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INFINITE HORIZON STOCHASTIC OPTIMAL CONTROL

PROBLEMS WITH RUNNING MAXIMUM COST

AXEL KRÖNER, ATHENA PICARELLI, AND HASNAA ZIDANI

Abstract. An infinite horizon stochastic optimal control problem with
running maximum cost is considered. The value function is character-
ized as the viscosity solution of a second-order HJB equation with mixed
boundary condition. A general numerical scheme is proposed and con-
vergence is established under the assumptions of consistency, monotonic-
ity and stability of the scheme. A convergent semi-Lagrangian scheme
is presented in detail.

1. Introduction

In this paper we consider infinite horizon stochastic control problems with
cost in a maximum form of type
(1.1)

inf
u∈U

E
[

max
s∈[0,∞)

e−λsg(Xu
x (s))

]
, subject to

dXu
x (s) = b(Xu

x (s), u(s))ds+ σ(Xu
x (s), u(s))dB(s), s ∈ [0,∞),

Xu
x (0) = x ∈ Rd.

As we will discuss in the paper, this type of problem can be used for the
characterization of viable and invariant sets. Another application of control
problem with maximum running cost comes from the study of some path-
dependent options in finance (lookback options).

The contribution of this paper is to consider stochastic control problems
with maximum cost in infinite horizon. We focus on the derivation of the
associated Hamilton-Jacobi-Bellman (HJB) equation and on its numerical
approximation. Problems with running maximum in infinite horizon have
been previously studied in [17] in the particular case of Zubov-type equa-
tions. For the numerical aspects we follow ideas developed in [7] for the
corresponding finite time horizon problem. Other important contributions
to the study of this kind of problems in finite horizon can be also found in
[5, 4] and, concerning the numerical aspects, in [1]. However, in these works
the dynamic programming techniques are applied on the Lp-approximation
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of the L∞-cost functional, using that

a ∨ b ' (ap + bp)
1
p (for p→∞),

for any a, b ≥ 0, where a ∨ b := max(a, b) whereas, following more closely
the approach in [17, 7], we directly derive the Dynamic Programming equa-
tion working on the original formulation of the cost involving the running
maximum.

By this way, the optimal control problem (1.1) is connected to the solu-
tion of a second-order Hamilton-Jacobi-Bellman (HJB) equation with mixed
boundary condition involving oblique derivative and Dirichlet conditions.
The presence of oblique derivative boundary conditions, to be considered
in the viscosity sense [18], typically arises when dealing with running max-
imum operators (see [6, 7]). The additional Dirichlet condition is instead
introduced in order to ensure the boundedness of the problem and to guar-
antee uniqueness of the solution (see also [17]). The last part of the pa-
per is devoted to numerical aspects. First, a general scheme is proposed
to deal with HJB equations with mixed derivative boundary conditions.
Then, a convergence result is proved by using the general framework of
Barles-Souganidis [3] based on the monotonicity, stability, consistency of the
scheme. Then, we focus on a semi-Lagrangian scheme and prove its conver-
gence. Let us recall that the semi-Lagrangian schemes have been introduced
for first order Hamilton-Jacobi equations in [12]. The extensions to the sec-
ond order case have been studied in several papers [20, 11, 14, 15]. For sta-
tionary equations, which is the case studied in this paper, semi-Lagrangian
schemes are formulated as fix point problems. In our context, the numerical
scheme that will be studied couples the classical semi-Lagrangian scheme
with an additional projection step on the boundary taking into account the
overstepping of the domain which is typical in such a wide stencil scheme.

The paper is organized as follows: Section 2 introduces the problem and
some motivations. Sections 3 and 4 are devoted to the characterization of
the value function by the appropriate HJB equation: the Dynamic Pro-
gramming Principle (DPP) is established, the HJB equation derived and
uniqueness proved through a strong comparison principle. In Section 5 the
numerical approximation is discussed and a general convergence result is
provided. The semi-Lagrangian scheme is presented in Section 5.2 and the
properties of this scheme are investigated.

