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Abstract

In this paper, we construct a fully discrete numerical scheme for approxi-
mating a two-dimensional multiphasic incompressible fluid model, also called the
Kazhikhov-Smagulov model. We use a first-order time discretization and a split-
ting in time to allow us the construction of an hybrid scheme which combines a
Finite Volume and a Finite Element method. Consequently, at each time step,
one only needs to solve two decoupled problems, the first one for the density
and the second one for the velocity and pressure. We will prove the stability of
the scheme and the convergence towards the global in time weak solution of the
model.
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1 Introduction.

1.1 The model.

The Kazhikhov-Smagulov model, which can be deduced from the compressible Navier-
Stokes system, describes the motion of a viscous, incompressible mixture of two fluids
having different densities. The mixture is subject to a diffusion effect modeled by the
Fick’s law, which relates the velocity to the derivatives of the density. We assume that
the fluid fills the domain Q C R?, a bounded open set with sufficiently regular boundary
I'. We denote by n the unit outward normal on the boundary I" and by [0, 7] the time
interval, for T > 0. With the notations Q. = (0,7) xQ and ¥ = (0,7") xI', we consider
the following model in Q.

Op + div (pu) = AAp,
p(Ou+ (w-V)u) = AM(Vp- Vu + Adiv (pVu') — pAu+ VP =pg, (1)

divu = 0.

The unknowns are p : @, — R the density of the fluid, u: 9, — R? the incompressible
velocity field and P : Q. — R the pressure of the fluid (a modified pressure). Moreover,
g stands for the gravity acceleration (but it can include further external forces) and the
parameters A > 0 and g > 0 represent mass diffusion and dynamic viscosity coefficients,
respectively (which are assumed to be constant). Given a vector a € R? we set
diva = 25:1 Or,a;; given a matrix valued function A, we denote div(A) the vector
having components Z;l:l 0z;Aij. This model was derived and analyzed for the first
time by Kazhikhov and Smagulov [21].

We complete (1) with the boundary conditions:

S_Z(t,a;) =0, wu(t,x)=0, (t,z) € &, (2)

and the initial conditions:
p(0,2) = po(@), w(0,x) =uplw), TED, (3)

where pg : Q — R and ug : Q — R? are given functions, with divug = 0. Throughout
this paper, we assume the hypothesis:

0<m<py(xr) <M< 400, x€ll (4)



1.2 Functional setup of the Kazhikhov-Smagulov model.

Let us introduce the following functional spaces (see for instance [22], [26] for their
properties):

V={ueDQ)?: divu=0inQ},

V ={ueHiQ): dive=0inQ},

H={uel’(Q): divu=0inQ, u-n=00nT},

LE(Q) = {p € L*(Q): /Qp(w) dx = o} :

We recall that V and H are the closures of V in Hy(2) and L?(2) respectively and
(,.) denote the scalar product in L*(Q2) or L*(Q2). In V, the norms || u |z (q) and
| V. || 2 are equivalent.

Definition 1.1. A pair of functions (p, u) is called a weak solution of problem (1)-(2)-
(3) on Q if and only if for any 7' > 0 the following assumptions are satisfied:
1. we L>(0,T;H) N L*(0,T;V),
pe L*(0,T;H') N L>(Q,),
0<m<pt,e) <M < 400, ae. (t,x) € Q..

2. For all ¢ € C1([0,T]; H'(Q)) such that o(T,.) = 0, one has:
T
| {w - V00) s MT0.V0) - (o) it = (ms). )
0
3. For all ¢ € C*([0,T); V) such that ¢(T,.) = 0, one has:

/ { = (w000 + ((pu = AV) - V)@) + u(Vu, Vo) = A(pVu”, Vo) ft
’ T (6)
= /0 (g, @)dt + (pouo, 9(0)).

Moreover, it is convenient to write the variational formulation of the problem. Let us
assume that (p,u, P) is a sufficiently regular solution of (1)-(2)-(3). Multiplying the
equations (1) respectively by arbitrary test functions (p, u, p) € H'(Q) x H5(Q) x L2(2),
integrating over {2 and using Green’s theorem, adding to the momentum equation the
density equation where we choose p = %’u, -u and we integrate by parts the convective
and diffusive terms, finally we obtain the following formulation for a.e. t € (0,7):

(d
7 (p.2) +0(p, pu) + X (Vp,Vp) =0, Vp € H'(Q),
ou _ 1/0p _ _ _ _
<pa, u) + 3 (Eu, u) + a(p, u, 'u,) + c(pu — AVp, u, u) + d(u, P) (7)
= (g, ), va € Hy(9),
( d(u,p) =0, Vp € L3(Q),




where we have used the following notations:

° b(., . .), a(., . ) and c(., . ) are the trilinear forms defined by:

b(p, B,u) = / div(pu) Bdx, Vpe H'(Q)NLX(), V3 H'(Q),YVu eV,

a(p,u,v) = u(Vu,Vv) — )\/ pVul : Vode, Vp € H'(Q),Yu,v € H5(Q),
Q

c(w,u,'v) = % [((w . V)’u,,'v) — ((w . V)v,u)], Vw € V,Yu,v € Hj(Q),

° d(., ) is the bilinear form defined by:

d(v,p) = —(p,divv), Vo € Hy(Q),Vp € L3().

