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We prove a Hardy inequality on convex sets, for fractional Sobolev-Slobodeckiȋ spaces of order (s, p). The proof is based on the fact that in a convex set the distance from the boundary is a superharmonic function, in a suitable sense. The result holds for every 1 < p < ∞ and 0 < s < 1, with a constant which is stable as s goes to 1.

d Ω (x) := inf y∈∂Ω |x -y|, if x ∈ Ω, 0, if x ∈ R N \ Ω.
A fundamental result in the theory of Sobolev spaces is the Hardy inequality

(1.1) C Ω ˆΩ |u| 2 d 2 Ω dx ≤ ˆΩ |∇u| 2 dx, for every u ∈ C ∞ 0 (Ω),
see for example [16,Theorem 21.3]. It is well-known that for a convex set K ⊂ R N , such an inequality holds with the dimension-free universal constant

C K = 1 4 ,
see for example [START_REF] Davies | A review of Hardy inequalities[END_REF]Theorem 2]. Moreover, such a constant is sharp. In order to explain the aims and techniques of the present paper, it is useful to recall a proof of this fact.

A very elegant way of proving (1.1) with sharp constant for convex sets, consists in mimicking Moser's logarithmic estimate for positive supersolutions of elliptic partial differential equations. The starting point is the observation that on a convex set K we have -∆d K ≥ 0, i.e. the distance function is superharmonic. More precisely, it holds (1.2)

ˆK

∇d K , ∇ϕ dx ≥ 0, for every nonnegative ϕ ∈ C ∞ 0 (K).

By following Moser (see [15, page 586]), we can test the equation (1.2) with

ϕ = u 2 d K ,
where u ∈ C ∞ 0 (K). This gives 2

ˆK ∇d K d K , ∇u u dx - ˆK ∇d K d K 2 u 2 dx ≥ 0, that is ˆK ∇d K d K 2 u 2 dx ≤ 2 ˆK ∇d K d K , ∇u u dx.
We now use Young's inequality

a, b ≤ |a| 2 2 + |b| 2 2 , a, b ∈ R N ,
with the following choices

a = √ δ ∇d K d K u and b = 1 √ δ ∇u,
where δ is an arbitrary positive real number. This leads to

ˆK ∇d K d K 2 u 2 dx ≤ δ ˆK ∇d K d K 2 u 2 dx + 1 δ ˆK |∇u| 2 dx,
which can be recast as

δ (1 -δ) ˆK ∇d K d K 2 u 2 dx ≤ ˆK |∇u| 2 dx.
It is now sufficient to observe that the term δ (1 -δ) in the left-hand side is maximal for δ = 1/2. This leads to the Hardy inequality with the claimed sharp constant 1/4, once it is observed that |∇d K | = 1, a. e. in K.

The latter implies that more generally for every 1 < p < ∞ we have -∆ p d K ≥ 0 in K, i.e. d K is p-superharmonic in the following sense ˆK |∇d K | p-2 ∇d K , ∇ϕ dx ≥ 0, for every nonnegative ϕ ∈ C ∞ 0 (K).

By testing this with ϕ = |u| p /d p-1 K and suitably adapting the proof above, one can prove the more general Hardy inequality for convex sets (1.3) p -1 p

p ˆK |u| p d p K dx ≤ ˆK |∇u| p dx.
Once again, the constant appearing in (1.3) is sharp and independent of both K and the dimension N .

1.2. Main result. The scope of the present paper is to prove a fractional version of Hardy inequality for convex sets, by adapting to the fractional setting the Moser-type proof presented above. As essential feature of our method is that the relevant constant appearing in the Hardy inequality is stable as the fractional order of differentiability s converges to 1, see Remark 1.3 below. More precisely, we prove the following Theorem 1.1 (Hardy inequality on convex sets).

Let 1 < p < ∞ and 0 < s < 1. Let K ⊂ R N be an open convex set such that K = R N . Then for every u ∈ C ∞ 0 (K) we have (1.4) C s p 1 -s ˆK |u| p d s p K dx ≤ ¨RN ×R N |u(x) -u(y)| p |x -y| N +s p dx dy, for an explicit constant C = C(N, p) > 0 (see Remark 4.1 below).
The proof of Theorem 1.1 is based on the fact that for every 0 < s < 1 and 1 < p < ∞ we have in weak sense (-∆ p ) s d s K ≥ 0 in K, where (-∆ p ) s is the fractional p-Laplacian of order s. In other words, the function d s K is (s, p)-superharmonic in the following sense (see Proposition 3.2 below)

¨RN ×R N |d K (x) s -d K (y) s | p-2 (d K (x) s -d K (y) s ) ϕ(x) -ϕ(y) |x -y| N +s p dx dy ≥ 0,
for every nonnegative and smooth function ϕ, with compact support in K. Then we will test this inequality with ϕ = |u| p /d s (p-1) K . As in the local case, this trick is an essential feature in order to prove BMO regularity of the logarithm of positive supersolutions to the fractional p-Laplacian. This in turn is a crucial step in the proof of Hölder continuity of solutions to equations involving (-∆ p ) s . In this respect, this idea has already been exploited by Di Castro, Kuusi and Palatucci in [7, Lemma 1.3] (see also [START_REF] Kassmann | A priori estimates for integro-differential operators with measurable kernels[END_REF]Lemma 3.4] for the case p = 2). However, we observe that the computations in [7, Lemma 1.3] do not lead to the desired Hardy inequality, due to a lack of symmetry in x and y. For this, we need finer algebraic manipulations and a subtler pointwise inequality: these are contained in Lemma A.5, which is one of the main ingredient of the proof of Theorem 1.1. We refer to Remark A.6 below for a more detailed discussion on this point.

