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Breast cancer is the most common type of cancer among women and despite recent
advances in the medical field, there are still some inherent limitations in the currently used
screening techniques. The radiological interpretation of screening X-ray mammograms
often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful
biopsies. Here we propose a computer-aided multifractal analysis of dynamic infrared
(IR) imaging as an efficient method for identifying women with risk of breast cancer.
Using a wavelet-based multi-scale method to analyze the temporal fluctuations of breast
skin temperature collected from a panel of patients with diagnosed breast cancer and
some female volunteers with healthy breasts, we show that the multifractal complexity
of temperature fluctuations observed in healthy breasts is lost in mammary glands with
malignant tumor. Besides potential clinical impact, these results open new perspectives
in the investigation of physiological changes that may precede anatomical alterations in
breast cancer development.
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1. INTRODUCTION
It is widely recognized that early diagnosis is the key to breast can-
cer survival. X-ray mammography (Nass et al., 2000; Bronzino,
2006), the golden standard for breast cancer screening detection,
has a rather high false-positive rating and is not always effective
in detecting cancer in young women who generally have dense
breast tissue (Jorgensen and Gotzsche, 2009; Tamini et al., 2009)
and this despite the increasing use of computer-aided detec-
tion/diagnosis methods (Fenton et al., 2011). Biopsy is indeed the
only conclusive diagnostic test for breast cancer, but the num-
ber of unnecessary biopsies is still too high (Vinitha Sree et al.,
2009). Since the original observation by Lawson (1956) that skin
temperature over a malignant tumor is higher than its neighbour-
hood, possibly resulting from abnormal increase of metabolic
activity and vascular circulation in the tissues beneath (Yahara
et al., 2003; Bronzino, 2006), IR thermography has been con-
sidered as a promising non-invasive screening method of breast
cancer (Ng, 2009). However the suitability of static IR imaging
for routine screening has been severely questioned (Head and
Elliott, 2002; Bronzino, 2006), because of insufficient sensitivity
for detection of deep lesions and limited knowledge of the rela-
tionship between surface temperature distributions and thermal
diseases. Renewed interest in dynamic IR imaging (Etehadtavakol
and Ng, 2013) comes from the rapid development of new digi-
tal IR thermography cameras with higher temperature resolution
(0.08◦C or better) and faster frame rate (70 Hz) (Joro et al.,
2008a), combined with increasing knowledge of tumor angiogen-
esis including nitric oxide production of the cancer tissue causing

local disturbances in vasomotor (automatic nervous control of
smooth muscles forcing blood through capillaries) and cardio-
genic phenomena as compared to normal tissues (Thomsen and
Miles, 1998; Anbar et al., 2001).

The basis for diagnostic application of dynamic IR imaging is
the detection of intensity variations in temperature rhythms gen-
erated by the cardiogenic (1–1.5 Hz) and vasomotor (0.1–0.2 Hz)
frequencies (Button et al., 2004; Joro et al., 2008b). In this
study we show that beyond intensity differences in these rhythms
between normal and tumor breast tissues, the complexity of tem-
perature fluctuations about these physiological perfusion oscilla-
tions is qualitatively different. Using a wavelet-based multi-scale
analysis (Muzy et al., 1991, 1994; Arneodo et al., 1995) of tem-
perature fluctuations, we propose to characterize the multifractal
properties of these temperature time-series as an effective dis-
criminating method for early screening procedures to identify
women with high risk of breast cancer.

2. METHODS OF ANALYSIS
2.1. THE WAVELET TRANSFORM
The wavelet transform (WT) is a mathematical micro-
scope (Muzy et al., 1991, 1994; Arneodo et al., 1995) that is
well suited for the analysis of complex non-stationary time-series
such as those found in physiological systems (Ivanov et al.,
1999; Goldberger et al., 2002), thanks to its ability to filter out
low-frequency trends in the analyzed signal � (Materials and
Methods). The WT is a space (or time in our study)-scale analysis
which consists in expanding signals in terms of wavelets which
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are constructed from a single function, the “analyzing wavelet”ψ ,
by means of translations and dilations. The WT of a real-valued
function � is defined as (Mallat, 1998):

Wψ [�](t0, a) = 1

a

∫ +∞

−∞
�(t)ψ

(
t − t0

a

)
dt, (1)

where t0 is the time parameter and a (> 0) the scale param-
eter. By choosing a wavelet ψ whose n + 1 first moments are
zero [

∫
tnψ(t)dt = 0, 0 ≤ m ≤ n] (Supplementary Figure 1),

one makes the WT microscope blind to order-n polynomial
behavior, a prerequisite for multifractal fluctuations analy-
sis (Muzy et al., 1991, 1994; Arneodo et al., 1995). Indeed this
mathematical microscope can be seen as a singularity scan-
ner. By increasing magnification (decreasing the scale parameter
a → 0+) around a given point t, finer and finer details of � can
be revealed and quantified via the estimate of the so-called
Holder exponent h(t) (Muzy et al., 1991, 1994; Arneodo et al.,
1995).