The trilinear forms verify the following properties of continuity, coercivity and antisym-
metric:

a(p,u,u) > i || Vu ||i2m)7 with gy = p— AM >0, Yu € Hy(Q), (8)
a(p1,0) < C w0l Vu, v € HY(9),
(@,18,0) < C 1@ [l |8 [y 19 100> o0 € L), Var, 0 € HY(Q),

(w u 'v) = (w v u) Vw € V,Yu,v € Hj(9),
c(w,u,u) = Vw € V,Yu € Hy(Q). 9)

1.3 Known results.

Many authors treat the mathematical analysis of the Kazhikhov-Smagulov model in
three-dimensional domains. We can refer for instance to [21, 1, 2]. In [21, 1], under
assumption (4) and if the constants A, u, m, M are such that A\ < 2u(M — m)~!, the
authors prove the existence of a weak solution of the problem (1)-(2)-(3), when u, € H,
po € H'(Q) and g € L*(0,7;L*(Q2)). In [2], the existence and uniqueness of a weak
solution of (1)-(2)-(3) is proved under assumption (4) but without any restriction on the
constant . In [23], under de condition A/p small enough, the existence and uniqueness
of the global solution is proved in the two-dimensional case. Moreover, it is showed
the convergence (as A — 0) towards a weak solution of the Navier-Stokes system for
nonhomogeneous fluids in two- and three-dimensional domains. Recently, in [4, 5] the
authors prove the existence of a regular (resp. strong) solution of a two-dimensional
generalized Kazhikhov-Smagulov model.

Concerning the numerical study, there exists few numerical schemes in order to approx-
imate the problem (1). Some adequate choices can be found in [17, 18, 19, 20, 3], where
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the authors propose a fully discrete numerical scheme consists of C° finite element spa-
tial approximation for all unknowns (density, velocity and pressure) combined with the
backward Euler method in time. In [18] the authors obtain unconditional stability and
convergence results for the two-dimensional case, by applying a truncating operator in
the terms depending on the density. A conditionally stable and convergent numerical
scheme is obtained in [19] for the three-dimensional case. In this work, the authors
prove an approximate maximum principle bounding by excess and defect the discrete
density with respect to the upper and lower bound of the initial density. Also, they
study the asymptotic behavior of the numerical scheme as the diffusion parameter A
goes to zero, obtaining convergence towards a weak solution of the density-dependent
Navier-Stokes problem. In [20], under hypotheses of regularity for the data and the
exact solution, the authors present optimal error estimates of a linearized fully discrete
scheme for the three-dimensional case. For the complete three-dimensional Kazhikhov-
Smagulov model with O()\?) terms added in (1),, the existence of regular solutions and
some error estimates are given in [17], by assuming smallness conditions on the data.
An extension of the results in [19] for the complete model with O(A?) terms is obtained
in [3], where the treatment of the O(A\?) terms requires special attention. Finally, an-
other numerical scheme is developed in [12] by using a backward Euler scheme together
with the method of characteristics for the volume fraction of the denser fluid, and a
mixed finite element method in space for velocity and pressure.

The finite volume schemes are widely used for the numerical resolution of linear or
non-linear conservation laws (see [13, 24, 27| for instance). The discrete maximum prin-
ciple, implying the L*>-stability of a numerical scheme, is very important in the study
of conservation laws. Indeed, the maximum principle is the first fundamental physical
property of the problem that a suitable numerical scheme must faithfully reproduce. In
[14], a convergence result for the numerical solution of a nonlinear convection-diffusion
problem was investigated. The authors use a combined finite volume-finite element
scheme, where the nonlinear convective terms are discretized by a monotone finite vol-
ume scheme and the diffusion term is approximated using conforming piecewise linear
finite elements. In [15], the authors pursue this approach. The discrete maximum prin-
ciple is necessary and it requires the use of triangulations of a weakly acute type. Under
this assumption, the analysis of the error estimates of this combined finite volume-finite
element scheme is achieved. Let us mention also the review paper by Droniou [11]
which concerns various finite volume methods for solving diffusion equation on general
meshes. The development of an hybrid finite volume-finite element scheme was firstly
introduced in [7] and used in [6], in order to compute the numerical solution of the
variable density incompressible Navier-Stokes system. Using a splitting in time, this
hybrid scheme combines a finite volume method to discretize the density equation and
a mixed finite element method to compute the velocity field and the pressure. In [6],
the L*-stability was obtained under an explicit CFL condition by introducing a second
order finite volume scheme with multislope gradient reconstruction in order to solve
transport equation on unstructured meshes with local refinements. Recently, the hy-



brid finite volume-finite element scheme was extended in [8] to the numerical simulation
of powder—snow avalanches by solving the two-dimensional model (1).

1.4 Main results.

The objective of this work is to study the Kazhikhov-Smagulov model (1) in a fully
discrete setting by coupling finite volumes to approximate the density and finite ele-
ments to approximate the velocity and pressure. Let h > 0, we denote by 7T, a parti-
tion of 2 composed of conforming and isotropic triangles. We take W), x V;, x V), C
HY(Q) x Hy(Q) x L2(9) the finite elements spaces associated to density, velocity and
pressure, respectively. In order to simplify the notations, we restrict our study to the
case of a uniform time discretization of [0, 77, but all the results given in this work can
be extended without any difficulty to the case of a general time discretization. Let N
be a positive integer, then we define At = T'/N the time step and (1" = nAt)N_; the
partition of [0,7]. Moreover, we consider the following stability condition:

0< At < cyh, (10)

where ¢y > 0 is a constant which is independent of h and At, but depends on the
velocity field w € Vj,. Obviously, (10) is a typical CFL condition often used for the
numerical solution of conservation laws (see [24]). Let (p,u}) € W), x V be the
approximations of density and velocity at time ¢". We denote by pj a: and uj a¢ the
piecewise constant functions in time taking values p} and w} on ("', ¢"], respectively.
Thus, the following main result will be proved:

Theorem 1.2. There exists a convergent subsequence of (ph,At, Uh,At) (denoted in the
same way) as (h, At) — 0 towards the (unique) weak solution (p,u) of problem (1)-
(2)-(3) in the sense of Definition 1.1, when yu— AM > 0 and (10) are verified.

