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Abstract

In this paper, we investigate the stochastic stability of linear hyperbolic conservation laws governed by a finite-state Markov
chain. Both system matrices and boundary conditions are subject to the Markov switching. The existence and uniqueness of
weak solutions are developed for the stochastic hyperbolic initial boundary value problem. By means of Lyapunov techniques
some sufficient conditions are obtained by seeking the balance between the boundary condition and the transition probability
of the Markov process. Particularly, boundary feedback control of a stochastic traffic flow model is developed for the freeway
transportation system by integrating the on-ramp metering with the speed limit control.

Key words: Stochastic hyperbolic conservation laws, Markov process, Stochastic stability, Lyapunov function, Traffic flow
control.

1 Introduction

Many physical or engineering processes may be rep-
resented by the hyperbolic partial differential equa-
tions (PDEs) of conservation laws in one space dimen-
sion, such as Saint-Venant equation for open channels
(de Halleux et al. (2003)), Euler equation for gas pipes
(Gugat et al. (2011)), and Aw-Rascle equation for road
traffic (Aw and Rascle (2000)). In such systems, the
system matrices and the boundary conditions can both
be subject to abrupt changes in their structures and pa-
rameters induced by the external causes or the internal
mechanism. For example, in the freeway transportation
systems, it can be the phase transition of traffic modes
(Colombo (2003)), or the random flux at the boundaries
(Haut et al. (2007)). In such situations, it is more real-
istic to model the dynamic behaviors of these processes
with switched hyperbolic systems.

Many results have been made for boundary stability of
switched hyperbolic systems. In Amin et al. (2012), the
exponential stability is given under arbitrary switching

1 This work is supported by the National Natural Science
Foundation of China (NSFC, grant No. 61374076, 61533002)
and the International Cooperation and Exchange Program
of NSFC (grant No. 61111130119).

using the propagation of solutions along the characteris-
tics. In Prieur et al. (2014), using Lyapunov techniques
some sufficient conditions are obtained for the exponen-
tial stability uniformly. Switching boundary control for
semilinear hyperbolic balance equations is considered in
Hante et al. (2009). In Lamare et al. (2015), stabilizing
switching controllers are developed based on the steep-
est decent selection of the Lyapunov function.

In this paper, we consider a class of switched hyper-
bolic systems, named the Markov jump linear hyper-
bolic (MJLH) systems, in which mode switching is gov-
erned by a Markov chain and all modes are linear hy-
perbolic conservation laws. The boundary stabilization
for hyperbolic systems (Li (1994); Coron et al. (2007))
and the stochastic stability for the Markov jump linear
(MJL) systems of continuous-time (Costa et al. (2013))
or discrete-time cases (Boukas (2005)) have been stud-
ied for many years independently. The main contribu-
tion of this work is that the boundary stochastic stabil-
ity for the MJLH systems is firstly obtained by means of
Lyapunov techniques. The matrix inequality condition
is based on the balance between the boundary condition
of the hyperbolic conservation laws and the transition
probability of the Markov process.

A second contribution of our work is the application to
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boundary control of freeway traffic. Due to the existence
of a large number of uncertainties, such as demand vari-
ability, capacity decrease, etc., the local freeway traf-
fic may randomly lie in the free-flow mode or in the
congestion mode (Boel and Mihaylova (2006); Sumalee
et al. (2011)). We develop a two-mode MJLH model to
represent the quasilinear Aw-Rascle equation and de-
sign boundary feedback strategies by integrating the on-
ramp metering with the speed limiting control. Theoret-
ical contributions guarantee the stochastic exponential
convergence of the MJLH traffic flow model, even with
different transition probabilities of the Markov chain.

This paper is organized as follows. The class of MJLH
systems and the wellposedness of weak solutions are
given in Section 2. In Section 3, the main result on the
sufficient conditions of the exponentially mean-square
stable are derived for MJLH systems. Numerical compu-
tation of the conditions is discussed in Section 4. Finally,
in Section 5, as a matter of illustration, an application
of boundary feedback control of freeway traffic based on
the MJLH traffic flow model is presented.

Notation: R+, Rn, Rn×n are the sets of non-negative
reals, n-order vectors and matrices, respectively. The
set of diagonal positive matrices in Rn×n is denoted by
Dn+. Given a matrix A, the transpose matrix is denoted

as A>, λmax(A), ρ(A) are the largest real parts of all
eigenvalues and the spectral radius of A. A < (≤)B
denotes B − A is a positive definite (semidefinite) ma-
trix. Given two real values t1 and t2, t1 ∧ t2 denotes
the minimal value between t1 and t2. The Euclidean
norm in Rn is denoted by | · | and the associated ma-
trix norm is ‖ · ‖. Given a function g : [0, 1] → Rn, its

L2-norm is ‖g‖L2(0,1) =
√∫ 1

0
|g(x)|2dx. We callL2(0, 1)

the space of all measurable functions g(x) for which
‖g‖L2(0,1) <∞.

2 Markov Jump Linear Hyperbolic Systems

Let (Ω,F ,Pr) be a complete probability space equipped
with a filtration {Ft; t ∈ R+} satisfying the usual
hypotheses, that is, a right-continuous filtration aug-
mented by all null sets in the Pr-completion of F .

We consider a homogeneous Markov process {σ(t); t ∈
R+} adapted to the filtration {Ft; t ∈ R+}, with right-
continuous trajectories and taking values on the set S =
{1, 2, . . . , N}, whereN is a positive integer number. The
infinitesimal generator Π ∈ RN×N of Markov process
σ(t) is given by

Pr{σ(t+ ∆t) = j|σ(t) = i}

=

{
πij∆t+ o(∆t), if i 6= j

1 + πii∆t+ o(∆t), if i = j
(1)

where ∆t > 0 is constant (it is seen as a small time incre-

ment) and o(·) is a function satisfying lim∆t→0
o(∆t)

∆t = 0.
Here πij ≥ 0, for i 6= j, is the transition rate from mode
i at time t to mode j at time t+ ∆t, while

πii = −
∑N
j=1,j 6=i πij .

