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ABSTRACT

Gesture training, especially for technical gestures, requires supervi-
sors to point out errors made by trainees. Virtual reality (VR) makes
it possible to reduce reliance on supervisors (fewer interventions
and of shorter duration) and to reduce the length of training, us-
ing extrinsic feedback that provides training or learning assistance
using different modalities (visual, auditory, and haptic). Visual feed-
back has received much attention in recent decades. Users can be
guided by a metaphor in a virtual environment. This metaphor may
be a 3D trace of canonical movements, a visual cue pointing in
the right direction, or gestures by an avatar that the trainee must
mimic. However, with many kinds of feedback, trainees are not
aware of their errors while performing gestures. Our hypothesis is
that guiding users with a dynamic metaphor based on the visual-
ization of errors will reduce these errors and improve performance.
To this end, in a previous work we designed and implemented a
new 3D metaphor called EBAGG to guide users in real time.

In the present paper we evaluate EBAGG in relation to two other
visual cues: first, a feedforward technique that displays the trace of
a reference movement, and, second, a concurrent orientation feed-
back. The results of the user study show that EBAGG outperformed
the others in improving users’ performances over a training session.
Moreover, the information assimilated during training with this
dynamic feedback had a persistent effect when the metaphor was
no longer displayed.
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1 INTRODUCTION

Motor learning involves physiological and cognitive mechanisms
acquired through practice or experience, which makes it a complex
task. Feedback from an instructor is crucial to correct gesture or
position errors that are made by the learner during the learning
process. Once the instructor has departed, learners no longer receive
feedback, and learning the gestures becomes considerably more
challenging.

Immersive environments are known to be valuable tools for
training in a variety of contexts including sporting performance
[Covaci et al. 2015], the health sector [Moreau et al. 2007] and
even assembly and maintenance scenarios [Louison et al. 2017].
Learners can train in safer and longer training sessions than in real
environments, which has particular advantages in scenarios such
as industrial maintenance where conditions are difficult. Training
can take place away from the machines that are devoted to produc-
tion, meaning that that these machines can neither be damaged by
nor cause injury to learners. These immersive environments may
include multisensory feedback that can act as a virtual coach.

In the absence of an instructor during gesture training, learners
need augmented feedback (also known as extrinsic feedback). This
is defined as information that cannot be given without the help of a
trainer or a display [Sigrist et al. 2013], and is used to help learners
visualize gestures, to guide them, and to correct or to report errors
that are made. However, according to the guidance hypothesis,
continuous concurrent feedback during the acquisition phase of
learning leads to a dependency on the feedback used [Schmidt 1991;
Sigrist et al. 2013]. When acquiring a motor skill, learners need to
memorize it through their own intrinsic feedback, proprioception,
that is to say the sensation of relative positions of their own body
parts and the strength of the effort required to perform a movement.
The guidance hypothesis forces them to ignore those feelings and
to focus mostly on the feedback [Sigrist et al. 2013]. Learners may
thus have good results during the initial practice, but then poor
results at the transfer phase and when feedback is withdrawn.

In a previous work [Jeanne et al. 2017], we proposed a new
metaphor for movement guidance based on error visualization.
This feedback, EBAGG (Error-based assistance for gesture guidance),
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warns learners in real-time when they make trajectory errors.
EBAGG does not explain how to correct the errors, but shows the
direction in which the errors are occurring.

In this paper, we explore several approaches to visual guidance
for gesture training in an industrial context. We compare EBAGG
with two visual cues and analyze the impact of the different types
of feedback on learners’ performances. Our paper is organized as
follows. Section 2 reviews related works on different visual cues
for movement guidance, including feedforward and feedback cues.
In section 3 we describe the design of our experiment. Section 4
presents the quantitative and qualitative results of the user study,
and these are discussed in Section 5.

2 RELATED WORKS

Different types of feedback from different paradigms can be used
in motor learning to guide users. In this section we look at previ-
ous work on guidance techniques: first we focus on feedforward
techniques, then we study feedback used for real-time orientation,
and finally error-based feedback.

2.1 Feedforward for guidance

In the context of maritime or fluvial navigation, the ideal trajectory
can be suggested by displaying multiple traces showing the limits
of the path that is to be followed. Benton and Walker [Benton and
Walker 2004] used augmented reality (AR), and Fricoteaux et al.
[Fricoteaux et al. 2014] used VR, to display this suggested path
as in a head-up display. The path may also be represented in the
form of waypoints or as a continuous line [Benton and Walker
2004; Fricoteaux et al. 2014]. Although this type of feedforward was
originally designed for navigation, displaying traces is may also be
used in gesture training.

In [Moreau et al. 2007], Moreau et al. focused on gesture analysis
to compare learners’ gestures with those of an expert, using the
childbirth simulator BirthSIM. This was a virtual environment de-
signed for skill transfer and acquisition of obstetric gestures, which
allowed novices to acquire experience without any risk. The goal
was for learners to understand thoroughly the gesture prior to train-
ing in the delivery ward. In this virtual environment concentric
spheres ("guide spheres") with different radii (one, two and three
centimeters), were placed along the reference path. Trainees were
required to position the forceps blades as close as possible to the
center of these spheres to reproduce the reference gesture.

