
HAL Id: hal-01586012
https://hal.science/hal-01586012

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peering and Querying e-Catalog Communities
Boualem Benatallah, Mohand-Said Hacid, Hye-Young Paik, Christophe Rey,

Farouk Toumani

To cite this version:
Boualem Benatallah, Mohand-Said Hacid, Hye-Young Paik, Christophe Rey, Farouk Toumani. Peering
and Querying e-Catalog Communities. 20th International Conference on Data Engineering, ICDE
2004, Apr 2004, Boston, United States. pp.846-846, �10.1109/ICDE.2004.1320076�. �hal-01586012�

https://hal.science/hal-01586012
https://hal.archives-ouvertes.fr

Peering and Querying e-Catalog Communities

Boualem Benatallah1, Mohand-Said Hacid2, Hye-young Paik1

Christophe Rey3 and Farouk Toumani3

1 CSE, University of New South Wales, Australia, {boualem,hpaik}@cse.unsw.edu.au
2 LIRIS, University Lyon I, France, mshacid@liris.univ-lyon1.fr

3 LIMOS, ISIMA, University Blaise Pascal, France, {rey,ftoumani}@isima.fr

UNSW-CSE-TR-0319
July 2003

School of Computer Science and Engineering
The University of New South Wales

Sydney, 2052 Australia

Abstract

An increasing number of organisations are jumping hastily onto the on-
line retailing bandwagon and moving their operations to the Web. A huge
quantity of e-catalogs (i.e., information and product portals) is now readily
available. Unfortunately, given that e-catalogs are often autonomous and het-
erogeneous, effectively integrating and querying them is a delicate and time-
consuming task. More importantly, the number of e-catalogs to be integrated
and queried may be large and continuously changing.

Consequently, conventional approaches where the development of an in-
tegrated e-catalog requires the understanding of each of the underlying cat-
alog are inappropriate. Instead, a divide-and-conquer approach should be
adopted, whereby e-catalogs providing similar customer needs are grouped
together, and semantic peer relationships among these groups are defined to
facilitate distributed, dynamic and scalable integration of e-catalogs.

In this paper, we use the concept of e-catalog communities and peer rela-
tionships among them to facilitate the querying of a potentially large number
of dynamic e-catalogs. e-Catalogs communities are essentially containers of
related e-catalogs. We propose a flexible query matching algorithm that ex-
ploits both community descriptions and peer relationships to find e-catalogs
that best match a user query. The user query is formulated using a description
of a given community.

1 Introduction

Nowadays, a large number of suppliers are offering access to their product or in-
formation portals (also called e-catalogs) via the Web. However, the technology
to organise, search, integrate, and evolve these e-catalogs has not kept pace with
the rapid growth of the available information. One of the key issues is how to
efficiently integrate and query large, intricate, heterogeneous information sources
such as e-catalogs.

A popular approach for locating products within e-catalogs is the use of infor-
mation retrieval based search tools (e.g., search engines) [8]. Though search en-
gines are useful, they present some fundamental drawbacks such as limited search
capabilities and lack of information-space organisation [14]. To address this issue,
there has been a renewed interest in leveraging traditional data integration tech-
niques because of support for semantically rich queries (e.g., data source structure
aware queries) [8, 13]. Clearly, a brute force data integration approach, where the
development of an integrated schema requires the understanding of both structure
and semantics of all schemas of sources to be integrated, is hardly applicable be-
cause of the dynamic nature and size of the Web. Therefore, the effective sharing
of a potentially large number of dynamic e-catalogs, requires more scalable and
flexible data sharing and querying techniques.

In this paper, we overview the design and implementation of WS-CatalogNet:
a Web services based data sharing middleware infrastructure whose aims is to en-
hance the potential of e-catalogs by focusing on scalability and flexible aspects of
their sharing and access. The salient features of WS-CatalogNet are:

• Ontological Organisation: We use the concept of e-catalog community
as a way of organising and integrating a potentially large number of dy-
namic e-catalogs [8]. An e-catalog community is a container of e-catalogs
(i.e., e-catalogs offering products of a common domain such as Laptops or
PCGames). It provides an ontological description of desired products (e.g.,
offered product categories, product attributes) without referring to any actual
provider. Communities of e-catalogs are established through the sharing of
high-level meta-information. Actual providers can register with any com-
munity of interest to offer the desired products. E-catalog providers can join
or leave any community of interest at any time. Communities provide a way
to meaningfully organise and divide the information space into groups of
manageable spaces (e.g., putting similar products together).

• Decentralised Information Sharing: Existing e-catalog organisation tech-
niques usually use centralised categorisation and indexing schemes, whereas
the participating e-catalogs are distributed and autonomous [15, 23]. A cen-
tralised categorisation and indexing model has several drawbacks including
scalability, flexibility, and availability [12, 21, 18]. Given the highly dynamic
and distributed nature of e-catalogs, we believe that novel techniques involv-
ing peer-to-peer centric categorisation and indexing schemes will become

increasingly attractive. Our approach features the use of peer relationships
among e-catalog communities to allow decentralised sharing of catalog in-
formation. Query routing between communities is based on such relation-
ships (even with no or minimal knowledge of the schema about the other
party). The objective is to achieve scalable information sharing and access
through the incremental meta-data driven discovery and formation of inter-
relationships between e-catalog communities.

• Flexible Selection of Relevant e-Catalogs: Because of the variety of e-
catalogs offering similar information and the large number of available e-
catalogs, it is important to provide appropriate support to first select those
e-catalogs that are relevant to a specific user query, before actually query-
ing them. In addition, catalog selection techniques should support flexible
matching since it is unrealistic to expect queries and catalog descriptions to
exactly match. In our approach, a user query is expressed using descriptions
from a community ontology. We formalise relevant e-catalog selection as a
new instance of the query rewriting problem [13, 4], where a user query is
reformulated in terms of:

– local queries (i.e., the part of the user query that can be answered by
some e-catalogs registered with the actual community),

– outsourced queries (i.e., the part of the user query that can be forwarded
to other communities based on specific peer relationships), and

– remaining parts of the user query that cannot be answered by the actual
community.

We proposed a characterisation of several types of relevant query rewritings
(e.g., rewritings that minimise the part of the query that can not be answered
by the community). We provide a formalisation of query rewriting in the
context of category hierarchy based ontologies and propose a hypergraph-
based algorithm to effectively compute best rewritings of a given request.

The paper is organised as follows. Section 2 discusses the design overview,
where we introduce main concepts of our approach. In section 3, we present query
rewriting mechanism for selecting relevant e-catalogs. Section 4 describes an algo-
rithm for computing query rewritings. In section 5, the implementation and exper-
iments are presented. Finally, section 6 discusses related work and conclusions.

2 Design Overview

In this section, we introduce the concept of catalog communities [19] and peer
relationships among them.

2.1 Catalog Communities

A catalog community is a container of product catalogs of the same domain (e.g.,
community of Laptops). It provides a description of desired products without
referring to actual product providers (e.g., www.laptopworld.com). A commu-
nity maintains categories for the domain it represents. A category is described
by a set of attributes. For example, the community Laptops may have a cat-
egory Laptop, which is described by attributes such as Name, CPU, RAM, HDD,
ThinkLight, Ultrabay, Weight and Price. For the catalog providers to be
accessible through a community, they must register their catalogs with the com-
munity. When registering, the catalog provider supplies a capability description
which specifies what kind of products are supported, in terms of the community
categories. The registration process allows a product provider and a community
to form, a MemberOf relationship (e.g., CompaqPC provider may be a member of
DesktopPC community).

