existence of a constant c2 > 0, such that∣∣Ci∣∣∣∣∂Ci∣∣ ≥ c2h, ∀i ∈ J. (17)

8



2.2 Discrete spaces.

In order to combine the efficiency of the finite volume method for the convection-
diffusion equation and the finite element method for the momentum equation, we need
to define some discrete spaces associated to the unknowns.

Let us define the following discrete spaces for the approximation of the density over the
meshes Th and Ch:

Wh =
{
βh ∈ C0(Ω̄); βh|T ∈ P1 ∀ T ∈ Th

}
⊂ H1(Ω), (18)

Zh =
{
η ∈ L2(Ω); η|Ci = constant ∀ Ci ∈ Ch

}
⊂ L2(Ω). (19)

Given a vector (βMi
)i∈J ∈ R#J , there exists a unique Πhβ ∈ Wh and a unique Lhβ ∈ Zh

such that

Πhβ(Mi) = Lhβ(Mi) = βMi
, ∀ i ∈ J. (20)

As a consequence, there are one-to-one mappings between R#J , Wh and Zh. Here,
Πh : R#J → Wh denotes the Lagrange interpolation operator and Lh : C0(Ω̄) → Zh is
the so-called lumping operator. Obviously, Lh is a continuous linear operator.

For the approximations of velocity and pressure, there are several choices to define the
mixed finite element spaces Vh ⊂ H1

0(Ω) and Yh ⊂ L2
0(Ω) verifying the Ladyshenskaya-

Babus̆ka-Brezzi (LBB) condition (also called ”inf-sup” condition) [16]. Following [7, 8],
we choose the Taylor-Hood element (P2×P1), but others choices are also possibles (the
mini-element P1-bubble× P1 for instance). Then

Vh =
{
vh ∈ C0(Ω̄); vh|T ∈ P2 ∀ T ∈ Th

}
∩H1

0(Ω), (21)

Yh = Wh ∩ L2
0(Ω). (22)

Throughout this work, we will suppose the following hypotheses [10, 3, 18, 19]:

(H1) Regularity for the data:
Let u0 ∈ V, ρ0 ∈ H1(Ω) with 0 < m ≤ ρ0 ≤M in Ω and g ∈ L2

(
0, T ; L2(Ω)

)
.

(H2) The triangulation Th of Ω and the finite elements space Wh verify the following
inverse inequality:

‖ ∇ρ̄h ‖L2(Ω)
≤ C h−1 ‖ ρ̄h ‖L2(Ω)

, ∀ρ̄h ∈ Wh. (23)

(H3) Inf-sup condition:
There exists a constant C > 0 independent of h, such that

inf
ph∈Yh

sup
vh∈Vh\{0}

d
(
vh, ph

)
‖ ph ‖L2(Ω)

‖ ∇vh ‖L2(Ω)

≥ C.
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2.3 The finite volume scheme.

Here, we design the finite volume scheme for solving the convection-diffusion equation
(1)1 on the dual mesh Ch. With a view to obtain the numerical scheme corresponding
to (7)1, we will denote by

(
., .
)
h

(resp. ‖ . ‖h) the approximation of the scalar product
(resp. norm) on L2(Ω), such that

(β1, β2)h =

∫
Ω

Πh(β1 β2) dx, β1, β2 ∈ C0(Ω̄),

‖ β ‖h = (β, β)
1/2
h , β ∈ C0(Ω̄).

(24)

Also, the approximation
(
., .
)
h

can be defined with the aid of a numerical integration
using the vertices of T ∈ Th as integration points:

(β1, β2)h =

∫
Ω

Lh(β1)Lh(β2) dx, β1, β2 ∈ C0(Ω̄),

‖ β ‖h = ‖ Lhβ ‖L2(Ω), β ∈ C0(Ω̄).
(25)

In particular, (24) and (25) correspond to the mass lumping technique applied to the
mass matrix. Then, there exists constants ĉ1, ĉ2 > 0 such that ∀h ∈ (0, h0),

ĉ1 ‖ β ‖L2(Ω)
≤‖ β ‖h≤ ĉ2 ‖ β ‖L2(Ω)

∀β ∈ Wh. (26)

For the bilinear form associated to the laplacian, we consider the control volume finite
element (CVFE) scheme (see [13]). We denote by (φi)i∈J the canonical basis of Wh

characterized by

φi(Mj) = δij, ∀ i ∈ J, ∀Mj ∈Mh.

The following geometrical properties hold:∫
Ω

φi(x) dx = 3|Ci|, ∀ i ∈ J,
∑
i∈J

∇φi(x) = 0, for a.e. x ∈ Ω.

For all [Mi,Mj] ∈ Eh, we define the coefficient

aij = −
∫

Ω

∇φi(x) · ∇φj(x) dx = aji.

Then, we obtain that

−aii =
∑
j 6=i

aij > 0.