Feedforward guidance is also used in sports training. In [Covaci
et al. 2015], Covaci et al. proposed a basketball free-throw simu-
lator and analyzed the transfer of motor skills from training in
virtual environments to real practice. The authors compared sev-
eral training paradigms, looking in particular at the effectiveness
of visual guidance. Learners were helped in a way similar to the
childbirth simulator mentioned above, via the display of a series of
ellipses representing successive positions of the ball along the ideal
trajectory.

This kind of visual cue enables learners to visualize the ideal
movements to be emulated, but lacks dynamism in that it neither
reacts nor adapts to users’ gestures.
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2.2 Orientation feedback

Ténnis and Klinker review in [TOnnis and Klinker 2009], 3D arrows
as guidance feedback using AR in automotive environments. They
distinguish three types of arrow, of which the first two are designed
to reduce drivers’ inattention without distracting them from the
driving task. The first is an arrow displayed in the direction of
the nearest danger, while the second is a bird’s eye sketch of a
car with a 2D arrow, also pointing in the direction of the nearest
danger. Both are updated in real-time, allowing drivers to correct
their trajectory. The third type of arrow discussed are navigational
arrows displayed on the road at intersections that implicitly indicate
the road to take. However, occlusion with other vehicles is an issue,
especially if the driver is stuck in dense traffic. In this situation the
assistance becomes less visible, possibly even hard to identify and
to understand. These arrow solutions allow a direct mapping of
the path but do not provide any feedback on errors. George et al.
proposed a similar kind of feedback in [George et al. 2012]. The
authors use the metaphor of weather vane to indicate a danger, its
dangerousness and its criticality to the driver of a vehicle.

Likewise, Sodhi et al. proposed AR visual cues for hand move-
ment guidance [Sodhi et al. 2012]. Four different types of feedback
can be used and are projected directly onto the user’s hand. The
first one is a 2D black arrow (called Follow Spot) in a white disk
that indicates if the hand needs to move up or down by changing
its direction and its size. Another 2D arrow (Hue Cue) is presented
in the next section. Then there is the 3D Arrow pointing in the
direction to take and the 3D Pathlet metaphor showing a segment
of the path. The latter includes a red dot representing user’s relative
position and a blue segment indicating the path to follow. However,
when the hand is not visible or oriented at an extreme angle these
features are no longer visible.

Moreover, for movement guidance, Henderson and Feiner pro-
posed an HMD application using AR to assist users in the training
of a maintenance assembly task [Henderson and Feiner 2011]. Real-
time feedback such as dynamic 3D arrows and labels are provided
to trainees to inform them of the next movements to be performed.
The color and size of each arrow change in response to a user’s
activity.

Rovelo et al. [Rovelo et al. 2015] propose a mid-air gesture guid-
ance system called Gestu-Wan. The authors divided gestures in
different parts, gathered to form a tree. Gestu-Wan shows the most
recent gesture to have been performed correctly, together with a set
of different possible gestures from the tree that follow on from this
previous gesture. Each of these gestures is sketched with a black
silhouette, whereas the user’s current gesture overlays them with
a blue silhouette for comparison. This technique can be useful for
communicating the next gesture to perform during simple mid-air
gesture learning, but relatively difficult to use with complex or
rapid series of gestures.

YouMove [Anderson et al. 2013] is a system for motor learning
using a skeleton displayed on an augmented "mirror". Learners
perform in front of a screen where they can see themselves overlaid
by a skeleton reproducing the requested gesture. Yang et al. [Yang
and Kim 2002] used a "ghost" metaphor to display the reference
gesture during hand movement training. A gesture is recorded a
priori and replayed by a semi-transparent avatar. Trainees use a
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head-mounted display (HMD) to visualize the virtual environment
and see themselves with an avatar. The two avatars are superposed
and trainees attempt to reproduce the gesture performed by the
ghost. These techniques are good for guidance, but limited to spe-
cific gestures. They do not show errors committed by learners who
must deduce themselves where and when corrections are needed.

MotionMA is a system that automatically models a gesture per-
formed by a user (generally an expert) and compare it with gestures
performed by other users (generally trainees) in order to give them
real-time feedback on where they have to improve [Velloso et al.
2013]. Users are represented by a skeleton avatar with each bone
colored according to its score. The system also warns trainees when
they are not moving at the right speed.

2.3 Error-based assistance

Wei et al. developed in [Wei et al. 2005] a system where users had
to reproduce specific movements with a robotic arm to reach a
target. They performed these movements with a visual distortion
and some movements had error augmentation. This experiment
showed that increasing the perceived error can accelerate the rate of
learning during neurorehabilitation. The authors propose that error
augmentation may trigger the recovery process. Rehabilitation of
stroke patients have also been studied with VR systems. Kapur
et al. proposed in [Kapur et al. 2010] a sleeve that can recognize
upper limb movement and give tactile feedback. Ideomotor limb
apraxia patients often have difficulty imitating movements that are
demonstrated visually, so the use of vibrotactile feedback can be
advantageous.