2.2. THE WAVELET TRANSFORM MODULUS MAXIMA METHOD
The WT modulus maxima (WTMM) method was originally
developed to generalize box-counting techniques (Arneodo et al.,
1987) and to remedy for the limitations of the structure func-
tions method to perform multifractal analysis of one-dimensional
(1D) velocity signal in fully developed turbulence (Muzy et al.,
1991, 1994; Arneodo et al., 1995). It has proved very efficient
to estimate scaling exponents and multifractal spectra (Muzy
et al., 1994; Delour et al., 2001; Audit et al., 2002). This method
has been generalized in 2D for the multifractal analysis of
rough surfaces (Arneodo et al., 2003) and then for the analy-
sis of 3D scalar and vector fields (Kestener and Arneodo, 2004;
Arneodo et al., 2008). It has been successfully applied in var-
ious areas of fundamental research (Arneodo et al., 1998a,b,
2002, 2003, 2008; Khalil et al., 2006; Roland et al., 2009; Roux
et al., 2009; Arneodo et al., 2011). In the context of the present
study, the 1D WTMM method has proved very efficient at
discriminating between healthy and sick heart beat dynamics
(Ivanov et al., 1999, 2001; Goldberger et al., 2002), whereas
the 2D WTMM method can be used to detect microcalcifica-
tions and has great potential to assist in cancer diagnosis from
digitized mammograms (Kestener et al., 2001; Arneodo et al.,
2003).

The WT modulus maxima (WTMM) method (Muzy et al.,
1991, 1994; Arneodo et al., 1995) consists in computing the
WT skeleton defined, at each fixed scale a, by the local maxima
L(a) of the WT modulus |W(t, a)|. These WTMM are dis-
posed on curves connected across scales called maxima lines lt
(Supplementary Figure 2), along which the WTMM behave as
ah(t), where h(t) is the Hölder exponent (Muzy et al., 1991, 1994;
Arneodo et al., 1995) characterizing the singularity of� at time t.
The multifractal formalism amounts to characterize the relative
contributions of each Hölder exponent value via the estimate
of the D(h) singularity spectrum defined as the fractal dimen-
sion of the set of points t where h(t) = h. This spectrum can
be obtained by investigating the scaling behavior of partition

functions defined in terms of wavelet coefficients:

Z(q, a) =
∑

l∈L(a)

|W(t, a)|q ∼ aτ (q), (2)

where q ∈ R. Then from the scaling function τ (q), D(h) is
obtained by a Legendre transform (Muzy et al., 1991, 1994;
Arneodo et al., 1995):

D(h) = min
q

[qh − τ (q)]. (3)

As originally pointed out in Muzy et al. (1994); Arneodo et al.
(1995), one can avoid some practical difficulties that occur when
directly performing the Legendre transform of τ (q), by comput-
ing the following expectation values:

h(q, a) = ∂

∂q
ln (Z(q, a))

=
∑

l∈L(a)

ln
(|Wψ [�](t, a)| Ŵψ [�](q, l, a),

D(q, a) = q
∂

∂q
ln (Z(q, a)) − Z(q, a)

=
∑

l∈L(a)

Ŵψ [�](q, l, a) ln Ŵψ [�](q, l, a) , (4)

where Ŵψ [�](q, l, a) = |Wψ [�](t, a)|q
Z(q, a) is the equivalent of

Bolzmann weight in the analogy that links the multifractal for-
malism to thermodynamics (Arneodo et al., 1995). Then from
the slopes of h(q, a) and D(q, a) vs ln a, one gets h(q) and
D(q) and therefore the D(h) singularity spectrum as a curve
parametrized by q.

2.3. MONOFRACTAL vs. MULTIFRACTAL FUNCTIONS
Homogeneous monofractal functions, i.e., functions with singu-
larities of unique Hölder exponent H, are characterized by a
linear τ (q) curve of slope H. Monofractal scaling implies that the
shape of the probability distribution function (pdf) of rescaled
wavelet coefficients (W(·, a)/aH) does not depend on a, for-
mally expressed by the self-similarity relationship (Arneodo et al.,
2002):

ρWa/aH (w) = ρ(w), (5)

where ρ(w) is a “universal” pdf. A non-linear τ (q) is the sig-
nature of non-homogeneous multifractal functions, meaning
that the Hölder exponent h(t) is a fluctuating quantity (Muzy
et al., 1991, 1994; Arneodo et al., 1995) that depends on t.
In this study, we fit the τ (q) data by the so-called log-normal
quadratic approximation τ (q) = −c0 + c1q − c2q2/2, where the
coefficients cn > 0 (Delour et al., 2001). The correspond-
ing singularity spectrum has a characteristic single-humped
shape D(h) = c0 − (h − c1)2/2c2, where c0 = −τ (0) is the frac-
tal dimension of the support of singularities of �, c1 is the
value of h that maximizes D(h) and c2, the so-called inter-
mittency coefficient (Muzy et al., 1991, 1994; Arneodo et al.,
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1995; Delour et al., 2001), characterizes the width of the D(h)
spectrum, i.e., the signature of a change in WT coefficient statis-
tics across scales (Muzy et al., 1991, 1994; Arneodo et al., 1995,
2002).

3. DESCRIPTION OF DATA
3.1. STUDY DESIGN AND POPULATION
Subjects were recruited for the present study from the Perm
Regional Oncological Dispensary using procedures approved
by the Local Ethics Committee (Gileva et al., 2012). They all
gave Informed Consent to participate in this study via the

recording of the IR thermograms of the both mammary glands,
the cancerous one and the opposite undiagnosed one with no
visible signs of pathology. Our database includes 33 females
with ages between 37 and 83 (average 57 years) who all went
through surgery to remove the histologically confirmed malig-
nant tumor (invasive ductal and/or lobular breast cancer) a
few weeks after thermograms were recorded. The tumors were
found at different depths from 1 cm down to 12 cm with a
size varying from 1.2 cm up to 6.5 cm (Table 1). As a control,
we also investigated 14 women with intact mammary glands
and of ages between 23 and 79 (average 49.6 years). This

Table 1 | Set of (33) analyzed patients with age, cancerous breast (Right or Left), stage, size and depth of the malignant tumor and histology

status.