As consequence, ∀ρ, β ∈ Wh we have

(∇ρ,∇β) =

∫
Ω

∇ρ(x) · ∇β(x) dx =
∑

[Mi,Mj ]∈Eh

aij(ρi − ρj)(βi − βj).
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Using assumption (A2) on the triangulation Th, we have

aij ≥ 0, ∀ [Mi,Mj] ∈ Eh,

which is a necessary condition for guaranteeing the (discrete) maximum principle of the
finite volume scheme.
Moreover, we will construct an approximation bh of the trilinear form b by using the
finite volume approach, according to Feistauer et al. ideas [14, 15]. We assume that the
velocity field u ∈ Vh is a given function which satisfies the divergence free constraint.
Then, using (12), (20), Green’s theorem and (14), we write for ρ, β ∈ Wh,∫

Ω

div
(
ρu
)
β dx ≈

∫
Ω

div
(
ρu
)
Lhβ dx

=
∑
i∈J

∫
Ci

div
(
ρu
)
Lhβ dx

=
∑
i∈J

βMi

∫
Ci

div
(
ρu
)
dx

=
∑
i∈J

βMi

∫
∂Ci
ρ(t,x)u(t,x) · n(x) dσ

=
∑
i∈J

βMi

∑
j∈V(i)

2∑
l=1

∫
Γij,l

ρ(t,x)u(t,x) · nij,l dσ

Finally, we characterize the approximation bh as follows. Given u ∈ Vh, we define
∀ρ, β ∈ Wh,

bh(ρ, β,u) :=
∑
i∈J

βMi

∑
j∈V(i)

2∑
l=1

|Γij,l|Gijl

(
ρMi

, ρMj
,nij,l

)
, (27)

where we have introduced in (27) an upstream numerical flux Gijl as defined in [7, 6].
More specifically, we introduce the cell-averaged velocity u? defined for each u ∈ Vh:

∀T ∈ Th, u?|T =
1

|T |

∫
T

u(t,x) dx.

As shown numerically in [7], the choice of the cell-averaged velocity u? is a necessary
condition in order to ensure the divergence free constraint at the discrete level. Then,
for l = 1, 2, i ∈ J, j ∈ V(i), the constant values u?ij,l defined on ∂Ci are such that

u?(x) =

{
u?ij,1 on Γij,1,
u?ij,2 on Γij,2,

∀x ∈ ∂Ci =
⋃

j∈V(i)

(
Γij,1 ∪ Γij,2

)
.

With the value of u?ij,l at hand, a simple upwind finite volume scheme lead to

Gijl

(
ρ1, ρ2,nij,l

)
=

{
ρ1 u

?
ij,l · nij,l if u?ij,l · nij,l > 0,

ρ2 u
?
ij,l · nij,l if u?ij,l · nij,l ≤ 0.

(28)

11



Obviously, upwind flux such as (28) restricts the method to first order accuracy. To
improve the accuracy, more general fluxes can be designed based on MUSCL strategies.
A multislope method on general unstructured dual meshes was introduced in [6], where
the L∞ stability for the convection equation was established. The discrete maximum
principle can also be proved for the convection-diffusion equation. As for first order
methods, it requires the assumption (A2) on the triangulation Th (see [9]).

With the numerical flux (28), some properties are ensured, such as the consistency,
conservativity and monotonicity of the numerical flux. Also, Gijl(ρ1, ρ2,nij,l) is locally
Lipschitz-continuous with respect to ρ1, ρ2:∣∣∣Gijl(ρ1, ρ2,nij,l)−Gijl(ρ

∗
1, ρ
∗
2,nij,l)

∣∣∣ ≤ ∣∣u?ij,l∣∣(∣∣ρ1 − ρ∗1
∣∣+
∣∣ρ2 − ρ∗2

∣∣).
Thereafter, we use the following estimate of the approximation bh.

Proposition 1. There exists a constant C > 0, such that for ρ, β ∈ Wh and u ∈ Vh,
we have ∣∣bh(ρ, β,u)∣∣ ≤ C ‖ u ‖

L4(Ω)
‖ ∇ρ ‖

L4(Ω)
‖ β ‖

L2(Ω)
. (29)

Proof. Let ρ, β ∈ Wh and u ∈ Vh. We write

bh(ρ, β,u) =
∑
i∈J

βMi

∑
j∈V(i)

2∑
l=1

|Γij,l|Gijl

(
ρMi

, ρMj
,nij,l

)
=
∑
j∈J

βMj

∑
i∈V(j)

2∑
l=1

|Γji,l|Gjil

(
ρMj

, ρMi
,nji,l

)
.

Using the conservativity of the numerical flux Gijl and the relations Γji,l = Γij,l, nij,l =
−nji,l, we obtain

bh(ρ, β,u) = −
∑
i∈J

βMj

∑
j∈V(i)

2∑
l=1

|Γij,l|Gijl

(
ρMi

, ρMj
,nij,l

)
.

Then, we find that

bh(ρ, β,u) =
1

2

∑
i∈J

∑
j∈V(i)

2∑
l=1

|Γij,l|Gijl

(
ρMi

, ρMj
,nij,l

)[
βMi
− βMj

]
.