2. Formulation of the problem

Let (Ω,F ,P) be a probability space, {Ft, t ≥ 0 } a filtration on F and B(·)
a {Ft}t≥0-Brownian motion in Rp, p ≥ 1. Let U be a set of progressively
measurable processes with values in U ⊂ Rm, m ≥ 1, U compact set. We
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consider stochastic differential equations of type

(2.1)

{
dXu

x (s) = b(Xu
x (s), u(s))ds+ σ(Xu

x (s), u(s))dB(s), s ∈ [0,∞),

Xu
x (0) = x

with control u ∈ U .
Throughout the paper we make the following assumptions on the coeffi-

cients in (2.1):

(H1) b : Rd × U → Rd and σ : Rd × U → Rd×p are continuous functions
satisfying, for some constants C0 ≥ 0,

|b(x, u)− b(y, u)|+ |σ(x, u)− σ(y, u)| ≤ C0|x− y|,
|b(x, u)|+ |σ(x, u)| ≤ C0

for any x, y ∈ Rd and u ∈ U .

Theorem 2.1. Under assumption (H1), for any x ∈ Rd there exists a
unique strong solution of (2.1). Moreover, denoted by Xu

x (·) such a solution,
there exists a constant C ≥ 0 such that

E

[
sup
θ∈[0,T ]

|Xu
x (θ)−Xu

x′(θ)|

]
≤ CeCT |x− x′|(2.2)

for any u ∈ U , T > 0 and x, x′ ∈ Rd.

For a proof see [22, p. 42, Thm. 6.3] and [21, p.14].
To formulate the optimal control problem we introduce the cost function

g such that

(H2) g : Rd → R satisfies

|g(x)− g(y)| ≤ Lg|x− y|, |g(x)| ≤Mg

for some Mg, Lg ≥ 0, for any x, y ∈ Rd.
Given a discount factor λ > 0, we aim to solve the infinite horizon optimal
control problem of minimizing over the set of controls U the following cost

J(x, u) = E
[

max
s∈[0,∞)

e−λsg(Xu
x (s))

]
.(2.3)

We will denote by v : Rd → R the associated value function, that is

v(x) = inf
u∈U

J(x, u).

For given x ∈ Rd a control ū ∈ U that minimizes (2.3) is called optimal and
the corresponding trajectory (s,X ū

x (s)) an optimal trajectory.

Remark 2.2. We point out that the study of optimal control problems with
cost depending on a running maximum as in (2.3) can be used to characterise
the region of viability/invariance of a domain. This results by the application
of a level set approach as shown, for the case of a finite horizon of time, in
[7, Section 2.3].
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3. Dynamic Programming Principle

In the next sections, strongly motivated by numerical approximation pur-
poses, we aim to characterize v as a solution, in the viscosity sense, of a
HJB equation. The presence of the maximum operator inside the expec-
tation, makes the cost J in (2.3) non-Markovian and it is well know that
this prevent to establish a Dynamic Programming Principle (DPP), which
is the first fundamental result towards the HJB characterisation. A classical
strategy to overcome this difficulty consists in adding an auxiliary variable
y that, roughly speaking, gets rid of the non-Markovian component of the
cost. This has been originally used in [6], in finite horizon. Here, an ap-
proximation technique of the L∞-norm is used, as a consequence the results
apply only if the function g in (2.3) is a positive function. We proceed in
a different way, following the approach in [7, 17] and directly deriving the
HJB equation without making use of any approximation.

Let us define the auxiliary value function ϑ : Rd ×R→ R

ϑ(x, y) := inf
u∈U

E
[

max
s∈[0,∞)

e−λsg(Xu
x (s)) ∨ y

]
,

which satisfies, for any x ∈ Rd,

ϑ(x, g(x)) = v(x).

Consequently, if ϑ is known, one can immediately recover the corresponding
value of v, so that from now on we will only consider ϑ as value function of
our problem.

We start by proving the continuity of the value function ϑ.

Proposition 3.1. Let assumptions (H1)-(H2) be satisfied. Then the value
function ϑ is uniformly continuous in Rd ×R. Moreover,

ϑ(x,Mg) = Mg and |ϑ(x, y)| ≤Mg

for any (x, y) ∈ Rd ×R with |y| ≤Mg.