Age Breast Stage Size (cm) Depth (cm) Location Histological DS

1 58 L IIIa 1.57 4 Border outer-inner upper
quadrants

Invasive ductal cancer

2 70 R IIa 2.8 3 Border outer-inner upper
quadrants

Invasive ductal cancer

3 53 R IIa 2.5 × 2.85 5 Upper outer quadrant Invasive ductal cancer

4 65 L IIa 2.6 × 3.3 2 Border lower-upper outer
quadrant

Cystadenocarcinoma

5 49 L IIa 4.15 × 3.45 1 Border inner-outer upper
quadrants

Cystadenocarcinoma

6 56 L III 4.5 4 Upper outer quadrant Invasive lobular cancer

7 47 R IIa 2.7 × 2.2 3 Border inner-outer upper
quadrants

Invasive lobular cancer

8 82 L III 1.6 × 1.8 3 Upper inner quadrant Invasive ductal cancer

9 44 L IIa 1.8 × 3 6 Upper outer quadrant Invasive ductal cancer

10 64 R IIa – – Invasive ductal cancer

11 55 R IIb 5.3 1 Upper quadrant Ductal cancer

12 59 R Ib 1.8 and 1.26 12 Border between upper quadrants Invasive ductal and lobular cancer

13 48 L IIa 1.5 1 Underarm area Invasive lobular cancer

14 73 R I 1.2 5 Border between upper quadrants Invasive ductal cancer

15 81 R I – – Invasive ductal cancer

16 41 R IIa 3.4 7 Upper inner quadrant Invasive lobular cancer

17 53 R IIa 3 × 1.5 × 1.4 4 Upper outer quadrant Invasive lobular and ductal cancer

18 37 L IIa 3.49 × 2.39 6 Upper outer quadrant Invasive ductal cancer

19 63 L – – – Invasive ductal cancer

20 56 R IIa 3.1 × 2.5 × 3.6 3 Upper outer quadrant Invasive lobular and ductal cancer

21 45 R IIIb 6.5 × 4 2 Upper outer qadrant Invasive cancer

22 74 R IIa – – Invasive ductal cancer

23 40 L – 2.9 × 3.4 1 Border between upper quadrants Invasive lobular cancer

24 49 L IIa 1.7 × 2.2 2 Border between outer quadrants Paget disease of the nipple

25 41 L IIa 2.5 and 1.8 × 2, 2.7 × 1.7 3 Border between upper quadrants,
upper outer quadrant

Invasive ductal cancer

26 83 R Susp. ms 1.9 1 Underarm area No metastasis

27 62 L IIa 2.2 × 2.1 2 Border between inner quadrants Invasive ductal and lobular cancer

28 76 L IIb 3.49 8 Border between lower quadrants Invasive ductal cancer

29 57 R II 2.1 × 1.6 6 Border between lower quadrants Invasive ductal cancer

30 54 R IIa 3.5 3 Upper outer quadrant Invasive ductal cancer

31 56 R IIb – – Invasive ductal cancer

32 55 R IIb 4.4 × 3 × 2.5 9 Border between upper quadrants Invasive ductal cancer

33 37 R IIa 1.57 1.5 Border Upper-lower outer
quadrants, close to the nipple

Invasive lobular cancer
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extensive study was preceded and encouraged by a preliminary
study with only 6 patients and 3 volunteers (Gerasimova et al.,
2013).

3.2. IR THERMOGRAPHY IMAGING
Both breasts of healthy volunteers and patients with breast can-
cer were imaged with a InSb photovoltaic (PV) detector camera
(Joro et al., 2008a). Imaging was performed with the patient in
sitting position with arms down to avoid too much discomfort
during imaging. Frontal images were taken at a distance ∼1 m of
the patient in an environmental room temperature of 20–22◦C.
The image frame rate was set to 50 Hz. The image data were
collected in 14 bits into the computer connected to the PV cam-
era. Each image set comprised 30 000 256 × 320 pixel2 image
frames during the 10 min immobile imaging phase. To elimi-
nate low frequency patient movements, skin surface markers were
successfully used as reference points for motion correction in the
analysis.

3.3. DATA SAMPLING
Pixel based and windowed regional power spectra and
wavelet-based multifractal analysis of normal and cancer
breasts were tested to define the best procedure to minimize the
effect of the camera noise and to ensure statistical convergence
in the multifractal spectra estimation. We grouped single-pixel
temperature time-series (Figures 1A–C) into 8 × 8 pixel2 squares
spanning 10 × 10 mm2 and covering the entire breast (see
Figures 4A–C). The results reported correspond to averaged
power spectra, partition functions, singularity spectra and WT
pdfs over 64 temperature time-series in these 8 × 8 subareas.

3.4. REMARK
As commonly done for noise signals (Muzy et al., 1994; Audit
et al., 2002) and previously experienced when applying the 1D
WTMM method to rainfall time-series (Venugopal et al., 2006),
the wavelet analysis was performed on the cumulative (or inte-
gral) � of the temperature time-series (Supplementary Figure 2)

FIGURE 1 | Multifractal analysis of IR temperature time-series.