The outline of the paper is organized as follows. In section 2 we describe the hybrid
finite volume-finite element scheme, in particular we introduce the finite volume scheme
and its properties in the vertex-based framework. In section 3 we study the stability
of the numerical scheme. Then, we deduce the weak and weak+* convergences results in
section 4. Afterwards, we establish the compactness arguments for the discrete density
and velocity that provide the strong convergence results in section 5. Finally, section 6
is devoted to the passage to the limit, concluding the proof of Theorem 1.2.

2 Description of the numerical schemes.

This section is devoted to the development of an hybrid finite volume-finite element
scheme. We recall that finite volume schemes are widely used for the numerical solution
of conservation laws (see [13]), whereas finite element methods are naturally applied
to approximate the solution of diffusive problems (i.e. elliptic or parabolic problems,
see [10, 16]). The idea of combined finite volume and finite element methods was used

6



in various works concerning numerical computation of conservation laws. The idea
behind this approach is to match the finite volume discretization of convective terms
with the finite element discretization of diffusive terms. For the theoretical analysis of
these combined schemes we refer to [15] and references therein. In our case, the hybrid
finite volume-finite element scheme combines a finite volume approach to approximate
the mass conservation equation and a finite element method to solve the momentum
equation and the divergence free condition.

At first, we present the triangular mesh of €2, the discrete spaces associated to den-
sity, velocity and pressure, and we set our assumptions on the discretization of the
Kazhikhov-Smagulov model (1). Second, we focus on the development of the finite
volume scheme to approximate the convection-diffusion equation, and we introduce the
properties of the discrete density. Finally, we define the fully discrete scheme by us-
ing finite volume and finite element methods to approximate all unknowns (density,
velocity, pressure) of Kazhikhov-Smagulov model.

2.1 Mesh definitions.

The discretization of the Kazhikhov-Smagulov model (1) will be carried out on an
unstructured triangular mesh. Let h > 0, we denote by 7, a partition of the polygonal
domain 2 composed of conforming and isotropic triangles. The triangulation 7 is
called a basic (or primal) mesh. By h(T) we denote the length of the longest side of
the triangle T' € T, and put

h = max h(T).

TeT,

We suppose the following assumptions for the triangulations {7 }n~o of Q [15, 14]:
(A1) Let {7Tn}n>0 be a regular family of triangulations of €.

(A2) The triangulations 7, are of weakly acute type. In other words, the magnitude of
all angles of all T € T}, is less than or equal to 7/2.

(A3) The triangulations 7}, verify the following inverse assumption:
h<ch(T), VTET,

where ¢ > 0 is constant independent of h.

According to [10, Chap.3, § 3.1, Remark 3.1.3], assumptions (Al) and (A3) imply the
existence of a constant ¢ > 0 independent of A, such that

R*<cl|T|, VTET,, (11)

where |T'| = area of T € Ty,
Now, let M, = {M;,i € J} be the set of all vertices of the triangulation T, (J is
a suitable index set, of cardinality #.J). The set &, of the edges of 7, is made of
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straight segments [AM;M;] joining two vertices of Mj,. Let us construct the dual mesh
Cn = {C;,i € J} over the basic mesh 7, which defines a second partition of 2. The
dual finite volume C; associated with each vertex M; € My, is a closed polygon obtained
in the following way: we join the barycenter of every triangle 7' € T, which share the
vertex M; with the middle point of every side of T' containing M;. If M; € M, N 0S,
then we complete the boundary of C; by the segments joining M; with the middle point
of boundary sides that contain M;. C; is often called the vertex-based control volume
around the node M;. Accordingly, we have

Jr=a=Jc. (12)

TeTh icJ

Moreover, if we denote |C;| = area of C; € Cp,, then, we have

er= > 2 (13)

T,M;€T

For i e J, let V(i) = {j € J, C, is a neighbor of C;}. Let i € J and j € V(i), we define
by T;;1 and T} 5 two neighboring triangles of 7, sharing the common edge [M;M;]. We
denote By (resp. Bs) the barycenter of T;;; (resp. T;;2) and M;; the middle of [M;M;].
Then, we put

Fij,l = [MUBl] and Fij,? = [MZ]BQ}

It M; € Mj N oS), we have only one neighboring triangle of 7, sharing the common
edge [M;M;]. In this case, we denote B; the barycenter of T;; and B, the middle of
[MIM]] Then, we put Fmg = [MIBQ] C of2.

We denote 11 (resp. m;;2) the unit outward normal to C; along I';;; (resp. I';;2) and
;i1 (resp. |I'ij2|) the length of the segment I';;1 (resp. I';;2). For every C; € Cy, the
boundary of C; is

o¢; = |J (T UTya). (14)

JEV(3)

Obviously, we have

h
’Fij,l| S 5, for | = 1, 2. (15)

Consequently, there exists a constant ¢; > 0, such that
0C;| < c1h, Vie . (16)
Also, (13), (11) and (16) imply the existence of a constant ¢ > 0, such that

4
c

> eoh, Vie (17)



2.2 Discrete spaces.

In order to combine the efficiency of the finite volume method for the convection-
diffusion equation and the finite element method for the momentum equation, we need
to define some discrete spaces associated to the unknowns.

