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Introduction

Let M be a smooth (C ∞ ), compact, oriented, boundaryless manifold of dimension n ≥ 1. Let f : M → R be a smooth Morse function whose set of critical points is denoted by Crit(f ). In [START_REF] Witten | Supersymmetry and Morse theory[END_REF], Witten introduced the following semiclassical deformation of the de Rham coboundary operator:

∀h > 0, d f,h := e -f h de f h = d + df h ∧ : Ω • (M) → Ω •+1 (M)
where Ω • (M) denotes smooth differential forms on M. Then, fixing a smooth Riemannian metric g on M, he considered the adjoint of this operator with respect to the induced scalar product on the space of L 2 forms L 2 (M, Λ(T * M)) :

∀h > 0, d * f,h = d * + ι V f h : Ω • (M) → Ω •-1 (M),
where V f is the gradient vector field associated with the pair (f, g), i.e. the unique vector field satisfying ∀x ∈ M, df (x) = g x (V f (x), .).

The operator d f,h + d * f,h is the analog of a Dirac operator and its square is usually defined to be the Witten Laplacian [START_REF] Witten | Supersymmetry and Morse theory[END_REF]. In the present paper, we take a different convention and we choose to rescale it by a factor h 2 . Hence, the Witten Laplacian will be defined as

W f,h := h 2 d f,h d * f,h + d * f,h d f,h = e -f h L V f + h∆ g 2 e f h ,
where L V f is the Lie derivative along the gradient vector field. This defines a selfadjoint, elliptic operator whose principal symbol coincides with the principal symbol of the Hodge-De Rham Laplace operator acting on forms. It has a discrete spectrum on L 2 (M, Λ k (T * M))

1 that we denote, for every 0 ≤ k ≤ n, by

0 ≤ λ (k) 1 (h) ≤ λ (k) 2 (h) ≤ . . . ≤ λ (k)
j (h) → +∞ as j → +∞. It follows from the works of Witten [START_REF] Witten | Supersymmetry and Morse theory[END_REF] and Helffer-Sjöstrand [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF] that there exists a constant ǫ 0 > 0 such that, for every 0 ≤ k ≤ n and for every h > 0 small enough, there are exactly c k (f ) eigenvalues inside the interval [0, ǫ 0 ], where c k (f ) is the number of critical points of index k -see e.g. the recent proof of Michel and Zworski in [49,Prop. 1]. Building on the strategy initiated by Witten, Helffer and Sjöstrand also showed that one can associate to these low energy eigenmodes an orientation complex whose Betti numbers are the same as the Betti numbers of the manifold [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]Th. 0.1]. Another approach to this question was developped by Bismut and Zhang in their works on the Reidemeister torsion [START_REF] Bismut | An extension of a theorem by Cheeger and Müller[END_REF][START_REF] Bismut | Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle[END_REF][START_REF] Zhang | Lectures on Chern-Weil theory and Witten deformations[END_REF]: following Laudenbach [START_REF] Laudenbach | On the Thom-Smale complex[END_REF], they interpreted the Morse complex in terms of currents.

The aim of our article is to describe the convergence of all the spectral data (meaning both eigenvalues and eigenmodes) of the Witten Laplacian. This will be achieved by using microlocal techniques that were developped in the context of dynamical systems [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces[END_REF]. Note that part of these results could probably be obtained by more classical methods in the spirit of the works of Simon [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions[END_REF] and Helffer-Sjöstrand [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF] on harmonic oscillators. We refer the reader to the book of Helffer and Nier [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and-Witten Laplacians[END_REF] for a detailed account of the state of the art on these aspects. Regarding the convergence of the spectrum, Frenkel, Losev and Nekrasov [START_REF] Frenkel | Instantons beyond topological theory. I[END_REF] did very explicit computations of the Witten's spectrum for the case of the height function on the sphere, and they implicitely connect this spectrum to a dynamical spectrum as we shall do here. They also give a strategy to derive asymptotic expansions for dynamical correlators of holomorphic gradient flows acting on compact Kähler manifolds. Yet, unlike [START_REF] Frenkel | Instantons beyond topological theory. I[END_REF], we attack the problem from the dynamical viewpoint rather than from the semiclassical perspective. Also, we work in the C ∞ case instead of the compact Kähler case and we make use of tools from microlocal analysis to replace tools from complex geometry.

The main purpose of the present work is to propose an approach to these problems having a more dynamical flavour than these references. We stress that our study of the limit operator is self-contained and that it does not make use of the tools developped in the above references. It is more inspired by the study of the so-called transfer operators in dynamical systems [START_REF] Gouëzel | Spectre du flot géodésique en courbure négative[END_REF][START_REF] Baladi | Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps -A Functional Approach[END_REF][START_REF] Zworski | Mathematical study of scattering resonances[END_REF], and this dynamical perspective allows us to make some explicit connection between the spectrum of the Witten Laplacian and the dynamical results from [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF].

Conventions. All along the article, we denote by Ω k (M) the set of C ∞ differential forms of degree k, i.e. smooths sections M → Λ k (T * M). The topological dual of Ω n-k (M) is the set of currents of degree k and it will be denoted by D ′k (M), meaning k-differential forms with coefficients in the set of distributions [START_REF] Schwartz | Théorie des distributions[END_REF]. Harvey-Lawson. In order to illustrate our results, we let ϕ t f be the flow induced by the gradient vector field V f , and, given any critical point a of f of index k, we introduce its unstable manifold

Main results

Semiclassical versus dynamical convergence and a question by

W u (a) := x ∈ M : lim t→-∞ ϕ t f (x) = a .
Recall from the works of Smale [START_REF] Smale | Morse inequalities for a dynamical system[END_REF] that this defines a smooth embedded submanifold of M whose dimension is equal to nk and whose closure is a union of unstable manifolds under the so-called Smale transversality assumption. Then, among other results, we shall prove the following Theorem:

Theorem 2.1 (Semiclassical versus dynamical convergence). Let f be a smooth Morse function and g be a smooth Riemannian metric such that V f is C 1 -linearizable near every critical point and such that V f satisfies the Smale transversality assumption. Let 0 ≤ k ≤ n.

Then, for every a ∈ Crit(f ) of index k, there exists (U a , S a ) in D ′k (M) × D ′n-k (M) such that the support of U a is equal to W u (a) and such that

L V f (U a ) = 0.
Moreover, there exists ǫ 0 > 0 small enough such that, for every (ψ 1 , ψ 2 ) ∈ Ω k (M) × Ω n-k (M) and for every 0 < ǫ < ǫ 0 ,

lim t→+∞ M ϕ -t * f (ψ 1 ) ∧ ψ 2 = lim h→0 + M 1 [0,ǫ] W (k) f,h e -f h ψ 1 ∧ e f h ψ 2 (1) = a:dim W u (a)=n-k M ψ 1 ∧ S a M U a ∧ ψ 2 ,
where

1 [0,ǫ] W (k) f,h
is the spectral projector on [0, ǫ] for the self-adjoint elliptic operator W (k) f,h . Remark 2.2. The Smale transversality assumption means that the stable and unstable manifolds satisfy some transversality conditions [START_REF] Smale | Morse inequalities for a dynamical system[END_REF] -see paragraph 3.1.1 for a brief reminder. Recall that, given a Morse function f , this property is satisfied by a dense open set of Riemannian metrics thanks to the Kupka-Smale Theorem [START_REF] Kupka | Contribution à la théorie des champs génériques[END_REF][START_REF] Smale | Stable manifolds for differential equations and diffeomorphisms[END_REF]. The hypothesis of being C 1 -linearizable near every critical point means that, near every a in Crit(f ), one can find a C 1 -chart such that the vector field can be written locally as V f (x) = L f (a)x∂ x , where L f (a) is the unique (symmetric) matrix satisfying d 2 f (a) = g a (L f (a)., .). By fixing a finite number of nonresonance conditions on the eigenvalues of L f (a), the Sternberg-Chen Theorem [START_REF] Nelson | Topics in dynamics. I: Flows[END_REF] ensures that, for a given f , one can find an open and dense subset of Riemannian metrics satisfying this property.

Let us now comment the several statements contained in this Theorem. First, as we shall see in Lemma 5.10, the current U a coincides with the current of integration [W u (a)] when restricted to the open set M \ ∂W u (a) with ∂W u (a) = W u (a) \ W u (a). Hence, the first part of the Theorem shows how one can extend [W u (a)] into a globally defined current which still satisfies the transport equation L V f (U a ) = 0. This extension was done by Laudenbach in the case of locally flat metrics in [START_REF] Laudenbach | On the Thom-Smale complex[END_REF] by analyzing carefully the structure of the boundary ∂W u (a). Here, we make this extension for more general metrics via a spectral method and the analysis of the structure of the boundary is in some sense hidden in the construction of our spectral framework [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces[END_REF]. We emphasize that Laudenbach's construction shows that these extensions are currents of finite mass while our method does not say a priori anything on that aspect.

The second part of the Theorem shows that several quantities that appeared in previous analytical works on Morse theory coincide. In the case of a locally flat metric, the fact that the first and the third quantity in equation [START_REF] Auroux | A beginner's introduction to Fukaya categories, Contact and symplectic topology[END_REF] are equal was shown by Harvey and Lawson [START_REF] Harvey | Finite volume flows and Morse theory[END_REF]. In [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF], we showed how to prove this equality when the flow satisfies some more general (smooth) linearization properties than the ones appearing in [START_REF] Laudenbach | On the Thom-Smale complex[END_REF][START_REF] Harvey | Finite volume flows and Morse theory[END_REF]. Here, we will extend the argument from [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] to show that this equality remains true under the rather weak assumptions of Theorem 2.1. The last equality tells us that the low eigenmodes of the Witten Laplacian converge in a weak sense to the same quantities. In particular, it recovers the fact that the number of small eigenvalues in degree k is equal to the number of critical points of index k.

In a nutshell, our Theorem identifies a certain semiclassical limit of scalar product of quasimodes for the Witten Laplacian with a large time limit of some dynamical correlation for the gradient flow which converges to equilibrium :

lim h→0 + 1 [0,ǫ] W (k) f,h e -f h ψ 1 , e f h ψ 2 L 2 Quantum object = lim t→+∞ ϕ -t * f (ψ 1 ), ψ 2 L 2
Dynamical object , for every (ψ 1 , ψ 2 ) ∈ Ω k (M) 2 . From this point of view, this Theorem gives some insights on a question raised by Harvey and Lawson in [START_REF] Harvey | Morse theory and Stokes Theorem[END_REF]Intro.] who asked about the connection between their approach to Morse theory and Witten's one. It is then tempting to exchange the two limits, and Theorem 2.1 shows that intertwining these two limits requires to take into account the small eigenvalues of the Witten Laplacian.

Proving the second part of this Theorem amounts to determining the limit of the spectral projectors of the Witten Laplacian (after conjugation by e f h ) viewed as operators from Ω k (M) to D ′k (M). Recall that Helffer-Sjöstrand [43, §1] and Bismut-Zhang [START_REF] Bismut | Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle[END_REF]Def. 6.6] constructed explicit bases for the bottom of the spectrum of the Witten Laplacian. Using the approach of these references, we would have to verify that these quasimodes (after renormalization by e f h ) converge to the currents constructed by Laudenbach [START_REF] Laudenbach | On the Thom-Smale complex[END_REF] -see [START_REF] De Verdière | Méthodes semi-classiques et théorie spectrale[END_REF]Chap. 9] for a related discussion. As far as we know, this question has not been addressed explicitely in the literature. This convergence will come out naturally of our spectral analysis. We will in fact show the convergence of all the spectral projectors (not only at the bottom of the spectrum) and identify their limits in terms of dynamical quantitiessee Theorem 2.4 below.

2.2. Asymptotics of Witten spectral data. Before stating our results on the convergence of the spectral data of the Witten Laplacian, we need to describe a dynamical question which was studied in great details in [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] in the case of Morse-Smale gradient flows -see also [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF][START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] for earlier related results. Recall that a classical question in dynamical systems is to study the asymptotic behaviour of the correlation function

∀0 ≤ k ≤ n, ∀(ψ 1 , ψ 2 ) ∈ Ω k (M) × Ω n-k (M), C ψ 1 ,ψ 2 (t) := M ϕ -t * f (ψ 1 ) ∧ ψ 2 ,
which already appeared in the statement of Theorem 2.1. Following [START_REF] Pollicott | On the rate of mixing of Axiom A flows[END_REF][START_REF] Ruelle | Resonances for Axiom A flows[END_REF], it will in fact be simpler to consider the Laplace transform of t → ϕ -t * f , i.e. for Re(z) large enough,

R k (z) = z + L (k) V f -1 := +∞ 0 e -tz ϕ -t * f dt : Ω k (M) → D ′k (M).
One of the consequence of our results from [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces[END_REF] is that this Laplace transform admits a meromorphic extension from Re(z) > C 0 (with C 0 > 0 large enough) to C under the assumptions of Theorem 2.1. In [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF], we also gave an explicit description of the poles and residues of this function under C ∞ -linearization properties of the vector field V f . These assumptions were for instance verified as soon as infinitely many nonresonance assumptions are satisfied. We shall explain in Theorem 5.1 how to recover this result under the weaker assumptions of Theorem 2.1.

Proving such a meromorphic extension is part of the study of Pollicott-Ruelle resonances in the theory of hyperbolic dynamical systems. We refer for instance to the book of Baladi [START_REF] Baladi | Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps -A Functional Approach[END_REF] or to the survey article of Gouëzel [START_REF] Gouëzel | Spectre du flot géodésique en courbure négative[END_REF] for detailed accounts and references related to these dynamical questions. More specifically, we used a microlocal approach to deal with these spectral problems. We also refer to the survey of Zworski for the relation of these questions with scattering theory [START_REF] Zworski | Mathematical study of scattering resonances[END_REF] from the microlocal viewpoint. Coming back to dynamical systems, the Pollicott-Ruelle resonances are interpreted as the spectrum of -L V f on appropriate Banach spaces of currents. In the following, we shall denote by R k the poles of the meromorphic continuation of R k (z), and by π (k) z 0 the residue at each z 0 ∈ C. These poles are the so-called Pollicott-Ruelle resonances while the range of the residues are the resonant states. They correspond to the spectral data of -L V f on appropriate anisotropic Sobolev spaces of currents and they describe in some sense the structure of the long time dynamics of the gradient flow. Our main spectral result shows that the spectral data of the Witten Laplacian converges to this Pollicott-Ruelle spectrum. More precisely, one has: Theorem 2.4 (Convergence of Witten spectral data). Suppose that the assumptions of Theorem 2.1 are satisfied. Let 0 ≤ k ≤ n. Then, the following holds

(1) for every j ≥ 1, -λ (k) j (h) converges as h → 0 + to some z 0 ∈ R k , (2) conversely, any z 0 ∈ R k is the limit of a sequence (-λ (k) j (h)) h→0 + .
Moreover, for any z 0 ∈ R, there exists ǫ 0 > 0 small enough such that, for every

(ψ 1 , ψ 2 ) ∈ Ω k (M) × Ω n-k (M), ∀0 < ǫ ≤ ǫ 0 , lim h→0 + M 1 [z 0 -ǫ,z 0 +ǫ] -W (k) f,h e -f h ψ 1 ∧ e f h ψ 2 = M π (k) z 0 (ψ 1 ) ∧ ψ 2 .
Following Theorem 5.1 below, this result shows that the Witten eigenvalues converge, as h → 0, to integer combinations of the Lyapunov exponents. Small eigenvalues are known to be exponentially small in terms of h [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF][START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and-Witten Laplacians[END_REF][START_REF] Michel | A semiclassical approach to the Kramers Smoluchowski equation[END_REF] but our proof does not say a priori anything on this aspect of the Witten-Helffer-Sjöstrand result. The convergence of Witten eigenvalues could be recovered from the techniques of [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF][START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions[END_REF] but the convergence of spectral projectors would be more subtle to prove with these kind of semiclassical methods as one would first need to identify the limit. In fact, this Theorem also tells us that, up to renormalization by e f h , the spectral projectors of the Witten Laplacian converge to the residues of the dynamical correlation function. In section 5, we will describe more precisely the properties of these limiting spectral projectors.

2.3.

Witten-Helffer-Sjöstrand's instanton formulas. Following [START_REF] Dang | Topology of Pollicott-Ruelle resonant states[END_REF], we can verify that ((U a ) a∈Crit(f ) , d) generate a finite dimensional complex which is nothing else but the Thom-Smale-Witten complex [60, Eq. (2.2)]. In section 6, we will explain how to prove some topological statement which complements what was proved in [START_REF] Dang | Topology of Pollicott-Ruelle resonant states[END_REF], namely : where n ab counts algebraically the number of instantons connecting a and b.

In particular, the complex ((U a ) a∈Crit(f ) , d) can be defined over Z and realizes in the space of currents the Morse homology over Z.

In the case of locally flat metrics, this relation between the formula for the boundary of unstable currents and Witten's instanton formula follows for instance from the works of Laudenbach in [START_REF] Laudenbach | On the Thom-Smale complex[END_REF], and his proof could probably be revisited to deal with more general metrics. Yet, the proof we will give of this result is of completely different nature and it will be based on our spectral approach to the problem. The main difference with [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Topology of Pollicott-Ruelle resonant states[END_REF] is that, in these references, we were able to prove that the complex ((U a ) a∈Crit(f ) , d) forms a subcomplex of the De Rham complex of currents which was quasi-isomorphic to the De Rham complex (Ω • (M), d) but we worked in the (co)homology with coefficients in R. The instanton formula (2) allows us to actually consider ((U a ) a∈Crit(f ) , d) as a Zmodule and directly relate it to the famous Morse complex defined over Z appearing in the litterature whose integral homology groups contain more information than working with real coefficients [35, p. 620].

Coming back to the bottom of the spectrum of the Witten Laplacian, we can define an analogue of Theorem 2.5 at the semiclassical level. For that purpose, we need to introduce analogues of the Helffer-Sjöstrand WKB states for the Witten Laplacian [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF][START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and-Witten Laplacians[END_REF]. We fix ǫ 0 > 0 small enough so that the range of

1 [0,ǫ 0 ) (W (k)
f,h ) in every degree k is equal to the number of critical points of index k. Then, for h > 0 small enough, we define the following WKB states:

(3) U a (h) := 1 [0,ǫ 0 ) (W (k) f,h ) e f (a)-f h U a ∈ Ω k (M),
where k is the index of the point a. We will show in Proposition 7.5 that, for every critical point a, the sequence (e

f -f (a) h U a (h)) h→0 + converges to U a in D ′ (M).
As a corollary of Theorem 2.5, these WKB states also verify the following exact tunneling formulas : Corollary 2.6 (Witten-Helffer-Sjöstrand tunneling formula). Suppose that the assumptions of Theorem 2.1 are satisfied. Then, for every critical point a of f and for every h > 0 small enough,

d f,h U a (h) = b:ind(b)=ind(a)+1 n ab e f (a)-f (b) h U b (h),
where n ab is the same integer as in Theorem 2.5.

The formula we obtain may seem slightly different from the one appearing in [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]Eq. (3.27)] -see also 2 [6, Th. 6.12] when f is a Morse function verifying f (a) = ind(a) for every critical point a. This is mostly due to the choice of normalization, and we will compare more precisely our quasimodes with the ones of Helffer-Sjöstrand in Section 8.

2.4.

A conjecture by Fukaya. As a last application of our analysis, we would like to show that our families of WKB states (U(h)) h→0 + also verifies Fukaya's asymptotic formula for Witten's deformation of the wedge product [START_REF] Fukaya | Multivalued Morse theory, asymptotic analysis and mirror symmetry[END_REF]Conj. 4.1]. This approach could probably be adapted to treat the case of higher order products. Yet, this would be at the expense of a more delicate combinatorial work that would be beyond the scope of the present article and we shall discuss this elsewhere. Recall that this conjecture was recently solved by Chan-Leung-Ma in [START_REF] Chan | Witten deformation of product structures on de Rham complex[END_REF] via WKB approximation methods [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF] which are different from our approach.

