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In this paper we propose a general method to derive an upper bound for the contraction rate of the posterior
distribution for nonparametric inverse problems. We present a general theorem that allows us to derive con-
traction rates for the parameter of interest from contraction rates of the related direct problem of estimating
transformed parameter of interest. An interesting aspect of this approach is that it allows us to derive con-
traction rates for priors that are not related to the singular value decomposition of the operator. We apply
our result to several examples of linear inverse problems, both in the white noise sequence model and the
nonparametric regression model, using priors based on the singular value decomposition of the operator,
location-mixture priors and splines prior, and recover minimax adaptive contraction rates.

Keywords: Bayesian nonparametrics, nonparametric inverse problems, posterior distribution, rate of con-
traction, modulus of continuity.

1. Introduction

Statistical approaches to inverse problems have been initiated in the 1960’s and since then many
estimation methods have been developed. Inverse problems arise naturally when one observes the
object of interest only indirectly. Mathematically speaking, this phenomenon is easily modeled
by the introduction of an operator K modifying the object of interest f, such that the observation
at hand comes from the model

Y™ ~ Pgy, (1.1)

where f is assumed to belong to a parameter space F, and n — oo reflects the increasing
amount of information in the observation. In many applications the operator K is assumed to be
injective. However, in the most interesting cases its inverse is not continuous, thus the parameter
of interest f cannot be reconstructed by a simple inversion of the operator. Such problems are said
to be ill-posed. Several methods dealing with the discontinuity of the inverse operator have been
proposed in the literature. The most famous one is to conduct the inference while imposing some
regularity constraints on the parameter of interest f. These so-called regularization methods have
been widely studied in the literature both from a theoretical and applied perspective, see [12, 18]
for reviews.

A Bayesian approach to inverse problems is therefore particularly interesting, as it is well
known that putting a prior distribution on the functional parameter yields a natural regularization.

1

imsart-bj ver. 2014/02/20 file: inverse_general_BJ_rev3.tex date: December 2, 2016



2 Bartek Knapik and Jean-Bernard Salomond

This property of the Bayesian approach is particularly interesting for model choice, but it has
proved also useful in many estimation procedures, as shown in [35] in the case of overfitted
mixtures models, in [9] in the case of nonparametric models where regularization is necessary,
in [37] in the semiparametric problem of estimating a monotone density at the boundaries of its
support, or in [28] in the white noise setting.

In this paper we study the behaviour of the posterior distribution when the amount of informa-
tion goes to infinity (e.g. when the number of data points n goes to infinity or when the level of
the noise goes to 0) under the frequentist assumption that the data Y” are generated from model
(1.1) for some true unknown parameter fy. Asymptotic properties of the posterior distribution in
nonparametric models have been studied for many years. Some first results about consistency of
Bayes procedures date back to Schwartz [38]. Her ideas were further refined and extended in an
unpublished work of Barron [5], and can be also found in other works, e.g., [4], [22]. The next
natural step is to consider the rate at which the neighborhoods of the truth can shrink, yet still
capture most of the posterior mass. In other words, the interest lies in finding an upper bound for
the rate at which the posterior concentrates around fy. This is also the main focus of this paper.
The aforementioned consistency results served as a starting point for two seminal papers on rates
of convergence of posterior distributions by Ghosal et al. [23] and Shen and Wasserman [42].
Understanding of the whole posterior distribution is necessary for uncertainty quantification, see
arecent paper by Szabd et al. [43] for an overview, but is also directly related to asymptotic prop-
erties of Bayes point estimators, see, e.g., Theorem 2.5 in [23]. In Bayesian nonparametrics it is
important to understand the impact of the prior distribution on the posterior. In particular, some
aspects of the prior may be inherited by the posterior when the amount of information grows to
infinity and may thus be highly influential for the quality and speed of recovery.

Asymptotic properties of the Bayesian approach to nonparametric linear inverse problems
have recently received a growing interest. Knapik et al. [28], Agapiou et al. [1], and Florens and
Simoni [21] were the first to study posterior contraction rates under conjugate prior in the so-
called mildly ill-posed setting (in the terminology of [12]). These were followed by two papers by
Knapik et al. [29] and Agapiou et al. [2], studying Bayesian recovery of the initial condition for
heat equation and related extremely and severely ill-posed inverse problems. One type of priors
studied in [29] leads to a rate-adaptive Bayesian procedure. The paper by Ray [33] was the first
study of the posterior contraction rates in the non-conjugate sequence setting. Considering non-
conjugate prior is particularly interesting as it allows some additional flexibility of the model.
However, the approach presented in [33] is only valid for priors that are closely linked to the
singular value decomposition (SVD) of the operator. Moreover, in [33] several rate-adaptive
priors were considered, both in the mildly and severely ill-posed setting. It should be noted,
however, that some of the bounds on contraction rates in the severely ill-posed setting obtained
in that paper are not optimal and do not agree with the bounds found in [29] or [2], probably
due to proof techniques. Similar adaptive results, in the conjugate mildly ill-posed setting, using
empirical and hierarchical Bayes approach were obtained in [27].

There is a rich literature on the problem of deriving posterior contraction rate in the direct
problem setting, i.e. estimating K f in (1.1). Since the seminal papers of Ghosal et al. [23]
and Shen and Wasserman [42], general conditions on the prior distribution for which the pos-
terior contracts at a certain rate have been derived in various cases. In particular, Ghosal and
van der Vaart in [24] give a number of conditions for non independent and identically distributed
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Posterior contraction in inverse problems 3

data. However, such results cannot be applied directly to ill-posed inverse problems, and to the
authors’ best knowledge, no analogous results exist in the inverse problem literature. In this
paper we propose a unified general approach to posterior contraction in nonparametric inverse
problems, and illustrate it for specific linear inverse problems.

To understand why the existing general posterior contraction results are not suited for non-
parametric inverse problems consider an abstract setting in which the parameter space F is
an arbitrary metrizable topological vector space and let K be a continuous injective mapping
K:F> f— Kf € KF.Letd and dg denote some metrics or semi-metrics on F and K F,
respectively. Any prior IT on f imposes a prior on K f through the continuous mapping K. Recall
that the true parameter of interest fy belongs to . General posterior contraction results (e.g., in
[23] or [24]) rely on several natural metrics related to the model (1.1) and therefore control the
distance between K f and K f in the dx metric. On the other hand, our interest lies in the recov-
ery of fy, and therefore the control of the distance between fy and f in the d metric is desirable.
Since the operator K does not have a continuous inverse and the problem is ill-posed, even if
di (K f, K fo) is small, the distance d(f, fo) between f and the true fj can be arbitrarily large.
In other words, there is no equivalence between the metrics d and dy and therefore the existing
theory of posterior contraction does not allow obtaining bounds on posterior contraction rates for
the recovery of fj.

Even if the problem is ill-posed, there exist subsets S,, of F such that the inverse of the oper-
ator K restricted to KS,, is continuous. We can thus easily derive posterior contraction rate for
f € S, from posterior contraction rate for K f by inverting the operator K. For suitably chosen
priors, the sets S, will capture most of the posterior mass, and we can thus extend the contrac-
tion result to the whole parameter space F. The sets S,,, thought of as sieves approximating the
parameter space JF, have already been considered in [23] allowing some additional flexibility
and are often incorporated in results on posterior contraction for various models. However, their
principal role was not to enable the change of metrics, but rather alleviate the usual entropy con-
dition. In our approach we first assume the existence of a contraction result for the so-called
direct problem (that is the recovery of K f) that can be derived using general posterior contrac-
tion literature. Next, we choose a sequence of subsets S,, in such a way that the inversion of the
operator K on K, so also the change of metrics, can be controlled and at the same this sets
are big enough (in terms of the posterior mass). The latter condition can be verified by imposing
additional sufficient conditions on the prior (on f). We are then able to show that the posterior
distribution for the parameter of interest f contracts at a given rate.