Let us define the following discrete spaces for the approximation of the density over the
meshes 7;, and Cy:

Wy = {5hec°(s‘z); Bhy, € Py VTEE} c HY(Q), (18)
Z, = {n € L*(Q); nc, = constant V¥ C; € C,} C L*(Q). (19)

Given a vector (S, )ics € R#/ there exists a unique II;3 € W, and a unique L3 € Z;,
such that

As a consequence, there are one-to-one mappings between R*/. W, and Z,. Here,
I, : R#*/ — W, denotes the Lagrange interpolation operator and L, : C°(Q) — Z, is
the so-called lumping operator. Obviously, 1L, is a continuous linear operator.

For the approximations of velocity and pressure, there are several choices to define the
mixed finite element spaces V;, C Hj(Q2) and ), C L2(Q2) verifying the Ladyshenskaya-
Babuska-Brezzi (LBB) condition (also called ”inf-sup” condition) [16]. Following [7, 8],
we choose the Taylor-Hood element (Py x Py), but others choices are also possibles (the
mini-element P;-bubble x P; for instance). Then

Vh = {’Uh € CO(Q>, Vh|p € PQ VT e ﬁl} N Hé(Q), (21)
Yh = Wi N Lg(Q). (22)
Throughout this work, we will suppose the following hypotheses [10, 3, 18, 19]:

(H1) Regularity for the data:
Let ug € V, po € H'(Q) with 0 < m < py < M in Q and g € L*(0,T;L*(2)).

(H2) The triangulation 7, of  and the finite elements space W, verify the following
inverse inequality:

1Von oy < OBl Von € Wi (23)

L2(Q) L2(Q)’

(H3) Inf-sup condition:
There exists a constant C' > 0 independent of h, such that

inf sup d(vh,ph)
PrEVR vReVL\{0} H Ph HLQ(Q>H Vvh HLQ(Q)

> C.



2.3 The finite volume scheme.

Here, we design the finite volume scheme for solving the convection-diffusion equation
(1), on the dual mesh C,. With a view to obtain the numerical scheme corresponding
to (7),, we will denote by (.,.), (resp. | . [) the approximation of the scalar product
(resp. norm) on L?(Q), such that

(B1, B2)n = /Hh(ﬁl By) de, P, B2 € 60(9)7

e . - (24)
181 = (8,8) 3 e Q).

Also, the approximation (., .)h can be defined with the aid of a numerical integration
using the vertices of 1" € 7T}, as integration points:

(B1, B2)n = /Lh(ﬂl)ﬂdh(52) dz, P, B2 € 60(0)7

0 B (25)
| B1n = || LuB |22, BeC’(Q).

In particular, (24) and (25) correspond to the mass lumping technique applied to the
mass matrix. Then, there exists constants ¢;, ¢ > 0 such that Vh € (0, hy),

el Bl SN BN e Bllag VB € Wi (26)

For the bilinear form associated to the laplacian, we consider the control volume finite
element (CVFE) scheme (see [13]). We denote by (¢;);cs the canonical basis of W),
characterized by

¢i(M;) = 0,5, Vield, VM;eM,.

The following geometrical properties hold:
/ di(x) de = 3|C;|, Vie Y Véi(m) =0, forae xeQ
@ ieJ

For all [M;, M;| € &, we define the coeflicient

a;j = —/ Voi(x) - Vo;(x) de = aj.
Q

Then, we obtain that

—Qi; = ZCLZ']' > 0.

J#i
As consequence, Vp, 8 € W), we have

(V9. 98) = [ Vol@)- Va@) do= 3 aylnp)5i- )

[Mi,Mj]Ggh
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Using assumption (A2) on the triangulation 75, we have
Qij > 0, V[MZ, M]] € gh,

which is a necessary condition for guaranteeing the (discrete) maximum principle of the
finite volume scheme.

Moreover, we will construct an approximation b, of the trilinear form b by using the
finite volume approach, according to Feistauer et al. ideas [14, 15]. We assume that the
velocity field w € Vj, is a given function which satisfies the divergence free constraint.
Then, using (12), (20), Green’s theorem and (14), we write for p, 8 € W,

/div(pu) g dxr ~ /div(pu) L,38 dx
)

= Z/ d1v pu LpB dx

1eJ
= ZBM / div(pu) dx
1eJ
~ Y b, / plt @)ult, @) - n(@) do
ieJ
:ZBMZZ/ (t,z)u(t,x) - n;j; do
ieJ  jev() =1 7 i

Finally, we characterize the approximation b, as follows. Given u € V,, we define
Vp, 6 S Wh7

b ZBM Z Z ’FZJ’Z|GUZ PM;y PMy, Tij, l) (27)

ieJ JeV(i)

where we have introduced in (27) an upstream numerical flux G,j, as defined in [7, 6].
More specifically, we introduce the cell-averaged velocity u* defined for each uw € Vy:

1
VT €Ty, u*T:m/u(t,a:) dx.
T

As shown numerically in [7], the choice of the cell-averaged velocity u* is a necessary
condition in order to ensure the divergence free constraint at the discrete level. Then,

for 1 =1,2,i € J,j € V(i), the constant values uj;; defined on 9C; are such that

ur on I,
'u,*(a:) = { u?’l on Fjé Vo € (9CZ = U (FijJ U Fij,g).
17,2 1],49 FEV(i)

With the value of w};, at hand, a simple upwind finite volume scheme lead to

* 3 *
P1 WS T if uy,c Mijy > 0,
Giji (1, 2, i) = . . - (28)
p2 uy Mgy itugng, < 0.
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Obviously, upwind flux such as (28) restricts the method to first order accuracy. To
improve the accuracy, more general fluxes can be designed based on MUSCL strategies.
A multislope method on general unstructured dual meshes was introduced in [6], where
the L stability for the convection equation was established. The discrete maximum
principle can also be proved for the convection-diffusion equation. As for first order
methods, it requires the assumption (A2) on the triangulation 7y, (see [9]).