Let us now describe precisely the framework of Fukaya's conjecture for products of order 2 which corresponds to the classical wedge product ∧ -see also paragraph 7.6 for more details. Consider three smooth real valued functions (f 1 , f 2 , f 3 ) on M, and define their differences :

f 12 = f 2 -f 1 , f 23 = f 3 -f 2 , f 31 = f 1 -f 3 .
We assume the functions (f 12 , f 23 , f 31 ) to be Morse. To every such pair (ij), we associate a Riemannian metric g ij , and we make the assumption that the corresponding gradient vector fields V f ij satisfy the Morse-Smale property3 and that they are C 1 -linearizable. In particular, they are amenable to the above spectral analysis, and, for any critical point a ij of f ij and for every 0 < h ≤ 1, we can associate a WKB state U a ij (h). From elliptic regularity, these are smooth differential forms on M and Fukaya predicted that the integral

M U a 12 (h) ∧ U a 23 (h) ∧ U a 31 (h)
has a nice asymptotic formula whenever the intersection W u (a 12 ) ∩ W u (a 23 ) ∩ W u (a 31 ) consists of finitely many points. Note that, for this integral to make sense, we implicitely supposed that

(4) dim W u (a 12 ) + dim W u (a 23 ) + dim W u (a 31 ) = 2n.
Let us explain the difficulty behind this question. After renormalization, a way to solve this conjecture amounts first to prove the convergence of the family of smooth differential forms Ũa ij (h

) := e f ij -f ij (a ij ) h
U a ij (h) in the space of currents as h → 0 + . As was already said, we are not aware of a place where this convergence of (renormalized) Witten quasimodes is handled in the literature as this is not the approach followed in [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF][START_REF] Bismut | Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle[END_REF][START_REF] Chan | Witten deformation of product structures on de Rham complex[END_REF] to prove tunneling formulae. Our construction shows that these smooth forms indeed converge to U a ij in the space of currents. The additional difficulty one has to treat in order to answer Fukaya's question is the following. Even if the currents lim h→0 + Ũa ij (h) exist and even if the wedge product of their limits makes sense, it is not clear that we can interchange the limits as follows:

M lim h→0 + Ũa 12 (h) ∧ lim h→0 + Ũa 23 (h) ∧ lim h→0 + Ũa 31 (h) = lim h→0 + M Ũa 12 (h) ∧ Ũa 23 (h) ∧ Ũa 31 (h).
In order to justify this, the second difficulty of Fukaya's question is to show that convergence holds in the appropriate topology involving a control of the wavefront set of the currents. Without additional assumptions, there is no reason why all this would be true. 

) ∈ Crit(f 12 ) × Crit(f 23 ) × Crit(f 31 ), one has, for every x ∈ W u (a 12 ) ∩ W u (a 23 ) ∩ W u (a 31 ), (5) T x M = (T x W u (a 12 ) ∩ T x W u (a 23 )) + T x W u (a 31 ),
and similarly for any permutation of [START_REF] Chan | Witten deformation of product structures on de Rham complex[END_REF][START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF][START_REF] Fukaya | Morse homotopy and its quantization, Geometric topology[END_REF]. Note that, for every Morse function, we associate a priori a different metric. As for the Morse-Smale property, the Kupka-Smale method [START_REF] Kupka | Contribution à la théorie des champs génériques[END_REF][START_REF] Smale | Stable manifolds for differential equations and diffeomorphisms[END_REF] applies: the generalized Morse-Smale property is satisfied in an open and dense subset of smooth functions (f 1 , f 2 , f 3 ) and of smooth metrics (g 12 , g 23 , g 31 ). Our last result shows that the WKB states we have constructed verify Fukaya's conjecture under this geometric assumption :

Theorem 2.7 (Fukaya's instanton formula). Using the above notations, let

(V f 12 , V f 23 , V f 31 )
be a family of Morse-Smale gradient vector fields which are C 1 -linearizable, and which verify the generalized Morse-Smale property. Then, for every

(a 12 , a 23 , a 31 ) ∈ Crit(f 12 ) × Crit(f 23 ) × Crit(f 31 ), such that dim W u (a 12 ) + dim W u (a 23 ) + dim W u (a 31 ) = 2n, U a 12 ∧ U a 23 ∧ U a 31 defines an element of D ′n (M) satisfying M U a 12 ∧ U a 23 ∧ U a 31 ∈ Z, and 
lim h→0 + e -f 12 (a 12 )+f 23 (a 23 )+f 31 (a 31 ) h M U a 12 (h) ∧ U a 23 (h) ∧ U a 31 (h) = M U a 12 ∧ U a 23 ∧ U a 31 .
Recall that the integers M U a 12 ∧ U a 23 ∧ U a 31 defined by triple intersections of unstable currents have a deep geometrical meaning. On the one hand, these integers actually count the number of Y shaped gradient flow trees [30, p. 8] as described in subsection 7.5. On the other hand, they give a representation of the cup-product in Morse cohomology at the cochain level -see subsection 7.6 for a brief reminder. Hence, the second part of this Theorem shows that, if we define an analogue of the cup-product at the semiclassical level, then it converges, up to some renormalization factors, to the usual cup-product on the Morse cohomology. We emphasize that the main new property in this Theorem is really the asymptotic formula as h → 0 + . Up to some normalization factors, this is exactly the asymptotic formula conjectured by Fukaya for the WKB states of Helffer-Sjöstrand [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]. Here, our states are constructed in a slightly different manner. Yet, they belong to the same eigenspaces as the ones from [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF] -see Section 8 for a comparison. Finally, we note that, going through the details of the proof, we would get that the rate of convergence is in fact of order O(h). However, for simplicity of exposition, we do not keep track of this aspect in our argument. 2.5. Lagrangian intersections. We would like to recall the nice symplectic interpretation of the exponential prefactors appearing in Theorems 2.6 and 2.7. Let us start with the case of Theorem 2.6 where we only consider a pair (f, 0) of functions where f -0 = f is Morse. We can consider the pair of exact Lagrangian submanifolds Λ f := {(x; 2 , we can define a disc D whose boundary ∂D ⊂ Λ f ∪ 0 is a 2-gon made of the union of two smooth curves e 1 and e 2 joining a and b, e 1 and e 2 are respectively contained in the Lagrangian submanifolds Λ f and 0. Denote by θ the Liouville one form and by ω = dθ the canonical symplectic form on T * M. Then, by the Stokes formula 4 Λ f is the graph of df whereas the zero section is the graph of 0.

d x f ) : x ∈ M} ⊂ T * M and 0 ⊂ T * M 4 . Given (a, b) in Crit(f )
D ω = ∂D θ = e 1 df = f (a) -f (b),
where we choose e 1 to be oriented from b to a. Hence, the exponents in the asymptotic formula of Theorem 2.6 can be interpreted as the symplectic area of the disc D defined by Λ f and the zero section of T * M 5 . In the semiclassical terminology of [42, §15], this quantity is controlled by the Agmon distance associated with the potential d x f 2 g * (x) . Yet, it does not seem to have an interpretation as the action along some Hamiltonian trajectory.

A similar geometric interpretation holds in the case of Theorem 2.7 and the picture goes as follows. We consider a triangle (3-gon) T inside T * M with vertices (v 12 , v 23 , v 31 ) ∈ (T * M) 3 whose projection on M are equal to (a 12 , a 23 , a 31 ). The edges (e 1 , e 2 , e 3 ) are contained in the three Lagrangian submanifolds Λ f 1 , Λ f 2 and Λ f 3 . To go from v 23 to v 12 , we follow some smooth curve e 2 in Λ f 2 , from v 31 to v 23 follow some line e 3 in Λ f 3 and from v 12 to v 31 , we follow some line e 1 in Λ f 1 . These three lines define the triangle T and we can compute

T θ = 3 j=1 e j df j = -f 1 (a 12 ) + f 1 (a 31 ) -f 2 (a 23 ) + f 2 (a 12 ) -f 3 (a 31 ) + f 3 (a 23 ),
which is (up to the sign) the term appearing in the exponential factor of Theorem 2.7. Note that the triangle T does not necessarily bound a disk. 2.6. Convergence of the Witten Laplacian to the gradient vector field. The key observation to prove our different results is the following exact relation [29, equation (3.6)]: [START_REF] Bismut | Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle[END_REF] e

f h W f,h e -f h = L V f + h∆ g 2 ,
where L V f is the Lie derivative along the gradient vector field and ∆ g = dd * + d * d ≥ 0 is the Laplace Beltrami operator. Indeed, one has [29, equations (3.4), (3.5)] : [START_REF] Bismut | Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle[END_REF] thanks to the Cartan formula. Hence, the rough idea is to prove that the spectrum of the Witten Laplacian converges to the spectrum of the Lie derivative, provided that it makes sense. This kind of strategy was used by Frenkel, Losev and Nekrasov [START_REF] Frenkel | Instantons beyond topological theory. I[END_REF] to compute the spectrum of L V f in the case of the height function on the canonical 2-sphere. However, their strategy is completely different from ours. Frenkel, Losev and Nekrasov computed explicitely the spectrum of the Witten Laplacian and show how to take the limit as h → 0 + . Here, we will instead compute the spectrum of the limit operator explicitely and show without explicit computations why the spectrum of the Witten Laplacian should converge to the limit spectrum. In particular, our proof makes no explicit use of the classical results of Helffer and Sjöstrand on the Witten Laplacian [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF].

e f h W f,h e -f h = h 2 e f h d f,h + d * f,h 2 e -f h = h 2 d + d * 2f,h 2 = h 2 dd * 2f,h + d * 2f,h d , which yields
Our first step will be to define an appropriate functional framework where one can study the spectrum of L V f + h∆g 2 for 0 ≤ h ≤ h 0 . Recall that, following the microlocal strategy of Faure and Sjöstrand for the study of the analytical properties of hyperbolic dynamical 5 Hence the name disc instantons. systems [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF], we constructed in [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] some families of anisotropic Sobolev spaces H m Λ (M) indexed by a parameter Λ > 0 and such that :

-L V f : H m Λ (M) → H m Λ (M)
has discrete spectrum on the half plane {Re(z) > -Λ}. This spectrum is intrinsic and it turns out to be the correlation spectrum appearing in Theorem 5.1. For an Anosov vector field V , Dyatlov and Zworski proved that the correlation spectrum is in fact the limit of the spectrum of an operator of the form L V + h∆g 2 [START_REF] Dyatlov | Stochastic stability of Pollicott-Ruelle resonances[END_REF] -see also [START_REF] Blank | Ruelle-Perron-Frobenius spectrum for Anosov maps[END_REF][START_REF] Faure | Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances[END_REF][START_REF] Zworski | Scattering resonances as viscosity limits, to appear in[END_REF][START_REF] Drouot | Pollicott-Ruelle resonances via kinetic Brownian motion[END_REF] for related questions. We will thus show how to adapt the strategy of Dyatlov and Zworski to our framework. It means that we will prove that the family of operators

H h := -L V f - h∆ g 2 h∈[0,+∞)
has nice spectral properties on the anisotropic Sobolev spaces H m Λ (M) constructed in [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF]. This will be the object of section 3. Once these properties will be established, we will verify in which sense the spectrum of H h converges to the spectrum of H 0 in the semiclassical limit h → 0 + -see section 4 for details. In [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF], we computed explicitely the spectrum of H 0 on these anisotropic Sobolev spaces. Under some (generic) smooth linearization properties, we obtained an explicit description of the eigenvalues and a rather explicit description of the generalized eigenmodes. Here, we generalize the results of [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] by relaxing these smoothness assumptions and by computing the spectrum under the more general assumptions of Theorem 2.1. For that purpose, we will make crucial use of some earlier results of Baladi and Tsujii on hyperbolic diffeomorphisms [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF] in order to compute the eigenvalues. Compared to [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF], we will however get a somewhat less precise description of the corresponding eigenmodes. This will be achieved in section 5. Then, in section 6, we combine these results to prove Theorems 2.1 to 2.6. In section 7, we describe the wavefront set of the generalized eigenmodes and we show how to use this information to prove Theorem 2.7. Finally, in section 8, we briefly compare our quasimodes with the ones appearing in [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF].

The article ends with two appendices. Appendix A shows how to prove the holomorphic extension of the dynamical Ruelle determinant in our framework. Appendix B contains the proof of a technical lemma needed for our analysis of wavefront sets.

2.7.

Conventions. In all this article, ϕ t f is a Morse-Smale gradient flow which is C 1linearizable acting on a smooth, compact, oriented and boundaryless manifold of dimension n ≥ 1.
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Anisotropic Sobolev spaces and Pollicott-Ruelle spectrum

In [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces[END_REF], we have shown how one can build a proper spectral theory for the operator -L V f . In other words, we constructed some anisotropic Sobolev spaces of currents on which we could prove that the spectrum of -L V f is discrete in a certain half-plane Re(z) > -C 0 . The corresponding discrete eigenvalues are intrinsic and are the so-called Pollicott-Ruelle resonances. Our construction was based on a microlocal approach that was initiated by Faure and Sjöstrand in the framework of Anosov flows [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF] and further developped by Dyatlov and Zworski in [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF]. As was already explained in paragraph 2.6, we will try to relate the spectrum of the Witten Laplacian to the spectrum of -L V f by the use of the relation [START_REF] Bismut | Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle[END_REF]. Hence, our first step will be to show that our construction from [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] can be adapted to fit (in a uniform manner) with the operator :

H h := -L V f - h∆ g 2 .
Note that we changed the sign so that ϕ -t * f will correspond to the propagator in positive times of H 0 . In the case of Anosov flows, this perturbation argument was introduced by Dyatlov and Zworski in [START_REF] Dyatlov | Stochastic stability of Pollicott-Ruelle resonances[END_REF]. As their spectral construction is slightly different from the one of Faure and Sjöstrand in [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF] and as our proof of the meromorphic extension of Ĉψ 1 ,ψ 2 in [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] is closer to [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF] than to [START_REF] Dyatlov | Stochastic stability of Pollicott-Ruelle resonances[END_REF], we need to slightly revisit some of the arguments given in [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] to fit the framework of [START_REF] Dyatlov | Stochastic stability of Pollicott-Ruelle resonances[END_REF]. This is the purpose of this section where we will recall the definition of anisotropic Sobolev spaces and of the corresponding Pollicott-Ruelle resonances. More precisely, among other useful things, we will prove Proposition 3.1. There exists some constant C 0 > 0 such that, for every 0 ≤ h ≤ 1, the Schwartz kernel of ( H hz) -1 is holomorphic on Re(z) > C 0 . Moreover, it has a meromorphic extension from Re(z) > C 0 to C whose poles coincide with the Witten eigenvalues for h > 0.

The poles of this meromorphic extension are called the resonances of the operator H h and, for h = 0, they are called Pollicott-Ruelle resonances.

3.1. Anisotropic Sobolev spaces. In [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces[END_REF], one of the key difficulty is the construction of an order function adapted to the Morse-Smale dynamics induced by the flow ϕ t f . Before defining our anisotropic Sobolev spaces, we recall some of the properties proved in that reference and we also recall along the way some properties of Morse-Smale gradient flows. We refer to [START_REF] Weber | The Morse-Witten complex via dynamical systems[END_REF] for a detailed introduction on that topic.

3.1.1. Stable and unstable manifolds. Similarly to the unstable manifold W u (a), we can define, for every a ∈ Crit(f ),

W s (a) := x ∈ M : lim t→+∞ ϕ t f (x) = a .
A remarkable property of gradient flows is that, given any x in M, there exists an unique (a, b) in Crit(f ) 2 such that f (a) ≤ f (b) and

x ∈ W u (a) ∩ W s (b).
Equivalently, the unstable manifolds form a partition of M. It is known from the works of Smale [START_REF] Smale | Morse inequalities for a dynamical system[END_REF] that these submanifolds are embedded inside M [59, p. 134] and that their dimension is equal to nr(a) where r(a) is the Morse index of a. The Smale transversality assumption is the requirement that, given any x in M, one has

T x M = T x W u (a) + T x W s (b).
Equivalently, it says that the intersection of

Γ + = Γ + (V f ) := a∈Crit(f ) N * (W s (a)) and Γ -= Γ -(V f ) := a∈Crit(f ) N * (W u (a))
is empty, where N * (W) ⊂ T * M\0 denotes the conormal of the manifold W. In the proofs of section 3, an important role is played by the Hamiltonian vector field generated by

H f (x; ξ) := ξ(V f (x)).
Recall that the corresponding Hamiltonian flow can be written

Φ t f (x; ξ) := ϕ t f (x), (dϕ t (x) T ) -1
ξ , and that it induces a flow on the unit cotangent bundle S * M by setting

Φt f (x; ξ) := ϕ t f (x), (dϕ t (x) T ) -1 ξ (dϕ t (x) T ) -1 ξ g * •ϕ t (x)
.

The corresponding vector field are denoted by X H f and XH f .

3.1.2. Escape function. In all this paragraph, V f satisfies the assumption of Theorem 2.1. We recall the following result [28, Lemma 2.1]:

Lemma 3.2. Let V u and V s be small open neighborhoods of Γ + ∩ S * M and Γ -∩ S * M respectively, and let ǫ > 0. Then, there exist

W u ⊂ V u and W s ⊂ V s , m in C ∞ (S * M, [0, 1]), η > 0 such that XH f . m ≥ 0 on S * M, XH f . m ≥ η > 0 on S * M -(W u ∪W s ), m(x; ξ) > 1-ǫ for (x; ξ) ∈ W s and m(x; ξ) < ǫ for (x; ξ) ∈ W u .
This Lemma was proved by Faure and Sjöstrand in [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF] in the case of Anosov flows and its extension to gradient flows require some results on the Hamiltonian dynamics that were obtained in [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF]Sect. 3] -see also [START_REF] Dang | Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces[END_REF]Sect. 4] in the more general framework of Morse-Smale flows.

As we have a function m(x; ξ) defined on S * M, we introduce a smooth function m defined on T * M which satisfies

m(x; ξ) = N 1 m x, ξ ξ x -N 0 1 -m x, ξ ξ x , for ξ x ≥ 1, and m(x; ξ) = 0, for ξ x ≤ 1 2 .
We set the order function of our escape function to be

m N 0 ,N 1 (x; ξ) = -f (x) + m(x; ξ).
It was shown in [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF]Lemma 4.1] that it satisfies the following properties (for V u , V s and ǫ > 0 small enough 6 ):

Lemma 3.3 (Escape function). Let s ∈ R and N 0 , N 1 > 4( f C 0 + |s|) be two elements in R.
Then, there exist c 0 > 0 (depending on (M, g) but not on s, N 0 and N 1 ) such that

m N 0 ,N 1 (x; ξ) + s • takes values in [-2N 0 , 2N 1 ], • is 0 homogeneous for ξ x ≥ 1, • is ≤ -N 0 2 on a conic neighborhood of Γ -(for ξ x ≥ 1), • is ≥ N 1
2 on a conic neighborhood of Γ + (for ξ x ≥ 1), and such that there exists R 0 > 0 for which the escape function

G s N 0 ,N 1 (x; ξ) := (m N 0 ,N 1 (x; ξ) + s) log(1 + ξ 2 x ) verifies, for every (x; ξ) in T * M with ξ x ≥ R 0 , X H f .(G s N 0 ,N 1 )(x; ξ) ≤ -C N := -c 0 min{N 0 , N 1 }. 3.1.3.
The order function. We can now define our anisotropic Sobolev space in the terminology of [START_REF] Faure | Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances[END_REF][START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]. First of all, such spaces require the existence of an order function m N 0 ,N 1 (x; ξ) in C ∞ (T * M) with bounded derivatives which is adapted to the dynamics of ϕ t f . Once we are given an escape function by Lemma 3.3, we set

A N 0 ,N 1 (x; ξ) := exp G 0 N 0 ,N 1 (x; ξ), where G 0 N 0 ,N 1 (x; ξ) := m N 0 ,N 1 (x; ξ) ln(1 + ξ 2
x ) belongs to the class of symbols S ǫ (T * M) for every ǫ > 0. We shall denote this property by G 0 N 0 ,N 1 ∈ S +0 (T * M). We emphasize that the construction below will require to deal with symbols of variable order m N 0 ,N 1 whose pseudodifferential calculus was described in [START_REF] Faure | Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances[END_REF]Appendix].