The rest of the paper is organized as follows: we present the main result in Section 2 and
discuss how it relates to other results using the concept of sieves to control contraction in other
metrics. We then apply our result in various settings. We first consider the white noise sequence
model in Section 3, where we present a general construction of the sets S,,, and recover many
of the existing results with much less effort. We also observe an interesting interplay between
optimality of Bayesian procedures for estimating f and K f. In Section 4 we apply our method
in the nonparametric inverse regression setting, considering new families of priors that need not
be related to the SVD, and leading to optimal Bayesian procedures. Proofs of Sections 2—4 are
placed in Section 5. We conclude the paper with a discussion in Section 6.

For two sequences (a,,) and (b,,) of numbers, a,, < b,, means that |a,, /b, | is bounded away
from zero and infinity as n — oo, a,, < b, means that a,,/b,, is bounded, a,, ~ b,, means that

~
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4 Bartek Knapik and Jean-Bernard Salomond

ap /by, — 1asn — oo, and a,, < b,, means that a,, /b, — 0 as n — co. For two real numbers a
and b, we denote by a V b their maximum, and by a A b their minimum. For a sequence of random
variables X" = (X1,...,X,) ~ P and any measurable function ¢ with respect to Pf', we
denote by E 1) the expectation of ¢)(X™) with respect to P} and when f = f, we will write Eg
instead of E,.

2. General theorem

Assume that the observations Y come from model (1.1) and that Pz b admit densities p 7
relative to a o-finite measure u™. To avoid complicated notations, we drop the superscript n in
the rest of the paper. Let F and K F be metric spaces, and let d and dx denote metrics on both
spaces, respectively.

In this section we present the main result of this paper which gives an upper bound on the
posterior contraction rate under some general conditions on the prior. We call the estimation
of K f given the observations Y the direct problem, and the estimation f given Y the inverse
problem. The main idea is to control the change of metrics dx and d. If the posterior distribution
concentrates around K fj for the metric dy at a certain rate in the direct problem, applying the
change of metrics will give us an upper bound on the posterior contraction rate for the metric
d in the inverse problem. However, since the operator KX does not posses a continuous inverse,
the change of metrics cannot be controlled over the whole space K F. A way to circumvent this
issue is to only focus on a sequence of sets of high posterior mass for which the change of metric
is feasible. More precisely, for a set S C F, fo € F and a fixed § > 0 we call the quantity

W(S,f(),d, dK7§) = Sup{d(f7 fO) : f S SadK(Kfa Kf()) S 5} (21)

the modulus of continuity. We note that in this definition we do not assume fy € S. This is thus
a local version of the modulus of continuity considered in [17] or [26]. On the one hand, the sets
S, need to be big enough to capture most of the posterior mass. On the other hand, one has to be
able to control the distance between the elements of S,, and fj, given the distance between K f
and K fj is small. Since the operator K is unbounded, this suggests that the sets S,, cannot be
too big.

Theorem 2.1. Let €, — 0 and let 11 the prior distribution on f be such that
EOH(S; \ Y”) — 0, 2.2)
for some sequence of sets (S,,), S, C F, and for any positive sequence M,
EOH(f cdg (K f, K fo) > Mue, | Y") — 0. (2.3)

Then
EQH(f 2d(f, fo) = w(Sn, fo,d, dx, Myey) | Yn) — 0.
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Posterior contraction in inverse problems 5

The proof is elementary and can be found in Section 5.1.

The idea behind Theorem 2.1 is simple and was used to change metrics also in direct problems.
For instance Castillo and van der Vaart [11] considered the multivariate normal mean model in the
situation that the mean vector is sparse. They use the fact that the posterior concentrates along
certain subspaces on which it is easy to control an £,-like metric with the standard Euclidean
metric for ¢ < 2. Hoffmann et al. [26] also use concentration of the posterior on specific sets to
control the L, metric with the Lo metric in the white noise model.

Castillo et al. [10] extended the ideas of [11] to the sparse linear regression model, in which
the recovery of the parameter of the model is an inverse problem. Similar reasoning was also
used in [44] to study posterior contraction in the special case of Gaussian elliptic inverse prob-
lem, and in [16] to investigate asymptotic properties of empirical Bayes procedures for density
deconvolution. However, these papers consider specific inverse problems only, whereas Theo-
rem 2.1 allows deriving contraction rates for a wide variety of inverse problem models for which
the prior is not necessarily related to the spectral decomposition of the operator K, e.g., when
the operator does not admit singular value decomposition, as in Section 4.1.

The interpretation of the theorem is the following: given a properly chosen sequence of sets
S, the rate of posterior contraction M, e, in the direct problem restricted to the given sequence
can be translated to the rate of posterior contraction in the inverse setting. Note that the sequence
M, is often chosen to grow to infinity as slowly as needed (see, e.g., in [23] or [24]), making
€, the effective rate of posterior contraction. Also, in both contraction results of Section 4, the
sequence M, need not be diverging and is chosen to be constant. Since the operator K is injective
and continuous, any prior IT on f induces a prior on K f, and the general posterior contraction
results can be applied to obtain the rate of contraction in the direct problem of estimating K f.

Next, the choice of S,, is crucial as it is the principal component in the control of the change
of metric. In particular, the contraction rate M,,e,, for the direct problem may not be optimal, and
still lead to an optimal contraction rate w(S,,, fo,d, dx, M, €,,) for the inverse problem with a
well-suited choice of S,,. As shown in Section 3.3, it is possible in some cases to obtain optimal
recovery of f without having optimal recovery of K f. In this example, we can choose .S,, small
enough so that the change of metrics can be control very precisely. This widens the possible
choice of priors leading to optimal contraction rates and shows that the change of metric is the
crucial part here. However, in most cases, the priors considered in this paper lead to optimal
recovery for both f and for K f.

To control the posterior mass of the sets S,, we can usually alter the proofs of contraction
results for the direct problems. Here we present a standard argument leading to (2.2). Define the
usual Kullback-Leibler neighborhoods by

B, (K fo,€) = {f eF: — /pKfo log 5L gy < ne?,
PK fo

2
/pKfO <log pﬁ) dp < ne2, },
PK fo

(2.4)

The following lemma adapted from [24] gives general conditions on the prior such that (2.2) is
satisfied.

Lemma 2.1 (Lemma 1 in [24]). Let €, — 0 and let (S,,) be a sequence of sets S,, C F. IfIL is
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6 Bartek Knapik and Jean-Bernard Salomond

the prior distribution on f satisfying
11(S7)

———n < exp(—2ne?
B (K foc)) ~° p(—2ne;,),

then

For clarity of presentation the results in this section are stated for a fixed f,, but we note
that they are easily extended to uniform results over certain sets, i.e., balls of fixed radius and
regularity, or union of balls of fixed radii over compact range of regularity parameter (see results
of Section 3).

3. Sequence white noise model

Our first examples are based on the well-studied infinite-dimensional normal mean model. In the
Bayesian context the problem of direct estimation of infinitely many means has been studied,
among others, in [7, 24, 42, 45].

We consider the white noise setting, where we observe an infinite sequence Y = (Y1, Y5, ...)
satisfying

Y= wifi + =2 G.1)
NG
where Z1, Zs, . .. are independent standard normal random variables, f = (fi, f2,...) € {3 is
the infinite-dimensional parameter of interest and (k;) is a known sequence that may converge
to 0 as ¢ — oo. If this is the case (so when the operator K does not possess a continuous inverse)
the modulus of continuity defined in (2.1) is infinite when S = F.

