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ABSTRACT 

Semiconductor fabrication plants are subject to high levels of variability because of a variety of factors 
including re-entrant flows, multiple products, machine breakdowns, heterogeneous toolsets or batching 
processes. This variability decreases productivity, increases cycle times and severely impacts the systems 
tractability. Many authors have proposed approaches to better model the impact of variability, often 
focusing on specific aspects. We present a review of the sources of variability discussed in the literature 
and the methods proposed to manage them. We discuss their relative importance as seen by the authors as 
well as the limits current theories face. Finally, we emphasize the lack of research on some critical aspects 
related to High Mix Low Volume fabs. In this setting, the ability of practitioners to predict and anticipate 
the effects of changing product mix and client orders remains challenging, delaying the transition of 
semiconductor manufacturers towards Industry 4.0. 

1 INTRODUCTION 

Industry 4.0 is said to be the next industrial revolution. The proper use of real-time information in 
complex manufacturing systems is expected to allow more customization of products in highly flexible 
production factories. Semiconductor High Mix Low Volume (HMLV) manufacturing facilities (called 
fabs) are one example of candidates for this transition towards “smart industries”. However, because of 
the high levels of variability, the environment of a HMLV fab is highly stochastic and difficult to manage. 
The uncontrolled variability limits the predictability of the system and thus the ability to meet delivery 
requirements in terms of volumes, cycle times and due dates.  

Typically, the HMLV STMicroelectronics Crolles 300 fab regularly experiences significant mix 
changes that result in unanticipated bottlenecks, leading to firefighting to meet commitment to customers. 
The overarching goal of our strategy is to improve the forecasting of future occurrences of bottlenecks 
and cycle time issues in order to anticipate them through allocation of the correct attention and resources. 
Our current finite capacity projection engine can effectively forecast bottlenecks, but it does not include 
reliable cycle time estimates. In order to enhance our projections, better forecast cycle time losses 
(queuing times), improve the tractability of our system and reduce our cycle times, we now need accurate 
dynamic cycle time predictions.  

As these types of projections are made considering finite horizons (e.g., see Mhiri et al. 2014), the 
dynamic cycle time models to develop are closer to clearing functions (see Kacar et al. 2012) than 
queuing theory. Using historical data to derive these models is not appropriate, since the behavior of the 
toolsets changes with the mix of products and lots priorities. Simulation is a promising tool since it allows 
to create controlled and repeatable scenarios. However, creating accurate simulations for this purpose 
requires a deep understanding of the main factors responsible for the generation of queues, referred to as 
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“sources of variability” in this paper. It also requires a deep understanding of how each source of 
variability contributes to high cycle times in practice. 

The literature of variability in semiconductor manufacturing focuses on efficiency: In this context, we 
interpret variability as everything responsible for efficiency losses by means of non-productive waiting 
times. What we therefore call the intrinsic variability of a manufacturing system (which we will simply 
refer to as variability) is its corrupting tendency to generate uncontrolled unevenness both in its flows and 
in the capacities of its manufacturing resources, resulting in local efficiency losses, i.e. non-productive 
waiting times. In the effort towards flexible and agile manufacturing, this article seeks to give an 
exhaustive overview of the various facets and specificities of variability arising in the complex 
environment of semiconductor manufacturing. This article is organized as follows: Section 2 illustrates 
the main characteristics of semiconductor manufacturing as found in the literature and confirmed by our 
own operational experience; the impact of variability is then explained and the main sources of variability 
in a semiconductor environment are listed. Section 3 provides an extensive study of the aforementioned 
sources of variability based on the literature and our field experience. The final part (Section 4) discusses 
the challenges faced when considering the sources of variability in mathematical or simulation models: 
Using real fab data, we show that some complex behaviors may often be overlooked when trying to 
capture the sources of variability.  