With the numerical flux (28), some properties are ensured, such as the consistency,
conservativity and monotonicity of the numerical flux. Also, G;;,(p1, p2, 14j;) is locally
Lipschitz-continuous with respect to py, pa:

Gijl(pla P2, nij,l) - Gijz(piap;nij,l)‘ < ‘u:j,l| (‘pl - pﬂ + ‘PQ - IO;D
Thereafter, we use the following estimate of the approximation by,.

Proposition 1. There exists a constant C > 0, such that for p, 3 € Wy, and u € Vy,
we have

61(p, B.w) | < C i | V0 N B 1o (20)

Proof. Let p, 8 € W), and u € V. We write

bh(paﬁa“’) - Z/BM Z Z|F2jl|Gl]l pMﬂpMJanul)

icJ JEV(3) =1
= Bu, > Z!FﬂﬂGm (Padys PAL s i) -
jel iev() =1

Using the conservativity of the numerical flux G;;, and the relations I'j;; = I';;;, 5, =
—Mn;j;;, we obtain

bh(p767 ZBM Z Z|F2]l‘szl PM7PM anljl)
e JEV(i)
Then, we find that
1 2
bup: B, u) = 3 o> > Wil G (oass oty maa) [Bar, = B,
ed jev(i) =1
The numerical flux is consistent, then for any constant function p, we have
2
Z Z 03501 Giji (Pads pazy, Mija) = 0.
JeV(i) I=1
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Then, we write

p»ﬁa Z Z Z’Fm,l|< i1 pMapMJ7nz]l) Gijl (pMZ')pMianij,l))

zeJ JEV(i
(B, — Bagy ) -

Let I =1,2,if i € J and j € V(i), then the segment [M;M;] € &, is the common side
of triangles T;;; € Ty, such that I';;; C T3, (see Section 2.1). We have

W h
| MM ||< R, [Tyl < 5
‘pMz_pM]‘ Sh/ |Vp‘Tz],l|7
‘ﬁM’i _BMJ" S h |Vﬁ|Tij,l|'

Moreover, the numerical flux Gj; is locally Lipschitz-continuous, then we obtain

1 2
‘bh(p,ﬁ,u)’ S ZZ Z Zh |uz*gl‘ ’pMi_pMj‘ ’/BMi_/BMJ"

ied jev(i) I=1

S _Z Z Zh?) "u’zgl‘ |Vp‘Tle| |Vﬁ‘Twl|
i€J jeV(i)

<C Z h? |’U,|T |vp|T| |VB|T|7
TeTh

taking into account that each triangle 7' € 7, appears in the above sum as some 7;;;
at most six times. Finally, in virtue of (11), the generalized Hélder inequality and the
inverse inequality (23), we arrive at

|bu(p, B,w)| < Ch YT [ul] Vo] VB,

TeT,
ch / | [Vl V5| da
(9]

O || u ||L4(Q)|| Vp ”L4(SZ)|| /8 ||L2($Z) :

IA A

In order to complete the time discretization, we consider an Euler type method, which
is implicit with respect to the diffusive term and explicit with respect to the convective
term. In conclusion, we define the following finite volume scheme for the approximate
solution of (1),.
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Initialization: Let pY) = II,po € W, be approximation of the initial data py, with

1
ph(M;) = —/ po(x) dxz, Vi€ J
ICil Je,

Time step n + 1: Given p! € W), and u} € Vy, find p}"! € W), such that, for each

Pn € Wh:
TL+1_ n

(PP ), + b (o i) + A (V0 V) = 0. (30)

2.4 Properties of the density.

In this paragraph, we are interested to introduce some importants properties of the dis-
crete density computed with the finite volume scheme (30). The existence and unique-
ness of the solution p}™ of (30) follows from the well-known Lax-Milgram theorem.
Notice that (30) is equivalent to the following linear problem for the unknown vector

(03 )ies € R#:

Z a”pn—i—l _ n At

jGV(z ]EV

n+1

ij,l ’le pM 7pM aanl) 1€ J.

First of all, it is essential to ensure that the previous finite volume scheme preserves
the maximum principle. The following proposition clames the L> stability of (30) on
unstructured mesh verifying assumption (A2) under an appropriate CFL condition.

Proposition 2. Let u € V), be the velocity field satisfying the divergence free constraint
and let the initial density po which verifies (4). If At and h satisfy the condition:

0< At <c3 7, i€ J, (31)

where c3 > 0 is a constant independent of h and At, then for each n, 0 <n < N — 1,
there exists a unique discrete solution pi'™' of finite volume scheme (30) which verifies
the pointwise estimates:

0<m<pptt <M < +oo, in €. (32)

The proof of Proposition 2 can be found in [14, 13]|. Evidently, the stability condition
(10) and (17) imply (31).

Now, let Ay, : W, — W, be the linear operator defined as follows:
—(Anpn, ﬁh)h = (Von, Von), YV pn € Wh,. (33)

Furthermore, we introduce the discrete Gagliardo-Nirenberg inequality for the density.
The proof of this inequality can be found in [18, Lemma 10], using also (26).