Even though this model is rather abstract, it is mathematically tractable and it enables rigorous
results and proofs. Moreover, it can be seen as an idealized version of other statistical models
through equivalence results see, e.g., [8, 31, 32]. Both white noise examples of inverse problems
presented in this section have already been studied in the Bayesian literature. We present them
here for several reasons. First, the direct version of the normal mean model attracted a lot of
attention in the Bayesian literature, e.g. providing contraction results for estimation of K f in the
mildly ill-posed setting. Therefore, we choose this example to illustrate how Theorem 2.1 works
in practice. In particular, it allows us to make it clear how one could construct a sequence of sets
S,,. In the severely ill-posed case we study truncated (or sieve) priors leading to optimal recovery
of the parameter of interest. Our results improve the findings of [29] and [2]. In addition, we can
show that optimal contraction for f does not necessarily require optimal recovery of K f.

3.1. Computation of a modulus

In this section we first present an example of the sequence of sets S,,, and later present how
the modulus of continuity for this sequence can be computed in a standard inverse problem
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Posterior contraction in inverse problems 7

setting. We now suppose that F and K F are separable Hilbert spaces, denoted (H, || - ||z, ) and
(Ha, || - ||m, ) respectively. We note that the sets S,, resemble the sets P,, considered in [33].

As already noted, the operator K restricted to certain subsets of the domain H; might have a
finite modulus of continuity defined in (2.1). Clearly, one wants to construct a sequence of sets
S, that in a certain sense approaches the full domain H. This is understood in terms of the
remaining prior mass condition in Theorem 2.1. Moreover, since we do not require f; to be in
S, we need to be able to control the distance between fy and S,,.

A natural guess is to consider finite-dimensional projections of Hj. In this section we go
beyond this concept. To get some intuition, consider the Fourier basis of H;. The ill-posedness
can be then viewed as too big an amplification of the high frequencies through the inverse of the
operator K. Therefore, one wants to control the higher frequencies in the signal, and thus in the
parameter f.

Since H; is a separable Hilbert space, there exist an orthonormal basis (e;) and each element
f € Hj can be viewed as an element of {5 and

1fll, = FF.
i=1

For given sequences of positive numbers k,, — oo and p,, — 0, and a constant ¢ > 0 we define

S, = {feﬁgz foﬁcpi}. (3.2)

i>ky

If the operator K is compact, then the spectral decomposition of the self-adjoint operator
KTK : H, — H, provides a convenient orthonormal basis. In the compact case the operator
KT K possesses countably many positive eigenvalues 2 and there is a corresponding orthonor-
mal basis (e;) of H; of eigenfunctions, and the sequence (é;) defined by Ke; = k;¢; forms an
orthonormal conjugate basis of the range of K in Hy. Therefore, both f and K f can be associ-
ated with sequences in ¢5. Since the problem is ill-posed when x; — 0, we can assume without
loss of generality that the sequence x; is decreasing.

Let k,,, pn, and c in the definition of S,, be fixed. Then for any g € S,

oo
lglli, => g7=> g+ > g
i=1

i<kn i>knp
2 2 -2 .2 2 2
< E g; +cp, = E K; "KiG; TPy
i<kn i<kn
-2 2 2 2 -2 2 2
< ‘%k:n E : Kig; + CPp < K’kn Kg”HQ + CPp-

i<kn

Let f, be the projection of f; on the first k,, coordinates, i.e., f,; = fo; for i < k,, and
0 otherwise. Moreover, we assume that f; belongs to some smoothness class described by a
decreasing sequence (s;):

oo
Ifoll2 =" ;215 < oo
=1
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8 Bartek Knapik and Jean-Bernard Salomond

For instance, the usual Sobolev space of regularity /3 is defined in that way with s; = i 75,
Therefore, we have
1fn = folle, < sk, [l follss (1K fn = Kfollu, < sk, kn, [ folls-

Using the triangle inequality twice and keeping in mind that f — f,, € S,, we obtain

Hf_fOH]Hh < ||f_fn||H1 + ||fn _fOHHl
< Hl;:”Kf — K fulla, + Vepn + sk, || folls
< HEI(HKf — K follm, + fiknsanfoHs) +Vepn + sk, || folls

n

= rp 1K f = K folla, + v/cpn + 2| follssk,- (3.3)

n

We then find an upper bound for the modulus of continuity with this specific choice of S,, is

W(Sna f07 || : ||H17 || : HH2’5) S H}:nla + Pn + Sky, - (34)

3.2. Mildly ill-posed problems

In this section we consider the model (3.1), where C~ 1P < ; < Ci~P for some p > 0 and
C > 1. Since the x;’s decay polynomially, the operator is mildly ill-posed. Such problems are
well studied in the frequentist literature, and we refer the reader to [12] for a comprehensive
overview. There are also several papers on properties of Bayes procedures for such problems.
The first studies of posterior contraction in mildly ill-posed operators were obtained in [28]
and [1]. Later, adaptive priors leading to the optimal minimax rate of contraction (up to slowly
varying factors) were studied in [33] and [27]. Similar problem, with a different noise structure,
has been studied in [21]. The main purpose of this section is to show how Theorem 2.1 can be
applied to such problems and how existing results on contraction rates for K f in the sequence
setting can be used to obtain posterior contraction rates for f without explicit computations as in
aforementioned papers.
We put a product prior on f of the form

=1

where \; = i~172%, for some « > 0. Furthermore, the true parameter fj is assumed to belong

to S? for some 3 > 0:
58 = {f €l |3 =3 f2i% < oo}. (3.5)
Therefore, || K fol|3,, is finite, the prior on f induces the prior on K'f such that (K f); ~
N(0, )\mf), and one can deduce from the results of [45] and [7] that
(anB)+p

sup EOH(f : ||K.f - KfOH > Myn = 1¥2e+2p | Yn) — 0.
K folls+p<R

imsart-bj ver. 2014/02/20 file: inverse_general_BJ_rev3.tex date: December 2, 2016



Posterior contraction in inverse problems 9

In order to apply Theorem 2.1 we need to construct the sequence of sets S,, and verify con-
dition (2.2). We use the construction as in (3.2), and we verify the remaining posterior mass
condition along the lines of Lemma 2.1.

Theorem 3.1. Suppose the true fo belongs to SP for B > 0. Then for every R > 0 and
M, — oo

(anB)
sup  EoII(f : [|f — fol > Mnn™ ™22 | Y™) — 0.
lfolls<R

The proof of this theorem is postponed to Section 5.2.1.

The upper bound on the posterior contraction rate obtained in this theorem agrees with the
ones already obtained in the existing literature (see, for instance, [27, 28, 33]). We note that the
prior used above requires the knowledge of the true regularity parameter S in order to achieve
minimax optimal rate of recovery. Moreover, we note that the prior with & = ( leads to optimal
recovery of both f and K f.

The prior used in this section is rather simple and is not hierarchical, i.e., is not aimed at adap-
tive recovery. We have already pointed out that [33] and [27] studied adaptive Bayesian approach
to mildly ill-posed inverse problems and obtained optimal rates (up to logarithmic factors). We
would also like to point out that recent studies of adaptive approaches to the sequence white
noise model [e.g. 3, 27] already consider its inverse version (i.e., allowing x; # 1). In a recent
work Belitser [6] even obtained adaptive posterior contraction rate in a setting equivalent to the
one considered here that could be used both for the estimation of K f and the estimation of f.
Therefore, even though one could consider the existing approaches studied in the literature to
achieve adaptation (by first showing optimal contraction for K f and then applying Theorem 2.1
to prove contraction for f), this will not be treated here for the sake of simplicity (in the latter
cases also to avoid rather artificial application of Theorem 2.1).