Let {τk; k = 0, 1, . . .} be the successive sojourn times

between jumps, then tk =
∑k−1
l=0 τl, for k = 1, 2, . . ., be

the waiting time for the kth jump with t0 = 0.

Stating in mode σ(0) = i, the process sojourns there for
a duration of time that is exponentially distributed with
parameter −πii. The process then jumps to mode j 6= i
with probability −πijπii , and the sojourn time in mode j
is exponentially distributed with parameter −πjj , and
so on. We further assume that the Markov process is ir-
reducible. Under this condition, σ(t) has a unique sta-
tionary probability distribution γ = [γ1 . . . γN ]>, which
can be determined by solving the following linear equa-

tion γ>Π = 0 subject to
∑N
j=1 γj = 1 and γj > 0, for all

j ∈ S (Costa et al., 2013, Definition 2.9).

We consider the following Markov jump linear hyper-
bolic (MJLH for short) conservation laws of the form

∂tξ(x, t) + Λσ(t)∂xξ(x, t) = 0, (2)

where t ∈ R+, x ∈ [0, 1], ξ : [0, 1] × R+ → Rn is the
system state, the Markov process σ(t) : R+ → S is a
stochastic switching signal deciding the current opera-
tion mode. For all i ∈ S, the system matrix Λi ∈ Rn×n
is a diagonal matrix with non-zero diagonal entries such
that

Λi = diag{λi1, λi2, · · · , λin},
with λij < 0 for j ∈ {1, . . . ,mi} and λij > 0 for the other
j ∈ {mi + 1, . . . , n}.

According to the sign of each characteristic velocity λij ,

j = {1, . . . , n}, i ∈ S, we introduce the notation ξi−(·) =

[ξ1(·), · · · , ξmi(·)]>, ξi+(·) = [ξmi+1(·), · · · , ξn(·)]>, and

thus ξ = [ξi−, ξ
i
+]>, for all i ∈ S.

For MJLH system (2), the boundary condition also is a
stochastic process, corresponding to the Markov chain
σ(t), written as[

ξ
σ(t)
− (1, t)

ξ
σ(t)
+ (0, t)

]
= Gσ(t)

[
ξ
σ(t)
− (0, t)

ξ
σ(t)
+ (1, t)

]
, (3)

where Gi is a matrix in Rn×n, i ∈ S. Let us introduce
the matricesGi−− in Rmi×mi ,Gi−+ in Rmi×(n−mi),Gi+−
in R(n−mi)×mi , and Gi++ in R(n−mi)×(n−mi) such that

Gi =

[
Gi−− Gi−+

Gi+− Gi++

]
.
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We consider the initial condition given by

ξ(x, 0) = ξ0(x), x ∈ (0, 1), (4)

for a given function ξ0(·) ∈ L2(0, 1) and a initial opera-
tion mode σ(0) ∈ S.

For each mode i ∈ S, as respective hyperbolic equation
(2)-(4) holds a sojourn for a duration of time {τk; k =
0, 1, . . .}, the existence and uniqueness of solution in
the set C0([0,∞), H1(0, 1)) ∩ C1([0,∞), L2(0, 1)) with
initial condition in L2(0, 1) is quite classical, see e.g.
(Bastin and Coron, 2016, Theorem A.4). Recently, the
notion of solutions for an initial-boundary value prob-
lem of switched hyperbolic systems has been developed
within the usual Lebesgue almost everywhere equiva-
lence class, see e.g. Amin et al. (2012), and (Prieur et al.,
2014, Proposition 3.1).

We now provide an existence and uniqueness result for
the solutions of the MJLH system (2)-(4).

Proposition 1 The MJLH system (2)-(3) admits
a unique solution ξ = ξ(·, t), t ∈ R+, such that
E
{
‖ξ(·, t)‖L2(0,1)

}
< ∞, for any initial condition

ξ0 ∈ L2(0, 1) and any initial operation mode σ(0) ∈ S,
where E {·} stands for the mathematical expectation.

Proof. Recall that almost every sample path of stochas-
tic process σ(t), t ≥ 0, is a right-continuous step func-
tion with a finite number of jumps in any finite time in-
terval. Then there exists a sequence {tk; k = 0, 1, . . .} of
stopping times such that t0 = 0, limk→∞tk = ∞, and
σ(t) = σ(tk) on tk ≤ t < tk+1 for any k ≥ 0.

We then build iteratively the solution between succes-
sive stopping times. Let T ∈ R+ be arbitrary, we first
consider the MJLH system (2)-(3) on the time interval
t ∈ [0, t1 ∧ T ] which becomes

∂tξ(x, t) + Λσ(0)∂xξ(x, t) = 0, (5)

for all x ∈ (0, 1) with the boundary condition of the form[
ξ
σ(0)
− (1, t)

ξ
σ(0)
+ (0, t)

]
= Gσ(0)

[
ξ
σ(0)
− (0, t)

ξ
σ(0)
+ (1, t)

]
, (6)

and the initial condition ξ0 ∈ L2(0, 1). For any initial
mode σ(0) ∈ S, by (Bastin and Coron, 2016, Theorem
A.4), the initial-boundary value problem (5)-(6) has a
unique solution ξ(·, t) ∈ L2(0, 1), which satisfies

‖ξ(·, t)‖L2(0,1) ≤ C1‖ξ0(·)‖L2(0,1), (7)

for all t ∈ [0, t1 ∧ T ] with C1 > 0, then almost surely we
have

E
{
‖ξ(·, t1 ∧ T )‖L2(0,1)

}
<∞.