The numerical flux is consistent, then for any constant function ρ, we have

∑
j∈V(i)

2∑
l=1

|Γij,l|Gijl

(
ρMi

, ρMi
,nij,l

)
= 0.

12



Then, we write

bh(ρ, β,u) =
1

2

∑
i∈J

∑
j∈V(i)

2∑
l=1

|Γij,l|
(
Gijl

(
ρMi

, ρMj
,nij,l

)
−Gijl

(
ρMi

, ρMi
,nij,l

))
(
βMi
− βMj

)
.

Let l = 1, 2, if i ∈ J and j ∈ V(i), then the segment [MiMj] ∈ Eh is the common side
of triangles Tij,l ∈ Th, such that Γij,l ⊂ Tij,l (see Section 2.1). We have

‖
−−−→
MiMj ‖≤ h, |Γij,l| ≤

h

2
,∣∣ρMi

− ρMj

∣∣ ≤ h |∇ρ|Tij,l |,∣∣βMi
− βMj

∣∣ ≤ h |∇β|Tij,l |.

Moreover, the numerical flux Gijl is locally Lipschitz-continuous, then we obtain

∣∣bh(ρ, β,u)
∣∣ ≤ 1

4

∑
i∈J

∑
j∈V(i)

2∑
l=1

h
∣∣u?ij,l∣∣ ∣∣ρMi

− ρMj

∣∣ ∣∣βMi
− βMj

∣∣
≤ 1

4

∑
i∈J

∑
j∈V(i)

2∑
l=1

h3
∣∣u?ij,l∣∣ ∣∣∇ρ|Tij,l∣∣ ∣∣∇β|Tij,l∣∣

≤ C
∑
T∈Th

h3 |u?|T | |∇ρ|T | |∇β|T |,

taking into account that each triangle T ∈ Th appears in the above sum as some Tij,l
at most six times. Finally, in virtue of (11), the generalized Hölder inequality and the
inverse inequality (23), we arrive at∣∣bh(ρ, β,u)

∣∣ ≤ Ch
∑
T∈Th

|T | |u?|T | |∇ρ|T | |∇β|T |

= Ch

∫
Ω

|u| |∇ρ| |∇β| dx

≤ Ch ‖ u ‖
L4(Ω)
‖ ∇ρ ‖

L4(Ω)
‖ ∇β ‖

L2(Ω)

≤ C ‖ u ‖
L4(Ω)
‖ ∇ρ ‖

L4(Ω)
‖ β ‖

L2(Ω)
.

In order to complete the time discretization, we consider an Euler type method, which
is implicit with respect to the diffusive term and explicit with respect to the convective
term. In conclusion, we define the following finite volume scheme for the approximate
solution of (1)1.
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Initialization: Let ρ0
h = Πhρ0 ∈ Wh be approximation of the initial data ρ0, with

ρ0
h(Mi) =

1

|Ci|

∫
Ci
ρ0(x) dx, ∀ i ∈ J.

Time step n + 1: Given ρnh ∈ Wh and unh ∈ Vh, find ρn+1
h ∈ Wh such that, for each

ρ̄h ∈ Wh: (ρn+1
h − ρnh

∆t
, ρ̄h

)
h

+ bh
(
ρnh, ρ̄h,u

n
h

)
+ λ
(
∇ρn+1

h ,∇ρ̄h
)

= 0. (30)

2.4 Properties of the density.

In this paragraph, we are interested to introduce some importants properties of the dis-
crete density computed with the finite volume scheme (30). The existence and unique-
ness of the solution ρn+1

h of (30) follows from the well-known Lax-Milgram theorem.
Notice that (30) is equivalent to the following linear problem for the unknown vector
(ρn+1
Mi

)i∈J ∈ R#J :

ρn+1
Mi

+ λ
∆t

|Ci|
∑
j∈V(i)

aijρ
n+1
Mj

= ρnMi
− ∆t

|Ci|
∑
j∈V(i)

2∑
l=1

|Γij,l|Gijl

(
ρnMi

, ρnMj
,nij,l

)
, i ∈ J.

First of all, it is essential to ensure that the previous finite volume scheme preserves
the maximum principle. The following proposition clames the L∞ stability of (30) on
unstructured mesh verifying assumption (A2) under an appropriate CFL condition.

Proposition 2. Let u ∈ Vh be the velocity field satisfying the divergence free constraint
and let the initial density ρ0 which verifies (4). If ∆t and h satisfy the condition:

0 < ∆t ≤ c3

∣∣Ci∣∣∣∣∂Ci∣∣ , i ∈ J, (31)

where c3 > 0 is a constant independent of h and ∆t, then for each n, 0 ≤ n ≤ N − 1,
there exists a unique discrete solution ρn+1

h of finite volume scheme (30) which verifies
the pointwise estimates:

0 < m ≤ ρn+1
h ≤M < +∞, in Ω. (32)

The proof of Proposition 2 can be found in [14, 13]. Evidently, the stability condition
(10) and (17) imply (31).