2 THE COMPLEXITY OF SEMICONDUCTOR MANUFACTURING 

2.1 Overview Of Semiconductor Manufacturing 

Traditional production or assembly lines are usually organized to build products starting from raw 
materials or components, progressively transforming or assembling them in order to deliver “end 
products” or “finished goods”. Such factories manage a linear flow of products going all in one direction 
from the beginning of the line to the end of the line. Regardless of whether process steps are performed by 
operators or machines, processing times are subject to inconsistencies, machines are subject to 
breakdowns, and operators and secondary resources are sometimes unavailable.  

Semiconductor fabs are, like other industries, subject to the above mentioned “disturbances”. Their 
main characteristic however, justifying the label of “complex environment”, is the reentrancy of their 
process flows. Microchips are produced by stacking tens of different layers of metals, insulators and 
semiconductor materials on silicon substrates (called wafers). The similarities of layers, added to the 
extreme machine costs, lead the same groups of machines (toolsets) to process different layers. Hence 
products are processed several times by the same machines over the course of their hundreds of process 
steps.  Dedicating machines to steps is only (partially) possible in very large facilities (such as memory 
fabs) where thousands of tools are generally producing one or two different products; these factories 
operate in what is generally referred to as HVLM: High Volume Low Mix manufacturing. 

The second characteristic of semiconductor manufacturing is that it involves different types of 
physical processes that require different types of machines (see Mönch et al. 2011). Batching machines, 
such as deposition or diffusion furnaces for example, will process products in batches of different 
minimum and maximum sizes according to the specific recipe and process step. Other machines, such as 
cluster tools, consist of process chambers or modules sharing the same robotics. Depending on the 
products being processed at the same time, resource conflicts may appear within the tool, rendering 
processing times even more inconsistent. Many other characteristics may also be cited here as 
semiconductor manufacturing is above all a matter of technology and then only a matter of efficiency. A 
very good example is that most semiconductor vendors still propose “lots of 25 wafers” as manufacturing 
units, whereas the move to larger wafer sizes should already have challenged this paradigm. 

A third characteristic of semiconductor fabs is the business model they use. While High Volume Low 
Mix units usually produce in the range of 3 to 4 different products at the same time over one or two 
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different technology generations, High Mix fabs propose a wide variety of products to their customers 
over several technology nodes. A difficulty in this case is that specific process steps may only be required 
by very few products. Therefore only 1 or 2 tools may be used to process a given group of steps. 
Moreover, qualifying a “technology level” on a tool requires time (as functional tests can only be 
performed on finished products) and money (as “testing wafers” cannot be sold). Therefore, not all tools 
of a given toolset will be qualified on all the operations associated to this toolset. High Mix fabs, as they 
address a wide range of customers and products, generally follow a make-to-order policy. Given the range 
of products, demands cannot be satisfied by stocks and lots are therefore started on demand with different 
requirements in terms of delivery times. Production control techniques and rules are then introduced to 
manage different levels of priorities necessary to achieve the individual required speeds. 

2.2 Impact Of Variability 

As utilization, as well as variability, also creates higher cycle times, one way to visualize the intrinsic 
variability of a manufacturing system is through “operational curves” or “cycle time throughput curves”. 
These curves are found in 20 of the papers that we reviewed, and used in 12 of them to explain the impact 
of variability (Brown et al. 2010, Delp et al. 2006, Etman et al. 2011, Ignizio 2011, Kim et al. 2014, 
Martin 1999, Robinson et al. 2003, Schoemig 1999, Shanthikumar et al. 2007, Tirkel 2013, Wu 2005, and 
Zisgen et al. 2008). These curves represent the Xfactor (the ratio between cycle time and raw processing 
time) as a function of the utilization of available capacity at different variability levels (as illustrated in 
Figure 1.A). Figure 1.A shows that, for any given utilization, a higher level of variability translates into 
longer cycle times.  