Comparative analysis of the cancerous right breast (red) and healthy left
breast (black) of patient 20 (age 56) and of the healthy right breast
(green) of volunteer 14 (age 60). (A–C) 1 min portions of pixel
temperature time-series. (D) Averaged temperature power spectra in a
8 × 8 pixel2 square. The straight lines correspond to power-law scaling
1/fβ with exponent β = τ (2) = 0.62 (red), 1.32 (black), and 1.22 (green) as

estimated with the WTMM method in (E). (E) τ (q) vs. q estimated by
linear regression fit of log2 Z (q, a) vs. log2 a over a range of time-scales
[0.3, 3] s (Figure 2A). (F) D(h) vs. h (Figures 2B,C). The solid lines in
(E,F) correspond to quadratic spectra (see text) with parameters
[c0, c1, c2] = [0.99, 0.81, 0.0044] (red), [0.99, 1.23, 0.080] (black), and
[0.99, 1.171, 0.069] (green). In (E,F), the τ (q) and D(h) spectra were
averaged over a 8 × 8 pixel2 square.
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using the second-order compactly supported version ψ
(2)
(3) of

the Mexican hat (Roux et al., 1999) (Supplementary Figure 1).
Hence the singularities with possible negative Hölder expo-
nent −1 < h < 0, become singularities with 0 < hc = h + 1 < 1
in the cumulative.

3.5. SOFTWARE AND DOCUMENTATION
The numerical procedure to perform the WTMM analysis of 1D
signals can be downloaded at http://perso.ens-lyon.fr/benjamin.
audit/LastWave

LastWave is an open source software written in C. We rec-
ommend interested users to read the LastWave C-Application
Programming Interface documentation and to contact the cor-
responding author to be directed to the part of the code of most
relevance to them.

4. RESULTS
4.1. SPECTRAL ANALYSIS REVEALS SCALE-INVARIANCE PROPERTIES

IN SKIN TEMPERATURE DYNAMICS IN BOTH CANCEROUS AND
HEALTHY BREASTS

We analyzed individual 1-pixel temperature time-series taken
from 8 × 8 pixels2-squares covering the patients entire breasts.
As expected, these time-series generally fluctuate at a higher tem-
perature when recorded in the tumor region of a malignant
breast (Figure 1A) than in a symmetrically positioned square on
the opposite breast (Figure 1B) as well as on a healthy breast
(Figure 1C). When averaging the corresponding power-spectra
over the 64 pixels of the considered squares, we observed for the
two breasts of patient 20 (age 56) and the healthy breast of volun-
teer 14 (age 60), a rather convincing 1/f β power-law scaling over
a range of frequencies that extends from the characteristic human

respiratory frequency (�0.3 Hz) up to the cross-over frequency
(�4 Hz) toward (instrumental) white noise (Figure 1D). As con-
firmed by the WTMM method (Figure 1E), the exponent β =
τ (q = 2) = 0.62 ± 0.19 found in the malignant breast is smaller
than in the opposite breast of patient 20, β = 1.32 ± 0.11, and in
the volunteer 14 healthy breast, β = 1.22 ± 0.11. This difference
looks quite significant and very promising in a discriminatory
perspective. Unfortunately, the histograms of β values obtained
for all 8 × 8 pixel2 squares covering 33 cancerous breasts, the 32
opposite breasts (patient 6 had mastectomy of right breast) and
the 28 volunteer healthy breasts are quite similar (Supplementary
Figure 3) with mean values β̄ = 1.09 ± 0.01 (cancer), 1.14 ± 0.01
(opposite) and 1.14 ± 0.01 (healthy). Indeed these histograms
extend over a rather wide range of β values: 0.5 � β � 1.9.

4.2. WTMM ANALYSIS DISCRIMINATES BETWEEN MONOFRACTAL
(TUMOR AREA) AND MULTIFRACTAL (HEALTHY AREA)
TEMPERATURE TEMPORAL FLUCTUATIONS

When applying the WTMM method to the cumulative of these
temperature time-series, we confirmed that the partition func-
tions Z(q, a) Equation (2) display nice scaling properties for
q = −1 to 5, over a range of time-scales that we strictly lim-
ited to (0.43, 2.30 s) for linear regression fit estimates in a
logarithmic representation (Figure 2A). The τ (q) so-obtained
are well approximated by quadratic spectra (Figure 1E). For
the malignant breast of patient 20, τ (q) is nearly linear as
quantified by a very small value of the intermittency coeffi-
cient c2 = (4.4 ± 0.6) · 10−3. This signature of monofractality
is confirmed, when respectively plotting h(q, a) and D(q, a)
Equation (4) vs. log2 a, in Figures 2B,C, where the slopes h(q) =
c1 = 0.81 ± 0.01 and D(q) = 0.99 ± 0.03, do not significantly

FIGURE 2 | Multifractal analysis of cumulative IR temperature

time-series in a 8 × 8 pixel2 square in malignant right breast (red)

and opposite left breast (black) of patient 20 and of the healthy

right breast (green) of volunteer 14. (A) log2 Z (q, a) vs. log2 (a)
Equation (2). (B) h(q, a) vs. log2 a Equation (4). (C) D(q, a) vs. log2 a

Equation (4). The τ (q) spectra shown in Figure 1E were estimated by
linear regression fit of the data in (A) over the range 2.8 � log2 a � 5.2.
The D(h) spectra in Figure 1F were obtained by linear regression fit in
(B,C) over the same range of time-scales. The analyzing wavelet is ψ (2)

(3)
(Supplementary Figure 1).