Now, let ∆h :Wh →Wh be the linear operator defined as follows:

−
(
∆hρh, ρ̄h

)
h

=
(
∇ρh,∇ρ̄h

)
, ∀ ρ̄h ∈ Wh. (33)

Furthermore, we introduce the discrete Gagliardo-Nirenberg inequality for the density.
The proof of this inequality can be found in [18, Lemma 10], using also (26).
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Proposition 3. There exists C = C(Ω) > 0 (independent of h) such that, for any
ρh ∈ Wh, one has:

‖ ∇ρh ‖L4(Ω)
≤ C ‖ ∇ρh ‖1/2

L2(Ω)
‖ ∆hρh ‖1/2

L2(Ω)
. (34)

2.5 The hybrid finite volume-finite element scheme.

We aim to design a fully discrete numerical scheme in order to solve the Kazhikhov-
Smagulov model (1) by applying an hybrid scheme which combines finite volume and
finite element methods. Using a time splitting procedure, we are able to subdivide
the global problem into decoupled sub-problems with respect to ρ and

(
u, P

)
at each

time step. Concerning the spatial discretization, we use a finite volume scheme for the
convection-diffusion equation for ρ (which was described in Section 2.3), and mixed
finite elements for the linearized Navier-Stokes problem. The time discretization is ob-
tained considering a backward Euler type scheme which is implicit with respect to the
diffusion terms in both equations and explicit (resp. semi-implicit) with respect to the
convective term in the density (resp. velocity) equation. Then, we define the numerical
scheme as follows.

Initialization: Let
(
u0
h, ρ

0
h

)
∈ Vh ×Wh be approximations of

(
u0, ρ0

)
as h→ 0.

Time step n+ 1: Given
(
unh, ρ

n
h

)
∈ Vh ×Wh,

1. Find ρn+1
h ∈ Wh such that, for each ρ̄h ∈ Wh:(ρn+1

h − ρnh
∆t

, ρ̄h

)
h

+ bh
(
ρnh, ρ̄h,u

n
h

)
+ λ
(
∇ρn+1

h ,∇ρ̄h
)

= 0. (35)

2. Find
(
un+1
h , P n+1

h

)
∈ Vh × Yh such that, for each

(
ūh, P̄h

)
∈ Vh × Yh:

(
ρnh
un+1
h − unh

∆t
, ūh

)
+

1

2

(ρn+1
h − ρnh

∆t
un+1
h , ūh

)
+ a
(
ρn+1
h ,un+1

h , ūh
)

+ c
(
ρn+1
h unh − λ∇ρn+1

h ,un+1
h , ūh

)
=
(
P n+1
h ,∇ · ūh

)
+
(
ρn+1
h gn+1, ūh

)
,

(36)

(
∇ · un+1

h , P̄h
)

= 0, (37)

where we have used the following notation:

gn+1 =
1

∆t

∫ tn+1

tn
g(t) dt.

In (35)-(36)-(37) we have to solve at each time step two linear systems in order to
compute

(
ρn+1
h ,un+1

h , P n+1
h

)
: at first ρn+1

h as a finite volume approximation of the
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convection-diffusion equation, with unh the previous velocity, then
(
un+1
h , P n+1

h

)
as a

mixed finite element approximation of the Navier-Stokes equation with the divergence
free condition. On the contrary, in [18, 19, 3], the authors have used a finite element
approximation of the convection-diffusion equation, instead of the finite volume scheme
(35).

Then, using the discrete Laplacian operator ∆h defined by (33), the finite volume
scheme (35) can be rewritten as:(ρn+1

h − ρnh
∆t

, ρ̄h

)
h

+ bh
(
ρnh, ρ̄h,u

n
h

)
− λ
(
∆hρ

n+1
h , ρ̄h

)
h

= 0. (38)

In the next section, we shall see that the discrete problem (35)-(36)-(37) is well-posed,
that is the existence and uniqueness of a solution holds. Also, we will establish the dis-
crete version of the energy estimate for this hybrid scheme, independent of the discrete
parameters.

3 Uniform Estimates.

In this section energy estimates for the velocity and strong estimates for the density
will be obtained, using the discrete Laplacian of the density and involving the scheme
(38), in order to prove the global stability of the hybrid scheme (35)-(36)-(37).
First of all, we start to establish some useful inequalities for the hybrid scheme (35)-
(36)-(37).