More precisely, a community maintains two disjoint sets of categories; core
categories and outsourced categories. Products that belong to the core categories
are supported by the community’s own members. The outsourced categories are
defined as a way of extending the range of products provided in the community.
The outsourced categories offer, for example, products that are not included in the
core categories, that can be alternative choices, or recommendations to the prod-
ucts in the core categories. These outsourced categories are supported by external
data sources which are outside the community (e.g., members in other communi-
ties). We use the term community schema to denote the description of a community
which is expressed in terms of categories and attributes. Figure 1 shows the com-
munity of Laptopswhich has core, outsourced categories and registered members.

Interface
Communication

Interface
Communication

Interface
Communication

External
Data Source

External
Data Source

Dell

IBM

Laptop

Laptop
Used
Laptop

Laptop

Batteries

Accessory
Compaq
Laptop

Cases
CarryToshiba

LaptopWorld CheapLaptop LapLand

Core Categories Outsourced Categories

MemberOf MemberOfMemberOf

Community Of Laptop

MemberOf

Laptop

Figure 1: Community of Laptop, its categories and members

Note that the distinction between core and outsourced categories is transparent
to users. In fact, users will see them as one set of categories without being aware
of the differences in the sources of the data.

Synonym Index. The terms used in community schema are different from one
community to another. To help solve any mismatch problem, we use synonym-
based matching approach. A community description also contains a list of syn-
onyms for each category and attribute name used in the community. For example,
for the attribute CPU, synonyms are {processor, chipset, chip}. These syn-
onyms are used to translate queries across communities.

2.2 Peering Catalog Communities

Communities are related by PeerOf relationships. We consider two types of peer
relationships:

• Similarity: Community C1 is similar to C2, when C1 has categories that are
considered analogous, or interchangeable to C2’s core categories (e.g., CD-
RW Drives in C1 and CD-RW/DVD in C2).

• Companionship: C1 is a companion of C2 when C1 has categories that can
support outsourced categories in C2 (e.g., C1 has an outsourced category
Blank CD Media and C2 has a category that contains such products).

Defining peer relationships determines how communities interact with each other.
Figure 2 shows communities and peer relationships among them. Communities

Out
Sourced

Core

Printers
Out

Sourced
Core Out

Sourced
Core

Out
Sourced

Core

Out
Sourced

Core

Peipherals
Out

Sourced
Core

Display

Laptops

Wearable Computer

Modems

Companionship

Similarity
[Peer Relationship]

Figure 2: Peering catalog communities

and peer relationships are used to divide a vast information space into meaningful,
manageable spaces.

Forming Relationships. As shown in the figure 2, the relationships are directed.
Let us assume the following scenario. Community C1 wants to form a relationship
with C2 (either in the context of similarity or companionship). Also, C1 wants to
forward the query Q to C2 via the peer relationship. Q is composed as follows
using attributes in C1:

(Q)
SELECT name, displaysize
FROM Category_DesktopReplacement
WHERE price < 3000

Since the terms used in descriptions are different in the two communities, C1
needs to know how a query described in C1’s terms should be translated to C2’s
terms (i.e., mapping description). We consider three possible ways of describing
the mappings.

• Full Mapping: C1 provides explicit mapping description specifying how the
categories in C1 can be mapped to categories (respectively, the attributes) in
C2. This mapping description is stored in C1. Therefore, the query expressed
in C1’s terms (i.e., Q) can be translated into C2’s terms.

• Partial Mapping: C1 does not specify mapping description for the attributes
associated, but provide what kind of categories are available in C1. In this
case, the mapping only describes which category in C1 maps to which is
category in C2. When C1 only has mappings for categories, C1 translate Q so
that the category name is understood by C2 (see FROM clause in Q.1). Then,
for each attribute in Q, a list of synonyms is attached (as shown in Q.1). C2
will use the synonyms to match the attributes.

(Q.1)
SELECT name (title, product),
displaysize (display, viewable size)

FROM
Category_PowerLaptop

WHERE
price (retail price, listed price) < 3000

• No Mapping: C1 does not specify any explicit mapping description with
C2. In this case, it is left to C2 to figure out how to answer C1’s queries.
When there is no mapping available, synonyms for attributes (respectively
for categories) are identified and attached to Q before forwarding (as shown
in Q.2).

(Q.2)
SELECT name (title, product),
displaysize (display, viewable size)

FROM
Category_DesktopReplacement (PowerLaptop)

WHERE
price (retail price, listed price) < 3000

C2 refers to the synonyms to find alternative attribute/category names to
match the terms in the query with C2’s own terms.

2.3 Basic Definitions

This section introduces a (concept) class description language that belongs to the
family of description logics [3]. We use this language to describe catalog commu-
nities and peer relationships between them. The proposed language is in fact a sim-
ple description logic that is designed to represent the domain of interest in terms

of classes (unary predicates) and attributes (binary predicates). The classes and
attributes characterise subsets of the objects (individuals) in the domain. This lan-
guage will be used as a basis for formalising query reformulation across e-catalogs
and communities. Class descriptions are denoted by expressions formed by means
of the following constructors:

• class conjunction (u), e.g., the class description Peripheralsu SCSI de-
notes the class of individual instances of the class Peripherals and SCSI

(e.g., a HardDrives),

• the universal attribute quantification (∀R.C), e.g., the description ∀ release
Date.Date specifies that the data type of the role releaseDate is Date,

• the existential attribute quantification (∃R), e.g., the description ∃Ultrabay
denotes the class of individuals having at least one value for the attribute
Ultrabay.

Syntax and semantics of class descriptions are defined below.

Definition 1 (syntax and semantics) Let CN be a set of class names and A be a
set of attribute names. Class descriptions are inductively defined as follows:

• C is a class description for each class name C ∈ CN .

• Let C,D be class descriptions and R ∈ A an attribute name. Then C u D,
∀R.C and (∃R) are class descriptions as well.

A model-theoretic semantics for this language is given by an interpretation
I = (∆I , ·I). It consists of a nonempty set ∆I the domain of the interpretation,
and an interpretation function ·I . The interpretation function associates with each
class name C ∈ CN a subset CI of ∆I , and with each attribute name R ∈ R a
binary relation RI ⊆ ∆I ×∆I . Additionally, the extension of .I to arbitrary class
descriptions has to satisfy the following equations:
(C u D)I = CI ∩ DI , and
(∀R.C)I = {x ∈ ∆I |∀y : (x, y) ∈ RI ⇒ y ∈ CI}.
(∃R)I = {x ∈ ∆I |∃y : (x, y) ∈ RI}.

Based on this semantics, the notions of subsumption and equivalence between
class descriptions are defined as follows. Let C and D be class descriptions:

• C is subsumed by D (noted C v D) if CI ⊆ DI for all interpretation I .

• C is equivalent to D (noted C ≡ D) iff CI = DI for all interpretation I .

The basic concepts of the data model we use (e.g., category, community, mem-
ber description, etc) are defined using a class description language.

• A category represents a set of products that share common properties. A
category definition is specified as follows: Cname ≡ CatDescr, where

– Cname is the name of the category,

– CatDescr is a class description that defines the category Cname.

For example, the category Laptop may be described as follows:

Laptop ≡ Computer u ∀ Name.String u (∃Name) u ∀ Weight.Number u
∀ OS.String . . .