5



depend on q, meaning that the D(h) singularity spectrum nearly
reduces to a single point D(h = c1 = 0.81) = 1 (Figure 1F). This
monofractal diagnosis is confirmed when comparing the WT
pdfs obtained at different time-scales (Figure 3A); according to
Equation (5), they all collapse on a single curve when using the
exponent H = c1 (Figure 3A′).

In contrast, the τ (q) spectrum obtained for the opposite
breast of patient 20, is definitely non-linear with a no longer
negligible (one order of magnitude larger) quadratic term
c2 = 0.080 ± 0.001 (Figure 1E), the hallmark of multifractal scal-
ing. As shown in Figures 2B,C, the slopes h(q) and D(q) of h(q, a)
and D(q, a) vs log2 a now depend on q. From the estimate of
h(q) and D(q), we get the single-humped D(h) spectrum shown
in Figure 1F, which is well approximated by a quadratic spec-
trum with parameters c0 = 0.99 ± 0.05, c1 = 1.23 ± 0.01 and
c2 = 0.080 ± 0.001. Because there is no longer a unique scal-
ing exponent c1, the self-similarity Equation (5) is not verified
meaning that the shape of the WT coefficient pdf now evolves
across scales (Figure 3B), with fatter tails appearing at small
scales (Figure 3B′). Interestingly, the τ (q) (Figure 1E) and D(h)
(Figure 1F) spectra obtained for the healthy breast of volunteer
14 are quite similar quadratic spectra with parameter values c0 =
0.99 ± 0.03, c1 = 1.17 ± 0.01 and c2 = 0.069 ± 0.002. Again this
multifractal diagnosis is strengthened by the observation that the
WT coefficient pdf has a shape that evolves across time-scales
(Figures 3C,C′).

To check the statistical relevance of our multifractal spectra
estimates, we have generated so-called surrogate series (Theiler
et al., 1992; Schreiber and Schmitz, 1996) that can be created
with an identical pdf and optimally similar power spectrum to the
original series (Supplementary Method). Examples of surrogate
series for the IR temperature time-series shown in Figures 1A–C
can be seen in Supplementary Figures 4A–C respectively. Visually,
there is an obvious resemblance with the original time-series,
but when computing the corresponding τ (q) (Supplementary
Figure 4E) and D(h) (Supplementary Figure 4F), we find now
for the three breasts a τ (q) spectrum that is quite linear and a
D(h) singularity spectrum that almost reduces to a single point
D(h) = c1 with a very small width c2 ≤ 0.01. This monofrac-
tal diagnostic is confirmed when reproducing this analysis for
100 surrogate series; the histograms of intermittency coefficients
c2 obtained for the three breasts are very similar and mainly
confined to very small values with means c2 = 0.012 (cancer),
0.005 (opposite) and 0.006 (healthy) that are all much smaller
than the threshold c2 = 0.03 we will further use to discriminate
between monofractal (c2 ≤ 0.03) and multifractal (c2 > 0.03)
cumulative temperature time-series (Supplementary Figure 5).
These results indicate that the cumulative temperature time-
series of healthy breasts are not generated by an underlying
linear Gaussian process, but have an inherently non-linear struc-
ture that is apparently lost in the presence of a malignant
tumor.

FIGURE 3 | Evolution of the temperature WT coefficient pdfs across

time-scales. Pdfs of WT coefficients W and rescaled WT coefficients
(W /(a/a0)c1 ) of cumulative temperature of (A,A′) the cancerous right breast
of patient 20: c1 = 0.81, (B,B′) the opposite left breast of patient 20:

c1 = 1.23, and (C,C′) the healthy right breast of volunteer 14: c1 = 1.17. The
different curves correspond to seven different scales from a = 0.43 s to
2.30 s, larger scales are in darker shades; a0 = 0.43 s. The pdfs were
averaged over a 8 × 8 pixel2 square.
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FIGURE 4 | Breast-wide multifractal analysis of skin temperature

temporal fluctuations. As estimated from the τ (q) spectra computed with
the WTMM method (Figure 1E), 8 × 8 pixel2 squares covering the entire
breast are colored coded (A–C) and represented as a dot in the (c1, c2) plane
(D–F). The colors have the following meaning: red: c2 < 0.03, blue:

c2 � 0.03, and white: no scaling (see text). (A,D) Cancerous right breast of
patient 20: the tumor is located in the upper outer quadrant (Table 1); (B,E)

healthy left breast of patient 20; (C,F) healthy right breast of volunteer 14.
The blue diamond shapes in (A–C) are skin surface markers used as
references for motion correction.

4.3. MULTIFRACTAL-BASED SEGMENTATION OF BREAST
THERMOGRAMS INTO PHYSIOLOGICALLY ALTERED (RISKY) AND
NORMAL REGIONS

When extending our wavelet-based multifractal analysis of cumu-
lative temperature time-series to the entire set of 8 × 8 pixels2-
squares that cover the right breast with malignant tumor of
patient 20 (Figures 4A,D), her opposite left breast (Figures 4B,E)
and the healthy right breast of volunteer 14 (Figures 4C,F),
we confirmed, except in a minority of squares, the exis-
tence of scaling. In the cancerous breast, a large proportion
of squares (49.7%) display monofractal temperature fluctua-
tions with small intermittency coefficient values (c2 < 0.03 in
Figure 4D), whereas only few of those squares are found in the
opposite breast (7.7% in Figure 4E) and in the volunteer 14
healthy breast (11% in Figure 4F). Both these healthy breasts
have a large majority of squares where multifractal scaling is
observed (c2 � 0.03), namely 89.4% for the former (Figure 4B)
and 65% for the latter (Figure 4C). Note that 43.1% of the
squares in the cancerous breast also display multifractal temper-
ature fluctuations as observed for healthy breasts (Figure 4A).
These squares indeed cover regions of the breast that are far
from the tumor area (left upper quadrant) mostly covered by
monofractal squares. These results are indeed quite represen-
tative of the outcome of the statistical analysis of our entire
data set.