Remark 1.2 (Comparison with known results

). The quest for fractional Hardy inequalities is certainly not new. In this respect, we would like to mention that in [START_REF] Dyda | A fractional order Hardy inequality[END_REF]Theorem 1.1] it is proved the following version

(1.5) C Ω ˆΩ |u| p d s p Ω dx ≤ ¨Ω×Ω |u(x) -u(y)| p |x -y| N +s p dx dy, for every u ∈ C ∞ 0 (Ω),
under suitable assumptions on the open Lipschitz set Ω ⊂ R N and some restrictions on the product s p, see also [9, Corollary 3].

Observe that in the right-hand side of (1.5), the fractional Sobolev seminorm is now computed on Ω × Ω, rather than on the whole R N × R N . However, as pointed out in [START_REF] Dyda | A fractional order Hardy inequality[END_REF], such a stronger inequality fails to hold for s p ≤ 1, whenever Ω is bounded.

On the other hand, when Ω is a half-space, inequality (1.5) holds for s p = 1. In this case, the sharp constant has been computed by Bogdan and Dyda in [1, Theorem 1] for p = 2 and by Frank and Seiringer in [10, Theorem 1.1] for a general 1 < p < ∞. We also mention that when s p > 1 and Ω ⊂ R N is an open convex set, inequality (1.5) with sharp constant (which is the same as in the half-space) has been proved by Loss and Sloane in [13, Theorem 1.2].

We point out that our proof is different from that of the aforementioned results and our Hardy inequality (4.6) holds without any restriction on the product s p.

The constant obtained in Theorem 1.1 is very likely not sharp. However, a couple of comments are in order on this point. Remark 1.3 (Asymptotic behaviour in s of the constant). We recall that if u ∈ C ∞ 0 (K), then we have (see [ On the other hand, it is easily seen that α N,p converges to 0 as N goes ∞. This shows that C in (4.6) must depend on N .

We conclude this introduction with some consequences of Theorem 1.1. For an open set Ω ⊂ R N we define the homogeneous Sobolev-Slobodeckiȋ space D s,p 0 (Ω) as the completion of C ∞ 0 (Ω) with respect to the norm

u → ¨RN ×R N |u(x) -u(y)| p |x -y| N +s p dx dy 1 p
.

Then Hardy inequality (4.6) implies that when K = R N is an open convex set, the space D s,p 0 (K) is a functional one. In this case, inequality (4.6) automatically extends to functions in D s,p 0 (K). Moreover, as a straightforward consequence of Theorem 1.1, we have the following

Corollary 1.5. Let 1 < p < ∞ and 0 < s < 1. Let K ⊂ R N be an open convex set such that R K = sup x∈K d K (x) < +∞.
Then we have the continuous embedding D s,p 0 (K) → L p (K). Moreover, if we set

λ s 1,p (K) := inf u∈C ∞ 0 (K) [u] p W s,p (R N ) : ˆK |u| p dx = 1 , it holds C s p 1 -s R -s p K ≤ λ s 1,p (K),
where C is the same constant as in Theorem 1.1.

The quantity R K above is called inradius of K. Observe that this is the radius of the largest ball contained in K.

Remark 1.6 (Poincaré inequality for sets bounded in one direction). Let ω 0 ∈ S N -1 and

1 , 2 ∈ R with 1 < 2 . For every open set Ω ⊂ R N (not necessarily bounded) contained in the slab S = {x ∈ R N : 1 < x, ω 0 < 2 },
as a consequence of Corollary 1.5, we also get

C s p 1 -s 2 -1 2 -s p ≤ λ s 1,p (Ω).
Indeed, it is sufficient to observe that λ s 1,p (Ω) ≥ λ s 1,p (S) and then use Corollary 1.5 for the convex set S, for which R S = ( 2 -1 )/2. 1.3. Plan of the paper. We start with Section 2, containing the main notations, definitions and some technical results. In this part, the main point is Proposition 2.5. In Section 3 we show that, in a convex set K, the distance function d K raised to the power s is (s, p)-superharmonic, see Proposition 3.2. Finally, the proof of Theorem 1.1 is contained in Section 4. The paper is complemented with an Appendix, containing some pointwise inequalities which are crucially exploited in the proof of our main result.
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Preliminaries

2.1. Notations. For x 0 ∈ R N and R > 0, we use the standard notation

B R (x 0 ) = {x ∈ R N : |x -x 0 | < R}.
For notational simplicity, for every 1 < p < ∞ we introduce the function J p : R → R defined by

J p (t) = |t| p-2 t, for t ∈ R.
We also set

L p-1 s p (R N ) = u ∈ L p-1 loc (R N ) : ˆRN |u(x)| p-1 (1 + |x|) N +s p dx < +∞ .
If Ω ⊂ R N is an open set, for every 1 < p < ∞ and 0 < s < 1, we define

W s,p (Ω) = {u ∈ L p (Ω) : [u] W s,p (Ω) < +∞}, where [u] W s,p (Ω) = ¨Ω×Ω |u(x) -u(y)| p |x -y| N +s p dx dy 1 p
.