3.3. Severely and extremely ill-posed problems

We again consider the sequence white noise setting, where we observe an infinite sequence Y =
(Y1,Y2,...) asin (3.1) where k; < exp(—~iP) for some p > 1 and v > 0. We first consider
estimation of K fj that will be later used to obtain the rate of contraction of the posterior around
fo. We put a product prior on f of the form

kn

i=1

where \; = i~ exp(—&iP), for a > 0, ¢
1 = nX;exp(—2viP) = ni~* exp(—(& + 2)iP). Using the Lambert function W one can show
that

> 0, and some k,, — oco. We choose k,, solving
)i?)

—(
ngp(&%)))”? _ ( logn

a 1/p
= <p(£ +27) ( " tra, T O(loglogn)) ", (36)
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10 Bartek Knapik and Jean-Bernard Salomond

see also Lemma A 4. in [29]. Note that in this case we have exp(k?) = (nk;, *)'/(E+27) 50 we
can avoid exponentiating k,,. Therefore, we do not have to specify the constant in front of the
log log n term in the definition of k,,, and we may assume that k,, is of the order (logn)'/?.

Note that the hyperparameters of the prior do not depend on fj, but only on K, which is
known. For §,, as in (3.2) with k,, as above and ¢ = 0, the prior is supported on S,, and the
first condition of Theorem 2.1 is trivially satisfied. Regardless of the choice of ¢ and « (as long
as @ > 0 and £ > 0) the following theorem shows that the posterior contracts at the optimal
minimax rate (log n)_ﬁ/ P for the inverse problem of estimating fo (cf. [29] or [2] and references
therein), so the prior is rate-adaptive.

In this section we consider deterministically truncated Gaussian priors. Similar priors in the
extremely ill-posed setting are considered in [33], but in this paper the truncation level is en-
dowed with a hyper-prior and the bound on the posterior contraction is suboptimal. Other papers
on Bayesian approach to severely and extremely ill-posed inverse problems do not consider trun-
cated priors. In [29] the optimal rate is achieved for the priors with exponentially decaying or
polynomially decaying variances (in the latter case the speed of decay leading to optimal rate
is closely related to the regularity of the truth). Similar results for the priors with polynomi-
ally decaying variances are presented in [33] and [2]. However, in the former case the rate for
undersmoothing priors is worse than the rate obtained in the other papers.

Theorem 3.2. Suppose the true fy belongs to S° for 3 > 0. Then for every R > 0 and
M,, — oo
_B m
sup EOH(f S = foll = M, (logn)™» | Y ) — 0.
lfolls<R

The proof of this Theorem is postponed to Section 5.2.2. The prior considered in this theorem
might seem unnatural, since \;’s do not coincide with the type of regularity of the truth and the
prior puts mass only on analytic functions of growing complexity. However, similar approaches
are quite common in the Bayesian literature, for instance when finite mixtures models are con-
sidered. Moreover, this prior has also some computational advantages, since the corresponding
posterior can be handled numerically.

Inspection of the proof shows that the deterministic truncation is suboptimal for the es-
timation of K fj, since the resulting upper bound is polynomially slower than the minimax
rate n~1/2(logn)'/?P. It sheds light on an interesting, although counterintuitive property of the
Bayesian approach to inverse problems: one may not need optimal contraction for the estima-
tion of K fy to get optimal contraction for the estimation of fy. This phenomenon should be
interpreted in the following way: since the operator K regularizes the parameter fj, one could
compensate the suboptimal contraction of the posterior for the direct problem, by a sharper con-
trol of the deviation between f and fj in (3.3) when f is in S,,. Indeed, when ¢ increases (which
slows down the upper bound on the posterior contraction for K fj), the truncation level k,, de-
creases. As a result, the sets S,, become smaller, so the sharper control of d(f, fo) is indeed
possible. In the specific setting of sequence white noise model it might seem artificial. However,
this observation could prove useful in more complex settings, especially because it widens the
class of possible prior distributions giving optimal contraction rates.
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Posterior contraction in inverse problems 11

Remark 3.1. If an upper bound E on the regularity of the true fy is known, one can also take
& =0and o > 1+ 20 and the assertion of Theorem 3.2 stays valid. In this case the upper bound
on the posterior contraction rate for K fj is logarithmically slower than the minimax rate.

4. Regression
We now consider the inverse regression model with Gaussian residuals

Vi = Kf(z:) +oei, & SN(©0,1), i=1,...,n, 4.1)

where the covariates x; are fixed in a covariate space X'. In the sequel, we either choose X' =
[0,1] or X = R. In the following we consider the noise level & > 0 to be known although
one could also think of putting a prior on it and estimate it in the direct model. Nonparametric
regression models have been studied in the literature for direct problems, and frequentist proper-
ties of the posterior distribution are well known for a wide variety of priors. In [24], Ghosal and
van der Vaart give general conditions on the prior such that the posterior contracts at a given rate.
Nonparametric inverse regression models are also used in practice, for instance in econometrics
where one considers instrumental variable as in [20]. However, to the authors’ best knowledge,
contraction rates for these models have only been considered in [44].
In this setting, a common choice for the metrics d and dx are the usual /5 norms

n

d(f,9)° =n~" Y (f(x:) —9(@))* = If —gl7,  dr(f.g) = d(Kf,Kg).

i=1

For a € RF, k € N*, and f € Lo, we denote the standard Euclidean and Lo norms by

ol = ()", W= (fm)"

i=1

respectively.

We now consider two examples of inverse regression problems, namely numerical differenti-
ation and deconvolution on R. For these sampling models, we study the frequentist properties of
the posterior distribution for standard prior that have not been considered for inverse regression
problems so far.

4.1. Numerical differentiation using spline prior

In this section, we consider the inverse regression problem (4.1) with the operator K between
L0, 1] and the space of functions differentiable almost everywhere on the interval [0, 1] (see
also Chapter 7 of [36]) defined by

Kf(x)= /O:c ft)dt, for z € [0, 1]. 4.2)

imsart-bj ver. 2014/02/20 file: inverse_general_BJ_rev3.tex date: December 2, 2016



12 Bartek Knapik and Jean-Bernard Salomond

We note that the operator K is not defined between two Hilbert spaces, hence goes beyond
the concept of singular value decomposition. This model is particularly useful for numerical
differentiation, for instance, and has been well studied in the literature. In particular, in [12] a
related problem of estimating a derivative of a square integrable function is presented and it is
shown that the SVD basis is the Fourier basis. Moreover, the operator is mildly ill-posed of degree
1 (cf. Section 3). We consider a prior on f that is well-suited if the true regression function fy
belongs to the Holder space (S, L) for some 3 > 0, that is fo is By = | 3] times differentiable

and (Bo) (Bo)
S0 (@) — [0 ()]
folls = sup <L.
“OHﬁ ety |x__yw_ﬁo
Since K fy is (Bp + 1) times differentiable, it also holds that fy € H (S, L) implies then K f; €
H(B+1,L).

We construct a prior on f by considering its decomposition in a B-spline basis. A definition
of the B-spline basis can be found in [13]. For a fixed positive integer ¢ > 1 called the degree
of the basis, and a given partition of [0, 1] in m subintervals of the form ((¢ — 1)/m,i/m], the
space of splines is a collection of function f(0,1] — R that are ¢ — 2 times differentiable and if
restricted to one of the sets ((¢ — 1)/m, i/m)], are polynomial of degree at most q. An interesting
feature of the space of splines is that it forms a J-dimensional linear space with the so called
B-spline basis denoted (B g, ..., Byg), for J = m + ¢ — 1. Priors based on the decomposition
of the function f in the B-spline basis of order ¢ have been considered in the regression setting
in, e.g., [24] and [40], and are commonly used in practice. Here we construct a different version
of the prior that will prove to be useful to derive contraction rate for the direct problem and the
inverse problem.