Vibrotactile feedback is not only used for rehabilitation, but also
to highlight errors. To improve human motor learning, Lieberman
and Breazeal proposed the system that they call TIKL: tactile inter-
action for kinesthetic learning [Lieberman and Breazeal 2007]. TIKL
is a robotic wearable suit incorporating several vibrotactile actu-
ators that analyzes learners’ arm movements and gives real-time
feedback on any errors they make. For instance, if learners have to
bend their wrists in the same way the supervisor did, the actuator
placed on the movement side will vibrate if the learner’s wrist is
bent too far inwards. Moreover, the greater the error, the stronger
the vibration. Schonauer et al. also studied vibrotactile feedback for
motion guidance in [Schénauer et al. 2012]. The system includes
vibrotactile actuators placed on the user’s arm, a pneumatic feed-
back vest which provides stronger tactile sensations, and two types
of visual feedback, namely a ghost avatar and directional arrows.

Haptic guidance is defined by Feygin et al. as physical assistance
provided by a haptic interface to guide through the ideal motion
[Feygin et al. 2002]. Haptic augmented feedback extends this defini-
tion and refers to any kind of haptic perception that guides towards
and not necessarily through, the desired movement [Sigrist et al.
2013]. In [Marchal-Crespo et al. 2010], Marchal-Crespo et al. stud-
ied the effect of haptic guidance in a driving simulator. Learners
had to drive in the virtual environment and forces were applied by
the steering wheel to the learners’ hands to bring the vehicle back
on the right path. The level of guidance was reduced when learn-
ers were steering without large errors, and increased when errors
were made. This study showed that haptic guidance is beneficial
for long-term retention of a driving skill.
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Figure 1: An overview of the 3D cues used to guide users dur-
ing the experiment. (a) is the path of the reference gesture
displayed by a succession of red segments, (b) is a red 3D ar-
row showing the direction to take to get back on the correct
path and (c) is the metaphor EBAGG displaying trajectory
errors.

As mentioned previously, Sodhi et al. also proposed a metaphor,
Hue Cue, based on a display of trajectory errors. Hue Cue is an arrow
(Follow Spot) surrounded by positive and negative spatial coloring
representing a two-dimensional (x and y) space. To perform the
right gesture, users have to move towards the positive coloring
and away from the negative coloring. Here, the arrow Follow Spot
is used to correct depth errors (z). This type of visual cues have
proven to guide accurately for movement of a single body part in
space at a controlled speed.

3 USER STUDY

EBAGG was introduced in a previous paper [Jeanne et al. 2017],
and as mentioned in section 1, it is a metaphor based on error
visualization. EBAGG takes the form of a sphere, which makes
mapping of the 3D space easier (Figure 1-(c)). The sphere includes
particles on its surface which appear when errors are made and in
the direction of those errors; for example, if users deviate too much
to the right of the ideal trajectory, they appear on the right side of
the sphere. The number of visible particles depends on the value
of errors: the greater the error, the larger the number of particles.
Moreover, with this 3D cue, we don’t show the path to follow, but
instead shows subjects’ deviations from the ideal path in order
that they may perform the requisite adjustments and rejoin the
correct path. In the manner of a sports coach, this feedback suggests
corrections in the trajectory to perfect the gesture. The basic idea
behind this metaphor was inspired by the work of Varela et al. on
enaction, defined as the adaptation of people’s behavior in reaction
to changes in the environment in which they are located[Varela et al.
1992]. Learners modify their gestures according to the behavior of
the metaphor, which changes in response to their trajectory, as we
can see on Figure 2.

In order to evaluate the performances and usability of EBAGG,
we conducted a user study where we compared it to standard
metaphors using different paradigms. The goal was to determine
whether EBAGG metaphor could attain the same level of perfor-
mance as the standards metaphors for a technical gesture training
task in a virtual foundry. EBAGG clearly belongs to the error-based
assistance category, thus we first need to pick several cues from
other paradigms: feedforward and orientation feedback.
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(c)

Figure 2: The behaviour of EBAGG. The reference trajectory
is represented in black, the user’s trajectory in blue and the
distance between the two sequences is in red. (1) The gap
was important so EBAGG displays many particles on the side
of the error. (2) The gap has been reduced so there are less
particles. (3) The user’s trajectory is similar to the reference
one, hence there is no particle.

3.1 Guidance hints

In the light of the related works described in Section 2, we selected
two types of feedback against which to compare EBAGG’s perfor-
mance.

Feedforward techniques are very useful for guiding subjects
through the ideal motion, since they provide information about the
gesture to perform before subjects have started to perform it. Thus
we decided to design a 3D path of the reference gesture as shown in
Figure 1-(a). The path was composed of a number of red segments
positioned along the ideal motion in the same way as in [Covaci
et al. 2015; Moreau et al. 2007]. Subjects were required to follow
this path to reproduce the reference gesture.

We also chose to compare EBAGG to a technique of orienta-
tion feedback. We decided against including in our study a third
paradigm based on an avatar, because this would have involved
tracking the whole of the subject’s body and using a third person
view, whereas feedforward and orientation feedback use a first
person view. The orientation feedback solution that we adopted
was a 3D arrow, as shown in Figure 1-(b). This red arrow points
in real time to the direction of the ideal motion so that subjects
can rejoin the correct path after deviating from it. Like EBAGG’s
particles, this arrow appears when subjects are making errors and
disappears when they are not. However, it does not directly show
the error that has been made, but rather the direction in which the
correction is to be made. Subjects have to deduce from the presence
of this visual cue that they are making errors.