The local version W s,p loc (Ω) is defined in the usual way.

2.2. Functional analytic facts. We start with the following

Definition 2.1. Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ R N be an open set. We say that u ∈ W s,p loc (Ω) ∩ L p-1 s p (R N ) is: • locally weakly (s, p)-superharmonic in Ω if (2.1) ¨RN ×R N J p (u(x) -u(y)) ϕ(x) -ϕ(y) |x -y| N +s p dx dy ≥ 0,
for every nonnegative ϕ ∈ W s,p (Ω) with compact support in Ω;

• locally weakly (s, p)-subharmonic in Ω if -u is (s, p)-superharmonic in Ω;

• locally weakly (s, p)-harmonic in Ω if it is both (s, p)-superharmonic and (s, p)-subharmonic.

We observe that thanks to the assumptions on u, the double integral in (2.1) is finite for every admissible test function.

The following simple result is quite standard, we omit the proof.

Lemma 2.2. Let Ω ⊂ R N be a bounded measurable set. Then for every u ∈ L p-1 s p (R N ) and r > 0 we have

sup x∈Ω ˆRN \Br(x) |u(y)| p-1 |x -y| N +s p dy < +∞.
The following technical result will be used in the next section.

Lemma 2.3. Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ R N be an open bounded set. Given u ∈ W s,p loc (Ω) ∩ L p-1 s p (R N ), ϕ ∈ L p with compact support in Ω and ε > 0, the function (x, y) → J p (u(x) -u(y)) |x -y| N +s p ϕ(x), is summable on T ε := {(x, y) ∈ R N × R N : |x -y| ≥ ε}.
Proof. Let us call O the support of ϕ. We have ¨Tε J p (u(x) -u(y)) |x -y| N +s p ϕ(x) dx dy

= ¨{(x,y)∈O×R N : |x-y|≥ε} |u(x) -u(y)| p-1 |x -y| N +s p |ϕ(x)| dx dy ≤ ε -N p -s ¨{(x,y)∈O×O : |x-y|≥ε} |u(x) -u(y)| p-1 |x -y| N +s p p |ϕ(x)| dx dy + C ¨{(x,y)∈O×(R N \O) : |x-y|≥ε} |u(x)| p-1 + |u(y)| p-1 |x -y| N +s p |ϕ(x)| dx dy ≤ ε -N p -s |O| 1 p ¨O×O |u(x) -u(y)| p |x -y| N +s p dx dy 1 p ˆO |ϕ| p dx 1 p + C ¨{(x,y)∈O×(R N \O) : |x-y|≥ε} |u(x)| p-1 + |u(y)| p-1 |x -y| N +s p |ϕ(x)| dx dy.
In order to treat the last integral, we observe that

{(x, y) ∈ O × (R N \ O) : |x -y| ≥ ε} ⊂ {(x, y) ∈ O × R N : |x -y| ≥ ε}.
Thus we obtain

¨{(x,y)∈O×(R N \O) : |x-y|≥ε} |u(x)| p-1 + |u(y)| p-1 |x -y| N +s p |ϕ(x)| dx dy ≤ ˆO ˆRN \Bε(x) |u(x)| p-1 |ϕ(x)| |x -y| N +s p dy dx + ˆO ˆRN \Bε(x) |u(y)| p-1 |ϕ(x)| |x -y| N +s p dy dx ≤ N ω N s p ε -s p ˆO |u| p dx 1 p ˆO |ϕ| p dx 1 p + ˆO ˆRN \Bε(x) |u(y)| p-1 |x -y| N +s p dy |ϕ| p dx.
We conclude by observing that

sup x∈O ˆRN \Bε(x) |u(y)| p-1 |x -y| N +s p dy < +∞, thanks to the fact that u ∈ L p-1 s p (R N ), see Lemma 2.2.
In order to use a Moser-type argument for the proof of Theorem 1.1, we will need the following result to guarantee that a certain test function is admissible.