4.4. COMPARATIVE STATISTICAL ANALYSIS OF SKIN TEMPERATURE
DYNAMICS IN WOMEN BREASTS WITH AND WITHOUT
MALIGNANT TUMOR

The results of our comparative wavelet-based multifractal analysis
of (cumulative) temperature fluctuations over the 33 cancerous
breasts, the 32 opposite breasts (no right breast for patient 6)
and the 28 volunteer healthy breasts are reported in Figure 5 and
Table 2. In Figure 5A, the corresponding histograms of c1 val-
ues extend over a rather wide range 0.6 � c1 � 1.8 but turn out
to be quite similar with mean values c̄1 = 1.066 ± 0.002 (can-
cer), 1.104 ± 0.002 (opposite) and 1.103 ± 0.002 (healthy). This
is reminiscent to the similar histograms that were also obtained
for the power-spectrum exponent β (Supplementary Figure 3).
In contrast, the intermittency parameter c2 has a definite dis-
criminatory power. The histogram for cancerous breasts (c̄2 =
0.045 ± 0.001) is definitely shifted toward smaller values rela-
tive to the ones for opposite (c̄2 = 0.056 ± 0.001) and healthy
breasts (c̄2 = 0.058 ± 0.001) (Figure 5B). The small-value left-
side of the c2 histogram is much more populated in cancer-
ous than in healthy breasts, confirming that cancerous breasts
are enriched in squares where temperature fluctuations display
significantly reduced multifractal properties. This justifies that
we considered c2 = 0.03 as the threshold below (resp. above)
which a square was qualified as monofractal (resp. multifractal)
(Figure 4). Note that for each breast, a small percentage (�20%)
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FIGURE 5 | Differential multifractal signature of temperature temporal

fluctuations on breasts with and without tumor. Comparative analysis of
both breasts of 33 patients with breast cancer and 14 healthy volunteers. (A)

Normalized histograms of c1 values obtained in the breasts with a malignant
tumor (red: N = 4032 8 × 8 pixel2 squares), the opposite breasts (black:
N = 3606) and the healthy breasts (green: N = 3185). (B) Normalized
histograms of c2 values. (C) Percentage of “monofractal” (red: c2 < 0.03),
“multifractal” (blue: c2 � 0.03) and “no scaling” (black) 8 × 8 pixel2 squares
in cancerous, opposite and healthy breasts. (D) Percentage of “monofractal”
8 × 8 pixel2 squares in the cancerous breast vs. the percentage in the

opposite breast of each patient; the symbols have the following meaning: (•)
17 patients with a percentage of monofractal squares on the cancerous
breast larger than the mean value 26.8%, namely patients 2, 4, 7, 8, 9, 10, 11,
13, 17, 19, 20, 22, 25, 26, 29, 30, and 32 (patient 6 is not taken into account
because of mastectomy of right breast); (∗) 7 patients with the percentage of
monofractal squares on the cancerous breast smaller than 26.8% but well
localized on the tumor region, namely patients 3 (16.3%), 14 (18.9%), 21
(14.0%), 23 (4.6%), 24 (4.9%), 31 (6.8%), and 33 (17.0%); (◦) 8 false
negatives, namely patients 1 (2.4%), 5 (0.8%), 12 (4.9%), 15 (1.3%), 16
(0.0%), 18 (7.7%), 27 (4.3%), and 28 (6.6%) (see Table 2).

of (white) squares were removed from our analysis because of
lack of scaling (Figure 5C, Table 2 and Supplementary Table 1).
Importantly, the percentage of monofractal (red) squares cover-
ing cancerous breasts (26.8 ± 3.5%) is about twice larger than the
ones covering opposite (13.1 ± 2.3%) and healthy (11.3 ± 2.2%)
breasts. This excess is compensated by a smaller percentage of
multifractal (blue) squares in cancerous breasts (56.9 ± 4.4%)
than in opposite (68.5 ± 3.8%) and healthy (69.4 ± 4.3%) breasts
(Figure 5C).

A common way to suspect cancer by IR thermography is to
look for some dissymmetry between the two breasts of a patient
(Etehadtavakol and Ng, 2013). When comparing the percent-
ages of monofractal squares on both the cancer and opposite
breasts of the 33 patients (except patient 6), we found that 25
(/32) have more monofractal squares on the cancerous breast
(Table 2). Indeed, we found 18 (/33) malignant breasts that have
a percentage of monofractal squares greater than the mean value
26.8 ± 3.5 (Figure 5D). Among the other 15 cancerous breasts,

7 have a smaller percentage of monofractal squares but well
localized on the tumor region (Figure 4A and Supplementary
Figure 6). The remaining 8 cancerous breasts correspond to
false negatives for which not only the percentage of monofrac-
tal squares is small but their location is far from the tumor region
(Supplementary Figure 7). Among these false negatives, 4 corre-
spond to rather deep tumors in fatty breasts which can explain
that they do not manifest in a qualitative change in temperature
dynamics at the skin surface in patients 12 (size 1.8 cm, depth
12 cm) (Supplementary Figure 8), 16 (3.4 cm, 7 cm), 18 (3.49 cm,
6 cm) and 28 (3.49 cm, 8 cm). When investigating the 32 opposite
breasts, 5 of them have a large percentage of monofractal squares
(Figure 5D, Table 2 and Supplementary Figure 9). These impor-
tant percentages similar to those obtained in malignant breasts are
probable indication of some physiological changes in the oppo-
site breast that may announce the possible extension of cancer
to the second breast. As a control, we reproduced this compar-
ative analysis on the two breasts of the 14 healthy volunteers
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Table 2 | Results of our WTMM multifractal analysis of the skin (cumulative) temperature temporal fluctuations of the two breasts of our 33

patients with breast cancer.