Proof. The last statement follows directly by the definition of ϑ and the
bound on g given by assumption (H2).
By the very definition of ϑ we have that for any (x, y), (ξ, η) ∈ Rd ×R

|ϑ(x, y)− ϑ(ξ, η)|

≤ sup
u∈U

E
[∣∣∣ max

s∈[0,∞)
e−λsg(Xu

x (s)) ∨ y − max
s∈[0,∞)

e−λsg(Xu
ξ (s)) ∨ η

∣∣∣]
≤ sup

u∈U
E
[

max
s∈[0,∞)

∣∣∣e−λsg(Xu
x (s))− e−λsg(Xu

ξ (s))
∣∣∣ ∨ ∣∣∣y − η∣∣∣]

≤ sup
u∈U

E
[

max
s∈[0,∞)

∣∣∣e−λsg(Xu
x (s))− e−λsg(Xu

ξ (s))
∣∣∣]+

∣∣∣y − η∣∣∣
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For any T > 0 we have that (recalling that g is bounded)

E
[

max
s∈[0,∞)

∣∣∣e−λsg(Xu
x (s))− e−λsg(Xu

ξ (s))
∣∣∣]

≤ E
[

max
s∈[0,T ]

∣∣∣e−λsg(Xu
x (s))− e−λsg(Xu

ξ (s))
∣∣∣]+ E

[
max

s∈[T,∞)

∣∣∣e−λsg(Xu
x (s))− e−λsg(Xu

ξ (s))
∣∣∣]

≤ E
[

max
s∈[0,T ]

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣]+ E
[

max
s∈[T,∞)

2Mge
−λs
]

= E
[

max
s∈[0,T ]

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣]+ 2Mge
−λT .

For the first term we have the classical estimates (see Theorem 2.1)

E
[

max
s∈[0,T ]

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣] ≤ LgE[ sup
s∈[0,T ]

|Xu
t,x(s)−Xu

t,ξ(s)|

]
≤ LgCeCT |x− ξ|.

So putting everything together we get that for every T

|ϑ(x, y)− ϑ(ξ, η)| ≤ LgCeCT |x− ξ|+ 2Mge
−λT + |y − η|.

Now, for any ε > 0 we can fix T ≡ T (ε) such that 2Mge
−λT < ε/3. It

follows that we can choose a δ = δ(ε, T (ε)) such that if |(x, y) − (ξ, η)| ≤ δ
then

|ϑ(x, y)− ϑ(ξ, η)| < ε.

�

Thanks to the presence of the auxiliary variable y we are able to state the
Dynamic Programming Principle (DPP) for ϑ. Let us define for t ≥ 0

Y u
x,y(t) := max

s∈[0,t]
e−λsg(Xu

x (s)) ∨ y.

Following the arguments in [10] and thanks to the uniform continuity of
ϑ one has:

Theorem 3.2 (DPP). Let assumptions (H1)-(H2) be satisfied. For (x, y) ∈
Rd ×R and any finite stopping time θ ≥ 0 there holds

ϑ(x, y) = inf
u∈U

E
[
e−λθϑ(Xu

x (θ), eλθY u
x,y(θ))

]
.

Intuitive justification. We only give an intuitive justification for the DPP
satisfied by ϑ in the non controlled case.
We can in fact observe that a.s.

max
s∈[0,∞)

e−λsg(Xx(s)) ∨ y = max
s∈[θ,∞)

e−λsg(Xx(s))
∨

max
s∈[0,θ]

e−λsg(Xx(s)) ∨ y︸ ︷︷ ︸
=:Yx,y(θ)

= e−λθ max
s∈[0,∞)

e−λsg(XXx(θ)(s))
∨
Yx,y(θ)

= e−λθ
(

max
s∈[0,∞)

e−λsg(XXx(θ)(s))
∨
eλθYx,y(θ)

)
.
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Consequently, by the definition of ϑ (in absence of controls), we have by the
tower property of the expectation

ϑ(x, y) = E
[
E
[
e−λθ

(
max
s∈[0,∞)

e−λsg(XXx(θ)(s))
∨
eλθYx,y(θ)

)∣∣∣Fθ]]
= E

[
e−λθE

[
max
s∈[0,∞)

e−λsg(XXx(θ)(s))
∨
eλθYx,y(θ)

∣∣∣Fθ]]
= E

[
e−λθϑ(Xx(θ), eλθYx,y(θ))

]
.