Lemma 2.4. Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ R N be an open bounded set. For every u ∈ W s,p (Ω) ∩ L ∞ (Ω) with compact support in Ω and v ∈ W s,p loc (Ω) ∩ L ∞ (Ω), we have u v ∈ W s,p (Ω).
Proof. We start by observing that with simple manipulations we have

[u v] p W s,p (Ω) ≤ 2 p-1 ¨Ω×Ω |u(x) -u(y)| p |v(x)| p |x -y| N +s p dx dy + 2 p-1 ¨Ω×Ω |v(x) -v(y)| p |u(y)| p |x -y| N +s p dx dy ≤ 2 p-1 v p L ∞ (Ω) [u] p W s,p (Ω) + 2 p-1 ¨Ω×Ω |v(x) -v(y)| p |u(y)| p |x -y| N +s p dx dy.
In order to estimate the last integral, we set O = supp(u) and then take O such that O O Ω. We then obtain

¨Ω×Ω |v(x) -v(y)| p |u(y)| p |x -y| N +s p dx dy = ¨O ×O |v(x) -v(y)| p |u(y)| p |x -y| N +s p dx dy + ¨(Ω\O )×O |v(x) -v(y)| p |u(y)| p |x -y| N +s p dx dy ≤ u p L ∞ (Ω) [v] p W s,p (O ) + 2 p |Ω| |O| dist(O, Ω \ O ) N +s p u p L ∞ (Ω) v p L ∞ (Ω) .
This gives the desired conclusion.

2.3. An expedient estimate for convex sets. The following expedient result is a sort of fractional counterpart of the identity

|∇d K | = 1 almost everywhere in K.
As explained in the Introduction, in the local case this is an essential ingredient in the proof of the Hardy inequality for convex sets. This will play an important role in our case as well.

Proposition 2.5. Let K ⊂ R N be an open bounded convex set. Then we have

ˆ{y∈K : d K (y)≤d K (x)} |d K (x) -d K (y)| p |x -y| N +s p dy ≥ C 1 1 -s d K (x) p (1-s) , for a. e. x ∈ K,
where

C 1 = C 1 (N, p) > 0 is the constant C 1 = 1 p sup 0<σ<1 σ p H N -1 {ω ∈ S N -1 : ω, e 1 > σ} .
Proof. We set for simplicity δ = d K (x), thus B δ (x) ⊂ K and we have ˆ{y∈K

: d K (y)≤d K (x)} |d K (x) -d K (y)| p |x -y| N +s p dy ≥ ˆ{y∈B δ (x) : d K (y)≤d K (x)} |d K (x) -d K (y)| p |x -y| N +s p dy.
We now take x ∈ ∂K such that |x -x | = δ. For a given 0 < σ < 1, we consider the portion Σ σ (x) of B δ (x) defined by

Σ σ (x) = y ∈ B δ (x) : y -x |y -x| , x -x |x -x| > σ ,
see Figure 1. By convexity of K, it is not difficult to see that

(2.2) Σ σ (x) ⊂ {y ∈ B δ (x) : d K (y) ≤ d K (x)}, for every 0 < σ < 1.
We can be more precise on this point. We denote by Π x the supporting hyperplane of K at the point x , orthogonal to x -x. Then for every y ∈ K, we denote by y the orthogonal projection of y on Π x . Thus by convexity we have

d K (y) ≤ |y -y |,
for every y ∈ K.

We then observe that for every y ∈ Σ σ (x), it holds

d K (x) = |x -x | = |y -y | + y -x |y -x| , x -x |x -x| |y -x| ≥ d K (y) + σ |y -x|.
(2.3) By using (2.2) and (2.3), we thus obtain

ˆ{y∈K : d K (y)≤d K (x)} |d K (x) -d K (y)| p |x -y| N +s p dy ≥ ˆΣσ(x) |d K (x) -d K (y)| p |x -y| N +s p dy ≥ σ p ˆΣσ(x) |x -y| p (1-s)-N dy = σ p ˆ ω∈S N -1 : ω, x -x |x -x| >σ dH N -1 (ω) ˆδ 0 -1+p (1-s) d = f (σ) σ p (1 -s) p δ p (1-s) ,
where f (σ) > 0 is the quantity

f (σ) = ˆ{ω∈S N -1 : ω,e 1 >σ} dH N -1 (ω).
By arbitrariness of 0 < σ < 1, we can take the supremum and get the conclusion.

Superharmonicity of the distance function

In this section we will prove that d s K in a convex set K is weakly (s, p)-superharmonic, see Definition 2.1. We start with the case of the half-space. The proof of the following fact can be found in [11, Lemma 3.2]. Lemma 3.1. We set

H N + = {x ∈ R N : x N > 0}. Let 1 < p < ∞ and 0 < s < 1, then d s H N +
is locally weakly (s, p)-harmonic in H N + . Moreover, there holds

lim ε→0 ˆRN \Bε(x) J p (d H N + (x) s -d H N + (y) s )
|x -y| N +s p dy = 0, strongly in L 1 loc (H N + ). By appealing to the previous result and using the geometric properties of convex sets, we can prove the following Proposition 3.2. Let K ⊂ R N be an open bounded convex set. For 1 < p < ∞ and 0 < s < 1, we have that d s K is locally weakly (s, p)-superharmonic.