• A member definition specifies the capabilities of a given product provider
as follows: Mname Dname ≡ MDescr where Mname Dname is a member def-
inition name made of Mname, a member name (i.e., an unique identifier of
a member), and Dname, the name of a description. MDescr is a class de-
scription that specifies which data is actually provided by this member. Each
member can provide several definitions. For example, the IBM provider
who offers a specific type of laptops (e.g., IBM laptops) can register to the
catalog community with the following member definition:

IBM Laptop = Laptop u ∀ ThinkLight.String u ∀ Ultrabay.String

. . .

• A community has two types of peer relationships: companionship and simi-
larity.

– the companionship relationship is formalised as a set of outsourced
categories, denoted by V.

– The similarity relationship is a set of community names Ci that has
similarity type peer relationships with the community, and is denoted
by S = {Ci}.

• A community schema consists of a tuple CS = (C, S, V), where C is a set of
category definitions, S is a set of community names that are similar to the
actual community, V ⊆ C is a set of outsourced categories definitions,

• A catalog community consists of a tuple CAT = (CS, M), where CAT is the
catalog name, CS is a community schema, and M is a set of member defini-
tions.

We assume that the set of class descriptions in a community catalog (i.e.,
core/outsourced category definitions and member definitions) is acyclic i.e., there
does not exist cyclic dependencies between class definitions. Without loss of gen-
erality, we assume that the class names (respectively, the attribute names) that are
used in the member definitions are disjoint from those used in the outsourced cat-
egories definitions.

3 Relevant e-Catalog Selection

In our previous work [19, 8], we used browsing and key-word based searching
to locate communities of interests. In this paper, we focus on relevant e-catalogs
selection. Once a community of interest is located, a query to select relevant e-
catalogs can be expressed using the community schema.

Since a community does not store product data locally, answering a user query
requires locating e-catalogs that are most likely relevant to a user query. It is noted
that a user query is expressed over the community schema. In the remainder, we
refer to such query as a community query. These e-catalogs are selected from the
community members and the members of communities that can be reached via peer
relationships. We propose a selection mechanism that works as follows: given a
community CAT = (CS, M) and a query Q, expressed as a class description in terms
of the schema of CAT, our task is to identify:

(a) a set of local member definitions that can answer all (or part of) the query
Q. For each selected member, we compute the part of the query to be sent to
this member.

(b) the part of the query that can be answered by companion communities.
Again, for each selected companion community, we compute the precise
part of the query to be forwarded to this community.

(c) the part of the query that cannot be answered by the actual local members nor
by the companion communities. This part of the query will be forwarded to
other communities via similarity peer relationships, according to a forward-
ing policy. Detailed description of the forwarding policy will be given below.

3.1 Overview

We propose a query answering approach that consists of the following elements.

A Flexible Query Rewriting Algorithm. Existing query rewriting approaches
are usually based on (containment) subsumption or equivalence between a given
query and its rewritings [4, 13]. These approaches are not flexible enough to cater
for the identification of the part of a query that cannot be answered by a given set of
communities (see, requirement (c) mentioned above). We propose a novel query
rewriting algorithm where the relationship between a query Q and its rewritings
goes beyond simple subsumption or equivalence. It takes as input a community
CAT = (CS, M) and a query Q over the schema of CAT. It computes a set of rewrit-
ings R(Q) = {ri(Q)}. A rewriting ri is a triplet ri = (Qlocal, Qoutsourced, Qrest)
where:

• Qlocal = {(qj ,mj)} is a set of pairs (qj,mj) where qj is the part of the
query Q that can be answered by the member definition mj .

• Qoutsourced = {(Q′
j , Coj)} where Q′

j is the part of the query Q that can be
answered by the outsourced category Coj . The expected results of this part
of the query is a set of external members that are relevant to answering Q′

j .

• Qrest is the part of the query Q that cannot be answered by the members of
the actual community nor by the members of its companion communities.
This part of the query will be forwarded to the similar communities accord-
ing to the community forwarding policy. Again, the expected results of the
forwarding is a set of external members that are relevant to answering this
part of the query.

Forwarding Policy. A forwarding policy dictates whether and when the forward-
ing should be initiated, what should be forwarded and permitted hop count. It
should be noted that this policy only concerns peer communities with similarity
relationships. The basic structure of a forwarding policy is as follows:

forwarding policy:
when empty|always|expand|busy
what query|rest [-target community...]
hop n

The policy requires three attributes to be specified: when, what and hop. The
attribute when is used to decide when the forwarding should be initiated. If it is
empty, the query is forwarded when the result from local members is empty (i.e.,
no match), whereas always implies that the query is always forwarded. expand is
used when the community wishes to expand the size of the result. busy means that
the query is forwarded when the community is busy (i.e., overloaded) with other
requests.

The attribute what is used to decide which part of the query should be for-
warded. That is, if it is set to query, the original query Q is forwarded. If it set to
rest, the Qrest part of Q is forwarded. When the -target parameter is used, the
query is forwarded only to the communities that appear in the community clause.
The default is to forward to all peers known via similarity peer relationships.

3.2 Query Rewriting

In this section, we discuss our approach for community query reformulation. The
reformulation translates a community query Q 1, to queries that are expressed in
terms of descriptions of community members and outsourced categories (i.e., a
Qlocal and a Qoutsourced parts of Q) and a Qrest part of a query Q. The rewriting
problem can be stated as follows: Let C = {ci ≡ descriptioni, i ∈ [1, n]} be a set
of class definitions corresponding to member or outsourced category definitions,
and let Q be a class definition that denotes a community query. Then, can Q be
reformulated as a conjunction of class names E ≡ ci1 u . . .u cim , with 1 ≤ m ≤ n

1We use the terms user query and community query interchangeably.

and cij ∈ C for 1 ≤ j ≤ m, such that E contains as much as possible of common
information with Q? (E is called a rewriting of Q using C.)

To formally define this kind of query rewriting, it is necessary to characterise
the notion of “extra information”, i.e., the information contained in one class de-
scription and not contained in the other. For that, a difference or subtraction opera-
tion on class descriptions is required. To tackle this issue, we use known techniques
in description logics [22] as described below.

Difference Operation on Class Descriptions. An extension of description log-
ics with a difference operation is studied in [22]. Roughly speaking, the difference
of two descriptions C and D, denoted as C − D, is defined as being a descrip-
tion that contains all information which is a part of the description C but not part
of the description D. This definition of difference operation requires that the sec-
ond operand subsumes the first one. However, in case the operands C and D are
incomparable w.r.t the subsumption relationship, then the difference C − D can
be computed by determining the least common subsumer2 of C and D, that is,
C−D := C− lcs(C,D), where lcs(C,D) denotes the least common subsumer of
C and D. In the sequel, for a sake of clarity we use C−D to denote C−lcs(C,D).

Teege [22] provides sufficient conditions to characterise the logics where the
difference operation is always semantically unique (i.e., the result of C − D is
unique modulo the equivalence of descriptions) and can be implemented in a sim-
ple syntactical way by constructing the set difference of sub-terms in a conjunction.
From the results presented in [22], we can derive the following properties of our
class description language:

• Each class description C can be expressed using a normal form, called Re-
duced Clause Form (RCF), as a conjunction of atomic clauses (e.g., A1 u
. . . u Am). In our language, a RCF of a class description C is obtained by
the following normalisation process:

– unfolding C (i.e., replacing each class name that appears in C by its
description until no more defined class names occur in C).

– recursively rewriting each description ∀R.(B u D), where B,D are
class descriptions, that appear in the description C into the equivalent
description ∀R.B u ∀R.D.