EBAGG and the 3D arrow provide feedback in real time. We
used a specific guidance algorithm based on the dynamic time
warping algorithm (DTW) presented in a previous paper. The DTW
algorithm provides interpretable results in the form of a discrepancy
between two time series, for example between the reference gesture
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Figure 3: Each figure includes a view on a user using a spe-
cific hint and a view of this visual cue in the virtual environ-
ment.

and the gesture actually performed [Berndt and Clifford 1994].
We use the computed distance to determine whether users are
sufficiently far from the ideal motion to warrant the provision of
feedback. To perform real-time calculation, we have adapted the
DTW algorithm as presented in the previous paper.

3.2 Expected outcomes and hypotheses

Participants were divided in four groups: the first three groups were
allotted respectively to the 3D path, the 3D arrow, and EBAGG, while
the fourth group was a control group in which subjects received
no feedback during training. The goal of the experiment was to
compare the EBAGG metaphor to standard metaphors, namely a
visualization of the ideal motion and a 3D arrow pointing in the
direction of the ideal motion. We studied the levels of performance
reached by participants for each 3D visual cue.

Before conducting the user study we made the following hy-
potheses:
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e H1: Subjects in the three groups receiving feedback during
the training phase would perform better than subjects from
the control group.

e H2: Subjects in the EBAGG group would perform better
than those in the other groups.

e H3: Subjects in the EBAGG group would continue to per-
form as well once the metaphor was no longer displayed.

3.3 Participants

The study was performed with forty-eight healthy participants
(twelves females and thirty-six males) aged from 18 to 60 years
old (mean: 27; std dev: 9.36). As mentioned previously, they were
divided in four groups of twelve subjects. Only six participants
were left-handed but they had the same experimental conditions
since the dynamic visual cues (the arrow and EBAGG) were fol-
lowing the wand. They had variable experience with VR devices,
especially CAVEs, and were drawn from among people working in
the laboratory and students at the university. Participants did not
receive any remuneration for their participation.

3.4 Apparatus

The experiment was performed in a CAVE (cave automatic virtual
environment). This is a cubic immersive VR system comprising
several screens where our stereoscopic 3D projectors display images
on the paired screen. Each screen that constitutes a wall of the CAVE
is a 3.4m x 2.5m glass screen, while the floor is a 7m x 3.4m reflective
painted surface (Figure 3). This CAVE has a movable wall that can
change it from a closed U-configuration to an open L-configuration.
For the present experiment the L-configuration was chosen since it
allows us more space on either side of the user for the display of
the virtual machine.

The CAVE has a motion tracking system including eight in-
frared OptiTrack Prime 13W cameras and two OptiTrack Prime 13
cameras!, which provide a resolution of 1280x1024 pixels with an
adjustable frame rate between 30 and 240 fps (frames per second).
This system tracked the several reflective markers placed on the
stereoscopic glasses worn by subjects, and hence their point of view.
The images distorted by the corners of the screens could thus be
readjusted to fit users’ vision. Some markers were also placed on
a controller whose buttons let users start or stop recording their
gestures.

The application ran on a 3D rendering computer with two CPU
Intel Xeon E5-2667 at 2.90 GHz (max 3.50 GHz) and two GPU Nvidia
M6000. The virtual environment was designed using the Unity game
engine? and represented a virtual metal foundry. Moreover, a virtual
compressed-air blower was co-located with the controller.

3.5 Procedure

Participants were asked to perform a technical gesture in front of
a virtual mold with or without the help of a visual cue according
to their group. First of all, they were immersed in a basic train-
ing environment where they could become familiar with the VR
equipment. During this familiarization phase the experiment super-
visor explained the task they were going to perform. In a previous

http://optitrack.com
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experiment we had asked the participants to reproduce the ges-
ture thirteen times, but that had proved insufficient. This time they
were asked to reproduce a technical gesture (corresponding to the
removal from the mold of residual particles from a previous cast-
ing) twenty times. Using the virtual air blower, they had to move
through specific locations while moving in the three dimensions of
space, as shown on Figure 1-(a). The gesture was shown twice to
the participants, who were not allowed to practice it before train-
ing so that the experimental conditions were identical each time.
For the three groups who were to have a visual aid the supervisor
explained the concept and the behavior of the relevant cue. Once
these explications had been completed, training could begin.

The experiment included three training phases for the three
feedback groups: a pre-training phase of five iterations where sub-
jects did not receive any feedback on their performances; a training
phase of ten iterations during which participants were assisted by
the 3D path, the 3D arrow or the EBAGG metaphor according to
their group; a post-training phase of five iterations where feedback
was withdrawn and participants had to perform gestures without
any help. The 3D path was a static visual cue located above the mold
along the reference gesture, while the 3D arrow and EBAGG were
dynamic cues following the controller and consequently the sub-
ject’s hand. The control group simply had to reproduce the gesture
twenty times without any help. After performing the twenty ges-
tures, participants were given a questionnaire about the experiment
and where applicable about the 3D cue.