14



Proposition 3. There exists C = C(Q) > 0 (independent of h) such that, for any
pn € Wy, one has:

1Von oy < C I Vo 1221 Anpn (112 (34)

L4 L2(Q) L2(Q)

2.5 The hybrid finite volume-finite element scheme.

We aim to design a fully discrete numerical scheme in order to solve the Kazhikhov-
Smagulov model (1) by applying an hybrid scheme which combines finite volume and
finite element methods. Using a time splitting procedure, we are able to subdivide
the global problem into decoupled sub-problems with respect to p and (u, P) at each
time step. Concerning the spatial discretization, we use a finite volume scheme for the
convection-diffusion equation for p (which was described in Section 2.3), and mixed
finite elements for the linearized Navier-Stokes problem. The time discretization is ob-
tained considering a backward Euler type scheme which is implicit with respect to the
diffusion terms in both equations and explicit (resp. semi-implicit) with respect to the
convective term in the density (resp. velocity) equation. Then, we define the numerical
scheme as follows.

Initialization: Let (u}, ) € V}, x W), be approximations of (g, po) as h — 0.

Time step n + 1: Given (uﬁ,pﬁ) €V, x W,

1. Find p;*! € W), such that, for each pj, € W

ntl _ n
(ph At & ) ﬁh>h + bh (p27 Ph U’Z) + )‘(VPZ+1> Vﬁh) =0. (35)

2. Find (uﬁ“, P;;H) € V;, X Y}, such that, for each ('&h, Ph) eV, X Wy

un+1 - un 1 n+l _ n
(=) + 5 (P ) + e ) (36)
+ C(PZ—HUZ _ )\va+17 UZ+1, ﬂh) — (P;ll-l-l’ V- ,a,h) + (pz—l-lgn—i-l7 ﬂh);
(V-upt, B,) =0, (37)

where we have used the following notation:

n+1
1 t

= — t) dt.
g A, 99

In (35)-(36)-(37) we have to solve at each time step two linear systems in order to

compute (pp, upt, PPt at first pft! as a finite volume approximation of the

15



convection-diffusion equation, with wj the previous velocity, then (thrl P"+1) as a
mixed finite element approximation of the Navier-Stokes equation with the divergence
free condition. On the contrary, in [18, 19, 3], the authors have used a finite element
approximation of the convection-diffusion equation, instead of the finite volume scheme
(35).

Then, using the discrete Laplacian operator Aj, defined by (33), the finite volume
scheme (35) can be rewritten as:

n+l __ n
(%’ﬁh>h +bh(pz7ﬁh7u2) - )‘(AhanrlJph)h = 0. (38)
In the next section, we shall see that the discrete problem (35)-(36)-(37) is well-posed,
that is the existence and uniqueness of a solution holds. Also, we will establish the dis-
crete version of the energy estimate for this hybrid scheme, independent of the discrete
parameters.

3 Uniform Estimates.

In this section energy estimates for the velocity and strong estimates for the density
will be obtained, using the discrete Laplacian of the density and involving the scheme
(38), in order to prove the global stability of the hybrid scheme (35)-(36)-(37).

First of all, we start to establish some useful inequalities for the hybrid scheme (35)-
(36)-(37).

Theorem 3.1. There exists a unique solution (pzZJrl +1, P}?H) of the discrete problem
(35)-(36)-(37) which verifies:

™ 12, — Ve 12, o+ Ve (™ =) 2,

112 1 (39)
A | Va2, < Gt gt R,
|V 1P, — VA I+ V™ = i) I, +AE AL A |2,
A2
< Cot [l ap 12, Vul I, 11908 IR, 5 Al IR,

where Cy, Cy, ¢, are positives constants independent of h, At and n.

Proof. At first, we prove the inequality (39). We start taking u, = 2At u 71in (36)
and P, = P in (37):

n+1 n n+l
v i oy ) (g P ) 280 oo )
+ 20 c(p g — AV ul ) = 248 (o g ).

(41)
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First of all, we compute the first two terms of the above equality (41), using the identity

(a—b20) = a2, —lbI2, +la-bl,, :
un+1 —ur . 1 anrl —p . .
(Ph h N h’uh+1>_{_2< h N huh+1vuh+1>
1/ph|un+1|2_2pzuh n+1+ph+1|un+1’2
_ = dx
2 Jq At
g e
2 Jq At 2 Jq At
—|—1 n+1 n+1
=5 (I 12, = I VAR 11, )+ VAT (i =) 12, ).

Then, using (8) and (9) in the third and fourth terms of (41), we obtain

+1 n+1 . n+1
n 2,0, = I Vorai 12, + /o (ui ™ =) 2, (42)
+ 2 At [| Va2, < 24t (o gm up ).
By applying the estimates (32), the Poincaré and Young inequalities, the last term of
(42) is estimate as follows:

M2
n+1_n+1 n+1 n+1 n+1
2(pp g™ ™) < | Va2, o g™ e,
and we get to (39).
Next, to prove (40), we consider (38). Taking p, = —At Appl™ in (38), pr = pp ™ — pf
in (33) for p, = pp*', we find that:

Ve I +2AAL || Appp ™l

T v n+1 —p
IVt =) I, "
= 2At by, (ph, Appitt ) = 1.

— Vo II?

L2() L2(Q)

Taking into account the estimate (29), using the Young inequality and the discrete
Gagliardo-Nirenberg inequality (34), we estimate the right-hand side term I of (43) as
follows:

1< CAY g o V08 e | Anpi |

L2(Q)
R . C
< AGAL| Aupp 2, A g 2, VeI,
R n C n n
< AGAL| A 12, A 12, 1 V6R oo | 8 - (44)

Finally, using the Young inequality and the 2D Gagliardo-Nirenberg inequality for the
velocity in (44), taking into account (26) in the left-hand side of (43), we obtain (40).
|
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Now, by virtue to show the global stability of scheme (35)-(36)-(37), it is easy to obtain,
from Theorem 3.1 and from the discrete Gronwall’s lemma, the following estimates for
the velocity and more regularity for the density.