Cancerous breast Opposite breast

Nmono Nmulti Nnoscaling Total Nmono Nmulti Nnoscaling Total

1 2 (2.4%) 20 (24.4%) 60 (73.2%) 82 (100%) 3 (4.7%) 46 (71.9%) 15 (23.4%) 64 (100%)

2 39 (42.9%) 23 (25.3%) 29 (31.9%) 91 (100%) 5 (4.1%) 61 (50.0%) 56 (45.9%) 122 (100%)

3 16 (16.3%) 60 (61.2%) 22 (22.4%) 98 (100%) 31 (25.8%) 77 (64.2%) 12 (10.0%) 120 (100%)

4 56 (33.1%) 90 (53.3%) 23 (13.6%) 169 (100%) 7 (8.3%) 62 (73.8%) 15 (17.9%) 84 (100%)

5 1 (0.8%) 108 (82.4%) 22 (16.8%) 131 (100%) 0 (0.0%) 122 (91.7%) 11 (8.3%) 133 (100%)

6 54 (30.5%) 101 (57.1%) 22 (12.4%) 177 (100%)

7 44 (32.4%) 59 (43.4%) 33 (24.3%) 136 (100%) 26 (23.0%) 75 (66.4%) 12 (10.6%) 113 (100%)

8 20 (27.0%) 46 (62.2%) 8 (10.8%) 74 (100%) 1 (1.4%) 29 (39.2%) 44 (59.5%) 74 (100%)

9 65 (40.1%) 85 (52.5%) 12 (7.4%) 162 (100%) 39 (25.7%) 37 (24.3%) 76 (50.0%) 152 (100%)

10 77 (51.3%) 42 (28.0%) 31 (20.7%) 150 (100%) 40 (24.2%) 96 (58.2%) 29 (17.6%) 165 (100%)

11 62 (46.3%) 54 (40.3%) 18 (13.4%) 134 (100%) 23 (17.6%) 87 (66.4%) 21 (16.0%) 131 (100%)

12 5 (4.9%) 97 (94.2%) 1 (1.0%) 103 (100%) 1 (0.9%) 114 (99.1%) 0 (0.0%) 115 (100%)

13 48 (37.8%) 18 (14.2%) 61 (48.0%) 127 (100%) 50 (40.0%) 18 (14.4%) 57 (45.6%) 125 (100%)

14 17 (18.9%) 65 (72.2%) 8 (8.9%) 90 (100%) 8 (8.9%) 72 (80.0%) 10 (11.1%) 90 (100%)

15 1 (1.3%) 70 (90.9%) 6 (7.8%) 77 (100%) 0 (0.0%) 26 (89.7%) 3 (10.3%) 29 (100%)

16 0 (0.0%) 79 (54.1%) 67 (45.9%) 146 (100%) 52 (29.4%) 111 (62.7%) 14 (7.9%) 177 (100%)

17 106 (57.6%) 64 (34.8%) 14 (7.6%) 184 (100%) 3 (2.1%) 104 (73.8%) 34 (24.1%) 141 (100%)

18 11 (7.7%) 111 (77.6%) 21 (14.7%) 143 (100%) 0 (0.0%) 111 (93.3%) 8 (6.7%) 119 (100%)

19 60 (34.1%) 106 (60.2%) 10 (5.7%) 176 (100%) 29 (19.1%) 113 (74.3%) 10 (6.6%) 152 (100%)

20 76 (49.7%) 66 (43.1%) 11 (7.2%) 153 (100%) 11 (7.7%) 127 (89.4%) 4 (2.8%) 142 (100%)

21 25 (14.0%) 148 (82.7%) 6 (3.4%) 179 (100%) 17 (9.3%) 156 (85.7%) 9 (4.9%) 182 (100%)

22 50 (29.8%) 41 (24.4%) 77 (45.8%) 168 (100%) 86 (44.1%) 82 (42.1%) 27 (13.8%) 195 (100%)

23 7 (4.6%) 143 (93.5%) 3 (2.0%) 153 (100%) 27 (16.2%) 111 (66.5%) 29 (17.4%) 167 (100%)

24 8 (4.9%) 144 (88.3%) 11 (6.7%) 163 (100%) 0 (0.0%) 163 (94.2%) 10 (5.8%) 173 (100%)

25 77 (57.0%) 55 (40.7%) 3 (2.2%) 135 (100%) 24 (18.0%) 101 (75.9%) 8 (6.0%) 133 (100%)

26 87 (47.3%) 31 (16.8%) 66 (35.9%) 184 (100%) 18 (14.4%) 37 (29.6%) 70 (56.0%) 125 (100%)

27 7 (4.3%) 148 (91.4%) 7 (4.3%) 162 (100%) 0 (0.0%) 139 (91.4%) 13 (8.6%) 152 (100%)