4 RESULTS

This section describes the results obtained from the experiment de-
scribed in Section 3 above. The results are analyzed for each group;
we performed a linear regression on the first fifteen iterations to
see whether the no-feedback training or the feedback training had
an impact on performance. We obtained straight lines correspond-
ing to the equation 1, the values are gathered in table 1. Then we
analysed the results of post-training for each group.

y=axx+p

(1)

Table 1: Values of the slope and y-intercept of the equation
1 for each group

Group
Control 3D Path | 3D Arrow EBAGG
a values | -0.0004408 | -0.002269 | -0.000056 | -0.0008376
P values | 0.0588256 0.059406 0.04546 0.0480623

Data from a subject’s gesture was acquired from the moment that
the subject began the gesture by clicking on a specific button of the
controller, up to the moment when the subject ended the gesture
by clicking again on the same button. During data acquisition the
position of the controller was saved and then sent to the DTW
algorithm at a frequency of five messages per second. The DTW
algorithm compared users’ gestures to a reference gesture recorded
prior to the experiment. It returned a matching between the last
position of the controller and a specific position of the reference
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Figure 4: Linear regression on the average cumulative cost
of the first fifteen iterations for the control group

time sequence, and the Euclidean distance between the two. A
cumulative cost on the partial gesture that takes account on this
distance was also provided by the DTW. We use this cumulative cost
as a performance scores since a higher cumulative cost indicates a
greater deviation by the subject from the reference gesture.

4.1 Training analysis

4.1.1 Control group. Figure 4 shows the linear regression for
the first fifteen iterations in the group that had no feedback during
the training phase.

We used a Shapiro-Wilk test on the data that showed that data
was normally distributed. From the analysis of variance we obtained
that there is no significant effect (F(1, 13) = 3.1549,p = 0.09909)
and that the slope (Equation 1 and Table 1) has a low value, which
means that the linear regression is almost constant and that sub-
jects did not significantly improve. The linear regression therefore
does not fit well the data (R? = 0.1953), and in the absence of assis-
tance subjects’ performances failed to improve, suggesting that the
repetition of gestures is not sufficient as a training strategy.

4.1.2 3D path group. Figure 5 shows the linear regression for
the first fifteen iterations in the group that had the 3D path cue
during the training phase.

We used a Shapiro-Wilk test on the data that showed that data
was normally distributed. This time, the analysis of variance showed
a significant effect for this visual cue (F(1, 13) = 36.88, p = 0.00004).
Moreover, since ¢ = —0.002269, the regression line falls steeply
(Equation 1 and Table 1), which suggests an effect of training over
time, and the R-squared value is R? = 0.7393, which indicates that
this model fits well the data relatively well for the first fifteen itera-
tions. The 3D path cue is seen to have improved subjects’ gesture
training performances under the experimental conditions described.
Displaying the reference path improved overall performance insofar
as subjects only needed to follow this path in order to obtain good
results. As we can see, the average value of the cumulative cost
decreased considerably from Ypre = 0.0564 during pre-training to
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Figure 5: Linear regression on the average cumulative cost
of the first fifteen iterations for the 3D path group

Ytbegin = 0-0344 and 4, ., g = 0.0329 during respectively the first
five iterations and the last five iterations during training.

4.1.3 3D arrow group. Figure 6 shows the linear regression for
the first fifteen iterations in the group that had the 3D arrow cue
during the training phase.

We used a Shapiro-Wilk test on the data that showed that
data was normally distributed. Again, the analysis of variance did
not show any significant effect for the 3D arrow cue (F(1,13) =
0.0312,p = 0.8625). The regression line is almost horizontal, with
a slope value of @ ~ 107, which indicates that the 3D arrow did
not improve subjects’ performances. In addition, the the R-squared
value is R? = 0.0024 which indicates that the linear regression does
not fit well the data. The mean cumulative cost for the pre-training
phase is Upre = 0.0465, Ypegin = 0.0423 for the first five iterations
of the training phase and v,,,, = 0.0463 for the end of training
phase. The improvement is minimal, and we can also remark a
deterioration in performance during the training phase.

4.1.4 EBAGG group. Figure 7 shows the linear regression for the
first fifteen iterations in the group that had the EBAGG metaphor
during the training phase.

We used a Shapiro-Wilk test on the data that showed that data
was normally distributed. Here, the analysis of variance revealed
a significant effect for the EBAGG metaphor over the first fifteen
iterations (F(1, 13) = 28.74, p = 0.00013). The value of the slope is
low (& ~ 107%), hence the regression line sharply decreases and the
R-squared value is R? = 0.6885. So this model fits the data fairly well,
and we may deduce that the EBAGG metaphor improved subjects’
gesture training performances. In contrast to the results for the 3D
path group, performance does not improve quickly at the beginning
of training phase, and there is no obvious gap between the fifth
and the sixth iterations. Nevertheless, the average cumulative value
also decreases from Ypre = 0.0464 for the pre-training phase to
Ytbegin = 0-0395 and g = 0.0383 for the first five and the last
five iterations in the training phase.
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Figure 6: Linear regression on the average cumulative cost
of the first fifteen iterations for the 3D arrow group

4.2 Post-training analysis

Visual cues were withdrawn for the feedback group and the purpose
of this phase was to determine whether these visual cues had any
impact on performance in the very short-term.