Another less obvious impact of variability is the capacity loss it generates. Robinson et al. (2003) 
indeed titled their article “Capacity Loss Factors in Semiconductor Manufacturing.” The link between 
capacity loss and variability arises from the desire of semiconductor manufacturing companies to 
minimize their production costs by maximizing the utilization of their assets (building, personal and 
equipment). To guarantee an acceptable cycle time, this generally translates into a maximum allowed 
Xfactor (the ratio between cycle time and raw processing time). Figure 1.B shows that a first part of 
capacity (around 25 percent of capacity) is directly lost by the inefficiencies of tools (such as 
breakdowns), and that a second part of capacity is lost because of variability: In order to keep the Xfactor 
below its target value, the capacity utilization must be kept under a given value.  

 

 
Figure 1: Operating curves showing different levels of variability (1.A) and the link to capacity loss (1.B). 

Moreover, for a given maximum allowed Xfactor value, the maximum allowed capacity utilization 
decreases as the variability increases, which directly translates into capacity loss. This link is essential to 
understand the cost of variability in semiconductor fabs. As semiconductor manufacturing tools are 
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extremely expensive, a fab with high variability requires far more capital investment than one with low 
variability in order to achieve the same throughput under the same Xfactor constraint.  

Another impact of variability is the difficulty of efficiently forecasting the capacities required and the 
cycle times of the products. Indeed, as the lack of information characterizing the system and its variability 
is high, changes in the production environment lead to unaccounted changes in variability and cycle 
times, making it ever so difficult to respect customer orders in terms of times and quantities.  

2.3 Sources Of Variability 

Table 1: Sources of variability identified by authors related to the variability of semiconductor 
manufacturing. The sources of variability are ordered by the number of times identified in the literature.  
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The sources of variability of a manufacturing system can be defined as the primary factors that create, 
amplify, and propagate the local uncontrolled over-saturations of the system. We emphasize the fact that, 
given this definition, sources of variability do not need to be variable themselves. As there may be an 
unlimited number of sources of variability, our aim is to identify the main ones. To do so, we examined 
the recent literature related to the variability of semiconductor manufacturing systems. As authors do not 
necessarily use the same vocabulary and factors with minimal differences may exist, we grouped factors 
by what seemed to be the most relevant and distinctive names. 

Moreover, since, as far as we know, there is no clear definition of the variability of a manufacturing 
system, we considered that authors identified a factor as a source of variability if they either mention it 
directly as a source of variability, mention that this factor increases the cycle time, mention that this factor 
increases the complexity of the system, mention it as a capacity loss factor, or include it in a formula in a 
way that this factor increases cycle time. Table 1 gives an overview of the sources of variability identified 
in our review.  

3 LITERATURE REVIEW ON THE SOURCES OF VARIABILITY 

3.1 Equipment-specific Factors 

Natural process time, also referred to as raw processing time or theoretical processing time is, in a 
simplified manner, the time spent processing each lot on the machine. In the semiconductor environment,  
the definition becomes much more subtle (see Wu and Hui 2008 for more details). Natural process time 
variability is generally found to be a small source of variability. Both Kalir (2013) and Morrison and 
Martin (2007) computed small values of the coefficient of variation of natural process time and Tirkel 
(2013) also pointed that “the service time variability is not necessarily high since the processing time is 
usually automated and its variability is generated due to causes such as wafer lot size.”  

Machine downtimes, if not cited the most, is unarguably the source of variability the most discussed 
by authors. Authors who speak about variability reduction always recommend doing so through reducing 
variability from downtimes: Increasing the frequency of preventive maintenances and therefore lowering 
the mean downtime is pointed by Tirkel (2013) and Delp et al. (2006) as a way to reduce variability. 
Brown et al. (2010) also discussed “how reduced variability in downtime durations […] could translate 
into shorter queues.” Godinho Filho, and Uzsoy (2013) show by means of simulation that many small 
improvements in downtime variability has a greater impact on cycle time reduction than few major 
improvements.  

Batching is another equipment-specific characteristic. Most authors recognize the cycle time increase 
due to batching, and specific queuing equations for batch processes are actually proposed by Huang et al. 
(2001), Hanschke (2006), Brown et al. (2010), and Leachman (2012). Batches add variability to their 
toolset, but may add even more variability to other toolsets: As batch tools send batches of lots 
downstream, they greatly contribute to the unevenness of the downstream flows. 