Setting ξ1(·) = ξ(·, τ1 ∧ T ), we next consider the MJLH
system (2)-(3) on the time interval t ∈ [t1 ∧ T, t2 ∧ T ],
which becomes

∂tξ(x, t) + Λσ(t1)∂xξ(x, t) = 0, (8)

for all x ∈ (0, 1), with the corresponding boundary con-
dition [

ξ
σ(t1)
− (1, t)

ξ
σ(t1)
+ (0, t)

]
= Gσ(t1)

[
ξ
σ(t1)
− (0, t)

ξ
σ(t1)
+ (1, t)

]
, (9)

and the redefined initial condition ξ1 ∈ L2(0, 1). Again
applying (Bastin and Coron, 2016, Theorem A.4), for
the initial-boundary value problem (8)-(9) of the mode
σ(t1) ∈ S, as t ∈ [t1∧T, t2∧T ], there also exists a unique
classical solution ξ(·, t) ∈ L2(0, 1), which satisfies

‖ξ(·, t)‖L2(0,1) ≤ C2‖ξ1(·)‖L2(0,1), (10)

with C2 > 0, then it holds E
{
‖ξ(·, t2 ∧ T )‖L2(0,1)

}
<

∞. Repeating above procedure, we see that the MJLH
system (2)-(3) has a unique solution ξ(·, t) for any t ∈
[0, T ], and satisfies E

{
‖ξ(·, T )‖L2(0,1)

}
<∞. Since time

T is arbitrary, this concludes the proof of Proposition 1.
�

3 Stochastic Stability of Markov Jump Linear
Hyperbolic Systems

Stochastic stability is an important issue in the analy-
sis of stochastic systems. For the MJL systems, various
definitions have been introduced in Costa et al. (2013),
and Fang and Loparo (2002).

We next start this section by defining the exponential
mean-square stability for MJLH systems.

Definition 1 System (2)-(4) is said to be exponentially
mean-square stable, if there exist ν > 0 and C > 0, such
that any solution ξ(·, t) to (2)-(4) satisfies

E
{
‖ξ(·, t)‖2L2(0,1)

}
≤ Ce−νt‖ξ0(·)‖2L2(0,1), (11)

for all t ∈ R+, any initial condition ξ0(·) ∈ L2(0, 1) and
any initial operation mode σ(0) ∈ S.

A sufficient condition for the exponential mean-square
stability of MJLH systems is obtained using the Lya-
punov function method. To do that, let us consider the
following candidate stochastic Lyapunov function for the
MJLH system (2)-(4)

V (ξ, σ(t)) =

∫ 1

0

ξ(x, t)>P (x, σ(t))ξ(x, t)dx, (12)
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with P (x, σ(t) = i) = Pi(x), i ∈ S. We define Pi(x) =
diag

{
e2µixP−i , e

−2µixP+
i

}
, x ∈ [0, 1], where µi ∈ R,

P−i ∈ D
mi×mi
+ and P+

i ∈ D
(n−mi)×(n−mi)
+ are diago-

nal positive definite matrices with corresponding dimen-
sions.

Definition 2 The infinitesimal generator of the solu-
tion process (ξ(·, t), σ(t)) of the MJLH system (2)-(4),
acting on the Lyapunov function V (ξ, σ(t)) at the point
(t, ξ(·, t), σ(t) = i), i ∈ S, is defined by, for all t ∈ R+,

LV (ξ(·, t), σ(t) = i)

, lim
∆t→0+

1

∆t
[E {V (ξ(·, t+ ∆t), σ(t+ ∆t))|

ξ(·, t), σ(t) = i} − V (ξ(·, t), σ(t) = i)]. (13)

As the point t is clear in the context, we denote V (ξ, i) =
V (ξ, σ(t) = i) for simplicity.

Lemma 1 Given the stochastic Lyapunov function (12)
and the MJLH system (2)-(4), the infinitesimal generator
of Lyapunov function defined in (13), satisfies

LV (ξ, σ(t) = i) =
d

dt
V (ξ, i) +

N∑
j=1

πijV (ξ, j), (14)

where derivative d
dtV (ξ, i) stands for ∂

∂ξV (ξ, i)∂tξ at the

point (t, ξ(·, t), σ(t) = i) for any solution to (2)-(4).

Proof. The weighting matrix P (x, σ(t)) of the Lyapunov
function (12) is also a Markov process and is equipped
with the transition probabilities

Pr {P (·, σ(t+ ∆t) = Pj(·)|ξ(·, t), σ(t) = i}
= πij∆t+ o(∆t), if i 6= j (15)

Pr {P (·, σ(t+ ∆t) = Pi(·)|ξ(·, t), σ(t) = i}
= 1 + πii∆t+ o(∆t), if i = j (16)

It follows from (1) and (2) that

Pr{ξ(·, t+ ∆t) = ξ(·, t)− Λj∂xξ(·, t)∆t+ o(∆t)

|ξ(·, t), σ(t) = i}
= πij∆t+ o(∆t), if i 6= j (17)

Pr{ξ(·, t+ ∆t) = ξ(·, t)− Λi∂xξ(·, t)∆t+ o(∆t)

|ξ(·, t), σ(t) = i}
= 1 + πii∆t+ o(∆t), if i = j (18)