As we can see from Figure 8, different groups had different levels
of performance as regards the pre-training phase; for the control
group and the 3D path group the average value of the cumulative
costis ., = 0.057, whereas for the 3D arrow group and EBAGG
group the value is yp,e =~ 0.046. The post-training results between
the different groups are therefore not comparable, since the dis-
crepancy between them might be explained by something other
than training. The impact of outliers could have been reduced with
more participants. We therefore chose to perform an intragroup, as
opposed to an intergroup, comparison. We analyzed the difference
in performances between pre-training and post-training, and also
between the end of training and the post-training. We used the
Shapiro-Wilk test to verify whether data was normally distributed,
and when it was verified, we conducted a two-sample Student’s
t-test.

For the control group, participants’ performance during the
post-training is in the same order of magnitude as the previous
phases: Upre = 0.0579, Yipegin = 0.0537, Yyepg = 0.0543 and
Yposs = 0.0538. These results from the post-training confirm and
match our linear regression: the level of performances remains
constant.

For the 3D path group, however, the improvement in perfor-
mance obtained during the first fifteen iterations decreased during
the training phase, as Figure 8 shows. The average value of the cu-
mulative cost increases from ¥, ., g = 0.0329t07 5, = 0.0441 (two-
sample ¢ = —33.7,p < 0.001) but is still lower than ., = 0.0564
(two-sample t = 3.81,p < 0.05). This suggests that a lot of the
information assimilated during the training phase with the 3D path
cue was lost when this visual cue was withdrawn. Training might
nevertheless still have been of some benefit to subjects in improving
performance.
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Figure 7: Linear regression on the average cumulative cost
of the first fifteen iterations for the EBAGG group

For the 3D arrow group there is no significant improvement
between the pre-training and the post-training phase (two-sample
t = 1.02, p = 0.37) as suggested by the linear regression.

For the EBAGG group, if we compare the data from the pre-
training phase @Pr o = 0.0464) to the data from the post-training
phase (ypos ; = 0.0374) we can notice a significant improvement
(two-sample ¢t = 4.57,p = 0.009). We can also remark from Fig-
ure 8 that subjects’ levels of performance during post-training
were fairly close to their levels of performance at the end of train-
ing, even slightly better. They decrease from y,,,; = 0.0383 to
Yposr = 0.0374. However, this difference is not significant (two-
sample t = 1.64,p = 0.15), which means that when subjects no
longer had feedback, they reused a large amount of the information
they acquired from the metaphor during the training phase. The
slight improvement could partly be explained in terms of an over-
correction by the subjects, who may have been more focused on
the metaphor than on the gesture being performed. Moreover, we
notice in Figure 8 that the 95% confidence interval is very short for
the post-training of the EBAGG group. This means that the standard
deviation is also low, and hence that there were few differences
between subjects’ levels of performance during the post-training
phase.

Finally, we carried out a sharper analysis of the effect on training
for the 3D path cue and the EBAGG metaphor. We calculated the
mean squared error (Equation 2) and hence compared the last five
values obtained from the experiment to the values predicted by
our linear models. These values are reported in table 2 for the 3D
path and in table 3 for EBAGG. We did not study the values of the
control group, nor those of the 3D arrow group, given that neither
the lack of assistance nor the 3D arrow cue had any significant
effect, and neither were of any benefit to subjects over the first
fifteen iterations.

k
MSE = % D (i - 9i)* (2)
=
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Figure 8: Average cumulative cost of the twenty iterations
per group over the three training phases. On this graph and
for each group, the first bar corresponds to the pre-training
phase, the second and third bars correspond to the training
phase and the fourth bar corresponds to the post-training
phase. Each bar represents five iterations of the gesture and
the error bars represent 95% confidence intervals.

Table 2: Average cumulative costs estimated by the model
and empirical values obtained from the experiment for the
3D path group (Est.=estimated, Emp.=empirical)

Iterations
16 17 18 19 20
Est. y | 0.02310 | 0.02083 | 0.01856 | 0.01630 | 0.01403
Emp. y | 0.04381 | 0.04322 | 0.04434 | 0.04453 | 0.04471

Table 3: Average cumulative costs estimated by the model
and empirical values obtained from the experiment for the
EBAGG group (Est.=estimated, Emp.=empirical)

Iterations
16 17 18 19 20
Est. y | 0.03466 | 0.03382 | 0.03299 | 0.03215 | 0.03131
Emp. y | 0.03806 | 0.03744 | 0.03638 | 0.03735 | 0.03768

Here in the equation 2, n is the number of iterations (n = 5), j is
the first iteration studied (j = 16), and k the last one (k = 20).