Lemma 3.2. Let ug € V, py € HY(Q) satisfying (4) and g € L* (O,T; LQ(Q)). Then,
the solution (pp*', upt') of the discrete problem (35)-(36)-(37) satisfies the following
estimates:

N
. .o n 112
(i) max || ], < C, (i) ALY |V |, < C,

0< <N L2 Q) —
n=0

(113 Z | wptt — ||L2(Q)< C,

(i) max (|| o5 i + 1| Vb [l,200, ) <€

0<n<N
N-1 N-1
(0) AALY [ Aupi ™ 2, < C0 (0i) Y V(o =) |2, <
n=0 n=0

where C' > 0 depends on the data (po, ug, g, )\) but is independent of h and At.
At last, as a consequence of Lemma 3.2, we deduce the following result:

Corollary 1. Under the assumptions of Lemma 3.2, the following estimate holds:

Atz I VoI, <cC

where C\ > 0 is independent of h and At.

Proof. This is a direct consequence result of Lemma 3.2 and Proposition 3. H

4 Weak convergence.

In view of study the convergence of hybrid finite volume-finite element scheme (35)-
(36)-(37) towards the (unique) solution of (1)-(2)-(3), we define the following auxiliary
functions:

Definition 4.1. Let wp ¢, Up Aty Prat, Prat, and Py Ay be the piecewise constant func-

tions in time taking the values uZ“ uy, pZH, pr, and P[LLH on (", t"*1] respectively.

Moreover, let py At € CO([O, T} Wh) be the continuous piecewise linear function in time
defined as

ot =i
ﬁh,At(t) - szrl + hA—th(t - tn+1)7 t, <t < thrl-
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Then, using Lemma 3.2 and Corollary 1, we arrive at the following results (see [3, 19,
18]):

Lemma 4.2. The following estimates (independent of h and At) hold:

{unattnae, {Unattnae are bounded in L™ (0, T: LQ(Q)) N L? (O, T; Hé(Q)),
{pn.attnae {Pnattnae, {Prattnac are bounded in L>=(0,T5 HY(Q)) N L>(Qr),
{Vonnattnae is bounded in L* (O,T; L4(Q)).

Moreover,

| wn,ae — Un,ac HLQ(OTLQ(Q» C At and || pnat — Phae HLQ(OTHl(Q)) C At (45)
Next, by taking into account the previous estimates given in Lemma 4.2, there exist
subsequences (denoted in the same way) with the corresponding weak convergences
towards limit functions u, u, p, p. Thanks to (45), we have the identities of the limits

u = u and p = p. Therefore, we have the following result (for the proof see [19, Lemma
5.3]):

Lemma 4.3. There exists subsequences of {un at tn.at, {Wn.attnat, {Pn.attnat, {Prattnat,
{pPn.attnar (denoted in the same way) and limit functions w, p verifying the following
weak convergences, as (h, At) — 0:

. . o L*(0,T; Hy(92 ) weak,
Up AL — W, UpAr—> U N L>(0,T; L2 )weak*

— Dh. At — DhAL — P in L=(0,T; H' (2)) -weaks,
Phat = Ps PhAt =7 Py Phat =7 P L (Qr)-weakx,

Vonat — Vp in L*(0,T; L*(2))-weak.

5 Strong convergence.

As usual in this type of nonlinear system, to obtain the convergence of the hybrid
scheme (35)-(36)-(37), we need strong convergence for the approximations in some
suitable space in order to make the passage to the limit in the nonlinear terms. To do
this, we must get the compactness for the discrete density and velocity.

At first, we establish a time derivative estimate for the discrete density.
Proposition 4. The following estimate holds:

n+1

Atz I /)h Ph H4/3 <C

2o~ Y

where C\ > 0 is independent of h and At, but depends on the data (pg, uo, g, \).
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Proof. We start from (38), and using the Cauchy-Schwarz inequality, the estimate (29),
the Sobolev embedding H} () C L*(£2), and (26), we find that V p, € Wh,

n+1
Ph — Ph - n
(2 n) [ < (€1 Uy ) V8 gy + A0 20 W ) 1 - (46)
pz—l—l_pn

Having in mind that h e W, c L*(Q) and using a continuity argument, we

deduce from (46) and (26) that
I m

< OV ool V8 Ny + A2 [ g™ |

L2(Q) °

Using the Minkowsky inequality and summing up (47) for n = 0,..., N — 1, we get
promptly that

Ph Ph 4/3 4/3 n (14/3
Ath I <co(a Z T N R
N—-1

)\4/3At2 H A pn+1 H4/3 )

L2()

(48)

Finally, by applying the Holder inequality, the estimates given by Lemma 3.2 and
Corollary 1, we get straightforwardly the desired result. W

Corollary 2. As a consequence of Proposition 4, we deduce the following estimate:

d .

I

—Phat [Lasor2@)< Cx (49)

From (49), one can deduce the following strong convergences for the density, thanks to
a compactness theorem of Aubin-Lions type (see [26, Chap.3, Theorem 2.1]),

phat = P Prar — p in L?(0,T; L*(Q))-strong as (h, At) — 0. (50)

Furthermore, from Lemma 4.2 the discrete density is bounded in L*°(Q7), then one
also gets the strong convergence in L (O,T; LP(Q)) for any p < oo. For p = o0, one
can deduce the convergence for at least a subsequence of py a¢ or ppar to p for a.e.