Anisotropic Sobolev currents.

Let us now define the spaces we shall work with. Let 0 ≤ k ≤ n. We consider the vector bundle Λ k (T * M) → M of exterior k forms. We define

A (k) N 0 ,N 1 (x; ξ) := A N 0 ,N 1 (x; ξ)Id which belongs to Γ(T * M, End(Λ k (T * M))) which is the product of the weight A N 0 ,N 1 ∈ C ∞ (T * M) with the canonical identity section Id of the endomorphism bundle End(Λ k (T * M)) → M. We fix the canonical inner product , (k) g * on Λ k (T * M)
induced by the metric g on M. This allows to define the Hilbert space L 2 (M, Λ k (T * M)) and to introduce an anisotropic Sobolev space of currents by setting

H m N 0 ,N 1 k (M) = Op(A (k) N 0 ,N 1 ) -1 L 2 (M, Λ k (T * M)), 6 In particular, V u ∩ V s = ∅.
where Op(A (k) N 0 ,N 1 ) is a formally selfadjoint pseudodifferential operator with principal symbol A (k) m . We refer to [23, App. C.1] for a brief reminder of pseudodifferential operators with values in vector bundles -see also [START_REF] Bertin | Introduction to Hodge Theory[END_REF]. In particular, adapting the proof of [START_REF] Faure | Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances[END_REF]Cor. 4] to the vector bundle valued framework, one can verify that A (k) N 0 ,N 1 is an elliptic symbol, and thus Op(A (k) N 0 ,N 1 ) can be chosen to be invertible and, up to the addition of a smoothing operator, Op(A

(k) N 0 ,N 1 ) -1 is equal to Op((A (k) N 0 ,N 1 ) -1 (1 + q)), where q ∈ S -1+0 (T * M, Λ k (T * M)).
Mimicking the proofs of [START_REF] Faure | Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances[END_REF], we can deduce some properties of these spaces of currents. First of all, they are endowed with a Hilbert structure inherited from the L 2 -structure on M. The space

H m N 0 ,N 1 k (M) ′ = Op(A (k) N 0 ,N 1 )L 2 (M, Λ k (T * M)) is the topological dual of H m N 0 ,N 1 k (M). We also note that the space H m N 0 ,N 1 k (M) can be identified with H m N 0 ,N 1 0 (M) ⊗ C ∞ (M ) Ω k (M). Finally, one has Ω k (M) ⊂ H m N 0 ,N 1 k (M) ⊂ D ′,k (M),
where the injections are continuous. 

k : Λ k (T * M) → Λ n-k (T * M) such that, for every ψ 1 in Ω k (M) and ψ 2 in Ω n-k (M), M ψ 1 ∧ ψ 2 = M ψ 1 , ⋆ -1 k ψ 2 (k) g * (x) ω g (x),
where ., .

g * (x) is the induced Riemannian metric on Λ k (T * M) and where ω g is the Riemannian volume form. In particular, ⋆ k induces an isomorphism from H

m N 0 ,N 1 k (M) ′ to H -m N 0 ,N 1 n-k (M)
, whose Hilbert structure is given by the scalar product

(ψ 1 , ψ 2 ) ∈ H -m N 0 ,N 1 n-k (M) 2 → ⋆ -1 k ψ 1 , ⋆ -1 k ψ 2 H m k (M ) ′ . Thus, the topological dual of H m N 0 ,N 1 k (M) can be identified with H -m N 0 ,N 1 n-k (M)
, where, for every ψ 1 in Ω k (M) and ψ 2 in Ω n-k (M), one has the following duality relation:

ψ 1 , ψ 2 H m k ×H -m n-k = M ψ 1 ∧ ψ 2 = Op(A (k) N 0 ,N 1 )ψ 1 , Op(A (k) N 0 ,N 1 ) -1 ⋆ -1 k ψ 2 L 2 = ψ 1 , ⋆ -1 k ψ 2 H m k ×(H m k ) ′ . 3.2.
Pollicott-Ruelle resonances. Now that we have defined the appropriate spaces, we have to explain the spectral properties of

H h := -L V f -h∆g 2 acting on H m N 0 ,N 1 k (M).
Following Faure and Sjöstrand in [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF], we introduce the following conjugation of the operator i H h : ( 7)

P h = A N H h A -1 N ,
where we use the notation A N instead of Op(A (k) N 0 ,N 1 ) for simplicity. Similarly, we will often write G 0 N instead of G 0 N 0 ,N 1 , etc. For similar reasons, we also omit the dependence in k. In any case, the spectral properties of H h acting on the anisotropic Sobolev space H m N 0 ,N 1 k (M) are the same as those of the operator P h acting on the simpler Hilbert space L 2 (M, Λ k (T * M)). We will now apply the strategy of Faure and Sjöstrand in order to derive some spectral properties of the above operators. Along the way, we keep track of the dependence in h which is needed to apply the arguments from Dyatlov and Zworski [START_REF] Dyatlov | Stochastic stability of Pollicott-Ruelle resonances[END_REF] on the convergence of the spectrum. In all this section, we follow closely the proofs from [28, Sect. 3] and we emphasize the differences.

3.2.1.

The conjugation argument. The first step in Faure-Sjöstrand's proof consists in computing the symbol of the operator P h . Starting from this operator, we separate it in two terms

P h = -A N L V f A -1 N := Q 1 , hyperbolic part -h A N ∆ g 2 A -1 N :=h Q 2 , elliptic perturbation
which we will treat separately for the sake of simplicity. The key ingredient of [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF] is the following lemma [28, Lemma 3.2]:

Lemma 3.4. The operator Q 1 + L V f is a pseudodifferential operator in Ψ +0 (M, Λ k (T * M))
whose symbol in any given system of coordinates is of the form7 

(X H f .G 0 N )(x; ξ)Id + O(S 0 ) + O m (S -1+0
), where X H f is the Hamiltonian vector field generating the characteristic flow of L V f in T * M whose definition is recalled in paragrap 3.1.1. The operator Q 2 is a pseudodifferential operator in Ψ 2 (M, Λ k (T * M)) whose symbol in any given system of coordinates is of the form

- ξ 2 g * (x) 2 Id + O m (S 1+0 ).
Note that, compared to [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF], we study H h rather than i H h . In this Lemma, the notation O(.) means that the remainder is independent of the order function m N 0 ,N 1 , while the notation O m (.) means that it depends on m N 0 ,N 1 . As all the principal symbols are proportional to Id Λ k (T * M ) , the proof of [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF] can be adapted almost verbatim to encompass the case of a general vector bundle and of the term corresponding to the Laplace-Beltrami operator. Hence, we shall omit it and refer to this reference for a detailed proof. Recall that more general symbols with values in Λ k (T * M) do not commute and the composition formula does not work as in the scalar case for more general symbols.

In particular, this Lemma says that Q 1 is an element in Ψ 1 (M, Λ k (T * M)). We can consider that it acts on the domain Ω k (M) which is dense in L 2 (M, Λ k (T * M)). In particular, according to [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]Lemma A.1], it has a unique closed extension as an unbounded operator on L 2 (M, Λ k (T * M)). For Q 2 , this property comes from the fact that the symbol is elliptic [START_REF] Wong | An introduction to pseudo-differential operators[END_REF]Chapter 13 p. 125]. In other words, for h > 0, the domain of P h is the domain of Q 2 (namely H 2 (M, Λ k T * M)), while it is given by the domain of Q 1 for h = 0. The same properties also hold for the adjoint operator.

3.2.2.

The adjoint part of the operator and its symbol. We now verify that this operator has a discrete spectrum in a certain half-plane in C. Following [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF], this will be done by arguments from analytic Fredholm theory. Compared to that reference, note that one aspect of the proof is simpler as, in the Anosov case, the escape function does not decay in the flow direction and one has to use the ellipticity of the symbol in that direction. Here, the escape function decays everywhere. Hence this extra difficulty does not appear. Recall that the strategy from [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF] consists in studying the properties of the adjoint part of the operator ( 8)

P Re (h) := 1 2 P * h + P h = 1 2 Q * 1 + Q 1 + h 2 Q * 2 + Q 2 ,
whose symbol (for every h > 0) is, according to Lemma 3.4, given in any given system of coordinates by

P Re (x; ξ) = X H f .G 0 N (x; ξ)Id + O(S 0 ) + O m (S -1+0 ) -h ξ 2 x 2 + O m (S 1+0 ) ,
where the first three terms correspond to the contribution of Q 1 and the last two terms to the contribution of Q 2 . Here the remainder O(S 0 ) comes from Lemma 3.4 and more precisely from the subprincipal symbol of -L V f in our choice of quantization. We already note that, according to Lemma 3.3, there exists some constant C > 0 independent of m N 0 ,N 1 such that, in the sense of quadratic forms, ( 9)

X H f .G 0 N (x; ξ)Id ≤ (-C N + C)Id + O m (S -1+0
), where C N is the constant defined by Lemma 3.3.

We can now follow the proof of [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]. First of all, arguing as in [28, Lemma 3.3], we can show that P h has empty spectrum for Re(z) > C 0 , where C 0 is some positive constant that may depend on m but which can be made uniform in terms of h ∈ [0, 1). In other words, the resolvent

P h -z -1 : L 2 (M, Λ k (T * M)) → L 2 (M, Λ k (T * M))
defines a bounded operator for Im(z) > C 0 . In particular, this shows the first part of Proposition 3.1. Now, we will show how to extend it meromorphically to some half-plane

z : Re(z) ≥ C -C N 2 ,
for any choice of N 0 , N 1 large enough.

3.2.3.

From resolvent to the semigroup. Before doing that, we already note that the proof of [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]Lemma 3.3] implicitely shows that, for every z in C satisfying Re(z) > C 0 , one has (10)

P 0 -z -1 L 2 (M,Λ k (T * M ))→L 2 (M,Λ k (T * M )) ≤ 1 Re(z) -C 0 ,
which will allow to relate the spectrum of the generator to the spectrum of the corresponding semigroup ϕ -t * f . In particular, combining this observation with [26, Cor. 3.6, p.76], we know that, for t ≥ 0

ϕ -t * f : H m N 0 ,N 1 k (M) → H m N 0 ,N 1 k
(M) generates a strongly continuous semigroup whose norm verifies [START_REF] Brouder | Continuity of the fundamental operations on distributions having a specified wave front set[END_REF] ∀t ≥ 0,

ϕ -t * f H m N 0 ,N 1 k (M )→H m N 0 ,N 1 k (M ) ≤ e tC 0 .
3.2.4. Resolvent construction and meromorphic continuation. We fix some large integer L > dim(M)/2 to ensure that the operator (1 + ∆ g ) -L is trace class. As a first step towards our proof of the meromorphic continuation, we show the following Lemma:

Lemma 3.5. There exists some R > 0 such that, if we set

χ R := -R(1 + ∆ g ) -L , then P h + χ R -z -1 : L 2 (M, Λ k (T * M)) → L 2 (M, Λ k (T * M))
defines a bounded operator for Re(z) > C-C N 2 and its operator norm satisfies the estimate

P h + χ R -z -1 L 2 →L 2 ≤ 1 Re(z) -(C -C N )/2 .
At this point of our argument, the fact that the operators are trace class is not that important but it will be useful later on when we will consider determinants.

Proof. For every u in C ∞ (M) and for every 0 ≤ h ≤ 1, we combine ( 8) and ( 9) with the Sharp Gårding inequality. This yields:

Re P h u, u ≤ (C -C N ) u 2 L 2 + C m u 2 H -1 4 - h 2 u 2 H 1 + C m u 2 H 3 4
.

Hence, one gets

Re

P h + C N -C u, u ≤ - h 2 u 2 H 1 + C m u H -1 4 + h u 2 H 3 4
. Now, observe that, for every ǫ > 0, there exists some constant C ǫ > 0 such that

u 2 H -1 4 ≤ ǫ u 2 L 2 + C ǫ u 2 H -2L
and u 2

H 3 4 ≤ ǫ u 2 H 1 + C ǫ u 2 H -2L . Taking 0 < C m ǫ < min{1/2, (C N -C)/2}, one obtains Re P h + C N -C 2 u, u ≤ C m C ǫ u H -2L . For R = C m C ǫ , let us now set χ R := -R(1 + ∆ g ) -L ,
and we find

(12) Re P h + C N -C 2 u, u ≤ -Re χ R u, u .
We can now argue like in [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]Lemma 3.3] to conclude that

P h + χ R -z is invertible for Re(z) > C-C N 2 . In fact, set δ = Re(z) -C-C N 2
in order to get

Re P h + χ R -z u, u ≤ -δ u 2 .
Applying the Cauchy-Schwarz inequality, we find that

P h + χ R -z u u ≥ Re P h + χ R -z u, u ≥ δ u 2 .
This implies that P h + χ Rz is injective. We can argue similarly for the adjoint operator and obtain that

P * h + χ R -z u u ≥ δ u 2 ,
from which we can infer that P h + χ Rz is surjective [10, Th. II.19]. Hence, we can conclude that

P h + χ R -z -1 : L 2 (M, Λ k (T * M)) → L 2 (M, Λ k (T * M))
defines a bounded operator for Re(z) > C-C N 2 and that its operator norm satisfies the estimate

P h + χ R -z -1 L 2 →L 2 ≤ 1 Re(z) -C-C N 2 .
We now write the following identity: 

(13) Re(z) > C -C N 2 =⇒ P h -z = Id -χ R (P h + χ R -z) -1 P h + χ R -z . Note that χ R ∈ Ψ -2L (M)
χ R P h + χ R -z -1
is trace-class for every h 0 as composition of a trace class operator and a bounded one. Moreover, it depends holomorphically on z in the domain {Re(z) > -C N -C 2 } implying that P hz is a holomorphic family of Fredholm operators for z in the same domain. Finally, we can apply arguments from analytic Fredholm theory to P hz [63, Th. D.4 p. 418] which yields the analytic continuation of ( P hz) -1 as a meromorphic family of Fredholm operators for z ∈ {Re(z) > C-C N 3 }. Arguing as in [28, Lemma 3.5], we can conclude that P h has discrete spectrum with finite multiplicity on Re(z) > C-C N 2 . To summarize, one has Lemma 3.6. The operator

( P h -z) -1 : L 2 (M, Λ k (T * M)) → L 2 (M, Λ k (T * M)) has a meromorphic continuation from Re(z) > C 0 to Re(z) > C-C N 2 .
Since P h is conjugated to H h , the above discussion implies that H h has a discrete spectrum with finite multiplicity on Re(z) > C-C N 2 as an operator acting on H m N 0 ,N 1 k (M). In particular, this shows the meromorphic continuation of the Schwartz kernel (in the sense of distributions in

D ′ (M × M)) of ( H h -z) -1 from Re(z) > C 0 to Re(z) > C-C N 2
-see [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]Sect. 4] for more details. In the case h > 0, the poles of this meromorphic continuation are exactly the Witten eigenvalues. In particular, they are of the form 0 ≥ -λ

(k) 1 (h) ≥ -λ (k) 2 (h) ≥ . . . ≥ -λ (k) j (h) → -∞ as j → +∞.
Our next step will be to show that this Witten spectrum indeed converges to the Pollicott-Ruelle spectrum.

3.2.5. Convention. In the following, we shall denote this intrinsic discrete spectrum by R k (h). They correspond to the eigenvalues of H h acting on an appropriate Sobolev space of currents of degree k. When h > 0, these are the Witten eigenvalues (up to a factor -1) while, for h = 0, they represent the correlation spectrum of the gradient flow, which is often referred as the Pollicott-Ruelle spectrum. Given z 0 in R k (0), we will denote by π (k) z 0 the spectral projector associated with the eigenvalue z 0 which can be viewed as linear map from Ω k (M) to D ′k (M) with finite rank. Recall from [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]Sect. 4] that this operator is intrinsic.

3.2.6. Boundedness on standard Sobolev spaces. Denote by H s (M, Λ k (T * M)) the standard Sobolev space of index s > 0, i.e.

H s (M, Λ k (T * M)) := (1 + ∆ (k) g ) -s 2 L 2 (M, Λ k (T * M)).
The above construction shows that

P h + χ R -z -1 : L 2 (M, Λ k (T * M)) → L 2 (M, Λ k (T * M))
defines a bounded operator for Re(z) > C-C N 2 which depends holomorphically on z. For the sequel, we will in fact need something slightly stronger: Lemma 3.7. Let s 0 > 0 and let N 0 , N 1 such that N 0 , N 1 > 4( f C 0 + s 0 ). Then, there exists R > 0 such that, for every z satisfying Re(z) > -C N -C 2 and for every s ∈ [-s 0 , s 0 ], the resolvent :

(14) (P h + χ R -z) -1 exists as a holomorphic function of z ∈ {Re(z) > -(C N -C) 2 } valued in bounded operator from H 2s (M, Λ k (T * M)) → H 2s (M, Λ k (T * M)).
Moreover, one has, for every 0 ≤ h ≤ 1,

P h + χ R -z -1 H 2s →H 2s ≤ 1 Re(z) + (C N -C) 2 .
The argument is the same as before except that the order function has to be replaced by m N 0 ,N 1 + s, and a direct inspection of the proof allows to verify that all the constants can be made uniform for s in some fixed interval s ∈ [-s 0 , s 0 ].

3.3.

Pollicott-Ruelle resonances as zeros of a Fredholm determinant. From expression (13), we know that, for Re(z) > C-C N 3 , z belongs to the spectrum of P h if and only if the operator Id + χ R (P hχ Rz) -1 is not invertible. As we have shown that

χ R P h + χ R -z -1 is a trace class operator on L 2 (M, Λ k (T * M)), this is equivalent to saying that z is a zero of the Fredholm determinant [24, Prop. B.25] D m N 0 ,N 1 (h, z) := det L 2 Id -χ R P h + χ R -z -1 .
Moreover, the multiplicity of z as an eigenvalue of P h coincides with the multiplicity of z as a zero of D m (h, z) [24, Prop. B.29].

From the Witten spectrum to the Pollicott-Ruelle spectrum

Now that we have recalled the precise notion of resonance spectrum for the limit operator -L V f , we would like to explain how the Witten spectrum converges to the resonance spectrum of the Lie derivative. This will be achieved by an argument due to Dyatlov and Zworski [START_REF] Dyatlov | Stochastic stability of Pollicott-Ruelle resonances[END_REF] in the context of Anosov flows -see also [START_REF] Zworski | Scattering resonances as viscosity limits, to appear in[END_REF]. In this section, we briefly recall their proof adapted to our framework. Remark 4.1. In [START_REF] Dyatlov | Stochastic stability of Pollicott-Ruelle resonances[END_REF], Dyatlov and Zworski prove something slightly stronger as they obtain smoothness in h. Here, we are aiming at something simpler and we shall not prove smoothness which would require some more work that would be beyond the scope of the present article -see [START_REF] Dyatlov | Stochastic stability of Pollicott-Ruelle resonances[END_REF] for details in the Anosov case. 4.1. Convergence of the eigenvalues. We fix N 0 , N 1 , s 0 > 2 and R as in the statement of Lemma 3.7. Using the conventions of this paragraph, we start by studying the regularity of the operator

h ∈ [0, 1] → K m (h) := χ R P h + χ R -z -1 . Recall that K m (h) is a holomorphic map on {Re(z) > (C -C N )/3}
with values in the space of trace class operators on L 2 . For h, h ′ ∈ [0, 1], we now write

P h + χ R -z -P h ′ + χ R -z = (h -h ′ ) Q 2 : H 2 → L 2
where we recall that

Q 2 = -A N ∆ g 2 A -1 N .
Applying Lemma 3.7 with s 0 > 2, we can compose with the two resolvents and get ( 15)

P h + χ R -z -1 -P h ′ + χ R -z -1 h -h ′ = -P h + χ R -z -1 Q 2 P h ′ + χ R -z -1
.