From Table 2 we obtained a value of MSE; = 6.66 x 10~% and
from Table 3 we obtained MSE, = 2.08 X 107>,

In both cases we remark a deterioration with respect to the esti-
mated values of the linear models, that is to say empirical values are
higher than estimated values. For the 3D path, the empirical values
had a mean value of Yemp = 0.0441 versus y,,, = 0.0186 for the
estimated values, while for EBAGG the empirical values had a mean
value of y,,,,,, = 0.0374 versus y,;;, = 0.0330 for the estimated
values. This might be explained by a lack of feedback during the
post-training phase; participants did not perform as well as during
the training phase. However, the discrepancy is much smaller for

Florian Jeanne, Indira Thouvenin, and Alban Lenglet

7,00 u Control
M 3D path

6,00 3D arrow
W EBAGG

5,00

4,00

3,00

2,00

- I I I I

0,00

Immersion Quality of Usefulness Ease of use Ease of Coupling  Formation

interaction (Feedback) (Feedback) learning
(Feedback)

Figure 9: Results from the questionnaire using a seven-point
Likert scale.

EBAGG, as can be seen in Figure 8. For EBAGG post-training perfor-
mances were slightly better, but not significantly, than at the end
of training, while for the 3D path they were significantly lower.

4.3 Subjective evaluation

After performing the gesture twenty times the subjects were asked
to fill in a questionnaire. This questionnaire included twenty-six
questions and was adapted from the Witmer Presence question-
naire [Witmer and Singer 1998] and from the USE Questionnaire
[Lund 2001]. The goal was to obtain a subjective assessment by the
participants regarding the experiment and the different types of
feedback with respect to seven criteria: immersion, quality of inter-
action, usefulness of the visual hint, ease of use of the visual cue,
ease of learning of the visual cue, quality of coupling and training.
Results are reported in Figure 9.

The questionnaire was designed with statements grouped into
those seven categories, and responses were entered using a seven-
point Likert scale. Participants were asked to rate their level of
agreement with each statement (from 1=strongly disagree to 7=
strongly agree). The first statements concerned the quality of im-
mersion, whether subjects felt immersed in the virtual environment
and whether they were comfortable with the equipment. Overall,
the participants were satisfied with the quality of immersion (mean:
5.79, standard deviation (std): 1.13). Only eight of the forty-two
participants experienced discomfort with the stereoscopic glasses,
mostly because they were too large. Regarding the quality of inter-
action, they felt that their interactions were natural (mean: 5.87,
std: 1.18).

There followed (except for subjects in the control group) a se-
ries of statements from the USE questionnaire about the feedback
received during the training phase. This section included the fol-
lowing three categories: usefulness of the visual cue, ease of use of
the visual cue, ease of learning of the visual cue. Here, the 3D path
had the best results. In the opinion of the participants the 3D path
was the most useful with a mean score of 6.36 (std: 0.8), the easiest
to use with a mean score of 5.92 (std: 1.26) and the easiest to learn
how to use with a score of 6.06 (std: 1.07). This positive assessment
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can almost certainly be explained by the simplicity of this type
of feedback in terms of understanding it and using it. The easiest,
quickest way to communicate a path is to display its trace, whereas
the other two types of feedback are focused on error correction.

The next statements were about the coupling, which in the
present context is defined as a mutual and continuous influence
between a human user and a visual cue. They regulate each other
and co-evolve [Varela et al. 1992]. Dynamic cues adapt their be-
havior according to users’ actions, and users change the way they
act depending on the feedback they get from the visual cues. This
time, EBAGG had the best results (mean: 5.36, std: 1.42) and the
3D path the wort results (mean: 4.26, std: 2.48). This suggests that
according to this questionnaire EBAGG has the greatest impact on
training. Among the three types of feedback the 3D path had the
worst results, whereas as we saw in the previous paragraph it had
the best results regarding usefulness, ease of use and ease of learn-
ing. A possible explanation is that the 3D path is static, while the
two others are dynamic. Users may be more likely to appropriate
dynamic types of feedback as a part of themselves, an extension of
their arm, since it was following the tool they were holding, than a
static visual cue which seemed to belong to the virtual mold.

Finally, there were two statements about training and whether
subjects felt they had improved over the twenty iterations of the
gesture and whether they felt they needed a guidance cue during
this experiment. Results are similar for the four groups, but the
control group had the highest results with a mean score of 5.04 (std:
1.73), which is unsurprising given that they had no feedback during
the training phase.

5 DISCUSSION

The results from the control group indicate that the repetition of
gestures has little or no significant effect over training. Levels of
performance remained constant. Participants reported in the ques-
tionnaire that they needed some feedback during training so they
could be aware of their errors and correct them. Moreover, subjects
from all three other groups with feedback had better performances,
which suggests that our first hypothesis H1 is validated.

The EBAGG metaphor showed significant results regarding train-
ing. First, there was a performance gap between the pre-training
phase and the post-training phase. Participants were efficiently
trained to reproduce the reference gesture, they improved contin-
uously over the twenty iterations. The EBAGG group performed
better than the other groups during post-training phase. The ques-
tionnaire showed that the coupling between the human user and
the visual cue was better with the EBAGG metaphor. This would
suggest that our second hypothesis H2 is validated. However, we
should like to conduct the experiment with a fresh group of partici-
pants to get more data and to compare the quantitative results of
post-training. We note some similarities in the levels of performance
for the last iterations of the training phase and the post-training
phase, and even a slight improvement in performances, although
this improvement was not significant. The consistency in levels of
performance suggests that the information assimilated by subjects
during training remained in their memory; they remembered the
errors displayed by EBAGG and the corrections they needed to
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make to adjust their gesture. They could still access this informa-
tion and use it even when the metaphor was no longer displayed,
in order to perform the gesture properly. This suggests that our
third hypothesis H3 is validated.