Proof. We first observe that d s K ∈ W s,p loc (K)∩L p-1 s p (R N ). Let ϕ ∈ W s,p (K) be a nonnegative function with compact support in K, we observe that the function

(x, y) → J p (d K (x) s -d K (y) s ) ϕ(x) -ϕ(y) |x -y| N +s p ,
is summable. Then by the Dominated Convergence Theorem, we have

¨RN ×R N J p (d K (x) s -d K (y) s ) ϕ(x) -ϕ(y) |x -y| N +s p dx dy = lim ε→0 ¨Tε J p (d K (x) s -d K (y) s ) ϕ(x) -ϕ(y) |x -y| N +s p dx dy,
where we set T ε = {(x, y) ∈ R N × R N : |x -y| ≥ ε}. By Lemma 2.3 we have that for every fixed ε, the function

(x, y) → J p (d K (x) s -d K (y) s ) |x -y| N +s p ϕ(x), is summable on T ε . Thus we get ¨Tε J p (d K (x) s -d K (y) s ) ϕ(x) -ϕ(y) |x -y| N +s p dx dy = ¨Tε J p (d K (x) s -d K (y) s ) |x -y| N +s p ϕ(x) dx dy - ¨Tε J p (d K (x) s -d K (y) s ) |x -y| N +s p ϕ(y) dx dy = 2 ˆK ˆRN \Bε(x) J p (d K (x) s -d K (y) s ) |x -y| N +s p dy ϕ(x) dx.
In the second equality, we used Fubini's Theorem and the fact that ϕ has compact support contained in K. In order to conclude, we need to show that

(3.1) lim ε→0 ˆK ˆRN \Bε(x) J p (d K (x) s -d K (y) s )
|x -y| N +s p dy ϕ(x) dx ≥ 0.

We now take x ∈ K and 0 < ε < d K (x), then we consider a point x ∈ ∂K such that d K (x) = |x -x |. We take a supporting hyperplane to K at x , up to a rigid motion we can suppose that this is given by {x ∈ R N : x N = 0} and that K ⊂ H N + . We observe that by convexity of

K d K (y) ≤ d H N + (y),
for y ∈ R N , and

d K (x) = |x -x | = d H N + (x),
see Figure 2. By exploiting these facts and the monotonicity of J p , we obtain for almost every x ∈ K

lim inf ε→0 ˆRN \Bε(x) J p (d K (x) s -d K (y) s ) |x -y| N +s p dy ≥ lim ε→0 ˆRN \Bε(x) J p (d H N + (x) s -d H N + (y) s ) |x -y| N +s p dy = 0, Figure 2.
The distance of y from ∂K is smaller than its distance from the hyperplane.

where the last equality follows from Lemma 3.1. By multiplying the previous inequality by ϕ nonnegative, integrating over K and using Fatou's Lemma, we thus obtain

lim ε→0 ˆK ˆRN \Bε(x) J p (d K (x) s -d K (y) s ) |x -y| N +s p dy ϕ(x) dx ≥ ˆK lim inf ε→0 ˆRN \Bε(x) J p (d K (x) s -d K (y) s ) |x -y| N +s p dy ϕ(x) dx ≥ 0.
This proves (3.1) and thus we get the desired conclusion.

Proof of Hardy inequality

4.1. Proof of Theorem 1.1. We divide the proof in two cases: first we prove the result under the additional assumptions that K is bounded, then we extend it to general convex sets not coinciding with the whole space.

Case 1: bounded convex sets. By Proposition 3.2 we know that (4.1)

¨RN ×R N J p (d K (x) s -d K (y) s )(ϕ(x) -ϕ(y)) |x -y| N +s p dx dy ≥ 0,
for every nonnegative ϕ ∈ W s,p (K) with compact support in K. Then we test with

ϕ = |u| p (d s K + ε) p-1
, where u ∈ C ∞ 0 (K) and ε > 0. By Lemma 2.4, we have that ϕ is admissible. Indeed, we already know that d s K ∈ W s,p loc (K) ∩ L ∞ (K). Moreover, for every ε > 0 the function

f (t) = (t + ε) 1-p is Lipschitz for t > 0, thus (d s K + ε) 1-p = f • d s K ∈ W s,p loc (K) ∩ L ∞ (K) as well.
Let us call O the support of u, then from (4.1) we have

0 ≤ ¨K×K J p (d K (x) s -d K (y) s ) |x -y| N +s p |u(x)| p (d K (x) s + ε) p-1 - |u(y)| p (d K (y) s + ε) p-1 dx dy + 2 ¨O×(R N \K) J p (d K (x) s ) |x -y| N +s p |u(x)| p (d K (x) s + ε) p-1 dx dy. (4.2)
We first observe that

(4.3) ¨O×(R N \K) J p (d K (x) s ) |x -y| N +s p |u(x)| p (d K (x) s + ε) p-1 dx dy ≤ ¨O×(R N \K) |u(x)| p |x -y| N +s p dx dy.
We now need to estimate the double integral

I := ¨K×K J p (d K (x) s -d K (y) s ) |x -y| N +s p |u(x)| p (d K (x) s + ε) p-1 - |u(y)| p (d K (y) s + ε) p-1 dx dy.
For this, we crucially exploit the fundamental inequality of Lemma A.5, with the choices

a = d K (x) s + ε, b = d K (y) s + ε, c = |u(x)|, d = |u(y)|.