As the set of class descriptions in a community is acyclic, the normalisation
process is guaranteed to terminate. At the end of the normalisation process,
each conjunct that appear in the normal form of the description C constitutes
an atomic clause of C .

2Informally, a least common subsumer of a set of (concept) class descriptions corresponds to the
most specific description which subsumes all the given descriptions [3].

• The difference between two class descriptions C and D can be computed
using the simple set difference operation between the sets of atomic clauses
of C and D.

Moreover, we define the size |C| of a class description C as being the number
of clauses in its RCF. Note that, in the used language, a given class description has
only one RCF.

Problem Statement. Now let us introduce some basic definitions to formally
define the query rewriting problem. Let C = {ci ≡ descriptioni, i ∈ [1, n]}
be a set of class definitions corresponding to member definitions or outsourced
categories, and E be a conjunction of some class names occurring in C.

Definition 2 (query rewriting) A rewriting of Q using C is a conjunction E of
some class names ci from C such that:

Q − E 6≡ Q.

Hence, a rewriting of a query Q using C is defined as being a conjunction
of class names occurring in C that share some information with Q. We use the
expression restE(Q) = Q − E, to denote the part of a query Q that cannot be
answered by the rewriting E (i.e., the Qrest part of Q, if E is selected as relevant
to answering Q). In practical situations, however, we are not interested in all kinds
of rewritings. Therefore, we define additional criteria to characterise the notion
of relevant rewritings. For example, it is clearly not interesting to consider those
rewritings that do not minimise the Qrest part of the query Q. That is, the part of Q

that cannot be answered by the local members nor by the companion communities.

Definition 3 (best cover rewriting) A conjunction E of some class names ci from
C is a best cover rewriting of Q using C iff:

• E is a rewriting of Q using C.

• there does not exist a rewriting E ′ of Q using C such that: (|(restE′(Q)|) <

(|restE(Q)|).

Best cover rewritings correspond to those rewritings that minimise the size of
Qrest part of a query Q. Hence, they are clearly relevant rewritings in practical
situations (e.g., see [5]). However, usually it may not be interesting or efficient to
compute all the possible best cover rewritings. The following two definitions char-
acterise, among the best cover rewritings, those that are more relevant in practical
situations.

Definition 4 (non redundant rewriting) A conjunction E = ci1 u . . . u cim , with
1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m is a non redundant rewriting of Q using
C iff:

• E is a best cover rewriting of Q using C.

• ∀j ∈ [1,m], E ′ = ci1 u . . . u cij−1
u cij+1

u . . . u cim is not a best cover
rewriting of Q using C.

Definition 4 states that it is not possible to remove any class name from the de-
scription of a non redundant rewriting without modifying the Qrest of the query Q.
In other words, the notion of non redundant rewriting characterises those rewrit-
ings that select only the local members (respectively, outsourced categories) that
minimise the size of the Qrest part of the query Q. Such rewritings allows min-
imising the number of e-catalogs that will be selected for providing the answer
to a given community query. This, for example, may be useful to minimise the
communication cost.

Finally, Definition 5 given below characterises the notion of best quality rewrit-
ing, i.e., a rewriting that maximise the user satisfaction with respect to a given set
of Quality of Service (QoS) criteria. We assume that there is a scoring function,
denoted qual(E), that returns a positive value which measures the quality of the
rewriting E (i.e., the higher the value of qual(E), the higher the quality of E).
This can be, for example, a multi-attribute utility that computes a quality score of
an e-catalog based on pre-defined non-functional properties of the e-catalog (e.g.,
reliability, execution time) [25]. Further discussion about the used QoS model is
outside the scope of this paper due to space reasons.

Definition 5 (best quality rewriting) A conjunction E of some class names ci from
C is a best quality rewriting of Q using C iff:

• E is a best cover rewriting of Q using C.

• there doesn’t exist a rewriting E ′ of Q using C such that qual(E) < qual(E ′).

Best quality rewritings are defined as being the highest quality rewritings that
minimise the size of Qrest (as they are also best cover rewritings).

3.3 Mapping Rewritings to Hypergraph Transversals

In this section, we investigate the computational problems associated to our pro-
posed query rewritings (e.g., computing all the best quality rewritings of a query
Q). To achieve this task, we provide a full characterisation of the proposed query
rewritings in terms of hypergraph transversals. Our motivation is to reuse and adapt
existing techniques in hypergraph theory to efficiently solve such computational is-
sues. First, we look at the computation of each kind of rewriting (e.g., best quality
rewritings) and determine the complexity for obtaining a solution for it. Then, in
the next section, we propose a hypergraph-based algorithm for computing the best
quality rewritings of a query Q using a set of class definitions C.

Let us first recall some useful definitions regarding hypergraphs. For more
details about hypergraphs theory, we refer the reader to [6, 10].

Definition 6 (hypergraph and transversals) [10]
An hypergraph H is a pair (Σ,Γ) of a finite set Σ = {V1, . . . , Vn} and a set Γ
of subsets of Σ. The elements of Σ are called vertices, and the elements of Γ are
called edges.
A set T ⊆ Σ is a transversal of H if for each ε ∈ Γ, T ∩ ε 6= ∅. A transversal
T is minimal if no proper subset T ′ of T is a transversal. The set of the minimal
transversals of an hypergraph H is noted Tr(H).

We formulate rewritings computation as a problem of finding hypergraph transver-
sals. Given a query Q and a set of class definitions C = {ci ≡ descriptioni, i ∈
[1, n]}, the first step is to build an associated hypergraph HCQ as follows:

• each class ci in C is associated to a vertex Vci
in the hypergraph HCQ. Thus

Σ = {Vci
, i ∈ [1, n]}.

• each clause A in the normal form description of the description of the query
Q is associated to an edge in the hypergraph HCQ. The edge is labelled by
those classes that have in their RCFs a clause A′ that is equivalent to A.

For the sake of clarity we introduce the following notation: for any set of ver-
tices X = {Vcl

, . . . , Vcq}, subset of Σ, we use EX ≡ cl u . . . u cq to denote
the class definition obtained from the conjunction of class names corresponding
to the vertices in X . Inversely, for any rewriting E ≡ cl u . . . u cq , we use
XE = {Vcl

, . . . , Vcq} to denote the set of vertices corresponding to the class names
in E.

Using lemmas 1 and 2 given below, we show that computing a best cover
rewriting of Q using C (i.e., a rewriting that minimises the Qrest) amounts to com-
puting a transversal of HCQ by considering only the non empty edges.

Lemma 1 (characterisation of the minimal rest) Let HCQ = (Σ,Γ) be the hyper-
graph built from a set of class definitions C and a query Q = A1u. . .uAk provided
by its RCF. The minimal rest (i.e., the rest whose size is minimal) of rewriting Q

using C is: Restmin ≡ Aj1 u . . . u Ajl
, ∀ji ∈ [1, k] | wAji

= ∅.