Here, we are not considering the additional technical difficulties coming from
the presence of controls. We refer to [10] and [21] for more detailed argu-
ments. �

4. The Hamilton-Jacobi-Bellman equation

The value function ϑ can be characterized in terms of a solution of a
second-order HJB equation.

Theorem 4.1 (Second-order HJB equation). Under assumptions (H1)-
(H2), the value function ϑ is a continuous viscosity solution of

(4.1)
λϑ+H(x, y,Dxϑ, ∂yϑ,D

2
xϑ) = 0 x ∈ Rd, y > g(x),

−∂yϑ = 0 x ∈ Rd, y = g(x)

with Hamiltonian H : Rd ×R×Rd ×R×Rd×d → R defined by

H(x, y, p, q, P ) = sup
u∈U

(
−b(x, u) · p− 1

2
Tr[(σσT )(x, u)P ]

)
− λyq.(4.2)

We recall the notion of viscosity solution for second-order HJB equation.

Definition 4.2. [13, Definition 7.4] Let O be a locally compact set in Rd+1.
A USC function ϑ (resp. LSC function ϑ) on O is a viscosity sub-solution
(resp. super-solution) of (4.1), if for every function ϕ ∈ C2(O) at every
maximum (resp. minimum) point x of ϑ − ϕ (resp. ϑ − ϕ) the following
inequalities hold{

λϕ+H(x, y,Dxϕ, ∂yϕ,D
2
xϕ) ≤ 0 in O,

min(λϕ+H(x, y,Dxϕ, ∂yϕ,D
2
xϕ),−∂yϕ) ≤ 0 on ∂O,(

resp. {
λϕ+H(x, y,Dxϕ, ∂yϕ,D

2
xϕ) ≥ 0 in O,

max(λϕ+H(x, y,Dxϕ, ∂yϕ,D
2
xϕ),−∂yϕ) ≥ 0 on ∂O.

)
A continuous function ϑ is called a viscosity solution of (4.1) if it is both a
sub- and super-solution.
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Proof of Theorem 4.1. Let

O := { (x, y) ∈ Rd+1 : y ≥ g(x) } .

We first check that ϑ is a viscosity sub-solution. Let ϕ ∈ C2(O) such that
ϑ − ϕ attains a maximum at point (x̄, ȳ) ∈ O. Without loss of generality
we can always assume that (x̄, ȳ) is a strict local maximum point (let us say
in a ball of radius r > 0 centered in (x̄, ȳ)) and ϑ(x̄, ȳ) = ϕ(x̄, ȳ). Thanks
to Theorem 3.2, for any u ∈ U and for any sufficiently small stopping time
θ = θu, we have:

ϕ(x̄, ȳ) = ϑ(x̄, ȳ) ≤ E
[
e−λθϑ

(
Xu
x̄ (θ), eλθY u

x̄,ȳ(θ)
)]

≤ E
[
e−λθϕ

(
Xu
x̄ (θ), eλθY u

x̄,ȳ(θ)
)]
.(4.3)

Two cases will be considered depending on if the point (x̄, ȳ) belongs to the
boundary of O or not.

— Case 1: g(x̄) < ȳ. Consider a constant control u(s) ≡ u ∈ U . From
the continuity of g and the a.s. continuity of the sample paths it follows
that for a.e. ω ∈ Ω there exists s̄(ω) > 0 such that g(Xu

x̄ (s))e−λs < ȳ if
s ∈ [0, s̄(ω)). Given h > 0, let θ̄ be the following stopping time:

(4.4)
θ̄ := inf

{
s > 0: (Xu

x̄ (s), eλsY ux̄,ȳ(s)) /∈ B((x̄, ȳ), r)
}
∧ h

∧ inf
{
s > 0: e−λsg(Xu

x̄ (s)) ≥ ȳ
}

(where B((x̄, ȳ), r) denotes the ball of radius r > 0 centered at (x̄, ȳ)). One
can easily observe that a.s. θ̄ > 0 and Y u

x̄,ȳ(θ̄) = ȳ, then by (4.3)

ϕ(x̄, ȳ) ≤ E
[
e−λθ̄ϕ

(
Xu
x̄ (θ̄), eλθ̄ȳ

)]
∀u ∈ U.