This entails

I ≤ -C 2 ¨K×K d K (x) s -d K (y) s d K (x) s + d K (y) s + 2 ε p (|u(x)| p + |u(y)| p ) dx dy |x -y| N +s p + C 3 ¨K×K |u(x)| -|u(y)| p |x -y| N +s p dx dy, (4.4) 
where C 2 and C 3 are as in Lemma A.5. By using (4.4) in (4.2), together with (4.3), we obtain

(4.5) C 2 ¨K×K d K (x) s -d K (y) s d K (x) s + d K (y) s p (|u(x)| p + |u(y)| p ) dx dy |x -y| N +s p ≤ C 3 |u| p W s,p (R N ) .
To obtain (4.5), we also took the limit as ε goes to 0 and used Fatou's Lemma. We observe that by symmetry, we have

¨K×K d K (x) s -d K (y) s d K (x) s + d K (y) s p (|u(x)| p + |u(y)| p ) dx dy |x -y| N +s p = 2 ¨K×K d K (x) s -d K (y) s d K (x) s + d K (y) s p |u(x)| p dx dy |x -y| N +s p ≥ 2 ˆK ˆ{y∈K : d K (y)≤d K (x)} d K (x) s -d K (y) s d K (x) s + d K (y) s p dy |x -y| N +s p |u(x)| p dx.
We now use the pointwise inequality (A.2), so to obtain

¨K×K d K (x) s -d K (y) s d K (x) s + d K (y) s p (|u(x)| p + |u(y)| p ) dx dy |x -y| N +s p ≥ s p 2 p-1 ˆK ˆ{y∈K : d K (y)≤d K (x)} |d K (x) -d K (y)| p |x -y| N +s p dy |u(x)| p d K (x) p dx.
By using this in (4.5) and then applying the expedient estimate of Proposition 2.5, we end up with

s p C 1 -s ˆK |u| p d s p K dx ≤ [u] p W s,p (R N ) ,
where we have used the triangle inequality to replace the seminorm of |u| with that of u. This concludes the proof.

Case 2: general convex sets. We now take K = R N an open unbounded convex sets.

For every R > 0 we set K R = K ∩ B R (0). Let us take u ∈ C ∞ 0 (K), then for every R large enough, we have u ∈ C ∞ 0 (K R ) as well. By using the previous case, we then get

s p C 1 -s ˆK |u| p d s p K R dx = s p C 1 -s ˆKR |u| p d s p K R dx ≤ [u] p W s,p (R N ) .
By observing that d K R ≤ d K , we then get the desired conclusion. 

C = C 1 2 p-1 C 2 C 3 ,
where C 1 = C 1 (N, p) is the constant of Proposition 2.5, and C 2 , C 3 (which depend only on p) come from Lemma A.5.

4.2. Improved constant for s close to 0. By means of elementary geometric considerations, we can prove a Hardy inequality with a constant having the correct asymptotic behaviour as s goes to 0. This is the content of the next result, whose proof is essentially contained in [5, pages 440-441], as pointed out to us by Bart lomiej Dyda.

Proposition 4.2. Let 1 < p < ∞ and 0 < s < 1. Let K ⊂ R N be an open convex set such that K = R N . Then for every u ∈ C ∞ 0 (K) we have (4.6) C s ˆK |u| p d s p K dx ≤ ¨RN ×R N |u(x) -u(y)| p |x -y| N +s p dx dy,
for an explicit constant C = C(N, p) > 0.

Proof. For every x ∈ K, we take We observe that for every

x 0 ∈ R N \ K such that |x -x 0 | = 2 d K (x). Then we can estimate ¨RN ×R N |u(x) -u(y)| p |x -y| N +s p dx dy ≥ ˆK |u(x)| p ˆ(R N \K)\B d K (x) (x 0 ) dy |x -y| N +s p dx.
y ∈ R N \ B d K (x) (x 0 ), we have |x -y| ≤ |x -x 0 | + |x 0 -y| = 2 d K (x) + |x 0 -y| ≤ 3 |x 0 -y|.
By convexity, we have that (see Figure 3)

K x := {y ∈ R N \ B d K (x) : y -x 0 , x -x 0 < 0} ⊂ (R N \ K) \ B d K (x) (x 0 ).
By joining the last two informations, we get ¨RN ×R N |u(x) -u(y)| p |x -y| N +s p dx dy ≥

1 3 N +s p ˆK |u(x)| p ˆKx dy |x 0 -y| N +s p dx = 1 3 N +s p ˆ{ω∈S N -1 : ω,e 1 <0} dH N -1 ˆ+∞ d K (x) -1-s p d × ˆK |u(x)| p dx = N ω N 2 • 3 N +s p • p 1 s ˆK |u| p dx.
This concludes the proof.

Appendix A. Some pointwise inequalities

We collect here some pointwise inequalities needed throughout the whole paper. The most important one is Lemma A.5. We recall the notation

J p (t) = |t| p-2 t,
for t ∈ R. Proof. We observe that if a = b there is nothing to prove. We then take a = b and without loss of generality we can suppose a > b. The seeked inequality is then equivalent to a -b a + b ≤ log a b , for 0 < b < a.