Proof (sketch) Let C = {ci ≡ descriptioni, i ∈ [1, n]}. First, to prove the
existence of a rewriting E of Q using C having such a rest, it is sufficient to consider
E as being the combination of all the classes in C, i.e., E ≡ c1u...ucn. Second, we
show that Restmin has the minimal size. In the sequel, we use \≡ (respectively,
∈≡) to denote set difference of clause sets (respectively, set membership) where
clauses are compared on the basis of the equivalence relation. We recall that, for
any rewriting E, we have RestE(Q) := Q \≡ lcsC(Q,E). Assume that Q and
lcsC(Q, ci),∀i ∈ [1, n], are given by their RCFs. We have Aji

∈≡ Q and Aji
6∈≡

lcsC(Q, ci) for all ji ∈ [1, k] such that wAji
= ∅ (by construction of HCQ). Then

we can prove that for all ji ∈ [1, k] such that wAji
= ∅ we have Aji

6∈≡ lcsC(Q,E)
(since E is a conjunction of some classes cij and we use a description language

with structural subsumption3). This implies that for all ji ∈ [1, k] such that wAji
=

∅ we have Aji
∈ Q \≡ lcsC(Q,E) and thus |Restmin| ≤ |RestE(Q)| for any

rewriting E of Q.
2

From the previous lemma, we know that the minimal rest of a query Q using
C is always unique and is equivalent to Restmin. Hence, a given rewriting E of Q

using C is a best cover rewriting if and only if restE(Q) ≡ Restmin.

Lemma 2 (characterisation of best cover rewritings) Let ĤCQ = (Σ,Γ′) be the
hypergraph built by removing from HCQ the empty edges. A rewriting Emin ≡
ci1 u . . . u cim , where 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, is a best cover

rewriting of Q using C iff XEmin
= {Vcij

, j ∈ [1,m]} is a transversal of ĤCQ.

Proof (sketch) The main steps of the proof are:
Lemma 1 ⇔ ∀wAi

∈ ĤCQ, the corresponding clause Ai 6∈≡ Q \≡ lcsC(Q,Emin)

⇔ ∀wAi
∈ ĤCQ, Ai ∈≡ lcsC(Q,Emin)

⇔ ∀wAi
∈ ĤCQ,∃cij with j ∈ [1,m] | Ai ∈≡ lcsC(Q, cij) (since we use a

description language with structural subsumption)
⇔ ∀wAi

∈ ĤCQ,∃Vcij
∈ XEmin

|Vcij
∈ wAi

⇔ XEmin
is a transversal of ĤCQ (since XEmin

intersects each edge of ĤCQ)
2

This lemma characterises the best cover rewritings in terms of hypergraph
transversals. The following characterisation of non redundant rewritings can be
straightforwardly derived from lemma 2.

Lemma 3 (characterisation of non redundant rewritings) A rewriting E ≡ ci1 u
. . . u cim , with 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, is a non redundant
rewriting of Q using C iff XE = {Vcij

, j ∈ [1,m]} is a minimal transversal of

ĤCQ.

Now let us consider the characterisation of the best quality rewritings. Al-
though, a detailed description of the used quality model is outside the scope of this
paper, we assume l essential quality criteria (e.g., reliability, execution time) that
are common to all community members:

q = {q1, q2, . . . , ql} (1)

Therefore, we assume that for each potential member ci, there is a quality
vector q(ci) which represents the goodness of selecting this member in relation to
all essential quality criteria. This vector is defined as:

3In description languages with structural subsumption, a clause that appears in the RCF of a
conjunction of some classes also appears in at least the RCF of one of these classes [22].

q(ci) = (q1(ci), q2(ci), . . . , ql(ci)) (2)

For simplicity, we assume that the value of each qk(ci) has been scaled to [0,
1] and the higher the value is, the higher the quality is. It is worth noting that
QoS criteria are not considered when selecting companion communities. In fact,
each companion community will be in charge of selecting the best quality external
members that are most likely relevant to answer the part of the query forwarded to
it. Hence, in a given community, we assume that the outsourced categories have
equal quality scores as stated below:

qj(ci) = 1 ∀ci ∈ V and ∀j ∈ [1, l]. (3)

In this way, the outsourced categories and local members are treated uniformly
with respect to QoS criteria. Finally, to be able to evaluate the quality of a given
rewriting, we assume that there is a function f , called optimisation function, that
computes the quality of a set of member definitions (respectively, outsourced cate-
gory definitions) based on their respective quality vectors. More precisely, given a
rewriting E ≡ ci1 u . . . u cim , the quality of E is determined as follows:

qual(E) = f(q(ci1), . . . , q(cim))

As before, we assume that the function f is scaled to [0, 1] and the higher
the value is, the higher the quality of the rewriting is. Let us now characterise the
notion of quality of a rewriting in the context of hypergraphs.

Definition 7 (quality of a set of vertices)
Let X = {Vci

, . . . , Vcj
} be a set of vertices of the hypergraph HCQ. We define the

notion of a quality of a set of vertices as: qual(X) = f(q(ci), . . . , q(cj)).

Computing the best quality rewritings consist of determining, from the best
cover rewritings, the ones that have the highest quality (See definition 5). In a
hypergraph, this computation is characterised as follows.

Lemma 4 (characterisation of best quality rewritings) A rewriting E ≡ ci1 u
. . . u cim , with 1 ≤ m ≤ n and cij ∈ C for 1 ≤ j ≤ m, is a best quality rewriting
of Q using C iff:

• XE = {Vcij
, j ∈ [1,m]} is a transversal of ĤCQ,

• there doesn’t exist a transversal XE′ of ĤCQ such that
qual(XE) < qual(XE′).

Complexity Analysis. Based on known results in hypergraphs theory [10], we
provide hereafter complexity analysis with respect to the computation of the pro-
posed query rewritings.

Let C be a set of class definitions and Q be a community query. Let n be the
total number of class definitions in C and m = |Q| be the size of a query Q.

• A best cover rewriting of Q using C can be found in time O(m).

• A non redundant rewriting can be found in time O(m.n).

• Computing all the non redundant rewritings:
From lemma 3, this problem amounts to computing the minimal transversals
of a hypergraph. It is known that computing the minimal transversals of an
hypergraph is inherently exponential since the size of the outputs (i.e., the
number of the minimal transversals) is exponential in the input size [10].
However, whether there is an output-polynomial time algorithm (i.e., an al-
gorithm that works in polynomial time if the number of minimal transversals
is taken into account) for computing the minimal transversals of a hyper-
graph is still an open problem. In [11], it is shown that the generation of hy-
pergraph transversals, and hence computation of minimal transversals, can
be done in incremental subexponential time kO(logk), where k is the com-
bined size of the input (the size of the hypergraph) and the output (i.e., the
number of minimal transversals). To the best of our knowledge, this is the
best theoretical upper time bound for computing minimal transversals of a
hypergraph.

• The general problem of computing a best quality rewriting is NP-hard. This
result is based on a polynomial reduction of the NP-hard problem of find-
ing a minimal cardinality transversal of a hypergraph [10] to a particular
instance of the problem of computing the best quality rewritings. However,
in some particular cases, depending on the characteristics of the optimisation
function f , best quality rewritings can be computed efficiently. For example,
in the case of additive functions, it suffices to select from each edge of the
considered hypergraph the member with the highest quality score to obtain
a best quality rewriting. Hence, in this case a best quality rewriting can be
computed in time O(m.n).

4 Algorithm for Computing Best Quality Rewritings

In this section, we describe an algorithm, called BestQRC , for computing best
quality rewritings. Let C = {ci ≡ descriptioni, i ∈ [1, n]} be a set of class defini-
tions and Q be a class definition that denotes a community query. The BestQRC

computes the best rewritings of the query Q using C with respect to a given op-
timisation function f . We recall that the function f is defined on a set of quality
vectors q(ci), where ci denotes a class name. Each class name corresponds to a

member definition name or to an outsourced category name. When designing this
algorithm, we considered an optimisation function f that satisfies the following
requirements4 :

(R1) f is strictly monotonic (i.e, Y ⊂ Y ′ implies that f(Y) > f(Y ′), where
Y, Y ′ denote sets of quality vectors). This means that the higher the num-
ber of selected sources (i.e, local members and outsourced categories), the
lower the quality of the rewriting. Consequently, in this case, the best quality
rewritings should be selected among the non redundant rewritings.