Still from Lemma 3.7 with s 0 > 2, we find that ( 15) is bounded for Re(z) > C-C N 3 and uniformly for h ∈ [0, 1] as an operator from L 2 to H -2 . Hence, we have verified that

h → P h + χ R -z -1
defines a Lipschitz (thus continuous) map in h with values in the set Hol({Re(z) >

C-C N 3 }, B(L 2 , H -2 )) of holomorphic functions in z valued in the Banach space B(L 2 , H -2 ) of bounded operators from L 2 to H -2 . Recall now that χ R = -R(1 + ∆ g ) -L is trace class from H -2 to L 2 for L large enough (precisely 8 L > dim(M)/2 + 1). Denote by L 1 (H -2 (M), L 2 (M)) ⊂ B(H -2 (M), L 2 (M)
) the set of trace class operators acting on these spaces [START_REF] Dyatlov | Mathematical theory of scattering resonances[END_REF]Sect. B.4]. By continuity of the composition map (A,

B) ∈ L 1 (H -2 , L 2 ) × B(L 2 , H -2 ) → AB ∈ L 1 (L 2 , L 2 ) [24, Eq. (B.4.6)], the operator K m (h) = χ R trace class P h + χ R -z -1 Lipschitz in B(L 2 ,H -2 )
is the composition of a Lipschitz operator valued in Hol({Re(z)

> C-C N 3 }, B(L 2 , H -2 )) with the fixed trace class operator χ R ∈ L 1 . K m must therefore be a Lipschitz map in h ∈ [0, 1] valued in Hol({Re(z) > C-C N 3 }, L 1 (L 2 , L 2 )).
We have thus shown the following Lemma: Lemma 4.2. Let N 0 , N 1 > 4( f C 0 +2) and let R > 0 be as in the statement of Lemma 3.7 with s 0 = 2. Then, the map h → K m (h) is Lipschitz (hence continuous) from [0, 1] to the space of holomorphic functions on {Re(z) > (C -C N )/3} with values in the space of trace class operators on L 2 . Remark 4.3. Note that, for the sake of simplicity, we omitted the dependence in the degree k in that statement.

Let us now draw some consequences of this Lemma. From [24, Sect. B.5, p. 426], the determinant map

D m N 0 ,N 1 (h, ) : z ∈ Im(z) > C -C N 3 → det L 2 Id -χ R P h + χ R -z -1
8 This follows from the Weyl's law.

is holomorphic. Moreover, one knows from [START_REF] Dyatlov | Mathematical theory of scattering resonances[END_REF]Prop. B.26] that

D m N 0 ,N 1 (h, z) -D m N 0 ,N 1 (h ′ , z) ≤ K m (h, z) -K m (h ′ , z) Tr e 1+ Km(h,z) Tr + Km(h ′ ,z) Tr , which, combined with Lemma 4.2, implies that h → D m N 0 ,N 1 (h, .
) is a continuous map from [0, 1] to the space of holomorphic functions on Re(z) > C-C N

3

. Fix now z 0 an eigenvalue of P 0 lying in the half-plane Re(z) > C-C N 3 and having algebraic multiplicity m z 0 . This corresponds to a zero of multiplicity m z 0 of the determinant map D m N 0 ,N 1 (0, .) evaluated at h = 0. As the spectrum of P 0 is discrete with finite multiplicity on this half plane, we can find a small enough r 0 > 0 such that the closed disk centered at z 0 of radius r 0 contains only the eigenvalue z 0 . The map

h → D m N 0 ,N 1 (h, .) ∈ Hol({Re(z) > C-C N 3
}) being continuous, we know that, for every 0 < r 1 ≤ r 0 , for h ≥ 0 small enough (which depends on z 0 and on r 1 ) and for |z -

z 0 | = r 1 , |D m N 0 ,N 1 (h, z) -D m N 0 ,N 1 (0, z)| < min z ′ :|z ′ -λ 0 |=r 0 |D m N 0 ,N 1 (0, z ′ )| ≤ |D m N 0 ,N 1 (0, z)|.
Hence, from the Rouché Theorem and for h ≥ 0 small enough, the number of zeros counted with multiplicity of D m N 0 ,N 1 (h) lying on the disk {z : |zz 0 | ≤ r 1 } equals m z 0 . As, for h > 0, the Witten eigenvalues lie on the real axis, we have shown the following Theorem :

Theorem 4.4. Let 0 ≤ k ≤ n. Then, the set of Pollicott-Ruelle resonances R k = R k (0) of -L (k) V f is contained inside (-∞, 0]
. Moreover, given any z 0 in (-∞, 0], there exists r 0 > 0 such that, for every 0 < r 1 ≤ r 0 , for h > 0 small enough (depending on z 0 and r 1 ), the number of elements (counted with algebraic multiplicity) inside

R k (h) ∩ {z : |z -z 0 | ≤ r 1 }
is constant and equal to the algebraic multiplicity of z 0 as an eigenvalue of -L (k) V f . As expected, this Theorem shows that the Witten eigenvalues converge to the Pollicott-Ruelle resonances of -L V f . Yet, for the moment, it does not say anything on the precise values of Pollicott-Ruelle resonances and we shall come back to this question in Section 5.

4.2.

Convergence of the spectral projectors. Now we can prove the convergence of the spectral projectors of the Witten Laplacian to the operators π (k) z 0 that were defined in paragraph 3.2.5 as the spectral projectors of -L V f : Theorem 4.5. Let 0 ≤ k ≤ n and z 0 be an element 9 in R. Then, there exists r 0 > 0 such that, for every

(ψ 1 , ψ 2 ) ∈ Ω k (M) × Ω n-k (M), ∀0 < r 1 ≤ r 0 , lim h→0 + M 1 [z 0 -r 1 ,z 0 +r 1 ] -W (k) f,h e -f h ψ 1 ∧ e f h ψ 2 = M π (k) z 0 (ψ 1 ) ∧ ψ 2 .
In fact, the result also holds for any

(ψ 1 , ψ 2 ) in H m N 0 ,N 1 k (M) × H -m N 0 ,N 1 n-k (M) 9 For z 0 / ∈ R k , one has π (k) z0 = 0.
Together with Theorem 4.4, this Theorem shows that all the spectral data of the Witten Laplacian converge to the ones of -L V f . In particular, it concludes the proof of Theorem 2.4.

Proof. Using Theorem 4.4, it is enough to show the existence of r 0 and to prove convergence for r 1 = r 0 . As before, it is also enough to prove this result for the conjugated operators

P h = -A N L V f A -1 N -h A N ∆ g 2 A -1 N
acting on the standard Hilbert space L 2 (M, Λ k (T * M)). Fix z 0 in R and N 0 , N 1 large enough to ensure that Re(z 0 ) > C-C N

3

. The spectral projector 10 . associated with z 0 can be written [24, Th. C.6] :

Π (k) z 0 := 1 2iπ C(z 0 ,r 0 ) z -P 0 -1 dz
where C(z 0 , r 0 ) is a small circle of radius r 0 centered at z 0 such that z 0 is the only eigenvalue of P 0 inside the closed disk surrounded by C(z 0 , r 0 ). When z 0 is not an eigenvalue, we choose the disk small enough to ensure that there is no eigenvalues inside it. If we denote by m z 0 the algebraic multiplicity of z 0 (which is eventually 0 if z 0 ∈ R k ), then, for h small enough, the spectral projector associated to P h ,

Π (k) z 0 (h) := 1 2iπ C(z 0 ,r 0 ) z -P h -1 dz,
has rank m z 0 from Theorem 4.4. We can now argue as in [25, Prop. 5.3] and we will show that, for every ψ 1 in Ω k (M) and every ψ 2 in Ω n-k (M), ( 16) lim

h→0 + M Π (k) z 0 (h)(ψ 1 ) ∧ ψ 2 = M Π (k) z 0 (ψ 1 ) ∧ ψ 2 .
Once this equality will be proved, we will be able to conclude by recalling that the generalized eigenmodes are independent of the choice of the order function m N 0 ,N 1 used to define A N and by observing that

π (k) z 0 = -A -1 N Π (k) z 0 A N , and e f h 1 [z 0 -r 0 ,z 0 +r 0 ] -W (k) f,h e -f h = -A -1 N Π (k) z 0 (h) A N .
Hence, it remains to prove [START_REF] Dang | Equidistribution of the conormal cycle of random nodal sets[END_REF]. For that purpose, we use the conventions of Lemma 3.7 and write

( P h -z) -1 = ( P h + χ R -z) -1 + ( P h -z) -1 χ R ( P h + χ R -z) -1 .
By construction of the compact operator χ R , the family ( P h + χ Rz) -1 is holomorphic and has no poles in some neighborhood of z 0 as z 0 > C-C N

3

. Therefore, only the term

( P h -z) -1 χ R ( P h + χ R -z) -1 contributes to the contour integral defining the spectral projector Π (k) λ 0 (h): Π (k) z 0 (h) = -1 2iπ C(z 0 ,r 0 ) ( P h -z) -1 χ R ( P h + χ R -z) -1 dz.
From Theorem 4.4, we know that, for |zz 0 | = r 0 and for h small enough, the operator ( P hz) -1 is uniformly bounded as an operator in B (L 2 (M), L 2 (M)). Moreover, we have seen that the map

h ∈ [0, 1] → z → χ R ( P h + χ R -z) -1
is continuous (in fact Lipschitz) with values in the set Hol {Re(z)

> C-C N 3
}, L 1 of holomorphic functions with values in trace-class operators on L 2 . This implies that, for every

ψ 1 in L 2 (M, Λ k (T * M)), Π (k) z 0 (h)(ψ 1 ) = -1 2iπ C(z 0 ,r 0 ) ( P h -z) -1 χ R ( P 0 + χ R -z) -1 (ψ 1 )dz + o(1),
as h → 0 + . Then, we write

( P h -z) -1 χ R = ( P 0 -z) -1 χ R + h ( P h -z) -1 Q 2 ( P 0 -z) -1 χ R .
The term underbraced in factor of h being uniformly bounded as an operator from L 2 to L 2 for |zz 0 | = r 0 (as h → 0), we finally find that, for every

ψ 1 in L 2 (M, Λ k (T * M)), lim h→0 + Π (k) z 0 (h) -Π (k) z 0 (ψ 1 ) L 2 = 0,
which concludes the proof of (16).

4.3.

Properties of the semigroup. We would now like to relate the spectral properties of -L V f to the properties of the propagator ϕ -t * f = e -tL V f . To that aim, the classical approach is to prove some resolvent estimate and to use some contour integral to write the inverse Laplace transform. Here, we proceed slightly differently (due to the specific nature of our problem) and we rather study the spectral properties of the time one 11 map ϕ -1 * acting on the anisotropic Sobolev spaces that we have defined. More precisely, using the conventions of Section 3, one has:

Proposition 4.6. Let 0 ≤ k ≤ n. The operator ϕ -1 * f : H m N 0 ,N 1 k → H m N 0 ,N 1 k is a bounded operator whose essential spectral radius is ≤ e C-C N 2 . The eigenvalues λ of ϕ -1 * f with |λ| > e C-C N 2
are given by

e z 0 : z 0 ∈ R k = R k (0) and Re(z) > C -C N 2 .
11 The choice of time 1 is rather arbitrary and this is the only thing that will be needed in our analysis.

Moreover, the spectral projector of λ = e z 0 is given by the projector π (k) z 0 that was defined in paragraph 3.2.5.

Recall that π (k)

z 0 corresponds to the spectral projector of -L (k)

V f associated with the eigenvalue z 0 and that it is intrinsic (i.e. independent of the choice of the order function m N 0 ,N 1 ) as its Schwartz kernel corresponds to the residue at z 0 of the meromorphic continuation of the Schwartz kernel of (-L V fz) -1 -see also [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]Th. 1.5].

Proof. Rather than stuying the time one map of the flow, we will study the spectral properties of the hyperbolic diffeomorphism ϕ q := ϕ

-1 q f
for every fixed q ≥ 1. The reason for doing this is that we aim at relating the spectral data of ϕ -1 * f to the ones of the generator -L V f -see below.

In the rest of the proof, we verify that ϕ * q has discrete spectrum, with arguments similar to those used for the generator. More precisely, we follow the arguments of [27, Th. 1] applied to the hyperbolic diffeomorphism ϕ q . Precisely, following this reference, we can verify that the order function m N 0 ,N 1 from Lemma 3.2 satisfies the assumptions of [27, Lemma 2]. Then, following almost verbatim [27, section 3.2], we can deduce that the transfer operator

ϕ * q : ψ ∈ H m N 0 ,N 1 k (M) → ϕ -1 q * f ψ ∈ H m N 0 ,N 1 k (M)
defines a bounded operator on the anisotropic space H m N 0 ,N 1 k (M) which can be decomposed as [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] ϕ * q = rm,q + ĉm,q , where ĉm,q is a compact operator and the remainder rm,q has small operator norm bounded as : rm,q ≤ e C-C N q 2 (for some uniform C that may be slightly larger than before). Taking q = 1, this shows the first part of the Proposition.

Note that, for every q ∈ N, we can make rm,q arbitrarily small by choosing N large enough. Again, we can verify that the discrete spectrum is intrinsic, i.e. independent of the choice of order function. This is because the eigenvalues and associated spectral projectors correspond to the poles and residues of a discrete resolvent defined as an operator from Ω k (M) to D ′,k (M) as follows. Consider the series +∞ l=0 e -lz ϕ l * q . Then, by the direct bound :

+∞ l=0 e -lz ϕ l * q ψ H m N 0 ,N 1 k (M ) +∞ l=0 e -lRe(z) ϕ * q l ψ H m N 0 ,N 1 k (M ) ,
we deduce that, for Re(z) large enough, the series +∞ l=0 e -lz ϕ l * q ψ converges absolutely in H

m N 0 ,N 1 k (M) for every test form ψ ∈ Ω k (M). Hence, by the continuous injections Ω k (M) ֒→ H m N 0 ,N 1 k (M) ֒→ D ′,k (M), the identity (Id -e -z ϕ * q ) -1 := +∞ l=0 e -lz ϕ l * q : Ω k (M) → D ′,k (M)
holds true for Re(z) large enough. A consequence of the decomposition [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] is that the resolvent of ϕ * q (λϕ * q ) -1 : Ω k (M) → D ′,k (M) has a meromorphic extension from |λ| > e C 0 to λ ∈ C with poles of finite multiplicity which correspond to the eigenvalues of the operator ϕ * q [27, Corollary 1]. In other words, (Ide -z ϕ * q ) -1 : Ω k (M) → D ′,k (M) has a meromorphic extension from Re(z) > C 0 (with C 0 > 0 large enough) to z ∈ C with poles of finite multiplicity. Denote by π(k) λ,q the spectral projector of ϕ * q associated to the eigenvalue λ which is obtained from the contour integral formula :

π(k) λ,q = 1 2iπ γ µ -ϕ * q -1 dµ
where γ is a small circle around λ. This corresponds to the residues of the discrete resolvent at e z = λ.

We will now verify that the second part of the Proposition, i.e. that the spectral data of the diffeomorphism coincide with the ones of the generator. As ϕ * q commutes with -L

V f , we can deduce that the range of π(k) λ,q is preserved by -L

V f . In particular, any eigenvalue z 0 of -L (k)

V f on that space must verify e z 0 q = λ. As we know that the Pollicott-Ruelle spectrum of -L (k)

V f is real, we can deduce that the poles of (Ide -z/q ϕ * q ) -1 belong to R k ⊂ R modulo 2iπZ. In particular, taking q = 1, this shows that eigenvalues of ϕ -1 * f are exactly given by the expected set. Take now z 0 in R k : it remains to show that [START_REF] Dang | Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces[END_REF] π(k) e z 0 ,1 = π (k) z 0 , i.e. that the spectral projectors are the same for both problems. This is where we will crucially use that q is arbitrary. Note already that, as ϕ q q = ϕ 1 , one has π(k) λ,q = π(k) λ q ,1 for every q ≥ 1. Recall also that eigenvalues were shown to be real for every q ≥ 1. Hence, π(k) e z 0 /q ,q = π(k) e z 0 ,1 . We now decompose the resolvent (z + L (k)

V f ) -1 as follows:

(z + L (k) V f ) -1 = +∞ l=0 e -z q ϕ * q 1 q 0 e -zt ϕ -t * f dt = (Id -e -z q ϕ * q ) -1 1 q 0 e -zt ϕ -t * f dt.
For Re(z) large enough, this expression makes sense viewed as an operator from Ω k (M) to D ′,k (M). We have seen that it can be meromorphically continued to C by using the fact that we have built a proper spectral framework and that we may pick N 0 and N 1 arbitrarily large. Consider now a small contour γ around z 0 containing no other elements of R k . Integrating over this contour tells us that, for every q ≥ 1 :

π (k) z 0 = π(k) e z 0 /q ,q q 1 q 0 e -z 0 t ϕ -t * f dt = π(k) e z 0 ,1 1 0 e -t z 0 q ϕ -t q * f dt.
As an operator on Ω k (M), we can observe that 1 0 e -t z 0 q ϕ -t q * f dt converges to the identity as q → +∞. Hence, π (k)

z 0 = π(k) e z 0 ,1 as expected.
As a direct Corollary of Proposition 4.6, we get the following result on the asymptotics of the correlation function of the time-one map ϕ -1 * f : Corollary 4.7. Let 0 ≤ k ≤ n then for any z 0 ∈ R k = R k (0), there is an integer d (k) z 0 ≥ 1 s.t. for any Λ > 0, there exist N 0 , N 1 large enough so that for every (ψ 1 , ψ 2 ) ∈ Ω k (M) × Ω n-k (M) and for every integer p ≥ 0,

M ϕ -p * f (ψ 1 ) ∧ ψ 2 = z 0 ∈R k :z 0 ≥-Λ e pz 0 d (k) z 0 -1 l=0 p l l! M L (k) V f + z 0 l π (k) z 0 (ψ 1 ) ∧ ψ 2 +O e -Λp ψ 1 H m N 0 ,N 1 k ψ 2 H -m N 0 ,N 1 n-k
, where π (k)

z 0 : Ω k (M) → D ′k (M)
is a continuous linear map with finite rank which was defined in paragraph 3.2.5. In fact, the result also holds for any

ψ 1 in H m N 0 ,N 1 k (M).
Note that together with [START_REF] Brouder | Continuity of the fundamental operations on distributions having a specified wave front set[END_REF], this expansion could be applied to more general times t which are not necessarily in Z + .

Computation of the Pollicott-Ruelle resonances

In [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF], we gave a full description of the Pollicott-Ruelle spectrum of a Morse-Smale gradient flow under certain nonresonance assumptions. Our proof was based on an explicit construction of the generalized eigenmodes and we shall now give a slightly different proof based on the works of Baladi and Tsujii on Axiom A diffeomorphisms [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF][START_REF] Baladi | Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps -A Functional Approach[END_REF]. In order to state the result, we define the dynamical Ruelle determinant [2, p. 65-68], for every 0 ≤ k ≤ n, as :

ζ (k) R (z) := exp   - +∞ l=1 e -lz l a∈Crit(f ) Tr Λ k dϕ -l f (a) det Id -dϕ -l f (a)   .
This quantity is related to the notion of distributional determinants [39, p. 313]. This function is well defined for Re(z) large enough, and, from appendix A, it has a holomorphic extension to C. The zeros of this holomorphic extension can be explicitely described in terms of the Lyapunov exponents of the flow ϕ t f at the critical points of f :

∀a ∈ Crit(f ), χ 1 (a) ≤ . . . ≤ χ r (a) < 0 < χ r+1 (a) ≤ . . . ≤ χ n (a)
where the numbers (χ j (a)) n j=1 are the eigenvalues of L f (a) which is the unique (symmetric) matrix satisfying d 2 f (a) = g a (L f (a)., .). Using the conventions of Section 2, one has : Theorem 5.1. Suppose that the assumptions of Theorem 2.1 are satisfied. Then, for every 0 ≤ k ≤ n, the set of Pollicott-Ruelle resonances is given by

R k = z 0 ∈ R : ζ (k) R (z 0 ) = 0 .
Moreover, for every z 0 ∈ R, the rank of the spectral projector

π (k) z 0 : Ω k (M) → D ′k (M)
, is equal to the multiplicity 12 of z 0 as a zero of ζ (k) R (z). Among other things, this result shows that the correlation spectrum depends only on the Lyapunov exponents of the flow. In other words, the global correlation spectrum of a gradient flow depends only on the 0-jet of the metric at the critical points. Thus, this result gives in some sense some insights on Bowen's first problem in [START_REF] Bowen | Notebook[END_REF] from the perspective of the global dynamic of the flow instead of the local one. Note that, if we were interested in the local dynamics near critical points, this could be recovered from the results of Baladi and Tsujii in [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF]. Still regarding Bowen's question, we will also verify below that the range of the residues are generated by families of currents carried by the unstable manifolds of the gradient flows. Besides this support property, we do not say much things on the structure of these residues except in the case z 0 = 0 -see Lemma 5.10.