Let the prior distribution on f be defined as follows:

J~ 11y
II:=<a,...a; ifivdHaJ 4.3)
fl@) =T 2 a1 — a;) B (@).
Given the definition of B, 4 in [13], standard computations give
Bj 4(x) = J(Bjq-1(2) = Bj11.4-1(2))
which in turn gives ,
Kf(z) = a;Bjq(x). (4.4)
j=1
This explains why we choose a prior as in (4.3) since it leads to the usual spline prior on K f.
Note that the condition that K f(0) = 0 can be imposed by a specific choice of nodes for the B-

spline basis (see [13]). To compute the modulus of continuity for this model, we need to impose
some conditions on the design. Let X7 be a matrix defined by its elements

1 & o
(En)ig = > Big(w)Bjg(z1), i,j=1,....J.
=1
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Posterior contraction in inverse problems 13

Similarly to [24], we ask that the design points satisfy the following conditions:
D1 forall v; € R’
I vallF = viZive
D2 forall vy € R/~1
(J = 1) val5oy = vaEF Vve.
Condition D1 is natural when considering B-splines priors in a regression setting, and both con-

ditions are satisfied for a wide variety of designs. Consider for instance the uniform design
x; = i/nfori=1,...,n. Then given Lemma 4.2 in [23], we get that for v; € R/, v, € R/~!

J
2
Vi30S Do visBia|| S Ival3
j=1

J-1

2 -1 2 2 -1
IVall3 2 (7 = D7 S |3 vaiBiama|| S Ival3oa(7 =17,
=1
and the constants depend only on ¢. Furthermore, we have that

J
2
HZVLij,qH =viZivi +0(n7}),
j=1
where the remainder depends only on g. Similarly,

J—1 5
H Z va i Bjq—1 H = V/QE;]flVQ + O(nil).
j=1
Thus D1 and D2 are satisfied for the uniform design for all J = o(n).
We now go on and derive conditions on the prior such that the posterior contracts at the
minimax adaptive rate (up to a log n factor). The prior we consider is not conjugate, and does not
depend on the singular value decomposition of the operator K for obvious reasons.

Theorem4.1. Let Y™ = (Y1,...,Y,,) be a sample from (4.1) with X = [0, 1] and I1 be a prior
for f as in (4.3). Suppose that 11 ; is such that for some constants cq, c,, > 0 and t > 0,

exp(—caj(logj)’) <T;(j < J <2j), IL;(J > j) S exp(—cuj(log)’), (4.5)

for all J > 1, and suppose that 11, j is such that for all ay € R,
constant co depending only on H such that

o, s(la — aolls < €) = exp(—c2Jlog(1/€)) (4.6)
Let ©(8,L,H) = {f € H(B,L), || flloc < H}. If the design (x1,...,x,) satisfies conditions

D1 and D2, then for all L and for all 5 < q there exits a constant C' > 0 that depends only on q,
L, H and 11 such that if fo € H(B, L), then

aol|leo < H, there exists a

sup sup EOH(Hf — folln > Cn_w‘%(log n)3T | Y”) — 0, 4.7
B<q—1 fo€O(B,L,H)

withr = (1Vt)(8+1)/(28+ 3).
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14 Bartek Knapik and Jean-Bernard Salomond

Condition (4.5) is for instance satisfied by the Poisson or geometric distribution. A similar
condition is considered in [40]. Condition (4.6) is satisfied for usual choices of priors, such as
the product of J independent copies of a distribution that admits a continuous density. Similar
results hold for functions that are not uniformly bounded, with additional conditions on the tails
of I, ;. This will only require additional computations similar to those in [40], and will thus not
be treated here.

This theorem gives theoretical validation for a family of priors that are widely used in practice
for regression problems and are easy to implement. A key feature here is that we can control the
transformation of a spline basis function by the operator K through (4.4), which in turn allows
us to control the change of norms. This point is highly interesting as it gives guidelines for the
construction of priors for inverse problems. Namely, it suggests that a prior whose geometry does
not change too much through the application of the operator K could lead to optimal contraction
for the inverse problem.

4.2. Deconvolution using mixture priors

In this section, we consider the model (4.1), where K is the convolution operator in R. This
model is widely used in practice, especially when considering auxiliary variables in a regression
setting or for image deblurring. For a convolution kernel A € Ly(R) symmetric around 0, and
forall f € L2(R), we define K as

Kf(x)=Xx f(zx) = /Rf(u))\(x — u)du, for x € R. (4.8)

To the authors’ best knowledge, theoretical properties of Bayesian nonparametric approach to
this nonparametric regression model have not been studied in the literature. In this setting we
consider a mixture type prior on f, and derive an upper bound for the posterior contraction rate.
Mixture priors are common in the Bayesian literature: [25], [24] and [41] consider mixtures
of Gaussian kernels, [30] consider location scale mixture and [34] studies mixtures of betas.
Nonetheless, since they do not fit well into the usual setting based on the SVD of the operator,
mixture priors have not be considered in the literature for ill-posed inverse problems. In our case,
they proved particularly well suited for the deconvolution problem.

Let Y™ = (Y1,...,Y,) be sampled from model (4.1) for a true regression function fo €
L2(R) with X = R, and assume that for ¢, > 0, foralli =1,...,n, x; € [—c; logn, ¢, logn].
It is equivalent to imposing tail conditions on the design distribution in the random design setting.
We choose a prior that is well suited for fy in the Sobolev ball W#(L), for some 3 > 0. To
avoid technicalities, we will also assume that fj has finite support, that we may choose to be
[0, 1] without loss of generality. Similar results should hold for function with support on R with
additional assumptions on the tails of f but are not treated here.

For a collection of kernels ¥, that depend on the parameter v, a positive integer .J and a se-
quence of nodes (z1, . . ., z;) we consider the following decomposition of the regression function
f from the model (4.1)

J
FO) = w0, (- —z),
i=1
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Posterior contraction in inverse problems 15

where (wy,...,wy) € R’ is a sequence of weights. We choose ¥; proportional to a Gaussian
kernel of variance v? and the uniform sequence of nodes zj = j/J for j such that j/J €
[—2¢, log n, 2¢, log n]

1 _(=—j/D?
e 202
V2mv?

The choice of a Gaussian kernel is fairly natural in the nonparametric literature. In our specific
case it will prove to be particularly well suited. The main advantage of Gaussian kernels in this
case is that we can easily compute the Fourier transform of f and thus use a similar approach as
in Section 3.1 to control the modulus of continuity. We consider the following prior distribution

on f

Vi) =Vy(z—25) =

J~11;
II:=<v~1II, 4.9)
wi, .. ws|J ~ @7 N(0,1)
We use a specific Gaussian prior for the weights (wy, ..., w; ) in order to use the results on Re-

producing Kernel Hilbert Spaces following [14] to derive contraction rate for the direct problem.
However, we believe that the following result should hold for more general classes of priors, but
the computations would be more involved.

Following [19], we define the degree of ill-posedness of the problem through the Fourier
transform of the convolution kernel. For p > 0, we say that the problem is mildly ill-posed of
degree p if there exist some constants ¢, C' > 0 such that for ), the Fourier transform of A,

A) = / Au)eitdu,
we have for |¢| sufficiently large
P <A@ < Ol ™7, peN, (4.10)

For all fo € W#(L), we have that K fo € W5*+P(L') for L' = LC. Under these conditions, the
following Theorem gives an upper bound on the posterior contraction rate.