Setup, defined by Leachman (2012) as “[the time needed to] recondition, readjust or reconnect the 
machine when changing from performing one class of product steps to another,” is the last of our 
equipment-specific factors. Even though setup times may sometimes be as long as the processing times 
(in ion implantation for example), little research has focused on the time caused by setups. One reason 
may be because the consequences (additional waiting time, capacity loss and added variability) also 
depend on the setup rules and are thus fab specific. Shanthikumar et al. (2007) give extra references for 
approximations of cycle time under different setup rules.  
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3.2 Structural Factors 

“Structural factors” refer to how resources are arranged together to process the flow of products. The way 
resources interact with each other through the flow greatly impacts the corrupting tendency of the 
manufacturing system to generate uncontrolled unevenness in the flows and in its capacities. 

Tool redundancy is the simplest of examples, as it is found in many manufacturing systems and is 
measurable: the number of parallel tools that process a given process step. Increasing the redundancy 
smoothens the capacity of the toolset as tools are generally independent and the breakdowns happen more 
evenly. The redundancy therefore reduces the probability of high saturations and therefore decreases the 
variability of the system. 

Tool dedication, defined by Shanthikumar et al. (2007) as “the specific relationship where certain 
tools in a toolset process only part of products or operation steps,” disrupts the smoothing introduced by 
tool redundancy. In the same way, if characteristics or the performances of the tools in the toolset are 
uneven (heterogeneous toolset), the global performance of the toolset (i.e the global capacity) might vary 
greatly according to which tool in the toolset performs which process. Although such factors as tool 
dedication, heterogeneous toolsets or operator cross-training have been identified as sources of variability, 
little study has yet focused on their effects. Figure 2 illustrates the effects of poor redundancy and high 
tool dedication toolsets in HMLV fabs: It shows the lots processed by 3 tools of the same toolset, and 
more importantly which tools processed which products over the entire period.  As one can see on Figure 
2, some tools are qualified on many products (TOOL1 processes all products) whereas others are 
qualified on a limited quantity of products (TOOL3 only processes products a, b, and c). Some tools also 
see their qualification or dedication changing over time (TOOL2 only treats product i and j in the last 
third of the horizon). 
 

 
Figure 2: Product mix processed by different tools of a toolset over time. 

Reentrancy is another, more global, structural factor. As resources interact locally through their 
redundancy, dedication and heterogeneity, they interact globally in the flow of products. As a part of the 
manufacturing system’s variability can spread through the production line (through the unevenness of the 
flows), the reentrancy allows this spread to be much more extensive than in a linear production line: The 
effects of a single event can be seen by products completing their manufacturing process as well as by 
products just starting it. Moreover, in a reentrant system, so called “WIP bubbles” (Work In Progress) that 
originated independently can arrive at the same toolset at the same time, such as two waves joining to 
create a local splash. Hence reentrancy can create bottlenecks (and therefore queues) much larger than 
would be found in traditional linear lines. Reentrancy also forces machines to process different recipes 
(different product levels) creating high inefficiencies in the batches since the probability of forming a 
batch of identical recipes decreases. The same also goes for the setups, whose inefficiencies increase the 
more recipes are to be processed on the same tools, since this leads to more “switches” between recipes. 
Little study has been done on the added variability caused by the reentrancy of a system, even though 
Ignizio (2009b) introduced the notions of degree of reentrancy and nesting when considering reentrancy.  
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3.3 Product Induced Factors 

The impact of product mix can be understood straightforwardly now that we have discussed batches, 
setups and reentrancy. More products mean more recipes on identical tools. Just as reentrancy adds more 
product levels to toolsets, higher product mix adds more product levels to toolsets. Therefore, an 
increased product mix results directly in reduced efficiency of batches and setups. Ignizio (2009a) 
performed simulations with low product mix and high product mix, and reports an increase in average 
total cycle time of 10 to 16 percent. Huang et al. (2001) included the number of recipes in their queuing 
approximations for batch servers and showed a significant increase in the queue length from 2 to 3 
recipes. As seen in Figure 3, which represents the evolution of product mix over 20 weeks, a typical 
product mix in High Mix Low Volume fabs is high and variable.  
 