Theorem 3.1. There exists a unique solution
(
ρn+1
h ,un+1

h , P n+1
h

)
of the discrete problem

(35)-(36)-(37) which verifies:

‖
√
ρn+1
h un+1

h ‖2

L2(Ω)
− ‖

√
ρnhu

n
h ‖2

L2(Ω)
+ ‖

√
ρnh
(
un+1
h − unh

)
‖2

L2(Ω)

+µ1∆t ‖ ∇un+1
h ‖2

L2(Ω)
≤ C1∆t ‖ gn+1 ‖2

L2(Ω)
,

(39)

‖ ∇ρn+1
h ‖2

L2(Ω)
− ‖ ∇ρnh ‖2

L2(Ω)
+ ‖ ∇(ρn+1

h − ρnh) ‖2

L2(Ω)
+λ ĉ2

1 ∆t ‖ ∆hρ
n+1
h ‖2

L2(Ω)

≤ C2∆t ‖ unh ‖2

L2(Ω)
‖ ∇unh ‖2

L2(Ω)
‖ ∇ρnh ‖2

L2(Ω)
+
λ ĉ2

1

2
∆t ‖ ∆hρ

n
h ‖2

L2(Ω)
,

(40)

where C1, C2, ĉ1 are positives constants independent of h, ∆t and n.

Proof. At first, we prove the inequality (39). We start taking ūh = 2∆t un+1
h in (36)

and P̄h = P n+1
h in (37):

2∆t
(
ρnh
un+1
h − unh

∆t
,un+1

h

)
+ ∆t

(ρn+1
h − ρnh

∆t
un+1
h ,un+1

h

)
+ 2∆t a

(
ρn+1
h ,un+1

h ,un+1
h

)
+ 2∆t c

(
ρn+1
h unh − λ∇ρn+1

h ,un+1
h ,un+1

h

)
= 2∆t

(
ρn+1
h gn+1,un+1

h

)
.

(41)
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First of all, we compute the first two terms of the above equality (41), using the identity
(a− b, 2a) =‖ a ‖2

L2(Ω)
− ‖ b ‖2

L2(Ω)
+ ‖ a− b ‖2

L2(Ω)
:

(
ρnh
un+1
h − unh

∆t
,un+1

h

)
+

1

2

(ρn+1
h − ρnh

∆t
un+1
h ,un+1

h

)
=

1

2

∫
Ω

ρnh|un+1
h |2 − 2ρnhu

n
h · un+1

h + ρn+1
h |un+1

h |2

∆t
dx

=
1

2

∫
Ω

ρn+1
h |un+1

h |2 − ρnh|unh|2

∆t
dx+

1

2

∫
Ω

ρnh
|un+1

h − unh|2

∆t
dx

=
1

2∆t

(
‖
√
ρn+1
h un+1

h ‖2

L2(Ω)
− ‖ √ρnhunh ‖2

L2(Ω)
+ ‖ √ρnh

(
un+1
h − unh

)
‖2

L2(Ω)

)
.

Then, using (8) and (9) in the third and fourth terms of (41), we obtain

‖
√
ρn+1
h un+1

h ‖2

L2(Ω)
− ‖

√
ρnhu

n
h ‖2

L2(Ω)
+ ‖

√
ρnh
(
un+1
h − unh

)
‖2

L2(Ω)

+ 2µ1∆t ‖ ∇un+1
h ‖2

L2(Ω)
≤ 2∆t

(
ρn+1
h gn+1,un+1

h

)
.

(42)

By applying the estimates (32), the Poincaré and Young inequalities, the last term of
(42) is estimate as follows:

2
(
ρn+1
h gn+1,un+1

h

)
≤ µ1 ‖ ∇un+1

h ‖2

L2(Ω)
+
M2

µ1

‖ gn+1 ‖2

L2(Ω)
,

and we get to (39).
Next, to prove (40), we consider (38). Taking ρ̄h = −∆t ∆hρ

n+1
h in (38), ρ̄h = ρn+1

h −ρnh
in (33) for ρh = ρn+1

h , we find that:

‖ ∇ρn+1
h ‖2

L2(Ω)
− ‖ ∇ρnh ‖2

L2(Ω)
+ ‖ ∇(ρn+1

h − ρnh) ‖2

L2(Ω)
+ 2λ∆t ‖ ∆hρ

n+1
h ‖h

= 2∆t bh
(
ρnh,∆hρ

n+1
h ,unh

)
:= I.

(43)

Taking into account the estimate (29), using the Young inequality and the discrete
Gagliardo-Nirenberg inequality (34), we estimate the right-hand side term I of (43) as
follows:

I ≤ C ∆t ‖ unh ‖L4(Ω)
‖ ∇ρnh ‖L4(Ω)

‖ ∆hρ
n+1
h ‖

L2(Ω)

≤ λ ĉ2
1∆t ‖ ∆hρ

n+1
h ‖2

L2(Ω)
+
C

λ
∆t ‖ unh ‖2

L4(Ω)
‖ ∇ρnh ‖2

L4(Ω)

≤ λ ĉ2
1∆t ‖ ∆hρ

n+1
h ‖2

L2(Ω)
+
C

λ
∆t ‖ unh ‖2

L4(Ω)
‖ ∇ρnh ‖L2(Ω)

‖ ∆hρ
n
h ‖L2(Ω)

. (44)

Finally, using the Young inequality and the 2D Gagliardo-Nirenberg inequality for the
velocity in (44), taking into account (26) in the left-hand side of (43), we obtain (40).
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Now, by virtue to show the global stability of scheme (35)-(36)-(37), it is easy to obtain,
from Theorem 3.1 and from the discrete Gronwall’s lemma, the following estimates for
the velocity and more regularity for the density.