By applying the Ito’s formula [22, Theorem 5.5], and thanks to the smooth-
ness of ϕ, we get:

E
[ ∫ θ̄

0

d
(
e−λsϕ(Xu

x̄ (s), eλsȳ)
)]

= E
[ ∫ θ̄

0

{
λϕ(Xu

x̄ (s), eλsȳ)− b(Xu
x̄ (s), u)Dxϕ(Xu

x̄ (s), eλsȳ)

− 1

2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eλsȳ)]− λȳeλs∂yϕ(Xu
x̄ (s), eλsȳ)

}
e−λsds

]
≤ 0.

Observing that the stopping times

inf
{
s > 0: (Xu

x̄ (s), eλsY u
x̄,ȳ(s)) /∈ Br(x̄, ȳ)

}
and inf

{
s > 0: e−λsg(Xu

x̄ (s)) ≥ ȳ
}
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are a.s. strictly greater than 0, for a.e. fixed ω one obtains θ̄ = h for a
sufficiently small h in (4.4). Dividing by h > 0, one gets

E
[

1

h

∫ θ̄

0

{
λϕ(Xu

x̄ (s), eλsȳ)− b(Xu
x̄ (s), u)Dxϕ(Xu

x̄ (s), eλsȳ)

− 1

2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eλsȳ)]− λȳeλs∂yϕ(Xu
x̄ (s), eλsȳ)

}
e−λsds

]
≤ 0.

By the dominate convergence theorem, taking the limit for h going to 0
inside the expectation and applying the mean value theorem, it follows

λϕ(x̄, ȳ)− b(x̄, u)Dxϕ(x̄, ȳ)− 1

2
Tr[σσT (x̄, u)D2

xϕ(x̄, ȳ)]− λȳ∂yϕ(x̄, ȳ) ≤ 0.

Finally, thanks to the arbitrariness of u ∈ U :

λϕ(x̄, ȳ)+ sup
u∈U

(
−b(x̄, u)Dxϕ(x̄, ȳ)− 1

2
Tr[σσT (x̄, u)D2

xϕ(x̄, ȳ)]
)
−λȳ∂yϕ(x̄, ȳ) ≤ 0.

— Case 2: g(x̄) = ȳ. Let us assume that −∂yϕ(x̄, ȳ) > 0, otherwise the
conclusion is straightforward.

As in the previous case, we consider a constant control u(s) ≡ u ∈ U .
Thanks to the continuity of the sample paths and the smoothness of ϕ, for
a.e. ω there is a time s̄(ω) > 0 and η > 0 such that:

ϕ(Xu
x̄ (s), eλsy) ≤ ϕ(Xu

x̄ (s), eλsȳ) ∀s ∈ [0, s̄], y ∈ [ȳ, ȳ + η).

Let θ̄ be the stopping time given by:

θ̄ := inf
{
s > 0: (Xu

x̄ (s), eλsY ux̄,ȳ(s)) /∈ B((x̄, ȳ), r)
}
∧ inf {s > 0: ∂yϕ(Xu

x̄ (s), ȳ) ≥ 0}

∧ inf
{
s > 0: e−λsg(Xu

x̄ (s)) /∈ [ȳ, ȳ + η)
}
∧ h.

By (4.3) one has

ϕ(x̄, ȳ) ≤ E
[
e−λθ̄ϕ

(
Xu
t̄,x̄(θ̄), eλθ̄ȳ

)]
,

which implies (as we have seen for Case 1):

λϕ(x̄, ȳ)+ sup
u∈U

{
−b(x̄, u)Dxϕ(x̄, ȳ)− 1

2
Tr[σσT (x̄, u)D2

xϕ(x̄, ȳ)]
}
−λȳ∂yϕ(x̄, ȳ) ≤ 0.

In conclusion at point (x̄, ȳ) ∈ ∂O one has

min
(
λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D

2
xϕ),−∂yϕ

)
≤ 0,

and ϑ is a viscosity sub-solution of equation (4.1).