 
Figure 3: Evolution of product mix on a toolset of Crolles 300.  

Priorities, induced by engineering lots, product prototypes lots or key customer orders, force 
inefficiencies in batches or setups by processing individual “hot lots” when batches or sequences could 
have been formed. Ignizio (2009a) shows with his simulation results that 5 percent of priority lots can 
increase the average cycle time of lots by approximately 15 percent. Chang et al. (2008) also show the 
impact of different priority mix on cycle times.  

Product mix and priorities therefore both have a great impact on the cycle times observed at the 
different toolsets. As High Mix fabs operate in a make-to-order policy, the product mix is thus a very 
important source of variability as it is continually changing to follow the fluctuations of the demand.   

3.4 Operational Factors 

The other factors identified in the literature can then be classified as “operational”. These factors (which 
include dispatching policies, WIP control strategies, maintenance policy, end-of-shift effects, holds, 
factory shutdowns and inspection) describe the way the manufacturing system is operated. Hence there is 
no number or parameter that can translate their effects which makes them extremely hard to integrate. It 
is however clear that they have a significant impact: A dispatching policy based on an optimization 
algorithm can effectively impact cycle time in setup intensive areas. A maintenance policy that includes 
arrival forecasts can effectively prevent the combination of negative effects. Holding lots disrupts the 
flow. Factory shutdowns force lots to gather in “safe points” and therefore disrupt the flow and increase 
variability.  

WIP control strategies are especially important. As some authors have reported, tool downtimes and 
product arrivals may not be independent because of specific WIP control strategies where production 
teams push back non-critical maintenance operations in case of high arrival rates.  
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4 THE CHALLENGES OF INTEGRATING VARIABILITY 

4.1 Accounting For Variability 

Our goal is to generate a taxonomy of the different toolsets versus their behavior from the cycle time 
point of view, using simulations to generate dynamic cycle time functions. The first step is then to fit the 
simulated toolsets to the reality. This means that the sources of variability need to be accounted for using 
parameters that adequately describe how these sources of variability generate queuing times in reality: 
This is where lies the real challenge. 

Some sources of variability (such as lack of tool redundancy) can be added to the simulation as just 
an extra physical element. Other sources correspond to time related events (arrivals, breakdowns, 
processes). They require to be described by a set of parameters to be incorporated into simulations. The 
statistics generally used to describe these parameters (mean and standard deviation) should encompass the 
information on how much queuing time is added by the corresponding sources of variability. However, 
we emphasize the fact that the mean and standard deviation can only include the entire information of a 
given dataset under specific conditions: A known statistical distribution and the independency of the 
points in the dataset.  

Figure 4 shows that this second assumption is not always true. Figure 4.A shows the number of 
arrivals per week at a toolset from STMicroelectronics Crolles300 fab, and Figure 4.B shows arrivals per 
week generated using the same inter-arrival rate as in Figure 4.A, but assuming independence of arrivals. 
Figure 4 shows that the order in which the inter-arrivals happen also contains information, and in this 
specific case, generates variability. Indeed, queues are more likely (in a non-linear way) to happen when 
saturation is higher. As Figure 4.A shows more high saturations than Figure 4.B, more queues will be 
created in the scenario of Figure 4.A than in the one of Figure 4.B. The mean and standard deviation may 
therefore be insufficient to measure the unevenness of the flows in this specific case.    

 

 
Figure 4: Number of arrivals per week from real data (A) and generated by removing dependencies (B). 