Theorem 4.2. Let Y" = (Y1,...,Y,) be sampled from (4.1) with X = R and assume that
the design satisfies (x1,...,2,) € [—czlogn,c, logn]™. Let fo be such that for § € N* and
M > 0, fo € WP(L) with support on [0,1] and || fo||ec < M. Consider K as in (4.8) with A
satisfying (4.10). Let 11 be a prior distribution as in (4.9) with

HJ(J:J) Xj_sa

v exp(~ L log(1/0)*) STy (v) S v exp(— = log(1/v)" ),

for some positive constants s, ¢, cq, q, and u. Then there exist constants C and r depending
onlyon 11, L, K and M such that

EoII(||f — foll > Cn™ 7555 (logn)” | Y") — 0,
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16 Bartek Knapik and Jean-Bernard Salomond

Note that the prior does not depend on the regularity 5 of the true f; and the posterior contracts
at the minimax rate. Our approach is thus adaptive. Moreover, the prior does not depend on the
degree of ill-posedness either. It is thus well suited for a wide variety of convolution kernels. In
particular, this can be useful when the operator is only partially known, as in this case when the
regularity of the kernel may not be accessible. However, this is beyond the scope of this article.

We prove Theorem 4.2 by applying Theorem 2.1 together with Lemma 2.1. A first difficulty
is to define the sets S,, on which we can control the modulus of continuity. A second problem
is to derive the posterior contraction rate for the direct problem, given that in our setting K f
is supported on the real line: [14] derived the posterior contraction rate only for Holder smooth
functions with bounded support. However, their results directly extend to the case of convolution
of Sobolev functions with bounded support given the results of [39]. The complete proof of this
Theorem is postponed to Section 5.3.2.

5. Proofs

5.1. Proof of the main theorem

Proof of Theorem 2.1. By the definition of the modulus of continuity

EOH(f : d(f7 fO) Z W(Sn7f07d7 dK;Mnen) ‘ Yn)
S EOH(f S STL : d(f7 fO) Z W(Snv an da dKa MnGn) l Yn) + EOH(S7CL ‘ Yn)
<EoIl(f € Syt dx (K f, K fo) > Mpen | Y™) + EII(SS | Y™).

Together with (2.2) and (2.3) it completes the proof. O

5.2. Proofs of Section 3

5.2.1. Mildly ill-posed problems

Proof of Theorem 3.1. We first note that if || f||s < R, then || K f||g+p < CR. Next we verify
the condition of Lemma 2.1. Let

1 __(anp) _ (anB)tp
k, = nTF2eF2 | p, =n TH2at ¢, =n 1+2atm,
Note that
9 _ 2(anB)+2p 142a—2(anB) _1t2a—2(anp)

ne, =n-n 2at+r =n 142+ =€ (anB)+p ,

hence I1( B, (K fo, €n)) = exp(—Cane? ) uniformly over a Sobolev ball of radius R (see Lemma 5.1
at the end of this subsection).
Note also that

2(anB) 14+2a 142a—2(anB) 9

pik};’_Zo‘ — ni 1+2a+2p . n1+2a+2p =n 1+2a+2p — nen,

and given ¢ > 2(1 + 2a) /a we have T1(S¢) < exp(—(c/8)ne2) by Lemma 5.2.
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Posterior contraction in inverse problems 17

Hence
1(S5)

mEach ey S o~ (5 ~C)neh).

uniformly over a ball of radius R. The condition of Lemma 2.1 is verified upon choosing ¢ =
8(2+ C2) V2(1+2a)/a.
Finally, we note that (cf. (3.4))

w(87uf07 H ! ”7” ! ||,Mn€n)
(xAB)+p (anB)

P _ _ _ B
S M, nTF2aF2p . 0~ 1F2eF2p + n~ TH2aF2p +n~ TF20F2p

_ _(anp)
S,Mnn TH2a+2p

which ends the proof. O

Lemma 5.1.  Suppose fo € SP. Then for every R > 0 there exist positive constants Cy,Cs
such that for all € € (0, 1),
142a—2(aAB) )

inf  TI(B,(K fog,€)) > Ciex (70 € (armFp
HfollaSR( (Kfo,€)) 2 Crexp|~Ch

Proof. This proof is adapted from [7]. Recall that in the white noise model the /5 balls and
Kullback-Leibler neighborhoods are equivalent. By independence, for any N,

H(Z("ﬂfz‘ —kifoi)? < 62)
= N (5.1)
> H(Z(/‘&ifi — kifo.)? < 62/2>H( Z (kifi = Kifoa)? < 62/2>~
i=1 i=N+1
Also - - -
ST wifi—rifon)? <2 Y w42 Y K2R (5.2)
i=N+1 i=N+1 i=N+1

The second sum in the display above is less than or equal to

62

(oo}
2NN S < ANTET foB < 47
i=N+1

whenever N > Ny = (8]|fo||3)!/(2F+20)e1/(5F2),
By Chebyshev’s inequality, the first sum on the right-hand side of (5.2) is less than €2 /4 with
probability at least

8 g 4
l== EH('%zgfiZ):l_* i_l_Qa_2p21— >1/2
62 i:%%l 62 i:%l (Oé +p)N2(a+p)62
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18 Bartek Knapik and Jean-Bernard Salomond

if N > Ny = (8/(« +p))1/(2a+2p)671/(a+p)_
To bound the first term in (5.1) we apply Lemma 6.2 in [7] with §; = &, fy,; and §% = €2 /2.
Note that

N

A4204+2pe2
E ? Per =

i=1

-

s
I
—

14+2a+2p  —2p p2
? 1 fO,i

i1+2a_26f§,ii25 < N(1+2a_26)vo|‘f0||%.

|
.MZ

N
Il
_

Therefore,

N

H(Z(Hifi—ﬁz’fo,i)2 < 62/2)

i=1

log 2
> exp(— (1 +2a+2p+ O§ )N) eXp(—N(Hm_%)vonfoH%)

N
< Pr (Z V2 < 252N1+2a+2p>.
i1

The last term, by the central limit theorem, is at least 1/4 if 202N1+2e+2p » N and N is
large, that is, N > N3 = e 1/(@tpP) and N > N,, where N, does not depend on fj. Choosing
N = maX{Nl, NQ, Ng, N4} we obtain

I(f : [|Kf=K foll <€)

1 log 2
exp(— (1420 + 2+ “2=) N ) exp (- N(H20720V0 2,

> -
-8 2

Consider a > f3. Then exp(—N) > exp(—N(1+22¢=26)) 5o
1
H(f:|Kf=Kfol <e) = gexp(—CgNu“a_zﬂ)),

for some constant C3 that depends only on «, 3, p and || fo ||% Moreover, since € < 1 and « > 3,
N is dominated by e~'/(3+P) and we can write

1 _ 1+42a-28
TII(f : ||Kf—Kf0H§e)2§exp<—C4e Atp )

where Cy depends on fo again through || fo||3 only.
Now consider o < (3. Similar arguments lead to

7 K S~ Kfoll <€) > g exp(~Coem ),

for some constant Cj that depends only on «, 3, p and || fo H% O
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Posterior contraction in inverse problems 19

Lemma 5.2. Let p,, be an arbitrary sequence tending to 0, c be an arbitrary constant, and let
the sequence k,, — oo satisfy k2% > 2(1 + 2a)/(acp?). Then

I(S;) < exp(—cp2hlH2).

8
Proof. For Wy, W, ... independent standard normal random variables
(S¢) = Pr(z W2 > cpi).
i>kp

For some ¢t > 0

Pr( Z ANW?E > cpi)

i>knp
=Pr <exp (t Z )\in) > exp(tcpi)) < exp(—tcp? )Eexp (t Z )\in)
i>kn i>kn
= exp(—tcp?) H Eexp(tA\;W?) = exp(—tcp?) H (1 —2tN;) 2.
i>kn i>ky,

We first applied Markov’s inequality, and later used properties of the moment generating func-
tion. Here we additionally assume that 2t\; < 1 for¢ > k.