It remains to prove that ϑ is a viscosity super-solution of (4.1). Let
ϕ ∈ C2(O) be such that ϑ − ϕ attains a minimum at point (x̄, ȳ) ∈ O.
Without loss of generality we can always assume that (x̄, ȳ) is a strict local
minimum point in a ball B((x̄, ȳ), r) and ϑ(x̄, ȳ) = ϕ(x̄, ȳ). We consider
again the two cases:
— Case 1: g(x̄) < ȳ. We assume by contradiction that

λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ) < 0.
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By using continuity arguments we can also state that

(4.5) λϕ+H(·, ·, Dxϕ, ∂yϕ,D
2
xϕ) ≤ 0

in a neighborhood B((x̄, ȳ), r1) of (x̄, ȳ) for some r1 > 0. Moreover, thanks
to the continuity of g, if ȳ−g(x̄) =: ρ > 0 we can find r2(ρ) > 0 and T (ρ) > 0
such that

max
t∈[0,T ],
x∈B(x̄,r2)

e−λtg(x)− g(x̄) ≤ ρ

2

and we have

max
t∈[0,T ],
x∈B(x̄,r2)

e−λtg(x) ∨ ȳ = ȳ.

For any u ∈ U we define the stopping time θu as the first exit time of the pro-
cess (Xu

x̄ (s), eλsY u
x̄,ȳ(s)) from the ball B((x̄, ȳ), R) for R := min(r, r1, r2) > 0,

i.e.

θu := inf
{
s > 0: (Xu

x̄ (s), eλsY u
x̄,ȳ(s)) /∈ B((x̄, ȳ), R)

}
∧ T.

Applying the Ito’s formula and taking the expectation we get

ϕ(x̄, ȳ)− E
[
e−λθ

u
ϕ(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u))

]
= ϕ(x̄, ȳ)− E

[
e−λθ

u
ϕ(Xu

x̄ (θu), eλθ
u
ȳ)

]
= E

[ ∫ θu

0

{
λϕ(Xu

x̄ (s), eλsȳ)− b(Xu
x̄ (s), u)Dxϕ(Xu

x̄ (s), eλsȳ)

− 1

2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eλsȳ)]− λȳeλs∂yϕ(Xu
x̄ (s), eλsȳ)

}
e−λsds

]
≤ 0,

that leads to

ϑ(x̄, ȳ) = ϕ(x̄, ȳ) ≤ E
[
e−λθ

u
ϕ(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u))

]
.

The continuity of the sample paths implies that{
either θu = T or
(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u)) ∈ ∂B((x̄, ȳ), R) a.s. .

Being (x̄, ȳ) a strict minimum point on has

min
{

(ϑ−ϕ) : (x, y) ∈ ∂B((x̄, ȳ), R)
⋃ (

B((x̄, ȳ), R)∩ y = eλT ȳ
)}

=: η > 0,

hence

ϑ(x̄, ȳ) ≤ ϕ(Xu
x̄ (θu), eλθ

u
Y u
x̄,ȳ(θ

u)) ≤ ϑ(θu, Xu
x̄ (θu), eλθ

u
Y u
x̄,ȳ(θ

u)) + η.

Since η does not depends on u and u is arbitrary, this contradicts the DPP.
— Case 2: g(x̄) = ȳ. Assume by contradiction that

−∂yϕ(x̄, ȳ) < 0 and λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ) < 0.
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We can again define r1 > 0 such that (4.5) is satisfied in B((x̄, ȳ), r1).
Moreover there exists r̃2 > 0 such that

ϕ(ξ, ζ) ≤ ϕ(ξ, ζ ′)

for any (ξ, ζ), (ξ, ζ ′) ∈ B((x̄, ȳ), r̃2) such that ζ ≤ ζ ′. For any u ∈ U we define
the stopping time θu as the first exit time of the process (Xu

x̄ (s), eλsY u
x̄,ȳ(s))

and (Xu
x̄ (s), eλsȳ) from the ball B((x̄, ȳ), R̃) for R̃ := min(r, r1, r̃2) > 0. As

for Case 1, we can still say that a.s.