The performances of subjects whose visual guidance cue was
the 3D path improved sharply during the training phase where the
feedback was displayed. This may be explained by the effectiveness
and ease of use of the 3D path, as suggested by the results of the
questionnaire. Displaying the trace of the reference path seemed
more natural to the participants, whose task only involved follow-
ing the path. However, we remark a significant deterioration in
performances in post-training. This might be linked to the guidance
hypothesis mentioned in the introduction to this paper. Subjects
may have been narrowly focused on properly following the 3D path
rather than on reproducing the reference gesture. Thus, when the
3D path was no longer displayed, they had difficulty reproducing
the gesture with the same level of performance as before, which
may account for this significant deterioration. Moreover, the com-
parison of mean squared errors (MSE) shows that the gap between
estimated and empirical values was much higher for the 3D path
than for EBAGG, which might indicate a dependency generated by
the 3D path. EBAGG, on the other hand, seemed to generate very
little dependency. One possible explanation could be that subjects
using the 3D path mostly relied on feedback of a visual kind, while
those using EBAGG focused on their proprioception and on the
feelings they had during the previous iterations. However, this ex-
periment was an analysis of performances during a training session.
We would like to conduct the same experiment as part of a study of
long-term retention and to check whether the results are the same.

The results of the 3D arrow group indicate that this visual cue did
not have any benefits at all in this kind of training. We even remark
a deterioration in performances during the training phase. The
responses to the questionnaire may shed some light on these results.
Although subjects quickly understood the behavior of the 3D arrow
during the familiarization phase, they struggled to understand what
the 3D arrow was indicating. With no framework of reference,
subjects were unable to understand precisely in which direction
the arrow was pointing, and they reported that it was more of a
hindrance than a help.

Finally, some of the participants reported some limitations of
the EBAGG metaphor. When the controller was close to their body,
the sphere became gigantic because it was too close to the virtual
cameras, or no longer visible because it was behind the virtual
cameras. Subjects had to step back in order to distance the controller
from their body and hence to obtain EBAGG with a manageable
size. Another limitation is the rate of computation of the DTW
algorithm. This frequency is crucial for the behaviour of EBAGG.
The higher the rate of computation, the more often the position of
the particles on the surface of the metaphor are updated. The rate
of computation is also linked to the number of successive positions
of the reference gesture. Our DTW algorithm actually explores the
entire time series at every computation to find the best matching.
It also recomputes the previous matching to update the previous
matchings. We were therefore limited to the number of points that
the reference gesture could accept, so that our DTW algorithm
could perform the requisite computations in real time. At specific



VRST ’17, November 8-10, 2017, Gothenburg, Sweden

points in the gesture, such as the two curves (Figure 1-(a)), the gap
between two positions was too large. So when participants made
trajectory errors, EBAGG indicated erroneously that in addition
to these errors the participants were also too far ahead in their
gesture, because the last matching had been made using a previous
point. Consequently, errors were recorded that had not necessarily
been made. A possible improvement would be to perform GPU
(graphics processing unit) computing. This would allow a more
precise reference gesture with more points. In this scenario, the
question arises as to whether EBAGG would still outperform the 3D
path. Since the 3D path is a static visual cue, the addition of points
would not change its shape, but EBAGG would be more precise and
updated more often. It therefore appears clear that EBAGG would
still outperform the 3D path.

6 CONCLUSION

In this paper we presented a user study designed to compare levels
of performance obtained using three visual cues as part of gesture
training in an industrial context. One of the visual cues under con-
sideration was EBAGG, a metaphor that we introduced in [Jeanne
et al. 2017]. This visual feedback is based on an error display to
guide users in real time while performing a gesture. We compared
EBAGG to two other visual cues, namely a feedforward technique
that displays the trace of a reference motion (3D path), and a con-
current orientation feedback (3D arrow). We evaluated subjects’
performances quantitatively using results from a DTW algorithm,
and qualitatively with a questionnaire.

EBAGG had better results than the other groups. Subjects’ perfor-
mances improved continuously over the iterations during training,
even though EBAGG was less easy to learn and use than the 3D
path. Furthermore, the 3D arrow disturbed the participants and the
3D path generated dependency, reducing subjects’ performances.
In the case of EBAGG subjects’ performances remained constant
during the post-training phase, at the same level as during the
training phase with feedback. EBAGG also had the best coupling
with human users, which meant that it had the greatest impact on
training. Our results show that EBAGG generated less dependency
than the other types of feedback.

An important direction for future works is to analyze long-term
retention. In this paper we have focused on EBAGG’s ability to
improve users’ performances during gesture training, but we have
not yet investigated its impact on learning over a long period. It
would also be interesting to improve computation performance by
assigning computation to a separate dedicated computer so as not
to diminish performances of rendering.
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