28 11 (6.6%) 140 (84.3%) 15 (9.0%) 166 (100%) 27 (16.5%) 84 (51.2%) 53 (32.3%) 164 (100%)

29 65 (38.9%) 67 (40.1%) 35 (21.0%) 167 (100%) 7 (4.0%) 144 (82.8%) 23 (13.2%) 174 (100%)

30 116 (70.3%) 40 (24.2%) 9 (5.5%) 165 (100%) 65 (42.8%) 72 (47.4%) 15 (9.9%) 152 (100%)

31 13 (6.8%) 175 (91.1%) 4 (2.1%) 192 (100%) 1 (0.6%) 140 (82.8%) 28 (16.6%) 169 (100%)

32 88 (48.1%) 90 (49.2%) 5 (2.7%) 183 (100%) 11 (5.5%) 160 (80.0%) 29 (14.5%) 200 (100%)

33 23 (17.0%) 109 (80.7%) 3 (2.2%) 135 (100%) 5 (3.6%) 112 (80.0%) 23 (16.4%) 140 (100%)

Number and percentage of monofractal (c2 < 0.03), multifractal (c2 � 0.03), no-scaling (and total) 8 × 8 pixel2 squares in the cancerous breast and in the opposite

breast (see Figure 4 and Supplementary Figures 4–7).

(Supplementary Figure 10 and Table 1). Among the 28 breasts
analyzed, only 4 have a large (�26.8%) percentage of monofrac-
tal squares, whereas most of them have a percentage �10%
(Supplementary Figures 11, 12). Overall, we thus obtained 25
(/33) true positives and 4 (/28) false positives, i.e., a sensitivity
of 76% and a specificity of 86%, respectively.

5. CONCLUSIONS
Over the course of a lifetime, 1 in 8 women will be diagnosed
with breast cancer. There are no well-established ways to avoid
breast cancer (as opposed to lung cancer for example) and in
the context of breast cancer screening, abnormalities should be
detected at an early stage to improve prognosis. Criticism of
the use of screening mammography due to over-diagnosis led

some researchers to show that one in three breast cancers iden-
tified by mammography would not cause symptoms in a patient’s
lifetime (Jorgensen and Gotzsche, 2009). Therefore, alternative
and accurate screening technologies must be developed. The
functional and technical background of dynamic IR imaging
has the potential for early detection of breast cancer and treat-
ment response evaluation if optimal diagnostic algorithms are
developed. We have shown that the wavelet-based multifrac-
tal analysis of dynamic IR thermograms is able to discriminate
between cancerous breasts with monofractal (cumulative) tem-
perature temporal fluctuations characterized by a unique singu-
larity exponent (h = c1), and healthy breasts with multifractal
temperature fluctuations requiring a wide range of singularity
exponents as quantified by the intermittency coefficient c2 
 0.
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This is strikingly analogous to the results of a similar wavelet-
based analysis of human heart beat dynamics (Ivanov et al., 1999,
2001; Goldberger et al., 2002), where the multifractal character
and non-linear properties of the healthy heart rate were shown
to be lost in pathological condition, congestive heart failure.
Indeed, this distinction was intrinsically beyond the capability of
spectral (Fourier) analysis which only gives access to the power-
spectrum exponent β = τ (q = 2) = −c0 + 2c1 − 2c2, and not to
the full τ (q) spectrum required for multifractal diagnosis (Muzy
et al., 1991, 1994; Arneodo et al., 1995, 2008). Furthermore
the fact that c1 (∼ 1) is about one order of magnitude larger
than the intermittency coefficient c2 (� 0.1), explains why very
much like c1 (Figure 5A), the spectral exponent β ∼ −c0 +
2c1 ∼ 1 
 c2 (Supplementary Figure 3) has no discriminatory
power.

Interdisciplinary effort revealing specific fractal characteris-
tics for healthy and cancerous breast tissues definitely challenges
current knowledge in physical, physiological and clinical fun-
damentals of oncogenesis. Fundamentally, our results indicate
that skin temperature fluctuations of healthy breasts are more
complex (multifractal) than previously suspected. They definitely
raise new challenging questions to ongoing efforts to develop
physiological 3D breast models that account for the skin sur-
face temperature distribution in the presence (or absence) of
an internal tumor (Ng and Sudharsan, 2004; Xu et al., 2008;
Lin et al., 2009). The observed drastic simplification from mul-
tifractal to monofractal skin temperature dynamics may result
from some increase in blood flow and cellular activity associated
with the presence of a tumor (Thomsen and Miles, 1998; Anbar
et al., 2001; Button et al., 2004; Joro et al., 2008b). More likely
it can be the signature of some architectural change in the cel-
lular microenvironment of the breast tumor (Bissell and Hines,
2011) that may deeply affect heat transfer and related thermome-
chanics in breast tissue (Xu et al., 2008; Quail and Joyce, 2013).
Identifying the regulation mechanisms that originate in a loss
of multifractal temperature dynamics will be an important step
toward understanding breast cancer development, tumor growth
and progression. Dynamic IR thermography is a non-invasive
and objective screening method that is inexpensive, quick and
painless for the patient. Future use of wavelet-based multifractal
processing of dynamic IR thermography, could help identifying
women with high risk of breast cancer, prior to more traumatic
and painful examination such as mammography and biopsy. It
can also prove to be a valuable and reliable adjunct tool for early
detection of tumors in other locations than in mammary glands.
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