Another dependency problem concerns natural process time variability. This next example was 
highlighted thanks to close collaboration with production teams, who pointed out that the process time 
variability was a major source of queuing time on a specific toolset of the Crolles300 fab. Contrary to the 
production team’s intuition, our measurement of the coefficient of variation of processing times (the ratio 
between the standard deviation and the mean) indicated a low contribution to variability.  

Figure 5 shows the histogram of processing times from this specific toolset. At first glance, process 
time variability seems low, with a standard deviation of 0.37h for a mean process time of 0.94h, resulting 
in a coefficient of variation of 0.39. However, several modes are visible on the histogram, corresponding 
to the number of available chambers when processing lots: When a chamber is down, lots are still 
processed, but by one less chamber, resulting in longer process times. The consequence is actually that 
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the processing times resulting follow a time-dependent (autocorrelated) sequence: Ten lots in a row might 
be processed with a degraded processing time. This temporarily reduces the toolset capacity, creating 
more over-saturations. This extra variability created by the dependency of the processing times cannot be 
captured by the standard deviation either: If we were to simulate this toolset with processing times 
described by a mean and a standard deviation, we would fail to incorporate this specific root cause of 
processing time variability. 

 

 
Figure 5: A histogram showing the effects of chambers on lot processing times. 

Our two examples do not ignore the usefulness of the current statistics used to describe most 
parameters representing sources of variability. However, they point out that, in HMLV fabs, sources of 
variability can be far more complex than one might think.  

4.2 Perspective: Variability Diagnostic Tree 

As discussed above, identifying the sources of variability may not be enough: The root causes of the 
specific behaviors responsible for extra queuing times need to be understood in order to be sure that the 
statistics used to successfully model the sources incorporate these aspects. Therefore, in order to create 
valid simulation models, and in turn create dynamic cycle time models that fit the “to be” reality, it is 
essential to centralize the knowledge of experienced people working on the considered toolsets.   

Following the work of Hopp et al. (2007), we intend to develop a Diagnostic Tree of the sources of 
variability. On top of referencing, for each toolset, the identified sources of variability, one objective of 
this Diagnostic Tree is to keep track of the root causes of each source as well as the statistics chosen to 
model these root causes after validation by means of simulation. This Diagnostic Tree will first help us to 
incrementally build our simulation model and therefore our dynamic cycle time model (which will in turn 
be the entry point of our projection engine). This Variability Diagnostic Tree will then help our Industrial 
Engineering team to find levers to control cycle times on the areas where high cycle time loss is forecast.  

5 CONCLUSION 

The proper use of real-time information is expected to lead the next industrial revolution. As high levels 
of variability lead to high levels of hidden information, it is essential to understand what variability is in 
order to both reduce it and integrate it in manufacturing management tools. To this extend, we first 
explained what the intrinsic variability of a manufacturing system is, and what its consequences are in 
terms of cycle time, capacity loss and system tractability. We then reviewed the sources of variability 
found in the literature (which, to our knowledge, had not been done prior to this article), giving for each 
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an explanation of its consequences as seen by the authors of our review (as well as personally experienced 
in a HMLV semiconductor fab). Using shop floor data, we finally pinpointed the complexity of some 
behaviors responsible for variability and the lack of usual statistical methods to capture some critical 
aspects of variability. In highly changing environments such as HMLV fabs, where projections play a 
major role for managing the line, this fundamental understanding is a milestone to create accurate 
production management tools.   

Even though the component market is dominated by a few major players, thousands of production 
facilities exist through the world. And these factories will continue to produce components in the future 
due to the pervasion of electronics in every aspect of our lives, the “digitization” of everything. Besides 
traditional trends towards ever more computation power on ever smaller components (as reflected by the 
famous Moore’s law), the integration of heterogeneous functions on top of traditional computing or signal 
processing should allow smaller production units to develop their activities. As these companies will face 
the same tractability problems HMLV fabs face now, we call for more focus on the fundamental 
understanding of the manufacturing systems and a greater use of industrial data in research in order to 
find today the solutions for the “smart industries” of tomorrow.  
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