Regarding Section 3, the only thing left to prove is that the eigenvalues and their algebraic multiplicities are given by the zeros of the Ruelle dynamical determinant. As was already mentionned, this result was already proved in [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF] under stronger linearization assumptions. Our new proof will only make use of the assumptions that the gradient flow is C 1 -linearizable which is necessary to construct our anisotropic Sobolev space but not for the results from [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF]. Yet, in some sense, it will be less self-contained as we shall use the results of [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF] as a "black-box" while, in the proof of [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF], we determined the spectrum by hands even if it was under more restrictive assumptions. Another advantage of the proof from [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF] was that it gave an explicit local form of the eigenmodes and some criteria under which we do not have Jordan blocks -see also [START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF] for slightly more precise results. The key idea compared with [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF] is to use the localized results of Baladi-Tsujii to guess the global resonance spectrum from the one near each critical point. To go from local to global, we will use the geometry of the stratification by unstable manifolds to glue together, in some sense, these local spectras and make them into a global spectrum.

Before starting our proof, let us recall the following classical result of Smale which will be useful to organize our induction arguments [START_REF] Smale | Morse inequalities for a dynamical system[END_REF] -see [START_REF] Dang | Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces[END_REF] for a brief reminder of Smale's works: Theorem 5.2 (Smale partial order relation). Suppose that ϕ t f is a Morse-Smale gradient flow. Then, for every a in Crit(f ), the closure of the unstable manifold W u (a) is the union of certain unstable manifolds W u (b) for some critical points in Crit(f ). Moreover, we say that b a

(resp b ≺ a), if W u (b) is contained in the closure of W u (a) (resp W u (b) ⊂ W u (a), W u (b) = W u (a)). Then, is a partial order relation on Crit(f ). Finally if b ≺ a, then dim W u (b) < dim W u (a).
In this section, we use the results of Baladi and Tsujii [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF]. For that purpose, we treat near every critical point the time one map ϕ 1 := ϕ -1 f of the flow ϕ t f as a hyperbolic 12 When z 0 / ∈ R k , one has π

(k) z0 = 0.
diffeomorphism with only one fixed point. Recall that ϕ t f is a Morse-Smale gradient flow which is C 1 -linearizable, hence amenable to the analysis of the previous sections.

5.1.

Local spectra from the work of Baladi-Tsujii. We start by recalling the results of [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF]. Fix 0 ≤ k ≤ n, the degree of the differential forms we are going to consider and a critical point a of f . Note that the reference [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF] mostly deals with 0-forms i.e. functions on M, which corresponds to k = 0. General results for transfer operators acting on vector bundles are given in [3, section 2] and [2, section 6.4]. In this paragraph, we consider the transfer operator acting on sections of the bundle

Λ k T * M → M of k-forms on M by pull-back : u ∈ Γ(M, Λ k T * M) → ϕ * 0 u ∈ Γ(M, Λ k T * M).
For any open subset U ⊂ M, we will denote by Ω • c (U) the differential forms with compact support in U. Then, one can find a small enough open neighborhood V a of a in M such that, for every

(ψ 1 , ψ 2 ) ∈ Ω k c (V a ) × Ω n-k c (V a ), the map ĉψ 1 ,ψ 2 ,a : z → +∞ l=1 e -lz M ϕ l * 1 (ψ 1 ) ∧ ψ 2
has a meromorphic extension to C. This is a straightforward consequence of13 [3, Theorem 2.1] and [2, Theorem 6.12 p. 178] once we note that smooth differential forms are contained in the Banach spaces of distributional sections of Λ k T * M used in these references. The result of [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF] is in fact much more general as it holds for any Axiom A diffeomorphism provided that the observables are supported in the neighborhood of a basic set (which is here reduced to the critical point a). Note that this result could also be deduced from the analysis in [START_REF] Gouëzel | Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties[END_REF]. Moreover in [3, Theorem 2.2] (see also [2, Theorem 6.13 p. 179]), Baladi and Tsujii proved the stronger result that the poles of ĉψ 1 ,ψ 2 ,a where ψ 1 , ψ 2 run over Ω k c (V a ) × Ω n-k c (V a ) are exactly equal (with multiplicities) to the real zeros of some dynamical Ruelle determinant [2, p. 179] :

ζ (k) R,a (z) := exp - +∞ l=1 e -lz l Tr Λ k dϕ l 1 (a) det Id -dϕ l 1 (a)
.

Recall that we show in appendix A that these functions are holomorphic in C and that we can compute their zeros. Actually, it has been proved in the litterature [START_REF] Liverani | Fredholm determinants, Anosov maps and Ruelle resonances[END_REF][START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF][START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF][START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] for various classes of dynamical systems that the poles of dynamical correlations correspond to the zeros of the dynamical Ruelle determinant. Moreover, for any such pole z 0 , one can find a continuous linear map

π (k) a,z 0 : Ω k c (V a ) → D ′k (V a ),
which is of finite rank equal to the multiplicity of z 0 as a zero of ζ

(k)
R,a and such that the residue of ĉψ 1 ,ψ 2 ,a (z) at z = z 0 is equal to

M π (k) a,z 0 (ψ 1 ) ∧ ψ 2 .
Again, π

a,z 0 corresponds to the spectral projector of ϕ * 1 acting on a certain anisotropic Banach space of currents in D ′k (V a ). Now the key observation is to note that the spectral projector π

(k) a,z 0 : Ω k c (V a ) → D ′k (V a )
, whose existence follows from the work [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF], is just the localized version of the global spectral projector π (k) z 0 that was defined in paragraph 3.2.5. Indeed, using Corollary 4.7, we find that, for

ψ 1 ∈ Ω k c (V a ), (19) ∀ψ 1 ∈ Ω k c (V a ), π (k) z 0 (ψ 1 ) = π (k)
a,z 0 1 ), where equality holds in the sense of currents in D ′k (V a ). To see this, one sums over p ≥ 1 in Corollary 4.7 in order to recover the local correlation function ĉψ 1 ,ψ 2 ,a and to identify its residues at z = z 0 .

The above means that every element of {z 0 ∈ R :

ζ (k)
R,a (z 0 ) = 0} contributes to the set R k of Pollicott-Ruelle resonances of the transfer operator acting on k-forms. The objective is to show that there is no other contributions to the set R k . More precisely, we shall prove that R k exactly equals the union over Crit(f ) of local spectras

R k = a∈Crit(f ) {z 0 : ζ (k) R,a (z 0 ) = 0}
where the zeros are counted with multiplicity.

Gluing local spectras.

The main purpose of this section is to prove the following statement from which Theorem 5.1 follows:

Proposition 5.3. Let 0 ≤ k ≤ n and let z 0 ∈ R. Then, one has Rk π (k) z 0 = a∈Crit(f ) Rk π (k)
a,z 0 .

In particular, as was already explained, one can deduce from [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF][START_REF] Baladi | Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps -A Functional Approach[END_REF] that Rk π

(k) z 0 is equal to the multiplicity of z 0 as a zero of ζ (k) R = a∈Crit(f ) ζ (k)
R,a . Note that this may be equal to 0 if z 0 does not belong to the set R k of resonances. 5.2.1. Construction of a "good" basis of Pollicott-Ruelle resonant states. Let z 0 be an element in R k . We fix (U j ) j=1,...mz 0 to be a basis of the range of π (k) z 0 . These are generalized eigenstates of eigenvalue z 0 for -L V f acting on suitable anisotropic Sobolev space of currents of degree k. We aim at showing that we can choose this family in such a way that supp(U j ) ⊂ W u (a) for some critical point a of f (depending on j). Intuitively, we are looking for a "good" basis of generalized eigencurrents with minimal possible support which by some propagation argument should be at least the closure of an unstable manifolds.

We also warn the reader that the notion of linear independence we need for our basis is a little bit subtle and depends on the open subset in which we consider our current. Indeed, we may have some currents which are linearly independent as elements in D ′,k (M) but become dependent when we restrict them to smaller open subsets U ⊂ M. We define: Definition 5.4 (Independent germs at some given point). A family of currents (u i ) i∈I in D ′,k (M) are linearly independent germs at a ∈ M, if for all open neighborhoods V a of a, (u i ) i∈I are linearly independent as elements of D ′,k (V a ).

With this definition in mind, we want to prove: Lemma 5.5. Let 0 ≤ k ≤ n and z 0 be an element of R k . For every a ∈ Crit(f ), there exist an integer m (k) a (z 0 ) ≥ 0 together with a corresponding basis of generalized eigencurrents

U j (b, z 0 ) : b ∈ Crit(f ), 1 ≤ j ≤ m (k) b (z 0 ) of the range of π (k) z 0 satisfying the following properties ∀ a ∈ Crit(f ), ∀ 1 ≤ j ≤ m (k)
a (z 0 ), supp(U j (a, z 0 )) ⊂ W u (a), and, for all a ∈ Crit(f ), the family (U j (a, z 0 )) m (k) a (z 0 ) j=1 are independent germs at a.

We denote by

S j (a, z 0 ) :

a ∈ Crit(f ), 1 ≤ j ≤ m (k)
a (z 0 ) , the dual basis for the adjoint operator -L

(n-k) V f acting on H -m N 0 ,N 1 n-k (M).
In particular, the spectral projector π (k) z 0 can be written as follows: [START_REF] Dang | Topology of Pollicott-Ruelle resonant states[END_REF] ∀ψ

1 ∈ Ω k (M), π (k) z 0 (ψ 1 ) = a∈Crit(f ) m (k) a (z 0 ) j=1 M ψ 1 ∧ S j (a, z 0 ) U j (a, z 0 ).
The currents (S j (a, z 0 )) j,a,z 0 are generalized eigenmodes for the dual operator (-L

(k) V f ) † = -L (n-k) V -f
acting on the anisotropic Sobolev space H -m n-k (M). Also, from the definition of the dual basis, one has, for every critical points (a, b), for every indices (j, k) and for every

(z, z ′ ) in R k , (21) U k (b, z ′ ), S j (a, z) = M U k (b, z ′ ) ∧ S j (a, z) = δ jk δ zz ′ δ ab .
The purpose of this paragraph is now to prove Lemma 5.5. To that aim, we begin with the following preliminary : Lemma 5.6. Let U 1 ∈ D ′,k (M) be an element inside the range of π (k) z 0 . Then, for every a ∈ Crit(f ), there exists Ũ1 (a) inside the range of π (k)

z 0 such that U 1 = a∈Crit(f ) Ũ1 (a),
where each Ũ1 (a) is supported in W u (a).

Proof. By [START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF]Lemma 7.7] which is a propagation Lemma aimed at controlling supports of generalized eigencurrents, we know that if a current U 1 is identically 0 on a certain open set V then this vanishing property propagates by the flow and U 1 vanishes identically on ∪ t∈R ϕ t f (V ). We set Max(U 1 ) to be the set of critical points a of f such that

U 1 ∈ Ran π (k) z 0
is not identically zero near a and such that, for every b ≻ a, U 1 identically vanishes near b. In particular, this means that, for every a in Max(U 1 ), the current U 1 is supported by W u (a) in a neighborhood of a by [START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF]Lemma 7.8] which gives a control on the support of generalized eigencurrents near maximal elements of Crit(f ).

Remark 5.7. We will implicitely use the fact that anisotropic Sobolev spaces of currents are C ∞ (M)-modules which can be seen as follows : u ∈ H

m N 0 ,N 1 k ⇔ A N u ∈ L 2 (M). Hence, ∀ψ ∈ C ∞ (M), A N (ψu) = A N ψ A -1 N ∈Ψ 0 (M ) A N u ∈L 2 ∈ L 2 (M)
where we used the composition for pseudodifferential operators [START_REF] Faure | Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances[END_REF]Th. 8,p. 39] and elements in Ψ 0 (M) are bounded in L 2 .

Let us now decompose U 1 into currents with minimal support. For every critical point a, we set χ a to be a smooth cutoff function which is identically equal to 1 near a and χ a vanishes away from a. Then, for every a in Max(U 1 ), we define Ũ1 (a) := π (k) z 0 (χ a U 1 ) , and we want to verify that Ũ1 (a) is supported in W u (a) and that it is equal to U 1 near a.

To that aim, we apply Proposition 4.6 to the test current χ a U 1 (belonging to H m N 0 ,N 1 k for N 0 , N 1 large enough) and to some test form ψ 2 in Ω n-k (M):

M ϕ -p * f (χ a ψ 1 ) ∧ ψ 2 = z 0 ∈R k :z 0 >-Λ e pz 0 d (k) z 0 -1 l=0 p l l! M L (k) V f + z 0 l π (k) z 0 (χ a ψ 1 ) ∧ ψ 2 +O e -Λp χ a ψ 1 H m N 0 ,N 1 k ψ 2 H -m N 0 ,N 1 n-k .
On the other hand, if we choose ψ 2 compactly supported in M -W u (a), then we can verify that

∀ p ≥ 0, M ϕ -p * f (χ a U 1 ) ∧ ψ 2 = 0.
In particular, we find that

∀ψ 2 s.t. supp(ψ 2 ) ∩ W u (a) = ∅, M π (k) z 0 (χ a U 1 ) ∧ ψ 2 = 0.
This implies that Ũ1 (a) is supported by W u (a). If we now choose ψ 2 to be compactly supported in the neighborhood of a where χ a = 1, then one has

M ϕ -p * f (χ a U 1 ) ∧ ψ 2 = M ϕ -p * f (U 1 ) ∧ ψ 2 ,
where we used the fact that U 1 is supported by W u (a). Applying the asymptotic expansion of Proposition 4.6 one more time to the left hand side of the above equality, we find that Ũ1 (a) = π

(k) z 0 (χ a U 1 ) is equal to U 1 = π (k)
z 0 (U 1 ) in a neighborhood of a. We can now define

Ũ1 = U 1 - a∈Max(U 1 ) Ũ1 (a),
which by construction still belongs to the range of π

(k)
z 0 and which is now identically 0 in a neighborhood of each b satisfying b a for every a in Max(U 1 ). Then, either Ũ1 = 0 in which case U 1 = a Ũ1 (a) is decomposed with this minimal support property and we are done. Otherwise, we repeat the above argument with Ũ1 instead of U 1 and deal with critical points which are smaller for Smale's partial order relation. As there is only a finite number of critical points to exhaust, this procedure will end after a finite number of steps and we will find that

U 1 = a∈Crit(f ) Ũ1 (a),
where the support of Ũ1 (a) is contained in W u (a) with some of the Ũ1 (a) that may be taken equal to 0.

We can now turn to the proof of Lemma 5.5. Thanks to Lemma 5.6, we obtain m (k) a (z 0 ) ∈ N, a ∈ Crit(f ) and some family of nontrivial currents (U j,a (z 0 )) a∈Crit(f ),1 j m (k) a (z 0 ) which spans the image of π (k) z 0 and such that each U j,a (z 0 ) is supported in W u (a). Note that our family of currents may not be linearly independent and we can extract a subfamily to make it into a basis of Ran(π (k) z 0 ). However, we recall that we are aiming at some stronger linear independence property than linear independence in D ′k (M). To fix this problem, we start from a critical point a such that (U j (a, z 0 )) j=1,...,m (k) a (z 0 ) are not independent germs at a and, for every b ≻ a, (U j (b, z 0 )) j=1,...,m (k) b (z 0 ) are linearly independent germs at b. We next define a method to localize the linear dependence near a as follows.

Definition 5.8 (Local rank of germs at some point). Consider the family of currents (U j (a, z 0 )) j=1,...,m (k) a (z 0 ) . Define a sequence B a (l) of balls of radius 1 l around a. Consider the sequence

r l = Rank(U j (a, z 0 )| Ba(l) ) j=1,...,m (k) a (z 0 ) where each U j (a, z 0 )| Ba(l) ∈ D ′,k (B a (l)
) is the restriction of U j (a, z 0 ) ∈ D ′,k (M) to the ball B a (l).We call lim l→+∞ r l the rank of the germs (U j (a, z 0 )) j=1,...,m (k) a (z 0 ) at a.

If lim l→+∞ r l < m (k)
a (z 0 ), then there exists an open neighborhood V a of a such that the currents (U j (a, z 0 )| Va ) j=1,...,m (k) a (z 0 ) are linearly dependent in D ′,k (V a ) and the open subset V a is optimal as one cannot find a smaller open subset around a on which one could write new linear relations among (U j (a, z 0 )) j=1,...,m (k) a (z 0 ) . It means that one can find some j (say

j = 1) such that, on the open set V a , U 1 (a, z 0 ) = m (k) a (z 0 ) j=2 α j U j (a, z 0 ).
Then, we set

Ũ (z 0 ) = U 1 (a, z 0 ) - m (k) a (z 0 ) j=2 α j U j (a, z 0 ),
which is equal to 0 near a. Hence, by propagation [START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF]Lemma 7.7], Ũ(z 0 ) is supported inside W u (a) -W u (a). Thus, proceeding by induction on Smale's partial order relation, we can without loss of generality suppose that, for every critical point a, the currents (U j (a, z 0 )) j=1,...,m (k) a (z 0 ) are linearly independent germs at a and not only as elements of D ′,k (M). This concludes the proof of Lemma 5.5.

Support of the dual basis.

We would like to show that the dual basis

S j (a, z 0 ) : a ∈ Crit(f ), 1 ≤ j ≤ m (k)
a (z 0 ) defined above contains only currents with minimal support. In fact, we will prove that Lemma 5.9. For all z 0 ∈ R k , the above dual basis satisfies the condition :

∀ a ∈ Crit(f ), ∀ 1 ≤ j ≤ m (k)
a (z 0 ), supp(S j (a, z 0 )) ⊂ W s (a).

The above bound on the support of the dual basis actually shows that : [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] supp (S j (a, z 0 )) ∩ supp (U j (a, z 0 )) = {a}.

Proof. Let 0 ≤ k ≤ n and let z 0 ∈ R k . We shall prove this Lemma by induction on Smale's partial order relation . In that manner, it is sufficient to prove that, for every a ∈ Crit(f ) such that the conclusion of the Lemma holds for all 14 b ≻ a, one has

∀ 1 ≤ j ≤ m (k) a (z 0 ), supp(S j (a, z 0 )) ⊂ W s (a)
. Fix such a critical point a and ψ 1 compactly supported in M -W s (a). Then, we consider V a to be a small enough neighborhood of a which does not interesect the support of ψ 1 and we fix ψ 2 in Ω k c (V a ). From [18, Remark 4.5 p. 17], we know that, if V a is chosen small enough, then ϕ -t f (V a ) remains inside the complementary of supp(ψ 1 ) for t ≥ 0. In particular, for every t ≥ 0, ϕ -t * f (ψ 1 ) ∧ ψ 2 = 0. Applying the asymptotic expansion of Proposition (4.6), we then find that

M π (k) z 0 (ψ 1 ) ∧ ψ 2 = 0.
Hence, combining this with (20), we have proved that

∀ψ 2 ∈ Ω k c (V a ), b∈Crit(f ) m (k) b (z 0 ) j=1 M ψ 1 ∧ S j (b, z 0 ) M U j (b, z 0 ) ∧ ψ 2 = 0.
As V a is a small neighborhood of a and as U j (b, z 0 ) is carried by W s (b), we can apply Smale's Theorem 5.2 in order to verify that only the points b such that b a contribute to the above sum, i.e.