Lemma 3.2. Let u0 ∈ V, ρ0 ∈ H1(Ω) satisfying (4) and g ∈ L2
(
0, T ;L2(Ω)

)
. Then,

the solution
(
ρn+1
h ,un+1

h

)
of the discrete problem (35)-(36)-(37) satisfies the following

estimates:

(i) max
0≤n≤N

‖ unh ‖L2(Ω)
≤ C, (ii) ∆t

N∑
n=0

‖ ∇unh ‖2

L2(Ω)
≤ C,

(iii)
N−1∑
n=0

‖ un+1
h − unh ‖2

L2(Ω)
≤ C,

(iv) max
0≤n≤N

(
‖ ρnh ‖L∞(Ω)

+ ‖ ∇ρnh ‖L2(Ω)

)
≤ C,

(v) λ∆t
N−1∑
n=0

‖ ∆hρ
n+1
h ‖2

L2(Ω)
≤ C, (vi)

N−1∑
n=0

‖ ∇(ρn+1
h − ρnh) ‖2

L2(Ω)
≤ C,

where C > 0 depends on the data
(
ρ0,u0, g, λ

)
but is independent of h and ∆t.

At last, as a consequence of Lemma 3.2, we deduce the following result:

Corollary 1. Under the assumptions of Lemma 3.2, the following estimate holds:

∆t
N∑
n=0

‖ ∇ρnh ‖4

L4(Ω)
≤ Cλ,

where Cλ > 0 is independent of h and ∆t.

Proof. This is a direct consequence result of Lemma 3.2 and Proposition 3.

4 Weak convergence.

In view of study the convergence of hybrid finite volume-finite element scheme (35)-
(36)-(37) towards the (unique) solution of (1)-(2)-(3), we define the following auxiliary
functions:

Definition 4.1. Let uh,∆t, ûh,∆t, ρh,∆t, ρ̂h,∆t, and Ph,∆t be the piecewise constant func-
tions in time taking the values un+1

h , unh, ρn+1
h , ρnh, and P n+1

h on (tn, tn+1], respectively.
Moreover, let ρ̃h,∆t ∈ C0

(
[0, T ];Wh

)
be the continuous piecewise linear function in time

defined as

ρ̃h,∆t(t) = ρn+1
h +

ρn+1
h − ρnh

∆t
(t− tn+1), tn < t ≤ tn+1.
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Then, using Lemma 3.2 and Corollary 1, we arrive at the following results (see [3, 19,
18]):

Lemma 4.2. The following estimates (independent of h and ∆t) hold:

{uh,∆t}h,∆t, {ûh,∆t}h,∆t are bounded in L∞
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1

0(Ω)
)
,

{ρh,∆t}h,∆t, {ρ̂h,∆t}h,∆t, {ρ̃h,∆t}h,∆t are bounded in L∞
(
0, T ;H1(Ω)

)
∩ L∞(QT ),

{∇ρh,∆t}h,∆t is bounded in L4
(
0, T ;L4(Ω)

)
.

Moreover,

‖ uh,∆t − ûh,∆t ‖2

L2(0,T ;L2(Ω))
≤ C ∆t and ‖ ρh,∆t − ρ̂h,∆t ‖2

L2(0,T ;H1(Ω))
≤ C ∆t. (45)

Next, by taking into account the previous estimates given in Lemma 4.2, there exist
subsequences (denoted in the same way) with the corresponding weak convergences
towards limit functions u, û, ρ, ρ̂. Thanks to (45), we have the identities of the limits
u = û and ρ = ρ̂. Therefore, we have the following result (for the proof see [19, Lemma
5.3]):

Lemma 4.3. There exists subsequences of {uh,∆t}h,∆t, {ûh,∆t}h,∆t, {ρh,∆t}h,∆t, {ρ̂h,∆t}h,∆t,
{ρ̃h,∆t}h,∆t (denoted in the same way) and limit functions u, ρ verifying the following
weak convergences, as (h,∆t)→ 0:

uh,∆t → u, ûh,∆t → u in

{
L2
(
0, T ;H1

0(Ω)
)
-weak,

L∞
(
0, T ;L2(Ω)

)
-weak∗,

ρh,∆t → ρ, ρ̂h,∆t → ρ, ρ̃h,∆t → ρ in

{
L∞
(
0, T ;H1(Ω)

)
-weak∗,

L∞(QT )-weak∗,
∇ρh,∆t → ∇ρ in L4

(
0, T ;L4(Ω)

)
-weak.

5 Strong convergence.

As usual in this type of nonlinear system, to obtain the convergence of the hybrid
scheme (35)-(36)-(37), we need strong convergence for the approximations in some
suitable space in order to make the passage to the limit in the nonlinear terms. To do
this, we must get the compactness for the discrete density and velocity.

At first, we establish a time derivative estimate for the discrete density.