Using the properties of the conditional expectation, we
have

E {V (ξ(·, t+ ∆t), σ(t+ ∆t))|ξ(·, t), σ(t) = i}
= [1 + πii∆t]V (ξ(·, t+ ∆t), i)

+

N∑
j=1,j 6=i

[πij∆t]V (ξ(·, t+ ∆t), j) + o(∆t)

= V (ξ(·, t+ ∆t), i)

+

N∑
j=1

[πij∆t]V (ξ(·, t+ ∆t), j) + o(∆t). (19)

Hence, in mode i ∈ S, when the system state is changing
from ξ(·, t) to ξ(·, t+ ∆t), we have

V (ξ(·, t+ ∆t), i)

=

∫ 1

0

ξ>(·, t+ ∆t)Pi(·)ξ(·, t+ ∆t)dx

= V (ξ(·, t), i)− 2∆t

∫ 1

0

ξ>(·, t)ΛiPi(·)∂xξ(·, t)dx

+ o(∆t)

= V (ξ(·, t), i) + ∆t

∫ 1

0

[∂tξ
>(·, t)Pi(·)ξ(·, t)

+ ξ>(·, t)Pi(·)∂tξ(·, t)]dx+ o(∆t)

= V (ξ(·, t), i) + ∆t
d

dt
V (ξ(·, t), i) + o(∆t). (20)

From the definition of function LV (13), it follows that

LV (ξ(·, t), σ(t) = i)

= lim
∆t→0+

1

∆t
{V (ξ(·, t+ ∆t), i) +

N∑
j=1

[πij∆t]

[V (ξ(·, t+ ∆t), j)− V (ξ(·, t), i)] + o(∆t)}

= lim
∆t→0+

1

∆t
[V (ξ(·, t+ ∆t), i)− V (ξ(·, t), i)]

+

N∑
j=1

πijV (ξ, j)

=
d

dt
V (ξ, i) +

N∑
j=1

πijV (ξ, j).

This concludes the proof of Lemma 1. �

The following Theorem 1 captures the idea that seeking
a balance, between the boundary conditions of hyper-
bolic modes and the transition probability of the Markov
process, is essential for the exponential mean-square sta-
bility of MJLH systems. Let |Λi| = diag{|λi1|, · · · , |λin|},
i ∈ S, and the matrices

Gi− =

[
Gi−− Gi−+

0 In−mi

]
, Gi+ =

[
Imi 0

Gi+− Gi++

]
.
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Theorem 1 Let us assume that there exist ν > 0, µi ∈
R, i ∈ S, and diagonal positive definite matrices P−i ∈
Dmi×mi+ and P+

i ∈ D
(n−mi)×(n−mi)
+ such that Pi(x) =

diag
{
e2µixP−i , e

−2µixP+
i

}
, defined for each x ∈ [0, 1],

satisfies the following matrix inequalities:

−2µi|Λi|Pi(x) +

N∑
j=1

πijPj(x) ≤ −νPi(x), (21)

G>i+ΛiPi(0)Gi+ −G>i−ΛiPi(1)Gi− ≤ 0. (22)

Then, there exists C > 0 such that (11) holds and the
MJLH system (2)-(4) is exponentially mean-square sta-
ble.

Proof. Let us consider the Lyapunov function candidate
V (ξ, σ(t)) given by (12) and assume that the diago-
nal positive matrix Pi(x) satisfies the inequalities (21)
and (22), for each i ∈ S. Given any t ∈ R+ with the
Markov process σ(t) = i, computing the time-derivative
of V (ξ, i) along the solutions to (2) yields the follow-

ing: d
dtV (ξ, i) =

∫ 1

0
[ξ>Pi(x)∂tξ + ∂tξ

>Pi(x)ξ]dx =

−
∫ 1

0
[ξ>Pi(x)Λi∂xξ + ∂xξ

>ΛiPi(x)ξ]dx. Using an
integration by parts, and because ∂xPi(x)Λi =
−2µiPi(x)|Λi|, we obtain

d

dt
V (ξ, i)

= −
[
ξ>Pi(x)Λiξ

]1
0
−
∫ 1

0

2µiξ
>|Λi|Pi(x)ξdx

= ξ>(0, t)Pi(0)Λiξ(0, t)− ξ>(1, t)Pi(1)Λiξ(1, t)

− 2

∫ 1

0

ξ>µi|Λi|Pi(x)ξdx

= ∂tV1(ξ, i) + ∂tV2(ξ, i), (23)

with

∂tV1(ξ, i) , ξ>(0, t)Pi(0)Λiξ(0, t)

− ξ>(1, t)Pi(1)Λiξ(1, t),

∂tV2(ξ, i) , −2

∫ 1

0

ξ>µi|Λi|Pi(x)ξdx.

Under the boundary condition (3) for mode i, we have

∂tV1(ξ, i) =

[
ξi−(0, t)

ξi+(1, t)

]>[ Imi 0

Gi+− Gi++

]>
ΛiPi(0)

[
Imi 0

Gi+− Gi++

]
−

[
Gi−− Gi−+

0 In−mi

]>
ΛiPi(1)

[
Gi−− Gi−+

0 In−mi

])[
ξi−(0, t)

ξi+(1, t)

]

=

[
ξi−(0, t)

ξi+(1, t)

]> (
G>i+ΛiPi(0)Gi+

−G>i−ΛiPi(1)Gi−
) [ ξi−(0, t)

ξi+(1, t)

]
. (24)

Combining the time-derivatives (23), (24) and inequal-
ity conditions (21), (22) and Lemma 1, the infinitesimal
generator of V (ξ, σ(t)) satisfies

LV (ξ, σ(t) = i) =
d

dt
V (ξ, i) +

N∑
j=1

πijV (ξ, j)

= ∂tV1(ξ, i) + ∂tV2(ξ, i) +

N∑
j=1

πijV (ξ, j)

≤
∫ 1

0

ξ>[−2µi|Λi|Pi(x) +

N∑
j=1

πijPj(x)]ξdx.