∀ψ 2 ∈ Ω k c (V a ), b∈Crit(f ):b a m (k) b (z 0 ) j=1 M ψ 1 ∧ S j (b, z 0 ) M U j (b, z 0 ) ∧ ψ 2 = 0.
We can now use our inductive assumption on a and the fact that W s (b) ⊂ W s (a) for b a in order to get

∀ψ 2 ∈ Ω k c (V a ), m (k) a (z 0 ) j=1 M ψ 1 ∧ S j (a, z 0 ) M U j (a, z 0 ) ∧ ψ 2 = 0.
As the germs of currents are independent at a, we can deduce that M ψ 1 ∧ S j (a, z 0 ) = 0 for every 1 ≤ j ≤ m z 0 ,a ). Hence, we fix a critical point a and thanks to [START_REF] Dang | Spectral analysis of Morse-Smale flows II:resonances and resonant states[END_REF], we can write that, for every ψ 1 in Ω k c (V a ),

π (k) z 0 ,a (ψ 1 )| Va = b∈Crit(f ) m (k) b (z 0 ) j=1 M ψ 1 ∧ S j (b, z 0 ) U j (b, z 0 )| Va .
We will now verify that all the terms corresponding to b = a cancel. To that aim, we choose V a small enough around a such that

V a ∩ W u (b) = ∅ (resp V a ∩ W s (b) = ∅) unless b a (resp unless b a). Then S j (b, z 0 ) ∧ ψ 1 = 0 unless b a because supp(S j (b, z 0 )) ⊂ W s (b) does not meet V a hence supp(ψ 1 ). In the same manner, U j (b, z 0 )| Va = 0 un- less b a since supp(U j (b, z 0 )) ⊂ W u (b) does not meet V a unless b a.
Therefore, all these cancellations imply that :

b∈Crit(f ) m (k) b (z 0 ) j=1 M ψ 1 ∧ S j (b, z 0 ) U j (b, z 0 )| Va = m (k) a (z 0 ) j=1 M ψ 1 ∧ S j (a, z 0 ) U j (a, z 0 )| Va yielding : (23) π (k) z 0 ,a (ψ 1 ) = m (k) a (z 0 ) j=1 M ψ 1 ∧ S j (a, z 0 ) U j (a, z 0 )| Va .
Thanks to Lemma 5.5, we know that the currents U j (a, z 0 )| Va are linearly independent in D ′k (V a ). Using [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] and the fact that S j (a, z 0 ) is the dual basis of U j (a, z 0 ), we can verify that the S j (a, z 0 ) are also independent germs at a. Hence, one can verify that the range of π (k) z 0 ,a is spanned by the currents (U j (a, z 0 )| Va ) j=1,...,m (k) a (z 0 ) which concludes the proof of Proposition 5.3.

5.4.

No Jordan blocks for z 0 = 0. Let 0 ≤ k ≤ n. Thanks to Remark A.1, we know that the multiplicity of 0 as a zero of

ζ (k) R (z) = a ζ (k)
R,a (z) is equal to the number of critical points of index k. On the other hand, given a critical point a of index l, if we use Baladi-Tsujii's local result relating the zeros of ζ (k) R,a (z) to the eigenvalues of ϕ -1 * near a [3, Th. 2.2], we know that

m (k) a (0) = 1 if dim W s (a) = k = l 0 otherwise.
Hence, if we use [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF] combined with Proposition 5.3, we can then deduce that, for z 0 = 0, one can find a basis of generalized eigencurrents for Ker(L

V f ) N (for some large enough N):

{U a : dim W s (a) = k} ,
whose support is equal to W u (a). We would now like to verify that we can pick N = 1, or equivalently that there is no Jordan blocks in the kernel. Suppose by contradiction that we have a nontrivial Jordan block, i.e. there exist u 0 = 0 and u 1 = 0 such that

L (k) V f u 0 = 0 and L (k) V f u 1 = u 0 .
We fix a to be a critical point of index k such that u 0 is not equal to 0 near a. Such a point exists as u 0 is a linear combination of the (U b ) b:dimW s (b)=k . Recall from Smale's Theorem that, for every b in Crit(f ), W u (b) -W u (b) is the union of unstable manifolds whose dimension is < dim W u (b). Hence, as u 1 is also a linear combination of the (U b ) b:dimW s (b)=k , we necessarily have that u 1 is proportional to U a near a. In a neighborhood of a, we then have u 0 = α 0 U a (with α 0 = 0) and u 1 = α 1 U a . If we use the eigenvalue equation, we find that, in a neighborhood of a:

α 0 L (k) V f U a = 0 and α 1 L (k) V f U a = α 0 U a .
As U a is not identically 0 near a, we find the expected contradiction.

We next prove the following Lemma on the local structure of eigencurrents in Ker(L V f ) near critical points : Lemma 5.10. Let y 0 be a point inside W u (a). Then, one can find a local system of coordinates (x 1 , . . . x n ) such that W u (a) is given locally near y 0 by {x 1 = . . . = x r = 0} , where r is the index of a and the current [W u (a)] = δ 0 (x 1 , . . . , x r )dx 1 ∧ . . . ∧ dx r coincides with U a near y 0 . Similarly, one has S a = [W s (a)] near a.

Proof. Recall from [START_REF] Smale | Morse inequalities for a dynamical system[END_REF][START_REF] Weber | The Morse-Witten complex via dynamical systems[END_REF] that W u (a) is an embedded submanifold inside M. Then, there is a local system of coordinates (x 1 , . . . x n ) such that W u (a) is given locally near y 0 by {x 1 = . . . = x r = 0} , where r is the index of a. The current of integration on W u (a), for the choice of orientation given by [dx 1 ∧ . . . ∧ dx r ] (see [16, appendix D] for a discussion about orientations of integration currents), reads in this system of coordinates : [W u (a)] = δ 0 (x 1 , . . . , x r )dx 1 ∧ . . . ∧ dx r by [START_REF] Dang | Equidistribution of the conormal cycle of random nodal sets[END_REF]Corollary D.4]. Moreover, for all test form ω whose support does not meet the boundary ∂W u (a) = W u (a) \ W u (a), one has for all t ∈ R the identity :

ϕ -t * f [W u (a)], ω = W u (a) ϕ t * f ω = ϕ -t f (W u (a))=W u (a) ω = [W u (a)]
, ω since ϕ t f : M → M is an orientation preserving diffeomorphism which leaves W u (a) invariant. This implies that in the weak sense

ϕ -t * f [W u (a)] = [W u (a)], ∀t ∈ R hence L V f ([W u (a)]) = 0. Near a, [W u (a)] belongs to the anisotropic Sobolev space H m N 0 ,N 1 r
(M) for N 0 , N 1 large enough. Hence, if we fix a smooth cutoff function χ a near a, we can verify, by a propagation argument similar to the ones used to prove Lemma 5.5, that U a can be chosen equal to π To end this section and as a consequence of (11), Corollary 4.7 and Lemma 5.10, let us record the following improvement of the results from [START_REF] Harvey | Finite volume flows and Morse theory[END_REF][START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF]: Theorem 5.11 (Vacuum states). Suppose that the assumptions of Theorem 2.1 are satisfied and fix 0 ≤ k ≤ n. Then, for every

0 < Λ < min {|χ j (a)| : 1 ≤ j ≤ n, a ∈ Crit(f )} , one has, for every (ψ 1 , ψ 2 ) ∈ Ω k (M) × Ω n-k (M), M ϕ -t * f (ψ 1 ) ∧ ψ 2 = a:dim W u (a)=n-k M ψ 1 ∧ S a M U a ∧ ψ 2 + O ψ 1 ,ψ 2 (e -Λt ).
6. Proofs of Theorems 2.1 to 2.6

In this section, we collect the different informations we proved so far and prove the main statements of the introduction except for Theorem 2.7 that will be proved in section 7.

6.1. Proof of Theorem 2.5. Regarding the limit operator, it now remains to show the Witten's instanton formula of Theorem 2.5. For that purpose, we first discuss some orientations issues on curves connecting some pair (a, b) of critical points of f . Choosing some orientation of every unstable manifolds (W u (a)) a∈Crit(f ) defines a local germ of current [W u (a)] near every critical point a and some integration current in D ′,• (M \ ∂W u (a)). Both Theorem 5.11 and Lemma 5.10 show us that each germ [W u (a)] extends into a globally well-defined current U a on M which coincides with [W u (a)] on M \ ∂W u (a). As M is oriented, the orientation of W u (a) induces a canonical coorientation on W s (a) so that the intersection pairing at the level of currents gives M χ[W u (a)] ∧ [W s (a)] = χ(a) for every a ∈ Crit(f ) and for all smooth χ compactly supported near a. Given any two critical points (a, b) verifying ind(a) = ind(b) + 1, recall from [START_REF] Weber | The Morse-Witten complex via dynamical systems[END_REF]Prop. 3.6] that there exists finitely many flow lines connecting a and b. These curves are called instantons and we shall denote them by γ ab . Such a curve is naturally oriented by the gradient vector field V f , hence defines a current of integration of degree n -1, [γ ab ] ∈ D ′,n-1 (M). Definition 6.1. We define an orientation coefficient σ(γ ab ) ∈ {±1} by the following relation : [START_REF] Dyatlov | Mathematical theory of scattering resonances[END_REF] [

γ ab ] = σ(γ ab )[W u (a)] ∧ [W s (b)]
in the neighborhood of some x ∈ γ ab where x differs from both (a, b).

Let us verify that this definition makes sense. From the Smale transversality assumption -see paragraph 3.1.1, one has, for x ∈ γ ab \ {a, b}, the intersection of the conormals N * (W u (a)) and N * (W s (b)) is empty. Hence, according to [44, p. 267] (see also [START_REF] Brouder | Continuity of the fundamental operations on distributions having a specified wave front set[END_REF] or section 7), it makes sense to consider the wedge product [W u (a)] ∧ [W s (b)] near such a point x. Moreover, it defines, near x, the germ of integration current along γ ab using the next Lemma: Lemma 6.2. Let X, Y be two tranverse submanifolds of M whose intersection is a submanifold denoted by Z. Then choosing an orientation of X, Y, M induces a canonical orientation of Z such that near every point of Z, we have a local equation in the sense of currents

[Z] = [X] ∧ [Y ].
Proof. Thanks to the transversality assumption, we can use local coordinates (x, y, h) where locally X = {x = 0}, Y = {y = 0} and Z = {x = 0, y = 0} Hence, one has

[X] ∧ [Y ] = δ R p {0} (x)dx ∧ δ R q {0} (y)dy = δ R p+q {0} (x, y)dx ∧ dy = [Z] by definition of integration currents.
Altogether, this shows that the coefficient σ(γ ab ) is well defined. In fact, using the flow, we see that the formula

[γ ab ] = σ(γ ab )[W u (a)] ∧ [W s (b)]
holds true on M \ {a, b}. We are now ready to prove Theorem 2.5 by setting

n ab = (-1) n γ ab σ(γ ab ),
where the sum runs over instantons from a to b. In other words, the integer n ab counts with sign the number of instantons connecting a and b. We first recall that, as d commutes with L V f and as the currents (U a ) a∈Crit(f ) are elements in 15 Ker(L V f ), we already know that dU a ∈ Ker(L V f ). Hence, one has

dU a = b:ind(b)=ind(a)+1 n ′ ab U b
where the coefficients n ′ ab are a priori real numbers. The goal is to prove that they are indeed equal to the integer coefficients n ab we have just defined. Let a be some critical point of f of index k. Choose some arbitrary cutoff function χ such that χ = 1 in a small neighborhood of a and χ = 0 outside some slightly bigger neighborhood of a. Then the following identity holds true in the sense of currents :

d (χ[W u (a)]) = d(χU a ) = dχ ∧ U a + χ ∧ dU a = dχ ∧ [W u (a)],
where we used the fact that [W u (a)] = U a on the support of χ, Smale's Theorem 5.2 and the fact that χ ∧ dU a = 0 since dU a is a linear combination of the U b with ind(b) = ind(a) + 1. In other words, we used the fact that the current dU a is supported by ∂W u (a).

Choose now some critical point b such that ind(b) = ind(a) + 1. Then, for a small open neighborhood O of {a} ∪ ∂W u (a), we have the following identity in the sense of currents in

D ′ (M \ O) : (25) [W u (a)] ∧ [W s (b)]| M \O = γ ab σ(γ ab )[γ ab ]| M \O
where the sum runs over instantons γ ab connecting a and b. Recall from above that the wedge product makes sense thanks to Smale's transversality assumption. We choose O in such a way that O does not meet the support of dχ, then the following identity holds true :

d(χ[W u (a)]), [W s (b)] = M dχ ∧ [W u (a)] ∧ [W s (b)] = (-1) (n-1) γ ab σ(γ ab ) M [γ ab ] ∧ dχ = (-1) n-1 γ ab σ(γ ab ) γ ab dχ = (-1) n-1 γ ab σ(γ ab )(χ(b) -χ(a)) 0-1 = n ab .
We just proved that, for any function χ such that χ = 1 near a and χ = 0 outside some slightly bigger neighborhood of a, one has

d(χ[W u (a)]), [W s (b)] = n ab .
Note that this equality remains true for any χ such that χ = 1 near a and χ = 0 in some neighborhood of ∂W u (a) = W u (a) \ W u (a). In particular, it applies to the pull-back

ϕ -t * f (χ) for all t ≥ 0. Recall in fact that ϕ -t * f [W u (a)] = [W u (a)
] on the support of ϕ -t * f (χ) by Lemma 5.10. Still from this Lemma, one knows that

S b = [W s (b)] on the support of d(ϕ -t * f (χ)).
Therefore, one has also

∀t ≥ 0, dϕ -t * f (χ[W u (a)]), S b = dϕ -t * f (χ[W u (a)]), [W s (b)] = n ab .
Still from Lemma 5.10 and as χ is compactly supported near a, we know that, for an appropriate choice of integers N 0 , N 1 , the current χ[W u (a)] belongs to the anisotropic Sobolev space H m N 0 ,N 1 k (M) (where k = ind(a)) and the spectrum of -L (k)

V f is discrete on some half plane Re(z) > -c 0 with c 0 > 0. Thanks to Proposition 4.6 and to the fact that there is no Jordan blocks, we can conclude that, in the Sobolev space H

m N 0 ,N 1 k (M), ϕ -t * f (χ[W u (a)]) → a ′ ∈Crit(f ):ind(a ′ )=ind(a)+1 M (χ[W u (a)]) ∧ S a ′ U a ′ , as t → +∞.
For every smooth test (nk)-form ψ 2 compactly supported in M \ W u (a), we can verify that ∀t ≥ 0, ϕ -t * f (χ[W u (a)]) ∧ ψ 2 = 0, which implies that the above reduces to 

ϕ -t * f (χ[W u (a)]) → M (χ[W u (a)]) ∧ S a = Ua,Sa =1 U a = U a ,
H m N 0 ,N 1 k (M) → H m N 0 ,N 1 -1 k+1 (M) that dϕ -t * (χ[W u (a)]) → dU a in H m N 0 ,N 1 -1 k+1 (M). Finally, by continuity of the duality pairing (u, v) ∈ H m N 0 ,N 1 -1 k+1 (M) × H 1-m N 0 ,N 1 n-(k+1) (M) -→ u, v , we deduce that n ab = lim t→+∞ S b , dϕ -t * (χ[W u (a)]) = S b , dU a .
This shows that the complex Ker(L V f ), d generated by the currents (U a ) a∈Crit(f ) is welldefined as a Z-module. Then, we note that tensoring the above complex with R yields a complex Ker(L V f ), d ⊗ Z R which is quasi-isomorphic to the De Rham complex (Ω • (M), d) of smooth forms by [START_REF] Dang | Topology of Pollicott-Ruelle resonant states[END_REF]Theorem 2.1] as a consequence of the chain homotopy equation [20, paragraph 4.2]: [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] ∃R : Ω

• (M) → D ′,•-1 (M), Id -π 0 = d • R + R • d.
This ends our proof of Theorem 2.5.

6.2.

Proof of the results on the Witten Laplacian. First of all, we note that the result from Theorem 2.1 :

lim h→0 + M 1 [0,ǫ] W (k) f,h e -f h ψ 1 ∧ e f h ψ 2 = lim t→+∞ M ϕ -t * f (ψ 1 ) ∧ ψ 2
is a direct consequence of Theorem 2.4 which yields a convergence of spectral projectors

lim h→0 + M 1 [0,ǫ] W (k) f,h e -f h ψ 1 ∧ e f h ψ 2 = M π (k)
0 (ψ 1 )∧ψ 2 combined with Theorem 5.11 where the limit term lim t→+∞ M ϕ -t * f (ψ 1 ) ∧ ψ 2 is identified with the term M π (k) z 0 (ψ 1 ) ∧ ψ 2 coming from the spectral projector corresponding to the eigenvalue 0 -see section 5. Hence, it now remains to recall that Theorem 2.4, which claims that the spectral data of the Witten Laplacian converge to the spectral data of -L V f , follows straightforwardly from the content of Theorems 4.4 and 4.5.

We now prove Corollary 2.6 about the Witten-Helffer-Sjöstrand tunnelling formula for our WKB states which becomes a direct corollary of Theorem 2.5. Indeed, our WKB states were defined by using the spectral projector on the small eigenvalues of the Witten Laplacian, i.e.

U a (h) = 1 [0,ǫ 0 ] (W (k) f,h ) e f (a)-f h U a ,
where k is the index of the critical point. Thanks to Theorem 2.5, we already know

(27) d f,h e f (a)-f h U a = b:ind(b)=ind(a)+1 n a,b e -f (b)-f (a) h e f (b)-f h U b .
Recall now that d f, W f, = W f, d f, and that the spectral projector has the following integral expression

1 [0,ǫ 0 ] (W (k) f,h ) = 1 2iπ C(0,ǫ 0 ) (z -W f,h ) -1 dz. Hence, d f,h commutes with 1 [0,ǫ 0 ] (W (•)
f,h ). It is then sufficient to apply the spectral projector to both sides of ( 27) in order to conclude. Hence, the ( Ũa (h)) a∈Crit(f ) are linearly independent for h > 0 small enough as the (U a ) a∈Crit(f ) are. After multiplication by e -f h , the same holds for the family (U a (h)) a∈Crit(f ) . Note that the linear independence would also follow from the arguments of paragraph 8 below but our argument here is independent of the Helffer-Sjöstrand construction of quasimodes. Finally, it seems to us that determining the limit of the Helffer-Sjöstrand quasimodes would probably be a delicate task via the semiclassical methods from [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF] -see Remark 8.1 below.

Proof of Theorem 2.7

In this section, we give the proof of Theorem 2.7 which states that our WKB states verify the Fukaya's instanton formula. Using the conventions of Theorem 2.7, we start with the following observation:

U a ij (h) = 1 [0,ǫ 0 ] (W f ij ,h ) e f ij (a ij )-f ij (x) h U a ij = e f ij (a ij )-f ij (x) h 1 [0,ǫ 0 ] L V f ij + h∆ g ij 2 U a ij ,
where ǫ 0 > 0 is small enough and where ij belongs to {12, where, for every ij and for h > 0,

Ũa ij (h) := 1 [0,ǫ 0 ] L V f ij + h∆ g ij 2 U a ij ,
while Ũa (0) := U a . Hence, the proof of Theorem 2.7 consists in showing that

M Ũa 12 (h) ∧ Ũa 23 (h) ∧ Ũa 31 (h)
converges as h → 0 + to M U a 12 ∧U a 23 ∧U a 31 , and that this limit is an integer. In particular, we will already have to justify that U a 12 ∧ U a 23 ∧ U a 31 is well defined. The proof will be divided in two steps. First, we will show that ( Ũa ij (h)) h→0 + defines a bounded sequence in some space of currents D ′ Γ ij (M) with prescribed wavefront sets. Then, we will apply theorems on the continuity of wedge products for currents with transverse wavefront sets.