By setting t = b/a, this in turn is equivalent to prove that 1 -t 1 + t ≤ -log t, for 0 < t < 1.

By basic Calculus, it is easily seen that the function

ϕ(t) = log t + 1 -t 1 + t ,
is strictly increasing for t ∈ (0, 1) and ϕ(1) = 0. This gives the desired conclusion. Proof. For a = b there is nothing to prove. Without loss of generality, we can assume a > b. By defining t = b/a ∈ (0, 1), inequality (A.2) is equivalent to prove

1 -t s 1 + t s ≥ s 2 (1 -t).
We observe that by the "below tangent" property of concave functions, we have

t s ≤ 1 + s (t -1) i. e. 1 -t s ≥ s (1 -t).
By combining this with the trivial estimate 1 + t s ≤ 2, we get the conclusion.

An essential ingredient in the proof of our main result has been the following pointwise inequality. 

(A.3) J p (a -b) c p a p-1 - d p b p-1 + C 2 a -b a + b p (c p + d p ) ≤ C 3 |c -d| p .
Proof. We observe that for a = b there is nothing to prove, since the left-hand side vanishes. Without loss of generality, we can assume a > b. Also notice that if c ≤ d, then

(a -b) p-1 c p a p-1 - d p b p-1 ≤ (a -b) p-1 d p a p-1 - d p b p-1 = -d p (a -b) p-1 1 b p-1 - 1 a p-1 ≤ -(p -1) d p a -b a + b p ≤ -(p -1) c p + d p 2 a -b a + b p ,
where in the second inequality we used (A.1). Thus inequality (A.3) holds with C 2 = (p -1)/2 and C 3 > 0 arbitrary.

We assume now that a > b and c > d, then by setting

t = b/a ∈ (0, 1) and A = d/c ∈ [0, 1), inequality (A.3) is equivalent to (A.4) (1 -t) p-1 1 - A p t p-1 + C 2 1 -t 1 + t p (1 + A p ) ≤ C 3 (1 -A) p ,
with t ∈ (0, 1) and A ∈ [0, 1). We study the function

(A.5) Φ(t) = (1 -t) p-1 1 - A p t p-1 , t ∈ (0, 1),
which is maximal for t = A. This in particular implies 1

(A.6) (1 -t) p-1 1 - A p t p-1 ≤ (1 -A) p .
We now distinguish two cases:

either 0 ≤ A ≤ 1 2 or 1 2 < A < 1.
1 We observe that this is equivalent to

Jp(a -b) c p a p-1 - d p b p-1 ≤ |c -d| p , which is a discrete version of Picone's inequality, see [2, Proposition 4.2].
A. Case 0 ≤ A ≤ 1/2. This is the simplest case. Indeed, we have

1 -t 1 + t ≤ 1 and (1 -A) p ≥ 1 2 p .
Thus by using this and (A.6), we get

(1 -t) p-1 1 - A p t p-1 + C 3 -1 2 p+1 1 -t 1 + t p (1 + A p ) ≤ C 3 (1 -A) p , which is (A.4) with C 2 = (C 3 -1)/2 p+1 and C 3 > 1 arbitrary. B. Case 1/2 < A < 1.
Here in turn we consider two subcases: A ≤ t and 0 < t < A.

B.1. Case 1/2 < A < 1 and t ≥ A. This is easy, since we directly have

(1 -t) p ≤ (1 -A) p ,
and thus

1 -t 1 + t p ≤ (1 -t) p ≤ (1 -A) p .
By using this and (A.6), we get

(1 -t) p-1 1 - A p t p-1 + C 3 -1 2 1 -t 1 + t p (1 + A p ) ≤ C 3 (1 -A) p ,
which is (A.3) with C 2 = (C 3 -1)/2 and C 3 > 1 arbitrary.

B.1. Case 1/2 < A < 1 and 0 < t < A. Here we need to study in more details the function Φ defined in (A.5). We have

Φ (t) = (p -1) (1 -t) p-3 p -2 + 2 A p t p -p A p t p+1 = (p -1) (1 -t) p-2 p -2 1 -t 1 - A p t p -p A p t p+1 , t ∈ (0, 1).
By an easy computation, we can see that

t → p -2 + 2 A p t p -p A p t p+1
is monotone increasing, thus we get

Φ (t) ≤ (p -1) (1 -t) p-3 p 1 - 1 A , for 0 < t < A.
In particular, we get that Φ is concave on the interval (0, A). We use a second order Taylor expansion around the maximum point t = A, i.e.

Φ(t) = Φ(A) + ˆA t Φ (s) (s -t) ds = (1 -A) p + (p -1) ˆA t (1 -s) p-2 p -2 1 -s 1 - A p s p -p A p s p+1 (s -t) ds, (A.7)
where we used that Φ (A) = 0. In order to estimate the remainder term inside the integral, we distinguish once again two cases:

• if 1 < p ≤ 2, then by using Lemma A.7 below and the fact that A ≥ 1/2, we get

ˆA t (1 -s) p-2 p -2 1 -s 1 - A p s p -p A p s p+1 (s -t) ds = ˆA t (p -2) s p -A p 1 -s -p A p s (1 -s) p-2 s p (s -t) ds ≤ - p (p -1) 2 p ˆA t (1 -s) p-2 s p (s -t) ds ≤ - p (p -1) 2 p (1 -t) p-2 ˆA t (s -t) ds = - p (p -1) 2 p+1 (1 -t) p-2 (A -t) 2
. By using the previous estimate in (A.7), we have (A.8)

(1 -t) p-1 1 -A p t p-1 ≤ (1 -A) pp (p -1) 2 2 p+1 (1 -t) p-2 (A -t) 2 .