We take the logarithm of the right-hand side of the previous display. Since log(1l — y) >
—y/(1 —y), we have

—tepR+ Y log(1—2tA;) /2
i>ky
1 1 U\
_ 2 V< pep? 4= N AN
= —tepl — 5 D log(1 —2tA;) < —tepl + 5 > T
>k, i>kp

We continue with the latter term, noticing that 1 — 2t)\; > 1 — 2tk 172 fori > k,

1 2N, t
_ v < E '—1—2a.
2 Z 1—2t\; — 1 — 2tk 172 ‘

i>ky, i>kny

Since =172« is decreasing, we have that
1 < 1 k2 o 14 2a
.ZzIQ(XS/k $12ad$+kn1 2a: 721,a +kn1 2a§kn2a 2a ,
1>kn n
noting that k,, > 1 for n large enough. Finally
14 2« t

—2«

—tepy + Y log(1 = 2tA;) /2 < —tepl + e T T2k

i>kn
Thus for t = k1+2 /4

, c 1+ 2«
I(S;) < exp(—p2kh™ + =

kn) < eXp(—gpiki”“),

since k2* > 2(1 + 2a) /(aep?). O
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20 Bartek Knapik and Jean-Bernard Salomond

5.2.2. Severely and extremely ill-posed problems

Proof of Theorem 3.2. Assume for brevity that we have the exact equality k; = exp(—~yiP).
Dealing with the general case is straightforward, but makes the proofs somewhat lengthier.

Since Y;|fi ~ N(r;ifi,n~ ') and f; ~ N(0,)\;) for i < k,, the posterior distribution (for
K f) can be written as (K f);|Y" ~ N(\/nl; ,Yi, v; ) for i < k,,, where

\ik? P nAZk}
1+ n\k?’ P (14 n\k2)?

Vin =
Since the posterior is Gaussian, we have

J s = KplP Y™ = |KT = Kfoll + Y vin (53)

i<kn

where K f denotes the posterior mean and can be rewritten as:

— nA\jk? kn n\ikS fo.i n\ik2 Z;\ kn
- (), - (Rl {2
1+nXk; /i=1 14+ nhk; 14 nhk;

= EK[ + (\/tinZi)t,

By Markov’s inequality the left side of (5.3) is an upper bound to M2e2 times the desired
posterior probability. Therefore, in order to show that II(f : || K f — K fo|| > M,e,|Y™) goes
to zero in probability, it suffices to show that the expectation (under the true fj) of the right hand
side of (5.3) is bounded by a multiple of 2. The last term is deterministic. As for the first term
we have - -

BIKS = Kfol* = [BKf = Kfol* + > _ tin-
i<kn
We also observe w22
-7 0,i
IBKF = KRoll® = D Gz T 2 w16

1+ n\; /{
ng + Z>kn

Note that ¢; , <n ' and s; , <n~!, hence

Y v Sn ke =<0 logn)¥, Y tin Sy <0 (logn)v.
i<kn =
By Lemma 5.3
w13 o2 9 2 26, 270
Z; (14 nXir2)2 K7 2 T Z;;n fO i S follgn™ 27 (logn) ™ » " pEt2m.

Therefore, the posterior contraction rate for the direct problem is given by

(logn) ™5+

by 7
p(E+27) = &+2v ,
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Posterior contraction in inverse problems 21

and is uniform over Sobolev balls of fixed radius. [This bound is also valid if £ = 0 and o >
1+28.1]
By (3.4) an upper bound for the modulus of continuity is given by

W(Sns foo - 11+ Il Maen) S My exp(ykh)en + kP
8

S Mnnm (log n)i p(;f%) €n + (log n) T
< My (logn) ™7,
which ends the proof. O

Lemma 5.3. It holds that

2va

w7 1o
0,i 2 o 27 _%_,_7
z<zk: (14 nXir2)2 K7 +1§ fol ([ follzn™ 5727 (log n) plerE.

Proof. As for the first sum we have

kiS5 —2 —2 —2..28.28 42
Z (1 + nAir2)2 sn Z)‘i k1T S

i<kn i<kn

T2y PP exp(2(6 + 7)) g,

i<k

and for k,, large enough all terms i2(®~5) exp(2(£ + 7)iP) are dominated by ks, 2o exp(2(§ +
V)kR), so

Hgf(?z —27.2(a—p) 2
2 Ty S0 exp(2(¢ + R ol 54)

2)2 =
ol 14+ nAk3)
As for the second sum we note that

doRifei =Y exp(—2yi?)i PP £,

i>kny i>knp

and since exp(—27i?)i~2? is monotone decreasing

> K fG < exp(—2vkR)k, P foll3- (5.5)
1>k

Recall that exp(kP) = (nk;*)'/(€+27) and therefore we can rewrite the bounds in (5.4) and
(5.5) as

2(€+) 2~ _25_‘_5212{:

n_QkZ(a_ﬁ)(nk;a) 2 =T ek, ,

and

—28+ 2
ke 28 (nk, )~ L —e kg, ? 5””

Finally, since &, in this case can be taken of the order (log n)l/ P, we obtain the desired upper
bound. O
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5.3. Proofs of Section 4

5.3.1. Numerical differentiation using spline prior

We first compute an upper bound for the modulus of continuity. For a € R we define A(a) €
R/~ such that A(a); = aj;1 —a;, fori = 1,...,(J — 1). Given conditions D1 and D2 we get,

_ 1
117 = T2 A@) S5 Ala) S 72— A @)l
1
S PP lally S PIKLI-

To apply Theorem 2.1, we first need to derive a contraction rate for K f. Note that in this case
we simply have a standard non parametric regression model with a spline prior. This model has
been extensively studied in the literature (see, e.g., [24] or [15]) and we can easily adapt their
results to derive minimax adaptive contraction rates.

Lemma 5.4. Let II be as in Theorem 4.1. Let Y,, be sampled form model 4.1 with f = fo and
assume that fo € O(8, L, H) with § < q — 1. Then there exists a constant C depending only on
H, L, 11, and q such that

Eol1(||Kf — K folln > Cn™ %75 (logn)” | ¥,) = 0
withr = (1Vt)5/(26 4+ 1).

Similar results have been proved in [40], however the authors do not give a direct proof of their
result. Here this lemma gives us directly the posterior contraction rate for the direct problem. The
proof of this lemma is postponed to the end of this subsection.

Proof of Theorem 4.1. We now derive the posterior contraction rate of the posterior distribution
for the inverse problem. We first get an upper bound for the modulus of continuity, for f € S,,.
Using standard approximation results on splines (e.g. [13]), we have that for all J there exists
a® € R” such that

J—1

[fo= Ytk = a)Bra-1)|_ = (T = Pl foles

=1
and

< JTPYE folloo-

o}

J
HKfO - Z‘I?Bj»q
=1
We thus deduce that for J > 2,

ILf = folln < |f = faolln + | fao — folln
< C'<]71||[(f - Kfn”n =+ ||fao - fO”n
< CI YK = K folln + |1 K fao — K folln + | fao — folln-
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We can thus deduce an upper bound for the modulus of continuity

W(Sns fos [+ llns || [lns 6) < Jnd.

Applying Theorem 2.1 gives
EolI(Ilf = folln = Cn %7 (logm)" [ Y") =0,
for a constant C' > 0 depending only on || foco, 7, and II. O

Proof of Lemma 5.4. We prove the lemma using Theorem 4 in [24]. Let 5 < ¢ and fy be
in %(3,L) and set €, = Cn~B+D/2F+3) (logn)” with r = (1 V t)3/(26 + 1). Set J,, :=
Jone log(n)~* for a fixed constant Jy > 0 and consider the sets S,, defined by

S, = {J < Jn,a GRJ}

We first control the local entropy function N (¢, {J,a € S, : |[Kf — K folln < €n}, ] - ||n). By
using the same reasoning as in the proof of Theorem 12 in [24], for all J € §,, we get

log(N(e,{J,a € Su: [IKf = Kfolln < en}, || ) < ne;.