≤ −νV (ξ, i). (25)

Now, we can define a new Lyapunov function Ṽ (ξ, σ(t))

as Ṽ (ξ, σ(t) = i) = eνtV (ξ, σ(t) = i), for all i ∈ S. From
Lemma 1 and (25), we have

LṼ (ξ, σ(t) = i) = LV (ξ, σ(t) = i) + νV (ξ, i) ≤ 0. (26)

Based on the definition of LṼ , for each σ(t) = i ∈ S,
t ≥ 0, integrating (26) from zero to t, we get

E
{
eνtV (ξ, σ(t))

}
− V (ξ0(x), σ(0))

= E

{∫ t

0

LṼ (ξ, σ(τ))dτ

}
≤ 0. (27)

ThereforeE
{
V (ξ(x, t), σ(t))|ξ0, σ(0)

}
≤ V (ξ0, σ(0))e−νt

for any initial condition ξ0 ∈ L2(0, 1) and any initial
operation mode σ(0) ∈ S. By remarking that there ex-
ist α > 0, β > 0 (depending on µi, P

+
i and P−i , for all

i ∈ S), such that

α‖ξ(x, t)‖2L2(0,1) ≤ V (ξ(x, t), σ(t)) ≤ β‖ξ(x, t)‖2L2(0,1)),

we obtain that, for all t ∈ R+,

αE
{
‖ξ(t, x)‖2L2(0,1)

}
≤ E {V (ξ(t, x), σ(t))}

≤ β‖ξ0(x)‖2L2(0,1)e
−νt

which straightly implies

E
{
‖ξ(t, x)‖2L2(0,1)

}
≤ α−1βe−νt‖ξ0(x)‖2L2(0,1). (28)

Consequently, the MJLH system (2)-(4) is exponentially
mean-square stable in L2-norm by choosing C = α−1β.
This completes the proof of Theorem 1. �
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Remark 1 For the case of only one mode of operation
in the MJLH system (2)-(4), N = 1, that is no jumps in
the Markov process, condition (21) in Theorem 1 implies
the parameter µ1 > 0, and furthermore condition (22)
in Theorem 1 is consistent with the dissipative bound-
ary conditions for the linear hyperbolic systems of con-
servation laws by Coron et al. (2007). y

The condition (21) of Theorem 1 involves the spatial
variable, then the number of inequality constraints is
infinite. The following Corollary 1 presents a more easily
checked matrix inequality condition by testing the upper
bound of the involved spatial variable x ∈ [0, 1]. To do
that, denote Pi = diag{P−i , P

+
i } and

Ii(x) = diag
{
e2µixImi , e

−2µixIn−mi
}
, (29)

which implies Pi(x) = PiIi(x), for all x ∈ [0, 1].

Corollary 1 Let us assume there exist µi ∈ R and diag-
onal positive definite matrices Pi ∈ Dn×n+ such that the
following matrix inequalities hold, for all i, j ∈ S

(πiiIn − 2µi|Λi|)Pi + e2|µi|
N∑
j 6=i

πije
2|µj |Pj < 0, (30)

G>i+ΛiPiGi+ −G>i−ΛiPiIi(1)Gi− ≤ 0. (31)

Then the MJLH system (2)-(4) is exponentially mean-
square stable.

Proof. The matrix inequality (30) implies that there ex-
ists a common positive small number ν > 0 (depends on
matrices Pi, |Λi|, and µi, πij , i, j ∈ S), such that

(πiiIn−2µi|Λi|)Pi+e2|µi|
N∑
j 6=i

πije
2|µj |Pj ≤ −νPi. (32)

Multiplying Ii(x) on both sides of (32), we obtain

−2µi|Λi|Pi(x)+πiiPi(x) +e2|µi|
∑N
j 6=i πije

2|µj |PjIi(x) ≤
−νPi(x). Since πij ≥ 0, and e2|µi|Ii(x) ≥ 1, we have∑N
j=1,j 6=i πijPj(x) ≤ e2|µi|

∑N
j 6=i πije

2|µj |PjIi(x), thus

the condition (21) of Theorem 1 holds. This concludes
the proof of Corollary 1. �

Compared with the results of Theorem 1, the sufficient
conditions (30)-(31) of Corollary 1 remain nonlinear in
the unknown variables µi and Pi, i ∈ S. However, since
parameter µi is a scalar variable, one may use a line
search algorithm to solve inequalities (30) and (31) (see
Section 4 below).

4 Numerical Computation for Stochastic Sta-
bility Conditions

In this section, a bounded real interval of the parameter
µi is obtained by a trade-off between the condition (21)

and (22) of Theorem 1. We define, for each i ∈ S,

µπi = λmax(
πii
2
|Λi|−1), (33)

µGi = − ln ρ(Gi). (34)

Proposition 2 For a given mode i ∈ S, conditions (21)
and (22) of Theorem 1 are both satisfied, only if µπi <
µi ≤ µGi .

Proof. For a given parameter µi ∈ R, we first prove
that µi > µπi . On the one hand, for all x ∈ [0, 1],
condition (21) may be developed as (−µi|Λi|)>Pi(x) +

Pi(x)(−µi|Λi|) +
∑N
j=1 πijPj(x) ≤ −νPi(x). By letting

x = 0, condition (21) includes a finite number of con-
straints and describes the stochastic stability of the fol-
lowing continuous-time MJL system

ẏ(t) = −µi|Λi|y(t). (35)

Let Ai = −µi|Λi|, ⊗ denotes the Kronecker product and
⊕ denotes the Kronecker sum, i.e., A ⊕ B = A ⊗ I +
B ⊗ I, and just recalling the well-known result for the
exponentially mean-square stable of MJL (see e.g. Fang
and Loparo (2002)), the n2N ×n2N matrix Γ defined in
(44) is Hurwitz.