It is now sufficient to observe that (1 -t) p = (1 -t) p-2 (1 -t) 2

≤ (1 -t) p-2 2 (A -t) 2 + 2 (1 -A) 2

≤ 2 (1 -t) p-2 (A -t) 2 + 2 (1 -A) p and thus (A.9)

C 2 1 -t 1 + t p (1 + A p ) ≤ 4 C 2 (1 -t) p-2 (A -t) 2 + 4 C 2 (1 -A) p .
If we sum up (A.8) and (A.9) and choose

C 2 = 1 4 min C 3 -1, p (p -1) 2 2 p+1 ,
we get again the desired conclusion (A.4), with C 3 > 1 arbitrary. We use Young's inequality to estimate the first term on the right-hand side

- 1 p -1 (1 -A) p-1 (A -t) ≥ - p (p -1) 2 ε -1 p-1 (1 -A) p - ε p (p -1) (A -t) p ,
with ε > 0. We use these estimates in (A.7). This in turn gives

(1 -t) Then we only need to choose C 2 = 1/2 p+2 in order to get (A.4).

We thus concluded the proof. is replaced by |log a -log b| p min{c p , d p }. The main difference is that our inequality is symmetric in the terms c and d, which is a crucial feature in order to prove Theorem 1.1. On the other hand, the inequality in [7] can not have this property and thus it is not useful in order to prove Hardy inequality.

In the previous result, we needed the following inequality in order to deal with the case 1 < p ≤ 2.

Lemma A.7. Let 1 < p ≤ 2, for every s ∈ (0, 1) and A ∈ [0, 1] we have

(p -2) s p -A p 1 -s -p A p s ≤ -p (p -1) A p .
Proof. We rewrite (A.10) (p -2)

s p -A p 1 -s -p A p s = (2 -p) A p -s p 1 -s -p A p s .
We then observe that (A.11)

A p -s p 1 -s ≤ p A p .
Indeed, the latter is equivalent to 

A p (

1 . Introduction 1 . 1 .

 111 A quick overview on Hardy inequality. Given an open set Ω ⊂ R N with Lipschitz boundary, we will use the notation

Figure 1 .

 1 Figure 1. The set Σ σ (x) and the supporting hyperplane Π x .

Remark 4 . 1 .

 41 A closer inspection of the proof of Theorem 1.1 reveals that the constant C appearing in (4.6) is given by

Figure 3 .

 3 Figure 3. The set K x in the proof of Proposition 4.2.

Lemma A. 1 .

 1 Let 1 < p < ∞, for every a, b > 0 we haveJ p (a -b) 1 b p-1 -1 a p-1 ≥ (p -1) | log b -log a| p .Equality holds if and only if a = b.Proof. This is proved in [3, Lemma A.2 & Remark A.3]. Lemma A.2. For every a, b > 0 we have |a -b| a + b ≤ | log a -log b|.Equality holds if and only if a = b.

Remark A. 3 .

 3 By combining Lemma A.1 and A.2, we also obtain(A.1) J p (a -b) 1 b p-1 -1 a p-1 ≥ (p -1) a -b a + b p ,for every a, b > 0 and 1 < p < ∞.Lemma A.4. Let 0 < s < 1, then for every a, b > 0 we have(A.2) |a s -b s | a s + b s ≥ s 2|a -b| max{a, b} .

Lemma A. 5 (

 5 Fundamental inequality). Let 1 < p < ∞ and let a, b, c, d ∈ R, with a, b > 0 and c, d ≥ 0. Then there exist two constants C 2 = C 2 (p) > 0 and C 3 = C 3 (p) > 1, such that

Remark A. 6 .

 6 Inequality (A.3) looks similar to the pointwise inequality which can be found right before [7, equation (3.12), page 1289], where the term a -b a + b p (c p + d p ),

  By choosing ε = 1/2 and using that A -t ≤ 1 -t, we then obtain(1 -t) p-1 1 -A p t p-1 ≤ C 3 (1 -A) p-Once again, this is enough to get the desired conclusion, since

					p 2 2 p (p -1)	ε	-1 p-1 (1 -A) p
		+	ε 2 p (A -t) p	
		-	1 2 p (1 -t) p +	1 2 1 2 p+1 (1 -t) p ,
	with				
		C 3 = 1 +	p 2 2 p (p -1)	2	1 p-1 +	1 2 p .
	C 2	1 -t 1 + t			

p-1 1 -A p t p-1 ≤ (1 -A) p + p (1 -A) p . p (1 + A p ) ≤ 2 C 2 (1 -t) p .