(R2) f is a global optimisation function in the sense that it must be performed on
the whole rewriting to get its quality score (i.e., f(Y) cannot be computed
incrementally using a given intermediary result f(Y ′) where Y ′ ⊂ Y).

These two requirements lead to a computation problem that is hard to deal with.
Indeed, based on the analysis presented in the previous section and with respect to
the requirement (R2), it can be shown that computing best quality non redundant
rewritings in this case is an NP-hard problem. However, these two requirements
also correspond to a likely realistic and desirable situations. Based on the analy-
sis presented in the previous section, it can be shown that computing best quality
non redundant rewritings can be mapped to finding the minimal transversals, with
maximal quality, of the hypergraph ĤCQ.

A classical algorithm for computing the minimal transversals of a hypergraph
is presented in [6, 10]. Using this algorithm, computing the minimal transversals
with the highest quality consists of (i) computing all the minimal transversals, and
then (ii) choosing those transversals that have the highest quality.

The BestQRC algorithm presented below makes the following improvements
(i.e., optimisations) with respect to the classical algorithm:

1. it reduces the number of candidates in the intermediary steps by generating
only the minimal transversals, and

2. it uses, at the intermediary steps, a combinatorial optimisation technique,
namely Branch-and-Bound [17], in order to prune those candidate transver-
sals which will not generate transversals with a maximal quality.

The first optimisation generates minimal transversals at each iteration (line 10
of the algorithm). We use a necessary and sufficient condition (provided by Theo-
rem 1 described below) to describe a pair (Xi, cj) that will generate a non minimal
transversal at iteration i, where Xi is a minimal transversal generated at iteration
i − 1 and cj is a vertex of the ith edge.

4The requirements (R1) and (R2) are inspired from a real life situation encountered during the
application of our work in the context of an European project (cf. section 5).

Algorithm 1 BestQRC (skeleton)

Require: a query Q = A1 u . . .uAk provided by its RCF and a community catalog CAT =
(CS, M), with CS = (C, S, V).

Ensure: The set R(Q) = {r(Q)} of the best quality rewritings of Q using M ∪ V .
1: Let C = M ∪ V .
2: Build the associated hypergraphHCQ = (Σ, Γ′).
3: compute Qrest = Aj1 u . . . uAjl

, ∀ji ∈ [1, k] | wAji
= ∅.

4: Build the associated hypergraph ĤCQ = (Σ, Γ′).
5: R(Q)← ∅ – Initialisation of the best quality rewriting set.
6: Tr← ∅ – Initialisation of the minimal transversal set.
7: Compute a minimal transversal Y of ĤCQ

8: QualEval← qual(Y). – Initialisation of QualEval
9: for all edge E ∈ Γ′ do

10: Tr← the new generated set of the minimal transversals. – Using Theorem 1.
11: Remove from Tr the transversals whose quality is less than QualEval.
12: end for
13: for all X = {Vci1

, . . . Vcim
} ∈ Tr such that qual(X) = QualEval do

14: Qlocal = {(qip , cip), p ∈ [1, m]}, where qip = Aj1 u . . .uAjl
, ∀ji ∈ [1, k] |Vcip

∈ wAji
,

where cip 6∈ V.
15: Qoutsourced = {(qip , cip), p ∈ [1, m]} and qip = Aj1u. . .uAjl

, ∀ji ∈ [1, k]|Vcip
∈ wAji

and cip ∈ V.
16: R(Q) = R(Q) ∪ {r(Q) = (Qlocal, Qoutsourced, Qrest)}
17: end for
18: return R(Q)

Theorem 1 Let H be an hypergraph and its associated set of minimal transversals
Tr(H) = {Xi | i ∈ {1, ..,m}}. Let e = {cj | j ∈ {1, .., n}} be an extra edge of
H. Let H′ = H∪ e.
∀i ∈ {1, ..,m} it holds:

a) if Xi ∩ e 6= ∅:
∀j ∈ {1, .., n}:

– (cj 6∈ Xi ∩ e) → (Xi ∪{cj} is a transversal of H′ that is not minimal)

– (cj ∈ Xi ∩ e) → (Xi ∪ {cj} = Xi is a minimal transversal of H′)

b) if Xi ∩ e = ∅:
∀j ∈ {1, .., n}:
(Xi∪{cj} is a transversal of H′ that is not minimal) ↔ (∃Xk ∈ Tr(H) |Xk∩
e = {cj} and Xk \ {cj} ⊂ Xi)

Proof a): straightforward.
b): we recall (1) Xi ∩ e = ∅, (2) Xi ∈ Tr(H), (3) H′ = H ∪ e and (4) cj ∈ e.
Let (∗) = Xi ∪ {cj} is a non minimal transversal of H′.
Let (∗∗) = ∃Xk ∈ Tr(H) | Xk ∩ e = {cj} and Xk \ {cj} ⊂ Xi. Let’s note
tr(H) the set of all transversals of H (recall that Tr(H) is the set of all minimal
transversals of H).

(∗)
(1,2,3)
⇔ ∃Y | Y ∈ Tr(H′) and

Y ⊂ Xi ∪ {cj}
(1,2,3,4)
⇔ ∃Y | Y ∈ Tr(H′) and

cj ∈ Y and

Y \ {cj} ⊂ Xi

⇔ ∃Y | ∀e′ ∈ H′, Y ∩ e′ 6= ∅ and

∀cy ∈ Y, Y \ {cy} 6∈ tr(H′) and

cj ∈ Y and

Y \ {cj} ⊂ Xi

⇔ ∃Y | ∀e′ ∈ H′, Y ∩ e′ 6= ∅ and

Y \ {cj} 6∈ tr(H′) and

∀cy ∈ Y, cy 6= cj , Y \ {cy} 6∈ tr(H′) and

cj ∈ Y and

Y \ {cj} ⊂ Xi

(2,3)
⇔ ∃Y | ∀e′ ∈ H′, Y ∩ e′ 6= ∅ and

Y \ {cj} 6∈ tr(H) and

∀cy ∈ Y, cy 6= cj , Y \ {cy} 6∈ tr(H′) and

cj ∈ Y and

Y \ {cj} ⊂ Xi

(3,4)
⇔ ∃Y | ∀e′ ∈ H′, Y ∩ e′ 6= ∅ and

Y \ {cj} 6∈ tr(H) and

∀cy ∈ Y, cy 6= cj , Y \ {cy} 6∈ tr(H) and

cj ∈ Y and

Y \ {cj} ⊂ Xi

(3,4)
⇔ ∃Y | ∀e′ ∈ H, Y ∩ e′ 6= ∅ and

Y \ {cj} 6∈ tr(H) and

∀cy ∈ Y, cy 6= cj , Y \ {cy} 6∈ tr(H) and

cj ∈ Y and

Y \ {cj} ⊂ Xi

⇔ ∃Y | Y ∈ Tr(H) and

cj ∈ Y and

Y \ {cj} ⊂ Xi

(1,4)
⇔ ∃Y | Y ∈ Tr(H) and

Y ∩ e = cj and

Y \ {cj} ⊂ Xi

⇔ (∗∗)

2

The second optimisation consists of a Branch-and-Bound like enumeration of
transversals. First, a simple heuristic is used to efficiently compute the quality of
a good transversal (i.e., a transversal expected to have a high quality). The quality
score is stored in the variable BestQRC (line 8 of the algorithm). As we con-
sider candidates in intermediate steps, any candidate transversal that has a quality
score less than QualEval (line 11) is eliminated from Tr(ĤCQ). As the optimi-
sation function f is strictly monotonic, the quality score of considered candidate
transversal cannot be better than that of already computed minimal transversal.