Note that πij > 0 for all i 6= j, i, j ∈ S, then the ma-
trix Ai+

πii
2 In is Hurwitz which requires the largest real

part of all eigenvalues being non-positive. Hence, requir-
ing the parameter µi > λmax(πii2 |Λi|

−1) is necessary to
satisfy the condition (21) of Theorem 1.

On the other hand, condition (22) of Theorem 1 may be
described as

Qi =

[
Qi−− Qi−+

Qi+− Qi++

]
≤ 0, (45)

withQi−− = (Gi+−)>Λ+
i P

+
i G

i
+−+e2µi(Gi−−)>|Λ−i |P

−
i G

i
−−−

|Λ−i |P
−
i ,Qi+− = (Gi+−)>Λ+

i P
+
i G

i
+++e2µi(Gi−−)>|Λ−i |P

−
i G

i
−+,

Qi−+ = (Qi+−)>, Qi++ = (Gi++)>Λ+
i P

+
i G

i
++ +

e2µi(Gi−+)>|Λ−i |P
−
i G

i
−+ − e−2µiΛ+

i P
+
i , where |Λ−i | =

diag {|λi1|, · · · , |λimi |}, and Λ+
i = diag{λimi+1, · · · , λin}.

Then the matrix Qi in (45) can be rewritten as

Qi = (eµi Gi)
>diag

{
|Λ−i |P

−
i , e

−2µiΛ+
i P

+
i

}
eµi Gi

− diag
{
|Λ−i |P

−
i , e

−2µiΛ+
i P

+
i

}
. (46)

It implies that the discrete-time system

y(k + 1) = eµiGiy(k), k = 0, 1, · · · (47)

is marginally stable.

Hence, for the system matrix eµiGi of (47), we have
eµiρ(Gi) ≤ 1. Thus, the inequality µi ≤ − ln ρ(Gi) is
necessary to satisfy the condition (22) of Theorem 1.
This concludes the proof of Proposition 2. �
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Γ =


A1 ⊕A1 + π11In2 π21In2 · · · πN1In2

π12In2 A2 ⊕A2 + π22In2 · · · πN2In2

...
...

. . .
...

π1NIn2 π2NIn2 · · · AN ⊕AN + πNNIn2

 (44)

Remark 2 Following the proof of Corollary 1, if the
conditions (30) and (31) of Corollary 1 are satisfied, then,
by Proposition 2, it holds µi ∈ (µπi , µ

G
i ]. Therefore, when

using a branch and bound algorithm for finding the pa-
rameters µi, i ∈ S, one can further limit the search range
of µi among the initial interval (µπi , µ

G
i ]. y

5 Application to Boundary Control of Freeway
Traffic

5.1 Aw-Rascle traffic flow model

The traffic dynamic in a freeway section of length L is
governed by a quasi-linear hyperbolic system including
two equations, the so-called Aw-Rascle traffic flow model
(Aw and Rascle (2000)). That is{

∂tρ+ ∂x(ρv) = 0

∂t(v + p(ρ)) + v∂x(v + p(ρ)) = 0
(48)

where ρ(x, t) is vehicle density, v(x, t) is average speed,
x ∈ [0, L], t ≥ 0, and the function p(ρ) means the traffic
pressure which is supposed to be increasing against den-
sity. In Zhang (2002), pressure function p(ρ) is given as

p(ρ) = vf − V (ρ), (49)

where vf is the free (maximal) speed. Typically, from
the Greenshields fundamental diagram (Greenshields
(1935)), define

V (ρ) = vf

(
1− ρ

ρm

)
, (50)

where ρm is the maximal density. Thus, we get a linear
pressure function p(ρ) = aρ with a =

vf
ρm

.

Let z = v, and w = v+aρ, the Aw-Rascle equation (48)
may be rewritten in the characteristic Riemann coordi-
nates as

∂tξ(x, t) + Λ(ξ)∂xξ(x, t) = 0, (51)

with the system matrix Λ(ξ) = diag{2z −w, z} and the
state ξ = [z, w]>. Equation (51) is assumed to be strictly
hyperbolic as the characteristic velocities λ1 = 2z−w =
v − aρ, λ2 = z = v are different and nonzero for all
x ∈ [0, L], t ≥ 0.

In (51), the sign of the first characteristic velocity λ1 >
0, (or < 0), indicates the transfer direction of traffic
information, such as the average speed z (or v), from
the freeway upstream to the downstream, or inverse. It
is natural as the feature to determine the freeway traffic
lies in the free-flow traffic mode or in the congestion
traffic mode (Kerner (2009)).
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Figure 1. Relation of the speed and density. The experiment
data have been recorded on I80 freeway in Emeryville, CA,
4:00-4:30 pm, June 1, 2015, by PeMS (2004).

5.2 MJLH traffic flow model and linearization

Motivated by the development of stochastic traffic flow
models, see Boel and Mihaylova (2006), Zhang and Mao
(2015), we deduce the quasi-linear hyperbolic equation
(48) to a MJLH system.

Firstly, we choose two typical traffic states ξ1 = (ρ1, v1)
and ξ2 = (ρ2, v2) from the separated regions of the fun-
damental diagram, with v1 − aρ1 > 0 and v2 − aρ2 < 0,
respectively, to represent the characteristics of the free-
flow and the congestion modes, as shown in Fig. 1.