Proposition 4. The following estimate holds:

∆t
N−1∑
n=0

‖ ρ
n+1
h − ρnh

∆t
‖4/3

L2(Ω)
≤ Cλ,

where Cλ > 0 is independent of h and ∆t, but depends on the data (ρ0,u0, g, λ).
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Proof. We start from (38), and using the Cauchy-Schwarz inequality, the estimate (29),
the Sobolev embedding H1

0 (Ω) ⊂ L4(Ω), and (26), we find that ∀ ρ̄h ∈ Wh,∣∣∣(ρn+1
h − ρnh

∆t
, ρ̄h

)
h

∣∣∣ ≤ (C ‖ ∇unh ‖L2(Ω)
‖ ∇ρnh ‖L4(Ω)

+λ ‖ ∆hρ
n+1
h ‖h

)
‖ ρ̄h ‖h . (46)

Having in mind that
ρn+1
h − ρnh

∆t
∈ Wh ⊂ L2(Ω) and using a continuity argument, we

deduce from (46) and (26) that

‖ ρ
n+1
h − ρnh

∆t
‖
L2(Ω)
≤ C ‖ ∇unh ‖L2(Ω)

‖ ∇ρnh ‖L4(Ω)
+λ ĉ2 ‖ ∆hρ

n+1
h ‖

L2(Ω)
. (47)

Using the Minkowsky inequality and summing up (47) for n = 0, . . . , N − 1, we get
promptly that

∆t
N−1∑
n=0

‖ ρ
n+1
h − ρnh

∆t
‖4/3

L2(Ω)
≤ C

(
∆t

N−1∑
n=0

‖ ∇unh ‖4/3

L2(Ω)
‖ ∇ρnh ‖4/3

L4(Ω)

+ λ4/3∆t
N−1∑
n=0

‖ ∆hρ
n+1
h ‖4/3

L2(Ω)

)
.

(48)

Finally, by applying the Hölder inequality, the estimates given by Lemma 3.2 and
Corollary 1, we get straightforwardly the desired result.

Corollary 2. As a consequence of Proposition 4, we deduce the following estimate:

‖ d

dt
ρ̃h,∆t ‖L4/3(0,T ;L2(Ω))≤ Cλ. (49)

From (49), one can deduce the following strong convergences for the density, thanks to
a compactness theorem of Aubin-Lions type (see [26, Chap.3, Theorem 2.1]),

ρh,∆t → ρ, ρ̂h,∆t → ρ in L2
(
0, T ;L2(Ω)

)
-strong as (h,∆t)→ 0. (50)

Furthermore, from Lemma 4.2 the discrete density is bounded in L∞(QT ), then one
also gets the strong convergence in Lp

(
0, T ;Lp(Ω)

)
for any p < ∞. For p = ∞, one

can deduce the convergence for at least a subsequence of ρh,∆t or ρ̂h,∆t to ρ for a.e.
(t, x) ∈ QT .
Now, we are going to estimate the fractional time derivative for the discrete velocity.

Proposition 5. The following estimate holds:∫ T−δ

0

‖
√
ρh,∆t(t+ δ)

(
uh,∆t(t+ δ)− uh,∆t(t)

)
‖2

L2(Ω)
dt ≤ Cλδ

1/2, ∀δ : 0 < δ < T,

with Cλ > 0 is independent of (h,∆t, δ), but depends on λ.
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Proof. We follow exactly the proof done in [18, Proposition 27], where [ρnh]T is replaced
by ρnh for each n = m, . . .m+ r and the equation [18, (66)] is replaced by

‖ ρmh − ρm+r
h ‖2

h= ∆t
m−1+r∑
n=m

(
bh
(
ρnh, ρ

m
h − ρm+r

h ,unh
)
− λ
(
∆hρ

n+1
h , ρmh − ρm+r

h

)
h

)
. (51)

If in the right side of (51) we use the Cauchy-Schwarz inequality, the estimates (29)
and (26), the estimates given by Lemma 3.2 and Corollary 1, then the estimate [18,
(67)] is replaced by

max
0≤m≤N−r

‖ ρmh − ρm+r
h ‖

L2(Ω)
≤ Cλ(r∆t)

1/2.

Finally, based on the previous result and thanks to a compactness theorems of Aubin-
Lions type (see [25, Theorem 5]), we obtain the strong convergences for the velocity.

Proposition 6. One has the following convergences, as (h,∆t)→ 0:

uh,∆t → u, ûh,∆t → u in L2
(
0, T ;L2(Ω)

)
-strong. (52)

6 Passing to the limit.

The final step to complete this study is to employ the convergence results obtained
throughout this work in order to pass to the limit in the discrete problem. Our goal
is to show that the approximate solution

(
ρn+1
h ,un+1

h

)
, obtained with the aid of the

hybrid finite volume-finite element scheme (35)-(36)-(37), converges in some sense to
the weak solution

(
ρ,u

)
of the Kazhikhov-Smagulov model (1)-(2)-(3), when the space

and time parameters (h,∆t) tend to zero.