7.1. Background on Fukaya's conjecture. Before proving Fukaya's conjecture on Witten Laplacians, we start with a brief overview of the context in which they appear. These problems are related to symplectic topology and Morse theory, and it goes without saying that the reader is strongly advised to consult the original papers of Fukaya for further details [START_REF] Fukaya | Morse homotopy, A ∞ -category, and Floer homologies[END_REF][START_REF] Fukaya | Morse homotopy and its quantization, Geometric topology[END_REF][START_REF] Fukaya | Multivalued Morse theory, asymptotic analysis and mirror symmetry[END_REF]. In symplectic topology, one would like to attach invariants to symplectic manifolds in particular to Lagrangian submanifolds since they play a central role in symplectic geometry. Motivated by Arnold's conjectures on Lagrangian intersections, Floer constructed an infinite dimensional generalization of Morse homology named Lagrangian Floer homology which is the homology of some chain complex (CF (L 0 , L 1 ), ∂) associated to pairs of Lagrangians (L 0 , L 1 ) and generated by the intersection points of L 0 and L 1 [START_REF] Auroux | A beginner's introduction to Fukaya categories, Contact and symplectic topology[END_REF]Def. 1.4,Th. 1.5]. Then, for several Lagrangians satisfying precise geometric assumptions, it is possible to define some product operations on the corresponding Floer complexes [1, Sect. 2] and the collection of all these operations and the relations among them form a so called A ∞ structure first described by Fukaya. The important result is that the A ∞ structure, up to some natural equivalence relation, does not depend on the various choices that were made to define it in the same way as the Hodge-De Rham cohomology theory of a compact Riemannian manifold does not depend on the choice of metric g.

Let us briefly motivate these notions of A ∞ structures by discussing a simple example. On a given smooth compact manifold M, consider the De Rham complex (Ω • (M), d) with the corresponding De Rham cohomology H • (M) = Ker(d)/Ran(d). From classical results of differential topology if N is another smooth manifold diffeomorphic to M, then we have a quasi-isomorphism between (Ω • (M), d) and (Ω • (N), d) which implies that the corresponding cohomologies are isomorphic H • (M) ≃ H • (N). This means that the space of cocycles is an invariant of our space. However, there are manifolds which have the same cohomology groups, hence the same homology groups by Poincaré duality, and which are not homeomorphic hence (co)homology is not enough to specify the topology of a given manifold. One direction to get more invariants would be to give some informations on relations among (co)cycles. Recall that (Ω • (M), d, ∧) is a differential graded algebra where the algebra structure comes from the wedge product ∧, and the fact that ∧ satisfies the Leibniz rule w.r.t. the differential d readily implies that ∧ : Ω

• (M) × Ω • (M) → Ω • (M) induces a bilinear map on cohomology m 2 : H • (M) × H • (M) → H • (M) called the cup-product. By
Poincaré duality, this operation on cohomology geometrically encodes intersection theoretic informations among cycles and gives more informations than the usual (co)homology groups. Algebras of A ∞ type are far reaching generalizations of differential graded algebras where the wedge product is replaced by a sequence of k-multilinear products for all k 2 with relations among them generalizing the Leibniz rule [START_REF] Vallette | Algebra + homotopy = operad[END_REF].

In perfect analogy with symplectic topology, Fukaya introduced A ∞ structures in Morse theory [START_REF] Fukaya | Morse homotopy, A ∞ -category, and Floer homologies[END_REF]Chapter 1]. In that case, the role of Lagrangian pairs (L 0 , L 1 ) is played by a pair of smooth functions (f 0 , f 1 ) such that f 0 -f 1 is Morse. Note that it is not a priori possible to endow the Morse complex with the wedge product ∧ of currents since currents carried by the same unstable manifold cannot be intersected because of the lack of transversality. The idea is to perturb the Morse functions to create transversality. Thus, we should deal with several pairs of smooth functions. In that context, Fukaya formulated conjectures [START_REF] Fukaya | Multivalued Morse theory, asymptotic analysis and mirror symmetry[END_REF]Sect. 4.2] related to the A ∞ structure associated with the Witten Laplacian. He predicted that the WKB states of Helffer and Sjöstrand should verify more general asymptotic formulas than the tunneling formulas associated with the action of the twisted coboundary operator d f,h [START_REF] Fukaya | Multivalued Morse theory, asymptotic analysis and mirror symmetry[END_REF]Conj. 4.1 and 4.2]. Indeed, after twisting the De Rham coboundary operator d and getting tunneling formulas for d f,h , the next natural idea is to find some twisted version of Cartan's exterior product ∧ and see if one can find some analogue of the tunneling formulas for twisted products. At the semiclassical limit h → 0 + , Fukaya conjectured that this twisted product should converge to the Morse theoretical analogue of the wedge product modulo some exponential corrections related to disc instantons [START_REF] Getmanenko | Resurgent analysis of the Witten Laplacian in one dimension[END_REF][START_REF] Getmanenko | Resurgent Analysis of the Witten Laplacian in One Dimension II[END_REF]. Hence, as for the coboundary operator, the cup product in Morse cohomology would appear in the asymptotics of the Helffer-Sjöstrand WKB states. The purpose of the next paragraphs is to show that our quasimodes also satisfy the asymptotic formula conjectured by Fukaya for the wedge product. 7.2. Wavefront set of eigencurrents. In this paragraph, we fix V f to be a smooth Morse-Smale gradient vector field which is C 1 -linearizable. Fix 0 ≤ k ≤ n and Λ > 0. Then, following section 3, choose some large enough integers N 0 , N 1 to ensure that for every 0 ≤ h < h 0 , the operator

-L V f - h∆ g 2 : Ω k (M) ⊂ H m N 0 ,N 1 k (M) → H m N 0 ,N 1 k (M)
has a discrete spectrum with finite multiplicity on the domain Re(z) > -Λ. Recall from [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]Th. 1.5] that the eigenmodes are intrinsic and that they do not depend on the choice of the order function. Recall also from section 3 that, up to some uniform constants, the parameter Λ has to be smaller than c 0 min{N 0 , N 1 } which is the quantity appearing in Lemma 3.3. Hence, if we choose N ′ 1 ≥ N 1 , we do not change the spectrum on Re(z) > -Λ. In particular, any generalized eigenmode U ∈ H m N 0 ,N 1 k (M) associated with an eigenvalue z 0 belongs to any anisotropic Sobolev space H

m N 0 ,N ′ 1 k (M) with N ′ 1 ≥ N 1 .
We also note from the proof of Theorem 4.5 that, for every

N ′ 1 ≥ N 1 , (28) Ũa (h) -U a H m N 0 ,N ′ 1 k (M )
→ 0 as h → 0.

Remark 7.1. Note that the proof in section 4 shows that the convergence is of order O(h) but we omit this information for simplicity of exposition.

We now have to recall a few facts on the topology of the space D

′,k Γ -(V f ) (M) of currents whose wavefront set is contained in the closed conic set Γ -(V f ) = ∪ a∈Crit(f ) N * (W u (a)) ⊂ T * M
\0 which is defined in paragraph 3.1.1. Note that we temporarily omit the dependence in V f as we only deal with one Morse function for the moment. Recall that on some vector space E, given some family of seminorms P , we can define a topology on E which makes it a locally convex topological vector space. A neighborhood basis of the origin is defined by the subsets {x ∈ E s.t. P (x) < A} with A ∈ R * + and with P a seminorm. In the particular case of currents, we will use the strong topology: We can now define the normal topology in the space of currents essentially following [START_REF] Brouder | Continuity of the fundamental operations on distributions having a specified wave front set[END_REF]Sect. 3]: Definition 7.3 (Normal topology on the space of currents). For every closed conic subset Γ ⊂ T * M \ 0, the topology of D ′,k Γ (M) is defined as the weakest topology which makes continuous the seminorms of the strong topology of D ′,k (M) and the seminorms:

u N,C,χ,α,U = (1 + ξ ) N F (u α χ)(ξ) L ∞ (C) ( 29 
)
where χ is supported on some chart U, where u = |α|=k u α dx α where α is a multi-index, where F is the Fourier transform calculated in the local chart and C is a closed cone such that (supp

χ × C) ∩ Γ = ∅. A subset B ⊂ D ′,k Γ is called bounded in D ′k Γ if it is bounded in D ′k and if all seminorms . N,C,χ,α,U are bounded on B.
We emphasize that this definition is given purely in terms of local charts without loss of generality. The above topology is in fact intrinsic as a consequence of the continuity of the pull-back [11, Prop 5.1 p. 211] as emphasized by Hörmander [44, p. 265]. Note that it is the same to consider currents or distributions when we define the relevant topologies since currents are just elements of the form u i 1 ,...,i k dx i 1 ∧ • • • ∧ dx i k in local coordinates (x 1 , . . . , x n ) where the coefficients u i 1 ,...,i k are distributions.

Note from ( 28) that ( Ũa (h)) 0≤h<1 is a bounded family in the anisotropic Sobolev space H from definition 7.2, it is a bounded family in D ′,k (M). We would now like to verify that it is a bounded family in D ′,k Γ -(M) which converges in the normal topology as h goes to 0 in order to apply the results from [START_REF] Brouder | Continuity of the fundamental operations on distributions having a specified wave front set[END_REF]. For that purpose, we can already observe that, for some s large enough, Ũa (h) -U a H -s (M,Λ k (T * M ))

→ 0 as h → 0. In particular, it converges for the strong topology in D ′,k (M). Hence, it remains to discuss the boundedness and the convergence with respect to the seminorms . N,C,χ,α,U . We note that these seminorms involve the L ∞ norm while the anisotropic spaces we deal with so far are built from L 2 norms. This problem is handled by the following Lemma : Lemma 7.4 (L 2 vs L ∞ ). Let N, Ñ be some positive integers and let W 0 be a closed cone in R n * . Then, for every closed conic neighborhood W of W 0 , one can find a constant

C = C(N, Ñ, W ) > 0 such that, for every u in C ∞ c (B R n (0, 1)), one has sup ξ∈W 0 (1 + |ξ|) N | u(ξ)| C (1 + |ξ|) N u(ξ) L 2 (W ) + u H -Ñ .
We postpone the proof of this Lemma to appendix B and we show first how to use it in our context. We consider the family of currents ( Ũa (h)) 0≤h<h 0 in D ′,k (M) and we would like to show that it is a bounded family in D ′,k

Γ -(M) and that Ũa (h) converges to U a in the normal topology we have just defined. Recall that this family is bounded and that we have convergence in every anisotropic Sobolev space with H

m N 0 ,N ′ 1 k (M) with N ′ 1 large enough. Fix (x 0 ; ξ 0 ) / ∈ Γ -.
Fix some N > 0. Note that, up to shrinking the neighborhood used to define the order function in paragraph 3.1.2 and up to increasing N 1 , we can suppose that m N 0 ,N ′ 1 (x; ξ) is larger than N/2 for any N ′ 1 and for every (x; ξ) in a small conical neighborhood W of (x 0 , ξ 0 ).

Fix now a smooth test function χ supported near x 0 and a closed cone W 0 which is strictly contained in the conical neighborhood W we have just defined. Thanks to Lemma 7.4 and to the Plancherel equality, the norm we have to estimate is

(1 + ξ ) N F (χ Ũa (h)) L ∞ (W 0 ) ≤ C χ 1 (ξ)(1 + ξ ) N F (χ Ũa (h)) L 2 + Ũa (h) H -Ñ ≤ C Op(χ 1 (ξ)(1 + ξ ) N χ) Ũa (h) L 2 + Ũa (h) H -Ñ ,
where χ 1 ∈ C ∞ is identically equal to 1 on the conical neighborhood W and equal to 0 outside a slightly bigger neighborhood. For Ñ large enough, we can already observe that the second term Ũa (h) H -Ñ in the upper bound is uniformly bounded as Ũa (h) is uniformly bounded in some fixed anisotropic Sobolev space. Hence, it remains to estimate

Op χ 1 (ξ)(1 + ξ ) N χ Op(A (k) N 0 ,N ′ 1 ) -1 Op(A (k) N 0 ,N ′ 1 ) Ũa (h)) L 2 (M ) .
By composition of pseudodifferential operators and as we chose N ′ 1 large enough to ensure that the order function m N 0 ,N 1 is larger than N/2 on supp(χ 1 ), we can deduce that this quantity is bounded (up to some constant) by Op(A (k) N 0 ,N ′ 1 ) Ũa (h) L 2 which is exactly the norm on the anisotropic Sobolev space. To summarize, this argument shows the following Proposition 7.5. Let V f be a Morse-Smale gradient flow which is C 1 -linearizable. Then, there exists h 0 > 0 such that, for every 0 ≤ k ≤ n and for every a ∈ Crit(f ) of index k, the family ( Ũa (h)) 0≤h<h 0 is bounded in D ′,k Γ -(V f ) (M). Moreover, Ũa (h) converges to U a for the normal topology in D ′,k Γ -(V f ) (M) as h → 0 + . This proposition is the key ingredient we need in order to apply the theoretical results from [START_REF] Brouder | Continuity of the fundamental operations on distributions having a specified wave front set[END_REF]. Before doing that, we can already observe that, if we come back to the framework of Theorem 2.7, then the generalized Morse-Smale assumptions ensure that the wavefront sets of the three family of currents are transverse. In particular, we can define the wedge product even for16 h = 0, i.e. U a 12 ∧ U a 23 ∧ U a 31 defines an element in D ′,n (M) -see below.

7.3. Convergence of products. Given two closed conic sets (Γ 1 , Γ 2 ) which have empty intersection, the usual wedge product of smooth forms

∧ : (ϕ 1 , ϕ 2 ) ∈ Ω k (M) × Ω l (M) -→ ϕ 1 ∧ ϕ 2 ∈ Ω k+l (M)
extends uniquely as an hypocontinuous map for the normal topology [11, Th. 6.1]

∧ : (ϕ 1 , ϕ 2 ) ∈ D ′k Γ 1 (M) × D ′l Γ 2 (M) -→ ϕ 1 ∧ ϕ 2 ∈ D ′k+l s(Γ 1 ,Γ 2 ) (M), with s(Γ 1 , Γ 2 ) = Γ 1 ∪ Γ 2 ∪ (Γ 1 + Γ 2 ).
The notion of hypocontinuity is a strong notion of continuity adapted to bilinear maps from E × F → G where E, F, G are locally convex spaces [11, p. 204-205]. It is weaker than joint continuity but implies that the bilinear map is separately continuous in each factor uniformly in the other factor in a bounded subset, which is enough for our purposes 17 .

Using transversality one more time, we get that dim

(W u (b 1 ) ∩ W u (b 2 ) ∩ W u (b 3 )) = dim(W u (b 1 )) + dim(W u (b 2 )) + dim(W u (b 3 )) -2n < 0, which contradicts the fact that W u (b 1 ) ∩ W u (b 2 ) ∩ W u (b 3 ) is not empty. Hence, we have already shown that W u (a 12 ) ∩ W u (a 23 ) ∩ W u (a 31 ) = W u (a 12 ) ∩ W u (a 23 ) ∩ W u (a 31 ),
and it remains to show that this intersection consists of finitely many points. For that purpose, observe that as the intersection W u (a 12 ) ∩ W u (a 23 ) ∩ W u (a 31 ) is transverse, it defines a 0-dimensional submanifold of M. Thus, x belonging to W u (a 12 ) ∩ W u (a 23 ) ∩ W u (a 31 ) is an isolated point inside W u (a ij ) for the induced topology by the embedding of W u (a ij ) in M, for every ij in {12, 23, 31}. Moreover, as this intersection coincides with its closure, we can deduce there can only be finitely many points in it and this concludes the proof of Theorem 2.7. 7.5. Morse gradient trees. Now that we have shown that the limit in Theorem 2.7 is an integer, let us give a geometric interpretation to this integer in terms of counting gradient flow trees. From the above proof, we count with orientation the number of points in W u (a 12 ) ∩ W u (a 23 ) ∩ W u (a 31 ). In dynamical terms, such a point x 0 corresponds to the intersection of three flow lines starting from a 12 , a 23 and a 31 and passing through x 0 . This represents a one dimensional submanifold having the form of a Y shaped tree whose edges are gradient lines. Hence, the integral M U a 12 ∧ U a 23 ∧ U a 31 counts the number of such Y shaped gradient tree given by a triple of Morse-Smale gradient flows. 7.6. Cup products. These triple products can be interpreted in terms of the cup-products appearing in Morse theory [START_REF] Fukaya | Morse homotopy, A ∞ -category, and Floer homologies[END_REF][START_REF] Fukaya | Morse homotopy and its quantization, Geometric topology[END_REF]. Indeed, we can naturally define a bilinear map:

m (k,l) 2 : Ker(-L (k) V f 12 ) × Ker(-L (l) V f 23 ) → Ker(-L (k+l) V f 13
), where f 13 = -f 31 . This can be done as follows. Its coefficients in the basis (U a 12 , U a 23 , U a 13 ) are given by M U a 12 ∧ U a 23 ∧ U a 31 ∈ Z. Note that, as f 13 = -f 31 , one has18 U a 31 = S a 13 . Hence, these coefficients can be written in a more standard way as

M U a 12 ∧ U a 23 ∧ S a 13 ∈ Z.
As we defined a map on all the generators of the Morse complex, this endows the whole Morse complex with a product which is defined, for every

(U 1 , U 2 ) ∈ Ker(-L (k) V f 12 ) × Ker(-L (l) V f 23 ), as m (k,l) 2 (U 1 , U 2 ) = a 13 ∈Crit(f 13 ) M U 1 ∧ U 2 ∧ S a 13 U a 13 .
Note that, compared with the classical theory where these maps are defined in an algebraic manner [START_REF] Fukaya | Morse homotopy and its quantization, Geometric topology[END_REF], our formulation is of purely analytical nature. Thanks to the remark made in paragraph 7.5, one can verify that these algebraic and analytical maps are exactly the same. It is already known that the map m 2 induces a cup product on the cohomology. Let us reprove this fact using our analytical approach rather than an algebraic proof. Recall from [START_REF] Dang | Spectral analysis of Morse-Smale gradient flows[END_REF][START_REF] Dang | Topology of Pollicott-Ruelle resonant states[END_REF] that the Morse complex is quasi-isomorphic to the De Rham complex (Ω(M), d) via the spectral projector associated with the eigenvalue 0. Hence, it is sufficient to show that m 2 induces a well-defined map on the cohomology of the Morse complex. To see this, we fix (U 1 , U 2 ) in Ker(-L

(k) V f 12 ) × Ker(-L (l) V f 23
), and we write, using the Stokes formula,

A := m (k+1,l) 2 (dU 1 , U 2 ) + (-1) k m (k,l+1) 2 (U 1 , dU 2 ) = (-1) k+l+1 a 13 ∈Crit(f 13 ) M U 1 ∧ U 2 ∧ dU a 31 U a 13 .
Then, we recall that dU a 31 is an element inside Ker(-L V f 31 ). Thus, we can decompose it into the basis (U This relation shows that m 2 is a cochain map for the Morse complexes (Ker(-L V f ij ), d), hence induces a cup-product on the Morse cohomologies. In other terms, this map m 2 is a (spectral) realization in terms of currents of the algebraic cup product coming from Morse theory [START_REF] Fukaya | Morse homotopy and its quantization, Geometric topology[END_REF].

Fukaya's conjecture states that, up to some exponential factors involving the Liouville period over certain triangles defined by Lagrangian submanifolds, this algebraic cup product can be recovered by computing triple products of Witten quasimodes [START_REF] Fukaya | Multivalued Morse theory, asymptotic analysis and mirror symmetry[END_REF]Conj. 4.1]. To summarize this section, by giving this analytical interpretation of the Morse cup-product, we have been able to obtain Fukaya's instanton formula by considering the limit h → 0 + in appropriate Sobolev spaces where both -L V f and W f,h have nice spectral properties.

Remark 7.7. Note that m 1 = d and m 2 = ∧ are the two first operations of the Morse A ∞ -category discovered by Fukaya [START_REF] Fukaya | Morse homotopy, A ∞ -category, and Floer homologies[END_REF][START_REF] Fukaya | Morse homotopy and its quantization, Geometric topology[END_REF]. Our analysis shows that these algebraic maps can be interpreted in terms of analysis as Witten deformations of the coboundary operator and exterior products. An A ∞ -category is in fact endowed with graded maps (m k ) k≥1 of algebraic nature, and it is natural to think that all these algebraic maps can also be given analytic interpretations by considering appropriate Witten deformations which is the content of Fukaya's general conjectures [START_REF] Fukaya | Multivalued Morse theory, asymptotic analysis and mirror symmetry[END_REF]Conj. 4.2]. However, this is at the expense of a more subtle combinatorial work and we shall discuss this issue elsewhere.