In Riemann coordinates, the system matrices of the
MJLH system (2) for free-flow or congestion modes are
given respectively by Λ1 = Λ(ξ1) = diag{2z1 − w1, z1},
Λ2 = Λ(ξ2) = diag{2z2 − w1, z2}. We further assume
the probabilistic conditions of mode switching follows a
Markov process σ(t) under a prior determined infinites-
imal generator Π ∈ R2×2, see Sumalee et al. (2011).

Hence, the MJLH traffic flow model becomes

∂tξ(x, t) + Λσ(t)∂xξ(x, t) = 0, (52)
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with σ(t) ∈ {1, 2}, in which σ(t) = 1 means the freeway
traffic lies in the free-flow mode, and σ(t) = 2 means the
congestion mode.

A steady-state of freeway traffic is a constant traffic state
(ρ∗, v∗) which satisfies the flux conservation condition
at the left boundary

pin + r0 = ρ∗v∗, (53)

where pin and r0 are constant flux of driving-in vehicles
through the mainline and the on-ramp of the freeway
section, respectively. Then, the associated steady-state
ξ∗ = (z∗, w∗)> in Riemann coordinates is given as z∗ =
v∗ and w∗ = v∗+aρ∗. We define the deviations of traffic
state (ρ(x, t), v(x, t)) with respect to the steady-state
(ρ∗, v∗) as ρ̃ = ρ−ρ∗, and ṽ = v−v∗.The MJLH system
(52) around the steady-state ξ∗ is derived as

∂tξ̃(x, t) + Λσ(t)∂xξ̃(x, t) = 0, (54)

where the deviation ξ̃ = ξ − ξ∗ includes two entries z̃ =
z − z∗ and w̃ = w − w∗.

Figure 2. On-ramp metering and variable speed limit on a
freeway section.

5.3 Boundary feedback control

We now are going to show how Corollary 1 may be ap-
plied to analyze the stochastic stability of the MJLH
model (52). The boundary control applies the propor-
tional feedback by combining the on-ramp metering
u(t) and the speed limit v(0, t), which are all stored at
the upstream boundary. Traffic measurements are den-
sity ρ(L, t) and average speed v(L, t) at the downstream
boundary, see Fig. 2.

Precisely, we introduce the boundary feedback control:{
u(t) = r0 − kρ(ρ(L, t)− ρ∗)
v(0, t) = v∗ − kv(v(L, t)− v∗)

, (55)

where kρ ∈ R and kv ∈ R are proportional gains to
be designed. In order to get the boundary conditions
corresponding to the Riemann invariant (54), two cases
are discussed separately.

Case 1: Free-flow mode for the system matrix Λ1.

At the left boundary of the freeway section, i.e., x = 0,
the driving-in flux conservation equation holds

u(t) + pin = ρ(0, t)v(0, t). (56)

After the linearization of boundary condition (56) with
integrating the feedback control law (55), we have the
following boundary condition

ρ̃(0, t) = ρ∗
kv
v∗
ṽ(L, t)− kρ

v∗
ρ̃(L, t). (57)

Rewrite condition (57) in Riemann coordinates as

w̃(0, t) = −kρ
v∗
w̃(L, t)

+

[
aρ∗

kv
v∗

+
kρ
v∗
− kv

]
z̃(L, t). (58)

Since ṽ(0, t) = −kv ṽ(L, t), and ṽ = z̃, the boundary
condition that needs to be imposed for the free flow mode
can be written as[

z̃(0, t)

w̃(0, t)

]
= G1

[
z̃(L, t)

w̃(L, t)

]
, (59)

with G1 =

[
−kv 0

aρ∗ kvv∗ +
kρ
v∗ − kv −

kρ
v∗

]
.

Case 2: Congestion mode for the system matrix Λ2.

In this case, using the same feedback control (55), we
have ṽ(L, t) = − 1

kv
ṽ(0, t). Similarly, in the Riemann co-

ordinates, it holds

w̃(0, t) = −kρ
v∗
w̃(L, t)

+

[
1− aρ∗

v∗
− kρ
v∗kv

]
z̃(0, t). (60)

Hence, the boundary condition that needs to be imposed
for the congestion mode is written as[

z̃(L, t)

w̃(0, t)

]
= G2

[
z̃(0, t)

w̃(L, t)

]
, (61)

with G2 =

[
− 1
kv

0

1− aρ∗

v∗ −
kρ
v∗kv

−kρv∗

]
.

By selecting the boundary feedback gains in (55) with
|kρ| < v∗ and |kv| < 1, it holds ρ(G1) < 1 and ρ(G2) >
1. Then the free-flow mode with the boundary condi-
tion matrix G1 is exponentially stable in L2-norm, and
the congestion mode with G2 is unstable (Coron et al.
(2007)). While, the overall MJLH system (52) might be
exponentially mean-square stable or not, in L2-norm,
under the Markov process σ(t).
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5.4 Simulations

The developed boundary feedback strategy (55) and the
stability conditions are now tested with numerical simu-
lations based on the MJLH system (54) presented above.
To this end, we consider a local freeway section whose
road traffic parameters are given, respectively, as ρm =
200 veh./hour, vf = 160 km/hour, a = 0.8, pin = 6000
veh./hour, r0 = 2000 veh./hour, and the total road
length is 1 km, i.e., x ∈ [0, 1].