In the case of a convection-diffusion equation, the passage to the limit for the finite
volume scheme (35) (as (h,∆t) → 0) has been done in details by Feistauer et al. (see
[14, section E]). But in our case, the velocity in the convective part of (7)1 depends by
(h,∆t). To handle this difficulty, we use the following strong-weak convergence result.

Lemma 6.1. Let (vn)n ∈ L2(0, T ;L2(Ω)) and (ηn)n ∈ L2(0, T ;H1(Ω)) such that vn →
v in L2(0, T ;L2(Ω))-strong, and ηn → η in L2(0, T,H1(Ω))-weak, then for all ϕ ∈
C1([0, T ];H1(Ω)) such that ϕ(T, .) = 0, one has∫ T

0

∫
Ω

vn · ∇ηn ϕdxdt −→
∫ T

0

∫
Ω

v · ∇η ϕ dxdt when n→∞. (53)
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Thanks to the previous convergence results, we can prove that the limit function ρ sat-
isfies the weak formulation of the convection-diffusion equation (7)1 in the distribution
sense on (0, T ).

We focus now, on the passing to the limit in the velocity scheme (36)-(37). In order
to eliminate the discrete pressure, we proceed as in [18], considering adequate test
functions. Let v ∈ C1

(
[0, T ]; C∞c (Ω)

)
be a free divergence function, such that ∇ · v = 0

and v(T, .) = 0. We define vnh the projection of v(tn) (by a discrete Stokes problem)
onto Vh. Let vh,∆t ∈ L∞

(
0, T ; Vh

)
be the piecewise constant function taking the

value vn+1
h on (tn, tn+1] and let ṽh,∆t ∈ C0

(
[0, T ]; Vh

)
be the continuous piecewise linear

function, such that ṽh,∆t(t
n) = vnh. Then, as (h,∆t)→ 0, one has:

vh,∆t → v in L∞
(
0, T ; H1

0(Ω)
)
,

ṽh,∆t → v in W 1,∞(0, T ; H1
0(Ω)

)
.

Let us write the time derivative of the discrete equation (36) in the conservative form.

By adding at the right and left-hand sides of (36) the term
1

2

(ρn+1
h − ρnh

∆t
un+1
h , ūh

)
, we

obtain

(ρn+1
h un+1

h − ρnhunh
∆t

, ūh

)
+ a
(
ρn+1
h ,un+1

h , ūh
)

+ c
(
ρn+1
h unh − λ∇ρn+1

h ,un+1
h , ūh

)
=
(
P n+1
h ,∇ · ūh

)
+
(
ρn+1
h gn+1, ūh

)
+

1

2

(ρn+1
h − ρnh

∆t
un+1
h , ūh

)
.

(54)

Next, taking ūh = vn+1
h as test function in (54), multiplying by ∆t, summing for

n = 0, . . . , N − 1, and using the following discrete integration by parts in time

N−1∑
n=0

(
ρn+1
h un+1

h − ρnhunh,vn+1
h

)
=
(
ρNh u

N
h ,v

N
h

)
−

N−1∑
n=0

(
ρnhu

n
h,v

n+1
h − vnh

)
−
(
ρ0
hu

0
h,v

0
h

)
,

with vNh = 0 (since v(T, .) = 0), we arrive at the following conservative form:

−∆t
N−1∑
n=0

(
ρnhu

n
h,
vn+1
h − vnh

∆t

)
−
(
ρ0
hu

0
h,v

0
h

)
+ ∆t

N−1∑
n=0

a
(
ρn+1
h ,un+1

h ,vn+1
h

)
+∆t

N−1∑
n=0

c
(
ρn+1
h unh − λ∇ρn+1

h ,un+1
h ,vn+1

h

)
= ∆t

N−1∑
n=0

(
ρn+1
h gn+1,vn+1

h

)
+

∆t

2

N−1∑
n=0

(ρn+1
h − ρnh

∆t
un+1
h ,vn+1

h

)
.
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Then, by using Definition 4.1, we obtain the following variational formulation:

−
∫ T

0

(
ρ̂h,∆tûh,∆t,

∂

∂t
ṽh,∆t

)
dt−

(
ρ0
hu

0
h,v

0
h

)
+

∫ T

0

a
(
ρh,∆t,uh,∆t,vh,∆t

)
dt

+

∫ T

0

c
(
ρh,∆tûh,∆t − λ∇ρh,∆t,uh,∆t,vh,∆t

)
dt

=

∫ T

0

(
ρh,∆tg∆t,vh,∆t

)
dt+

1

2

∫ T

0

( ∂
∂t
ρ̃h,∆tuh,∆t,vh,∆t

)
dt.

(55)

From the variational formulation (55) of the discrete velocity equation (36), we are
able to pass to the limit in a standard manner thanks to the convergence results ob-
tained previously. Then, the limit function (ρ,u) satisfies the weak formulation (7) of
the Kazhikhov-Smagulov model in the distribution sense on (0, T ). Consequently, we
conclude the proof of Theorem 1.2.
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