The prior mass of the set S,, is easily controlled using condition (4.5):
I(SS) =M 5(J > J,) < exp(—cyJn(log J,)").

We now need to control the prior mass of Kullback—Leibler neighborhoods of K fj. Note that
this condition will also be useful to apply Lemma 2.1 and thus derive the posterior contraction
rate for the direct problem. Let B,, (K fy, ¢) be defined as in (2.4).

Using the results of Section 7.3 in [24], setting Jy = Jn(log n)_r/ 8 we deduce that for some
constant ¢ depending only on o

Bu(K fo,€0) D {Jn < J < 2J0, ||IKf — K fol? < ce2}.

Standard approximation results on splines give that for all J there exists a sequence ag =
(@o,1,---,a0,5) such that

J
HKfo - Zao,ij,q

Jj=1

<J P YK follp < JPLL

Given condition D1 on the design, we thus have that for a constant ¢’ > 0 depending only on o
and L B B ~
Bo(K fo,€n) D {Jn < T < 2Jn, la—aoll;, < T3 2en}.

Therefore, we obtain a lower bound on the prior mass of a Kullback—Leibler neighbourhood of
K fol

H(Bn(Kanen)) > H(jn <J< 2jn7 ||a - aO”n < C/j711,/26n)
> exp(—jn(cd(log jn)t + co log(jn_l/ze;l))).
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We thus have for Cy > 0,

II(S%)
— 17 < exp(—CqJ,(log J,)Y), 5.6)
which together with Theorem 4 in [24] ends the proof. O

5.3.2. Deconvolution using mixture priors

Proof of Theorem 4.2. We first specify the sets S, for which we can control the modulus of
continuity. Denoting f the Fourier transform of f, for any sequence a,, going to infinity and
I, = [—an, a,] we define for a > 0

So={s: [ 1fwraza | ifora) 6.

We control the modulus of continuity w(Sy, fo, || - || [ - [|, §) in a similar way as in Section 3.1.
First consider f € S,,, and denote f,,(-) = f(-)I1, (-). We then have

IFIP =117 < A+ a)l ful® S aip/I PN S @I 1P

Note that for fo € W#(L) we have for f; ,,(z) = ffo,n(t)e_mdt
1fo = fomll <2a;°L,  |Kfo— K fon| < 2a;PPL,

which gives
W(Sns for - 1111+ 11,6) < afd + az”. (5.8)

We now control the prior mass of S¢ in order to apply Lemma 2.1. Denote by [, = |a,,/(2I1J)],
L, = [a,/(211J)]. We have

dt

In J )
/ |f(t)|2dt > 27TJ/ 6747r2t2v2 ije?frjt
In —Ln =
J
Z wj€27rjt
j=1

l+1 2,2 2
=2rJ Z / e ATty
l
Z 6747r2(t+l)2v2dt

dt

J In

dt,

ln 1 J
> orJg Z e—4ﬂ2(1+|1\)2vz/ ‘ije2ﬂjt
j=1

I=—L, 0
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and similarly we get

1. J
/ |f(t)|2dt§27rj/ ]ije%ﬂ
Ie o i3

—L, oo
( Z 67471'2(t+l)2v2 + Z 6747r2(t+l)2v2>dt
l=—o00 I=ln
_Ln,

oo 1 J
22, 2 272 2 .
< 27TJ( § e—47r “v + § e—47r 1“v )/ ‘E ijQﬂ'Jt

I=—0c0 1=l,

dt.

We thus deduce that for absolute constants C’ > 0
H(Sfl) § H(U g J/an) 5 e—C’an logan'

We end the proof by combining this result (choosing a,, = ne2) with Lemma 2.1, Lemma 5.5,
and Theorem 2.1. ]

Lemma 5.5. Let Y be sample from (4.1) with K defined by (4.8). Let 11 be as in Theorem 4.2.
For all B € N* if fo € WP (L) with support on [0,1] and || fo||cc < M, we have for C' > 0 large
enough if €, = n~(B+TP)/(1+2B+2p) (1og n)", where r is some constant,

EII(| Kf = K fol| = Cen|Y™) = 0,

and

H(|Kf — Kfoll < en) > e .

Proof. This proof is based on the results of [14] and [39]. We adapt the results of [14] to our
setting in order to control the posterior mass of the Kullback—Leibler neighbourhoods of K fj
and the posterior contraction rate for the direct problem. Following their notation we have that
KU, € Po, and thus the small ball probability II(|| f||cc < €) can be controlled by their Lemma
3.3. We then extend their Lemma 3.5 to our setting. Note that with Lemma 9 of [39], Lemma 3.4
of [14] holds for the same T, ,, with & = 3 + p. Choosing & to be as in the proof of Lemma 3.5
of [14] and denoting wy = fy * A, we have

1 x—j/J
h(z) = 3 T olw0) =% (S22,
j/JE[—2¢cy log n,2¢, log n]

and thus deduce
P00 < 2¢2[|Ta,w(wo)[|* log .

Using their decomposition (3.8), we control |h(z) — U, * Ty, ,, (wo)(x)| along the same lines as
in their computations on page 3312. We have

|h(x) = Wy x T, (wo) (2)]

<fne)— [ o))t -

—2¢, logn

—2cy, logn oo
+ ’/ Ta,v(WO)(y)\Ijv(I - y)dy‘ + ’/ Ta,v(WO)(y)\I’v(I - y)dy
—o00 2¢cy logn

imsart-bj ver. 2014/02/20 file: inverse_general_BJ_rev3.tex date: December 2, 2016



26 Bartek Knapik and Jean-Bernard Salomond

The first term on the right hand side of the above display can be controlled as in the proof of
Lemma 3.5 of [14]. For the last two terms, we have

—2cy; logn ')
[ @ aa] [ o -
—o00 2¢cq log(n

cg (log n)2

ST (wo)lloce™ 27 v

Following the same proof of Theorem 2.2 of [14], we get
EolI(| K f — K fo|| > Cn™ 72555 (log n)"[Y™) — 0,

and similarly to their equation (2.5) we get, with €, = n~(8+P)/(1+2642p) (Jog )", where 7 is
some constant, ,
H(”Kf - KfO” S En) Z e e,

6. Discussion

In this paper we propose a new approach to the problem of deriving posterior contraction rates
for linear ill-posed inverse problems. More precisely, we put a prior on the parameter of interest
f that naturally imposes the prior on K f, leading to a certain rate of contraction in the direct
problem. Next, we consider a sequence of sets on which the operator K possesses a continuous
inverse. Then, we impose additional conditions on the prior (or the posterior itself) under which
the posterior contracts at a certain rate in the inverse problem setting.

This is a great advantage of the Bayesian approach in this setting as when the posterior distri-
bution is known to contract at a given rate in the direct problem, one only has to consider subset
of high prior mass for which the norm of the inverse of the operator may be handled. Our result
seems to show that the main difficulty when considering linear inverse problems is to control the
change of metrics form dx to d, which is dealt here by considering the modulus of continuity as
introduced in [17] and [26]. It is also to be noted that contrariwise to existing methods, we do
not require a Hilbertian structure for the parameter space, see for instance the example treated
in Section 4.1. This could be particularly useful when considering nonlinear operators, and is of
potential interest when considering the case of partially known operators.

We recovered (a subset of) the existing results from [28], [29], [1], [2], and [33]. Our approach
should be viewed as a generalization of the ideas presented in the last paper and the existing sieve
method used in the literature on posterior contraction. Furthermore, we were able to go beyond
the sequence setting as well as derive posterior contraction rates for prior distributions that were
not covered by the existing theory. We also treated an operator that does not admit singular value
decomposition. In this sense, the approach proposed in this paper is more general, and we believe
more natural, than the existing ones.
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