Remark 7.8. Note that the approach we have developped here to tackle these problems would also give the following formulation of the Witten-Helffer-Sjöstrand tunneling formulas. For Under this form, the formulation of the instanton formula for products of order 1 is closer to [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]Eq. (3.27)] -see section 8 below for a discussion on the difference between the normalization factors. Note that going through our proof would yield a remainder of order O(h).

Comparison with the Helffer-Sjöstrand quasimodes

In [43, Eq. (1.37)], Helffer and Sjöstrand also constructed a natural basis for the bottom of the spectrum of the Witten Laplacian. For the sake of completeness 19 , we will compare our family of quasimodes with theirs and show that they are equal at leading order. In order to apply the results of [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF], we remark that the dynamical assumptions (H1) and (H2) from this reference are automatically satisfied as soon as the gradient flow verifies the Smale transversality assumption. For (H1), this follows from Smale's Theorem 5.2 while (H2) was for instance proved in [START_REF] Weber | The Morse-Witten complex via dynamical systems[END_REF]Prop. 3.6].

We denote the Helffer-Sjöstrand's quasimodes by (U HS a (h)) a∈Crit(f ) . By construction, they belong to the same eigenspaces as our quasimodes (U a (h)) a∈Crit(f ) . Fix a critical point a of index k. These quasimodes do not form an orthonormal family. Yet, if V (k) (h) is In particular, the spectral projector can be written as Hence, from the definition of our WKB state U a (h), one has

1 [0,ǫ] W ( 
U a (h) = b ′ ∈Crit(f ):Ind(b ′ )=k M U a ∧ ⋆ k e -f -f (a) h ŨHS b ′ (h) ŨHS b ′ (h),
which can be expanded as follows:

U a (h) = b ′ ∈Crit(f ):Ind(b ′ )=k b:Ind(b)=k M U a ∧ ⋆ k δ bb ′ + O Ω k (M ) (e -C 0 /h ) e -f -f (a) h U HS b (h) ŨHS b ′ (h).
Everything now boils down to the calculation of

α abb ′ (h) = M U a ∧ ⋆ k δ bb ′ + O Ω k (M ) (e -C 0 /h ) e -f -f (a) h U HS b (h) .
More precisely, if we are able to prove that (30) α abb ′ (h) = δ ab δ bb ′ α a (h)(1 + O(h)) + O(e -C 0 /h ), for a certain α a (h) = 0 depending polynomially on h (that has to be determined), then, after gathering all the equalities, we will find that O(e -C 0 /h )U HS b (h),

showing that our quasimodes are at leading order equal to the ones of Helffer and Sjöstrand (up to some normalization factor). Let us now prove [START_REF] Fukaya | Morse homotopy, A ∞ -category, and Floer homologies[END_REF] by making use of the results from [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]. First of all, we write that

α abb ′ (h) = M U a ∧ ⋆ k δ bb ′ + O Ω k (M ) (e -C 0 /h ) e -f -f (a) h U HS b (h) .
According to [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]Eq. (1.38)], we know that

U HS b (h) = Ψ b (h) + O Ω k (M ) (e -C 0 h ),
where Ψ b (h) is a certain "Gaussian state" centered at b defined by [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]Eq. (1.35)] and C 0 is some positive constant. Thus, as f (x) ≥ f (a) on the support of U a , we have

α abb ′ (h) = δ bb ′ M U a ∧ ⋆ k e -f -f (a) h Ψ b (h) + O(e -C 0 h ),
with C 0 > 0 which is slightly smaller than before. We now introduce a smooth cutoff function χ a which is equal to 1 in a neighborhood of a and we write

α abb ′ (h) = δ bb ′ M U a ∧ ⋆ k χ a e -f -f (a) h Ψ b (h) + δ bb ′ M U a ∧ ⋆ k (1 -χ a )e -f -f (a) h Ψ b (h) + O(e -C 0 h ).
Thanks to [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]Th. 1.4] and to the fact that the support of U a is equal to W u (a), we know that the second term, which corresponds to the points which are far from a, is also exponentially small. Hence

α abb ′ (h) = δ bb ′ M U a ∧ ⋆ k e -f -f (a) h χ a Ψ b (h) + O(e -C 0 h ).
Thanks to Lemma 5.10, this can be rewritten as

α abb ′ (h) = δ bb ′ W u (a)
⋆ k e -f -f (a) . This shows that our eigenmodes are not a priori normalized in L 2 . To fix this, we would need to set, for every critical point a of f , U a (h) := 1

|α a |(πh) n-2k 4 
U a (h).

With this renormalization, the tunneling formula of Theorem 2.6 can be rewritten as Under this form, we now recognize exactly the tunneling formula as it appears in [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF]Eq. (3.27)] -see also [6, §6] Remark 8.1. We proved that, for every a in Crit(f ), the currents Ũa (h) := e f -f (a) h U a (h) converge to U a as h → 0 + . We emphasize that the above argument does not allow to conclude that (e f -f (a) h

hd f,h U a (h) = h π
U HS a (h)) h→0 + also converges to U a . Proving this does not seem obvious and it would require to go more precisely through the analysis performed in [START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF].

Appendix A. Holomorphic continuation of the Ruelle determinant

In this appendix, we consider a Morse-Smale gradient flow ϕ t f . We fix 0 ≤ k ≤ n and a ∈ Crit(f ). We recall how to prove that the local Ruelle determinant By definition of the Lyapunov exponents, we also recall that dϕ -1 f (a) = exp(-L f (a)) where L f (a) is a symmetric matrix whose eigenvalues are given by the (χ j (a)) 1≤j≤n . If a is of index r, we used the convention: where we used the triangle inequality |ξ| ≤ |ξ -η| + |η| in order to bound (1+|ξ|) N (1+|η|) N (1+|ξ-η|) N by some constant C uniformly in ξ and in η.

To estimate the second term I 2 (ξ), we shall use that the integral is over η such that | ξ |ξ| -η |η| | δ. This implies that the angle between ξ and η is bounded from below by some α ∈ (0, π/2) which depends only on the aperture δ. We now observe that Thus, up to increasing the value of C and by applying the Cauchy-Schwarz inequality, we find

| ξ |ξ| -η |η| | δ | ϕ(ξ -η) u(η)|dη C ϕ H N+ Ñ (1 + |ξ|) -N R n (1 + |η|) -2 Ñ | u(η)| 2 dη 1/2
Gathering the two estimates yields the final result.

Remark 2 . 3 .

 23 In order to get another intuition on the content of this Theorem, let us write formally tW f,h e -f h .

Theorem 2 . 5 (

 25 Witten's instanton formula). Suppose that the assumptions of Theorem 2.1 are satisfied. Then, for every pair of critical points (a, b) with ind(b) = ind(a) + 1, there exists 1 n ab ∈ Z such that ∀a ∈ Crit(f ), dU a = b:ind(b)=ind(a)+1 n ab U b (2)

3. 1 . 5 .

 15 Hodge star and duality for anisotropic Sobolev currents. Recall now that the Hodge star operator [4, Part I.4] is the unique isomorphism ⋆

a 3 .

 3 (z 0 ), which concludes the proof of the Lemma. 5.Proof of Proposition 5.3. We can now conclude the proof of Proposition 5.3. With the above conventions, it is sufficient to show that m (k) a (z 0 ) = Rk(π (k)

  a [W u (a)]), and one has U a = [W u (a)] near a. Similarly, one has S a = [W s (a)] near a.

  as t → +∞, since χ(a) = 1, supp(S a ) ∩ supp(χ[W u (a)]) = {a} by equation (22) and S a = [W s (a)] near a. Then, it follows from continuity of d :

Remark 6 . 3 .

 63 Note that the family (U a (h)) a∈Crit(f ) is made of linearly independent currents for h > 0 small enough. Indeed, set Ũa (h) := e f -f (a) h U a (h)which converges to U a in the anisotropic Sobolev space thanks to Theorem 4.5 and write, for every critical point a of index k, π (k) 0 ( Ũa (h)) = b:ind(b)=k M Ũa (h) ∧ S b U b = b:ind(b)=k (δ ab + o(1)) U b .

Definition 7 . 2 (

 72 Strong topology and bounded subsets). The strong topology of D ′,k (M) for M compact is defined by the following seminorms. Choose some bounded set B in Ω n-k (M). Then, we define a seminorm P B asP B (u) = sup ϕ∈B | u, ϕ |. A subset B of currents is bounded iff it is weakly bounded which means for every test form ϕ ∈ Ω n-k (M), sup t∈B | t, ϕ | < +∞[START_REF] Schwartz | Théorie des distributions[END_REF] Ch. 3, p. 72]. This is equivalent to B being bounded in some Sobolev space H s (M, Λ k (T * M)) of currents by suitable application of the uniform boundedness principle [14, Sect. 5,Lemma 23].

U 1 ∧ U 2 ∧ S b 13 a 13 : 13 ) 2 ( 2 (U 1 , 2 (U 1 ,

 1213131322121 b 31 ) b 31 :ind(b 31 )=ind(a 31 )+1 : dU a 31 = b 31 :ind(b 31 )=ind(a 31 )+1 M S b 31 ∧ dU a 31 U b 31 = (-1) k+l+1 b 13 :ind(b 13 )+1=ind(a 13 ) M dU b 13 ∧ S a 13 U b 31 , where we used the Stokes formula one more time to write the second equality. Intertwining the sums over a 13 and b 13 in the expression of A yields A = b 13 ∈Crit(f 13 ) M ind(b 13 )+1=ind(a 13 ) M S a 13 ∧ dU b 13 U a 13 = b 13 ∈Crit(f 13 ) M U 1 ∧ U 2 ∧ S b 13 dU b 13 , where we used as above the fact that dU b 13 ∈ Ker(-L (k+l+1) V f to write the second equality. This implies m (k+1,l) dU 1 , U 2 ) + (-1) k m (k,l+1) dU 2 ) = d m (k,l) U 2 ) .

  (a, b) in Crit(f ) such that ind(b) = ind(a) + 1, write M d f,h (U a (h)) ∧ S b (h) = e f (b)-f (a) h M d( Ũa (h)) ∧ Sb (h) = b ′ :ind(b ′ )=ind(a)+1 n ab ′ e f (b)-f (a) h M Ũb ′ (h) ∧ S b (h) = b ′ :ind(b ′ )=ind(a)+1 n ab ′ e f (b)-f (a) h δ bb ′ (1 + o(1)) = n ab e f (b)-f (a) h (1 + o(1)).

  the matrix whose coefficients are given by U HS b (h), U HS b ′ (h) L 2 , then one knows from[START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF] Eq. (1.43)] thatV (k) (h) = Id + O Ω k (M ) (e -C 0 /h ),for some positive constant C 0 > 0 depending only on (f, g). Hence, if we transform this family into an orthonormal family ( ŨHSb ′ (h)) b ′ :Ind(b ′ )=k , then one has ŨHS b ′ (h) = b:Ind(b)=k δ bb ′ + O Ω k (M ) (e -C 0 /h ) U HS b (h).

  k) f,h (x, y, dx, dy) = b ′ ∈Crit(f ):Ind(b ′ )=k ŨHS b ′ (h)(x, dx) ŨHS b ′ (h)(y, dy).

( 31 )

 31 U a (h) = α a (h)(1 + O(h))U HS a (h) + b =a∈Crit(f ):Ind(b)=Ind(a)

h

  χ a Ψ b (h) + O(e -C 0 h ). Using [43, Th. 1.4], we find that, for a = b or a = b ′ , one has α abb ′ (h) = O(e -C 0 h ). It remains to treat the case a = b = b ′ . In that case, we can use [43, Th. 1.4 and Th. 2.5] to show α abb ′ (h) = α a (πh) n-2k 4 (1 + O(h)), for a certain positive constant α a = 0 which depends only on the Lyapunov exponents at the critical point a (and not on h). Precisely, one has |α a | = k j=1 |χ j (a)| n j=k+1 |χ j (a)| 1 4

1 2 b 1 U

 121 :ind(b)=ind(a)+1 n ab e f (a) h |α a | e f (b) h |α b | b (h).

  ζ

  (z) := exp -+∞ l=1 e -lz l Tr Λ k dϕ -l f (a) det Iddϕ -lf (a) has an holomorphic extension to C, and we compute explicitely its zeros in terms of the Lyapunov exponents (χ j (a)) 1≤j≤n . Recall that the dynamical Ruelle determinant from the introduction is given by ζ

χ 1 ( 1 - 1 = e l r j=1 χ j (a) n j=1 ( 1 - 1 =

 111j=111 (a) ≤ . . . ≤ χ r (a) < 0 < χ r+1 (a) ≤ . . . ≤ χ n (a). In order to show this holomorphic continuation, we start by observing that, in terms of the Lyapunov exponents, det Iddϕ -l f (a) e -lχ j (a) ) -e -l|χ j (a)| ) -e l r j=1 χ j (a) α∈N n e -lα.|χ(a)| , where N = {0, 1, 2, . . .} and |χ(a)| = (|χ j (a)|) 1≤j≤n . We now compute the trace Tr Λ k dϕ -l f (a) = J⊂{1,...,n}:|J|=k exp -l j∈J χ j (a) ,We reduce to the estimateR n | ϕ(ξη) u(η)|dη = | ξ |ξ| -η |η| | δ | ϕ(ξη) u(η)|dη I 1 (ξ) + | ξ |ξ| -η |η| | δ | ϕ(ξη) u(η)|dη I 2 (ξ), and we will estimate separately the two terms I 1 (ξ), I 2 (ξ).Start with I 1 (ξ), if ξ ∈ W 0 then, by definition of W , η belongs to W . Hence, using the Cauchy-Shwarz inequality, this yields the estimateI 1 (ξ) = | ξ |ξ| -η |η| | δ | ϕ(ξη) u(η)|dη = (1 + |ξ|) -N | ξ |ξ| -η |η| | δ | ϕ(ξη)(1 + |ξ -η|) N u(η)(1 + |η|) N | (1 + |ξ|) N (1 + |η|) N (1 + |ξ -η|) N dη (1 + |ξ|) -N sup ξ,η (1 + |ξ|) N (1 + |η|) N (1 + |ξ -η|) N ϕ H N (1 + |ξ|) N u(ξ) L 2 (W ) C ϕ,N (1 + |ξ|) -N (1 + |ξ|) N u(ξ) L 2 (W )

a 2 + b 2 -

 22 2ab cos c = (ab cos c) 2 + b 2 sin 2 c ≥ b 2 sin 2 c, and we apply this lower bound to a = |ξ|, b = |η| and c the angle between ξ and η. Thus,∀(ξ, η) ∈ (V × c W ) , |(sin α)η| |ξ -η|, |(sin α)ξ| |ξ -η|.Then, for such ξ and η, there exists some constant C (depending only on N, Ñ and δ) such that(1 + |ξ -η|) -N -Ñ ≤ (1 + |(sin α)η|) -Ñ (1 + |(sin α)ξ|) -N ≤ C(1 + |η|) -Ñ (1 + |ξ|) -N .

  Fukaya thus requires that the triple (f 12 , g 12 ), (f 23 , g 23 ) and (f 31 , g 31 ) satisfies the generalized Morse-Smale property [45, §6.8]. That is, for every (a 12 , a 23 , a 31

  23, 31}. Hence, we can deduce that U a 12 (h) ∧ U a 23 (h) ∧ U a 31 (h) = e Ũa 12 (h) ∧ Ũa 23 (h) ∧ Ũa 31 (h),

	f 12 (a 12 )+f 23 (a 23 )+f 31 (a 31 ) h

  in the case of a self-indexing Morse function. Concerning the Fukaya's instanton formula, we observe that it can be rewritten aslim h→0 + |α a 12 α a 23 α a 31 |(πh) U a 12 (h) ∧ U a 23 (h) ∧ U a 31 (h) = M U a 12 ∧ U a 23 ∧ U a 31 .

		n	
		4	
	e	f 12 (a 12 )+f 23 (a 23 )+f 31 (a 31 ) h	M

An explicit expression is given in paragraph 6.1.

Note that the proof from this reference makes use of Laudenbach construction in[START_REF] Laudenbach | On the Thom-Smale complex[END_REF] while the one from[START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF] is self-contained.

This means that the V fij verify the Smale transversality assumptions.

Observe that the O(S 0 ) term comes from the subprincipal symbol of -L V f .

In that reference, the authors allow diffeomorphisms with low regularity. Here, everything is smooth and we can make the essential spectral radius arbitrarly small by letting r → +∞ in that reference.

Note that a may be a minimum and, in that case, there is no such b.

Recall also that this spectrum is intrinsic, i.e. independent of the choice of the anisotropic Sobolev space.

m N 0 ,N 1 k (M) and is thus bounded in H -s (M, Λ k (T * M)) for s large enough. In particular,

Remark 7.6. The proof in[START_REF] Brouder | Continuity of the fundamental operations on distributions having a specified wave front set[END_REF] was given for product of distributions and it extends to currents asD ′,k Γ (M) = D ′ Γ (M)⊗ C ∞ (M ) Ω k (M).Recall that the fact that ∧ is hypocontinuous means that, for every neighborhood W ⊂ D ′,k+l s(Γ 1 ,Γ 2 ) (M) of zero and for every bounded setB 2 ⊂ D ′,l Γ 2 (M ) , there is some open neighborhood U 1 ⊂ D ′,k Γ 1 of zero such that ∧(U 1 ×B 2 ) ⊂ W .The same holds true if we invert the roles of 1 and 2. We note that hypocontinuity implies boundedness, in the sense that any bounded subset ofD ′k Γ 1 (M) × D ′l Γ 2 (M) is sent to a bounded subset of D ′k+l s(Γ 1 ,Γ 2 ) (M). This follows from the observation that a set B is bounded iff for every open neighborhood U of 0, B can be rescaled by multiplication by λ > 0 such that λB ⊂ U.

For h = 0, there is no problem as the eigenmodes are smooth by elliptic regularity.

The tensor product of distributions for the strong topology is hypocontinuous but not continuous[11, p. 205] 

Stable manifolds of f are unstable manifolds of -f .

We note that, except for this section, our results are self-contained and they do not rely on[START_REF] Helffer | Points multiples en mécanique semi-classique IV, étude du complexe de Witten[END_REF].

which is a subset of (a,b,c)∈Crit(f 12 )×Crit(f 23 )×Crit(f 31 )

where the last equality is the content of our generalized Morse-Smale transversality assumption. Combining Proposition 7.5 with the hypocontinuity of the wedge product, we find that ( Ũa 12 (h) ∧ Ũa 23 (h)) 0≤h<h 0 is a bounded family in D ′,k+l

where k is the index of a 12 and l is the one of a 23 . Moreover, as h → 0, one has

Then, as our three vector fields verify the generalized Morse-Smale assumptions (5), we can repeat this argument with the spaces D

. Hence, we get that, as h → 0,

Finally, testing against the smooth form 1 in Ω 0 (M), we find that, as h → 0,

which concludes the proof of Theorem 2.7 up to the fact that we need to verify that M U a 12 ∧ U a 23 ∧ U 31 is an integer. 7.4. End of the proof. In order to conclude the proof of Theorem 2.7, we will show that W u (a 12 ), W u (a 23 ) and W u (a 31 ) intersect transversally at finitely many points belonging to the intersection W u (a 12 ) ∩ W u (a 23 ) ∩ W u (a 31 ). Then, the fact that M U a 12 ∧ U a 23 ∧ U 31 is an integer will follow from Lemma 6.2. Let us start by showing that any point in the intersection

We proceed by contradiction. Suppose that

Then, using our transversality assumption, we have that In this appendix, we give the proof of Lemma 7.4. Up to minor modifications due to the fact that we are dealing with L 2 norms, we follow the lines of [15, p. 58]. We fix N, Ñ, W 0 and W as in the statement of this Lemma.

The cone W 0 being given, we can choose W to be a thickening of the cone W 0 , i.e.

for some fixed positive δ. This means that small angular perturbations of covectors in W 0 will lie on the neighborhood W . Choose some smooth compactly supported function ϕ which equals 1 on the support of u hence we have the identity u = uϕ. We compute the Fourier transform of the product:

| ϕ(ξη) u(η)|dη.