At the end of the algorithm (lines 13 to 16), each computed minimal transversal
X ∈ Tr is translated into a rewriting r(Q) = (Qlocal, Qoutsourced, Qrest) which
constitutes a best quality non redundant rewriting of the query Q using C . The
Qrest part of a query is computed at the beginning of the algorithm (line 3). The
Qlocal (respectively, Qoutsourced) part of a given rewriting is computed as follows
(lines 14 and 15): for vertices Vcip

in the transversal X , a pair (qip , cip) is created
and added to the Qlocal part (respectively, the Qoutsourced part) of the actual rewrit-
ing if cip is a member definition name (respectively, outsourced category name).
The associated query qip consists of the conjunction of the clauses Aj of the query
Q such that the corresponding hypergraph edge wAj

contains the vertices Vcip
.

5 WS-CatalogNet Implementation

Prototype. To evaluate our approach, we have implemented a prototype called
WS-CatalogNet, which is a web service based environment for building catalog
communities. This prototype consists of a set of integrated tools that allow cata-
log providers to create communities, member relationships (i.e., between a catalog
provider and a community) and peer relationships (i.e., between communities).
It also allows users to access the communities and submit queries to them. In
WS-CatalogNet, both product catalogs and communities are represented as web
services (cf. http://www.w3.org/2002/ws/). Overall, the prototype has been imple-
mented using Java and WSDK 5.05. A private UDDI6 registry (i.e. hosted by the
WS-CatalogNet platform) is used as a repository for storing web services’ infor-
mation. In UDDI registry, every web service is assigned to a tModel. A tModel
provides a semantic classification of a service’s functionality and a formal descrip-
tion of its interfaces. We design specific tModels for product catalogs and for
communities. In Table 1, we list few of the operations in the tModels7.

When building a community, the community provider has to download two
special classes named QueryProcessor and QueryRouter, which are provided
by our system. The class QueryProcessor provides methods for processing query
requests for each catalog community. It implements the BestQRC rewriting al-

5IBM Web Services Development Kit 5.0 (www.alphaworks.ibm.com/tech/webservicestoolkit)
6Universal Description, Discovery and Integration
7For clarity reason, we omit detailed signature of the operations.

Table 1: Main operations in tModel for members and communities
Operations for
Member M

Description

Query() Invoked to query M
GetInterface() Invoked to get categories and attributes

of M

Operations for
Community C

Description

Query() To query C
GetInterface() To get the categories and attributes of C
ForwardQuery() To forward queries to other communi-

ties
AddPeer() To add a peer community
RemovePeer() To remove a peer community

gorithm. Community metadata (i.e., descriptions of categories, members, mapping
and forwarding policies) are stored as XML documents. The class QueryRouter
provides methods for routing queries based on the forwarding policies and the
peer mappings. Both classes are lightweight and the only infrastructures that they
require are standard Java libraries, a JAXP-compliant XML parser, and a SOAP
server. In order to have a better understanding of the issue of e-catalog selection,
and validate our query rewriting approach, we used our prototype in the context
of the MKBEEM8 project which aims at providing electronic marketplaces with
intelligent, knowledge-based multi-lingual services. In this application, we used
communities with approximately 300 categories and 50 e-catalogs. Indeed, this
application has shown the effectiveness of the proposed query rewriting mecha-
nism in two distinct end-user scenarios, namely: (i) business to consumer on-line
sales, and (ii) Web based catalogs.

Preliminary Experiments. In order to evaluate the performance of the BestQRC

algorithm, we built a simulation testbed. In this testbed, we have implemented the
two optimisations presented in section 4 as two separate options of the BestQRC

algorithm, namely option Pers for the optimisation provided by the theorem 1 and
option BnB for the optimisation that uses the Branch-and-Bound technique. We
have then evaluated up to 6 versions of the BestQRC algorithm corresponding
to different combinations of these optimisation options. The simulation testbed
includes a tool that generates random XML-based test community schemas and
queries. All experiments have been performed using a PC with a Pentium III 500
MHz and 384 Mo of RAM.

We have considered three test scenarios with differences in the size of commu-
nity schema, number of e-catalogs, and the query expressions (see Table 2).

8MKBEEM stands for Multi-lingual Knowledge Based European Electronic Marketplace (IST-
1999-10589, 1st Feb. 2000 - 1st Dec. 2002). http://www.mkbeem.com

Table 2: Configurations

Configurations Case 1 Case 2 Case 3
Number of defined cate-
gories in communities

365 1334 3405

Number of e-catalogs 366 660 570
Number of (atomic) clauses
in the query

6 33 12

We have run the 6 versions of the BestQRC algorithm on the test cases. The
overall execution time results are given in Figure 39. This figure shows that for

4 1
46

40 50

16
 91

4 7
63

16
 93

0 6
05

10
0 9

95

10
0 5

54

19
1

14
 48

8 9
24

33
2 2

68

10
 36

7 7
28

18
0

31
 96

6

15
 33

2

1 9
13

31
 50

5

1

10

100

1000

10000

100000

1000000

10000000

100000000

Case 1 Case 2 Case 3

m
ill

is
ec

on
ds

1 32 4 5 6 7 8
> 43 200 000
(> 12 hours)

> 43 200 000
(> 12 hours)

1 : BnB: false,
Pers: false,
BnB1

2 : BnB: false,
Pers: false,
BnB2

3 : BnB: false,
Pers: true,
BnB1

4 : BnB: false,
Pers: true,
BnB2

5 : BnB: true,
Pers: false,
BnB1

6 : BnB: true,
Pers: false,
BnB2

7 : BnB: true,
Pers: true,
BnB1

8 : BnB: true,
Pers: true,
BnB2

(1s)

(10s)

(1mn40s)

(16mn40s)

(2h46mn40s)

(27h46mn40s)
(˜ 4h43mn)

(˜ 1mn40s)

(˜ 4h)

(˜ 2h53mn)

(˜ 5mn30s)

5 6 7 8 5 6 7 8

Figure 3: Execution time

cases 1 and 3 (respectively, case 2), there is at least a version of the algorithm that
runs in less than two seconds (respectively, in less than 30 seconds). Although Fig-
ure 3 shows that there are significant differences in performance between the dif-
ferent versions of the algorithm, in each case, there is at least one efficient version
of the algorithm even when community schema is quite large (i.e., large number
of categories). It should be noted that this preliminary experiment only concerns
the performance of the rewriting algorithm. Ongoing experiments include perfor-
mance and scalability studies that involve interactions (i.e., forwarding queries) in
a network of communities formed via peer relationships.

9Note that versions 1 and 2 of the algorithm (respectively, 3 and 4) are similar as both run
BestQRC without BnB, and what distinguishes 1 from 2 (respectively, 3 from 4) is the way the
option BnB is implemented (BnB1 or BnB2).