After clustering the historical traffic data, such as the
speed-density records in Fig. 1, we represent the free-flow
and the congestion modes with two typical traffic states
(ρ1, v1) = (25, 120), and (ρ2, v2) = (75, 30), respectively.
Then, the system matrices of the MJLH system (52) are
given, respectively, as

Λ1 =

[
100 0

0 120

]
, Λ2 =

[
−30 0

0 30

]
. (62)

We consider the steady-state (ρ∗, v∗) = (80, 100) which
satisfies the flux conservation condition (56), and choose
the control gains in (55) as kρ = 20 and kv = 0.9. The
associated boundary condition matrices G1 and G2 with
respect to the system matrices Λ1 and Λ2 are calculated,
respectively, as

G1 =

[
−0.9 0

−0.1240 −0.2

]
, G2 =

[
−1.1111 0

0.1378 −0.2

]
.

Firstly, we assume that the transition probability of two

traffic modes follows the generator Π1 =

[
−1 1

7 −7

]
. Us-

ing (33)-(34) the upper and lower bounds of parameters
µ1 and µ2 are computed as µπ1 = −0.0042, µG1 = 0.1054,
µπ2 = −0.1167 and µG2 = −0.1054, respectively. Solv-
ing conditions (30)-(31) of Corollary 1, we obtain µ1 =

0.0971, µ2 = −0.1072, P1 =

[
0.3107 0

0 0.0175

]
and P2 =[

4.6235 0

0 0.2101

]
. To numerically compute the solutions

to the MJLH system (54), let us discretize them using a
WENO scheme (Jiang and Shu (1996)) in Matlab. The
initial deviations from the steady-state (ρ∗, v∗) are given
as ṽ(x, 0) = 4 sin(0.5πx) and ρ̃(x, 0) = 5 sin(0.5πx),
which satisfies the compatibility conditions and the ini-
tial mode is selected as σ(0) = 1.

Fig. 3 depicts a path of Markov process with generator
Π1. Figs. 4 and 5 show the time-evolution of v and ρ. It is
observed that the traffic states clearly converge to their
steady-state ρ∗ = 80 veh./km and v∗1 = 100 km/hour re-
spectively as time increase, as expected from Corollary
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Figure 3. Simulation of a path of the Markov process with
generator Π1.

Figure 4. The evolution of v of the MJLH traffic flow model
with generator Π1.

Figure 5. The evolution of ρ of the MJLH traffic flow model
with generator Π1.

1. The simulation results illustrate an interesting phe-
nomenon that a fixed boundary control, just using the
traffic information from the downstream, might stabilize
freeway traffic even though some congestion (unstable)
modes occur occasionally.

In the other simulation, just only the Markov genera-
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tor is changed as Π2 =

[
−1 1

4 −4

]
. In this case, since

µπ2 = −0.0667 and µG2 = −0.1054, we have µπ2 > µG2 .
The conditions (30) and (31) of Corollary 1 do not hold.
Figs. 6 depicts a path of the Markov process with gen-
erator Π2. We can find that the sojourn time of the con-
gestion mode has greatly increased. These factors finally
overturn the balance between the boundary conditions
G1, G2, and the transition probability Π2. Figs. 7 and 8
show the unstable behaviors for a sample path of v(x, t)
and ρ(x, t) under Π2 using the same initial condition.

Also with the generator Π2, after adjusting the propor-
tional gains in control (55) as kρ = 10, kv = 0.95, we
can get a new set of the upper and lower bounds as
µπ1 = −0.0042, µG1 = 0.0513, µπ2 = −0.0667 and µG2 =
−0.0513. In this case, conditions (30)-(31) of Corollary
1 hold and we compute µ1 = 0.0473, µ2 = −0.0553,

P1 =

[
0.5261 0

0 0.0255

]
and P2 =

[
4.1475 0

0 0.1744

]
.

Therefore, the MJLH traffic flow model (52) becomes
exponentially mean-square stable again under the new
boundary feedback control (55). For simplicity, we omit
the figures of this case.
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Figure 6. Simulation of a path of the Markov process with
generator Π2.

Figure 7. The evolution of v of the MJLH traffic flow model
with generator Π2.

Figure 8. The evolution of ρ of the MJLH traffic flow model
with generator Π2.

6 Conclusion

We present a class of switched systems, namely the
MJLH system, in which the logical decision is Markov
chain and subsystems are linear hyperbolic conservation
laws. By means of a stochastic Lyapunov function, expo-
nentially mean-square stability are derived dependeding
on the balance between the boundary conditions and
the transition probability. Theoretical contribution was
applied to stabilize freeway traffic by integrating the on-
ramp metering with the speed limit in the distributed
control action. This work leaves many open questions. It
is natural to extend theoretical results, such as Theorem
1 and Corollary 1 to more general MJLH systems with
time-varying velocities. Some effort will also devoted to
the study of more general MJLH systems governed by
an unobservable Markov chain.

References

Amin, S., Hante, F. M., Bayen, A. M., 2012. Expo-
nential stability of switched linear hyperbolic initial-
boundary value problems. IEEE Transactions on Au-
tomatic Control 57 (2), 291–301.

Aw, A., Rascle, M., 2000. Resurrection of ”second or-
der” models of traffic flow. SIAM journal on applied
mathematics 60 (3), 916–938.

Bastin, G., Coron, J.-M., 2016. Stability and Boundary
Stabilization of 1-D Hyperbolic Systems. Progress in
Nonlinear Differential Equations and Their Applica-
tions. Springer.

Boel, R., Mihaylova, L., 2006. A compositional stochas-
tic model for real time freeway traffic simulation.
Transportation Research Part B 40 (4), 319–334.

Boukas, E. K., 2005. Stochastic switching systems.
Birkhauser, Basel, Berlin.

Colombo, R., 2003. Hyperbolic phase transitions in traf-
fic flow. SIAM Journal on Applied Mathematics 63,
708–721.
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