(t, lC) < QT-

Now, we are going to estimate the fractional time derivative for the discrete velocity.

Proposition 5. The following estimate holds:
T—6
/ | \/ Pr.ac(t +0) (uh,At(t +9) - Uh,At(t)) Hig(m dt < Cy6'%, V6:0<6<T,
0
with C\ > 0 is independent of (h, At,d), but depends on A.
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Proof. We follow exactly the proof done in [18, Proposition 27], where [p}]7 is replaced
by pj for each n = m,...m + r and the equation [18, (66)] is replaced by

m—1+r
I = ot E= At " (buloh pir = o i) = ABugf™ it = pii*7), ). (51)

n=m

If in the right side of (51) we use the Cauchy-Schwarz inequality, the estimates (29)
and (26), the estimates given by Lemma 3.2 and Corollary 1, then the estimate [18,
(67)] is replaced by

m-+r

m —
Ogglga’]}é_r H Ph ph HLQ(Q

)S C)\(TAt)l/Q.

Finally, based on the previous result and thanks to a compactness theorems of Aubin-
Lions type (see [25, Theorem 5]), we obtain the strong convergences for the velocity.

Proposition 6. One has the following convergences, as (h, At) — 0:

Upar — W, Upar — uw i L° (0, T, LQ(Q))—strong. (52)

6 Passing to the limit.

The final step to complete this study is to employ the convergence results obtained
throughout this work in order to pass to the limit in the discrete problem. Our goal
is to show that the approximate solution (pj*', uj*'), obtained with the aid of the
hybrid finite volume-finite element scheme (35)-(36)-(37), converges in some sense to
the weak solution (p,u) of the Kazhikhov-Smagulov model (1)-(2)-(3), when the space
and time parameters (h, At) tend to zero.

In the case of a convection-diffusion equation, the passage to the limit for the finite
volume scheme (35) (as (h, At) — 0) has been done in details by Feistauer et al. (see
[14, section EJ). But in our case, the velocity in the convective part of (7), depends by
(h, At). To handle this difficulty, we use the following strong-weak convergence result.

Lemma 6.1. Let (v,), € L*(0,T; L*(Q)) and (n,). € L*(0,T; H(Q)) such that v, —
v in L*(0,T; L*())-strong, and n, — n in L*(0,T, H(Q))-weak, then for all ¢ €
CH([0,T); HY(Q)) such that o(T,.) = 0, one has

T T
/ / v, - Vn, pdxdt — / / v - Vnpdxdt when n — oo. (53)
0o Jo o Ja
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Thanks to the previous convergence results, we can prove that the limit function p sat-
isfies the weak formulation of the convection-diffusion equation (7), in the distribution
sense on (0,7).

We focus now, on the passing to the limit in the velocity scheme (36)-(37). In order
to eliminate the discrete pressure, we proceed as in [18], considering adequate test
functions. Let v € C? ([0, Ty, CgO(Q)) be a free divergence function, such that V-v =0
and v(T,.) = 0. We define v} the projection of v(t") (by a discrete Stokes problem)
onto Vj. Let vpa € L™ (O,T; Vh) be the piecewise constant function taking the
value v on (", t"™] and let v, € C°([0,T7]; V},) be the continuous piecewise linear
function, such that v, o+(t") = v}. Then, as (h, At) — 0, one has:

vpar — v in L2(0,T; Hy(Q)),
Upae = v in W (0, T; HY(Q)).

Let us write the time derivative of the discrete equation (36) in the conservative form.

1 n+l _ n
By adding at the right and left-hand sides of (36) the term 5(%1&“, ﬂh), we
obtain
n+1, n+l T,
u; " — plu
<Ph hAt Ph h,ﬁh> i a(pz-&-l’uz—f—l’,ah) i C(PZHUZ _ )\szﬂ,u’,fﬂ,ﬂh)
(54)
1 7’L+1 o V2
— <P,?+1,V : ah> + <p;;“g”+1,ah> + —(—'Oh phuﬁ“,ah).
2 At
Next, taking w, = 'UZH as test function in (54), multiplying by At¢, summing for
n=0,...,N —1, and using the following discrete integration by parts in time
N-1 -1
(pr i = prugi o) = (ool ) = 32 (ohuit vi ™ =) = (dhudvh)
n=0 n=

with v = 0 (since v(T,.) = 0), we arrive at the following conservative form:

N-1 n+1 N-1

v, — v}
—At Z <PZUZ, hTth> — (pgug, ’02> + At Z a(pzﬂ, ’U,Z—H, ’UZH)
=
+ALY e(phup = AVt upt ot
n=0
N-1 N-1
n n n At pn+1 — pn n n
— At Z (pthlg +1’vh+1> 4 5 Z (hTthuthvhH)
n=0 n=0
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Then, by using Definition 4.1, we obtain the following variational formulation:

T a T
—/ (ﬁh,Atah,At, a%m) dt — <P2U2,U?L> +/ a(pn.at, What, Vpae)dt
0 0

T
+/ c(pn,attinar — AV ppat, Un,at, VAt ) dt (55)
0

T T
1 0 -
= <ph,AtgAt7 ’Uh,At) dt + - <_ph,Atuh,Ata Uh,At) dt.

From the variational formulation (55) of the discrete velocity equation (36), we are
able to pass to the limit in a standard manner thanks to the convergence results ob-
tained previously. Then, the limit function (p, u) satisfies the weak formulation (7) of
the Kazhikhov-Smagulov model in the distribution sense on (0,7). Consequently, we
conclude the proof of Theorem 1.2.
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