6 Related Work and Conclusions

In this section, we examine work done in e-catalogs integration. We also briefly
discuss peer-to-peer data sharing approaches. Existing e-catalogs integration ap-
proaches typically rely on a global schema integration style [23]. For instance,
[15] proposes an e-catalog integration approach, in which all categories of prod-
ucts are organised in a single graph structure and each leaf links to source catalog’s
product attribute tree which represent local catalog’s product classification scheme.
As mentioned before, a static approach, where the development of an integrated
schema requires the understanding of both structure and semantics of all schemas
of sources to be integrated, is hardly scalable because of the potentially large num-
ber and dynamic nature of available e-catalogs. Other approaches (e.g., [2]) focus
on extracting structured and integrated schemas from documents that contain un-
structured product description. Our work is not concerned with this issue.

P2P computing is currently a very active research and development area. From
information sharing point of view, the first generation of P2P systems (e.g., Gnutella,
Napster) focused on files sharing (e.g., music, video clips). Query routing among
peers in such approaches is discussed [9]. These systems support limited querying
capabilities (e.g., keyword based search). Effective data sharing requires support
for more structured querying capabilities to exploit the inherent semantics in data
([7, 20]). [16] proposes a super-peer based routing [24] in RDF-based P2P infor-
mation sources. The proposed approach focuses on indexing RDF resources.

Few approaches that leverage database-like information sharing and querying
techniques in P2P environments emerged recently [1, 7]. PeerDB [18] uses a rela-
tional model to describe the schema of a peer data source. Relations and attributes
are associated to keywords (i.e, synonyms of relation and attribute names). PeerDB
uses an Information Retrieval (IR) approach for query routing to avoid the explicit
specifications of mapping among peer schemas. The issue information space or-
ganisation is not considered. Piazza [12] considers the issue of schema mediation
in P2P environments. It uses a relational model to describe peer schemas. It pro-
poses a language for specifying mappings among peers. It also proposes a query
reformulation algorithm for the proposed mediation framework. [20] proposes the
notions of mutant query plan (MQP) and multi-hierarchy namespaces to support
query processing in P2P environments. A MQP includes verbatim XML encoded
data, references to actual resource locations (URL) and references to abstract re-
source names (URN). A peer can mutate an incoming MQP by either resolving
URNs to URLs, or substituting a sub-plan with the evaluated XML encoded data.

Our work provides complementary contributions to related work on data shar-
ing and querying in peer-to-peer environment. We focus on providing support for
achieving effective and efficient access to e-catalogs resident data. Since scalability
is of great importance in e-catalog environments, the information space is organ-
ised in communities that are inter-related using peer relationships. The model that
we use to describe community schemas relies on simple concepts (categories and
attributes) that we found to be useful and commonly used to describe e-catalogs

content and capabilities. We consider different types of peer relationships between
communities (i.e, companionship and similarity relationships). Such flexibility al-
lows to establish different interaction types among communities. The specification
of mappings in our approach combines: (i) IR style where no explicit mapping de-
scription is provided and (ii) full mapping description when it is possible or desired
(e.g., in the case of companionship relationships). We formalised e-catalogs selec-
tion as a rewriting process for e-catalog communities. Query routing among peer
communities is based on forward policies. We proposed a novel hypergraph-based
algorithm to effectively select relevant e-catalogs for a given query.

It should be noted that, the main approaches to rewriting using terminolo-
gies [4] are: the minimal rewriting problem [4] and query rewriting using views
[13]. These approaches are based on (containment) subsumption or equivalence
between a given query and its rewritings. In our approach, the proposed algo-
rithm finds rewritings that ‘best match’ a given query with respect to a quality
function, where the relationships between a query and its rewritings goes beyond
containment or equivalence. We believe that there is a need for such a flexible
query rewriting approach to cope with the high dynamicity and heterogeneity of
the Web-based environments.

References

[1] K. Aberer, P. Cudre-Mauroux, and M. Hauswirth. The Chatty Web: Emergent
Semantics Through Gossiping. In WWW’03, Budapest, Hungary, May 2003.

[2] R. Agrawal and R. Srikant. On Integrating Catalogs. In WWW’01, Hong
Kong, China, May 2001.

[3] F. Baader, D. Calvanese, D. McGuinness, and editors D. Nardi andP. Patel-
Schneider. The Description Logic Handbook. Theory, Implementation and
Applications. Cambridge University Press, 2003.

[4] Franz Baader, Ralf Küsters, and Ralf Molitor. Rewriting Concepts Using
Terminologies. In KR’00, Colorado, USA, pages 297–308, April 2000.

[5] B. Benatallah, M-S. Hacid, C. Rey, and F. Toumani. Semantic Reasoning
for Web Services Discovery. In ESSW Workshop, Budapest, Hungary, May
2003.

[6] C. Berge. Hypergraphs, volume 45 of North Holland Mathematical Library.
Elsevier Science Publishers B.V., 1989.

[7] P. Bernstein, F. Giunchigiloa, A. Kementsietsidis, J. Mylopoulos, L. Serafini,
and I. Zaihrayeu. Data Management for Peer-to-Peer Computing: A Vision.
In WebDB’02, Madison, Wisconsin, June 2002.

[8] A. Bouguettaya, B. Benatallah, L. Hendra, M. Ouzzani, and J. Beard. Sup-
porting Dynamic Interactions among Web-based Information Sources. IEEE
TKDE, 12(5):779–801, Sept/Oct 2000.

[9] A. Crespo and H. Garcia-Molina. Routing Indices For Peer-to-Peer Systems.
In ICDCS’02, Vienna, Austria, July 2002.

[10] T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph
and related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

[11] M.L. Freidman and L. Khachiyan. On the complexity of dualization of mono-
tone disjunctive normal forms. Journal of Algorithms, 21:618–628, 1996.

[12] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer
Data Management Systems. In ICDE’03, Bangalore, India, March 2003.

[13] Alon Y. Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270–294, 2001.

[14] L. Liu. Query Routing in Large-scale Digital Library Systems. In ICDE’99,
Sydney, Australia, March 1999.

[15] S. Navathe, H. Thomas, M. Satits A., and A. Datta. A Model to Support E-
Catalog Integration. In IFIP Conference on Database Semantics, Hong Kong,
April 2001.

[16] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst,
and A. Lser. Super-Peer-Based Routing and Clustering Strategies for RDF-
Based Peer-To-Peer Networks. In WWW’03, Budapest, Hungary, May 2003.

[17] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
John Wiley&Sons (New York), 1988.

[18] W.S. Ng, B.C. Ooi, K.L. Tan, and A. Zhou. PeerDB: A P2P-based System
for Distributed Data Sharing. In ICDE’03, Bangalore, India, March 2003.

[19] H. Paik, B. Benatallah, and R. Hamadi. Dynamic Restructuring of E-Catalog
Communities Based on User Interaction Patterns. WWW Journal, 5(4):325–
366, 2002.

[20] V. Papadimos, D. Maier, and K. Tufte. Distributed Query Processing and
Catalogs for Peer-to-Peer Systems. In CIDR’03, Asilomar, CA, January 2003.

[21] M. Papazoglou, B. Kramer, and J. Yang. Leveraging Web-Services and Peer-
to-Peer Networks. In CAiSE’03, Klagenfurt, Austria, June 2003.

[22] G. Teege. Making the difference: A subtraction operation for description
logics. In KR’94, San Francisco, CA, 1994.

[23] G. Yan, W. Ng, and E. Lim. Product Schema Integration for Elec-
tronic Commerce–A Synonym Comparison Approach. IEEE TKDE, 14(3),
May/June 2002.

[24] B. Yang and H. Garcia-Molina. Designing a Super-Peer Network. In
ICDE’03, Bangalore, India, March 2003.

[25] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng. Quality-
driven Web Service Composition. In WWW’03, Budapest, Hungary, May
2003.