ϑ(Xu
x̄ (θu), Y u

x̄,ȳ(θ
u)) ≥ ϕ(θu, Xu

x̄ (θu), Y u
x̄,ȳ(θ

u)) + η′.

for some η′ > 0 not depending on u. Therefore, observing that

eλsY u
x̄,ȳ(s) ≥ eλsȳ

for any s ≥ 0 and using Ito’s formula, we get

ϑ(x̄, ȳ) = ϕ(x̄, ȳ) ≤ E
[
ϕ(θu, Xu

x̄ (θu), eλθ
u
ȳ)
]
≤ E

[
ϕ(θu, Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u))
]

≤ E
[
ϑ(θu, Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u)
]
− η′,

the yields again to a contradiction of the DPP. �

In the sequel we will restrict our domain to

D := {(x, y) ∈ Rd+1 : y > g(x) , y ∈ (−Mg,Mg)}.
Indeed, this is sufficient to characterize ϑ since we have that:

(4.6)
ϑ(x, y) = y for any y ≥Mg

ϑ(x, y) = ϑ(x, g(x)) for any y ≤ g(x).

Based on this observation we are going to prove uniqueness in the domain
D by adding the Dirichlet boundary condition, given by Proposition 3.1,

ϑ(x,Mg) = Mg for any x ∈ Rd.
This will give a HJB equation with mixed Dirichlet and derivative boundary
conditions. Let

Γ1 := { (x, y) ∈ D : y = Mg } ; Γ2 := { (x, y) ∈ D : y = g(x) } .(4.7)

Then the value function ϑ is a viscosity solution of the following problem

λϑ+H(x, y,Dxϑ, ∂yϑ,D
2
xϑ) = 0 in D,(4.8a)

−∂yϑ = 0 on Γ2(4.8b)

and satisfies additional

ϑ = Mg on Γ1(4.8c)

in a strong sense. We point out that in our case the strong constant Dirich-
let boundary condition on Γ1 is compatible with the homogeneus derivative
condition on Γ2. This prevents possible problems related with mixed bound-
ary conditions at the junctions where different components of the boundary
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cross.
We can prove the following comparison result:

Theorem 4.3. Let assumptions (H1)-(H2) be satisfied and let u ∈ USC(D),
v ∈ LSC(D) respectively a bounded sub- and super-solution to equation (4.8)
in D such that

u ≤Mg and v ≥Mg on Γ1.

Then u ≤ v in D.

The proof can be obtained by a slight modification of the arguments in
[16, Theorem 2.1]. See also [17]. We report here the main steps.

Sketch of the proof. Before starting the proof of the result, we introduce a
more compact notation. Let us start defining

b̃(x, y, u) :=

(
b(x, u)
λy

)
∈ Rd+1 and σ̃(x, y, u) :=

(
σ(x, u)
0 . . . 0

)
∈ R(d+1)×p.

In what follow we will directly denote with x the variable in the augmented
state space RM for M := d + 1, that is x ≡ (x, y) ∈ RM and xM = y.
Using this notation we can write the Hamiltonian H in (4.2) in the following
compact form

H(x, p, P ) := sup
u∈U

(
− b̃(x, u) · p− 1

2
Tr[σ̃σ̃T (x, u)P ]

)
.

Thanks to the Lipschitz continuity of the function g that defines the
boundary Γ2, we can observe that there exists µ > 0 such that for any
z ∈ Γ2 one has

(4.9)
⋃

0≤ξ≤µ
B(z − ξ, ξµ) ⊂ DC .

(where DC denotes the complementary of the set D). This corresponds
to condition (2.9) in [16] and, by the same arguments as in [16, Corollary
2.3](strongly simplified in our case thanks to the constancy of the derivative
direction), the existence of a function ζ ∈ C2(D) follows such that

ζ ≥ 0 in D, −∂xM ζ ≥ 1 on Γ2 and ‖Dζ‖∞, ‖D2ζ‖∞ ≤ K
for some constant K ≥ 0.
Let us define for α, β > 0

u
α,β

(x) := u(x)− αζ(x)− β
and

v
α,β

(x) := v(x) + αζ(x) + β.

One has (with an abuse of notation Du,Dv,D2u,D2v will denote a corre-
sponding elements of the semijets of u and v, see [13, Section 2])

λu
α,β

+H(x,Du
α,β
, D2u

α,β
)− λu−H(x,Du,D2u)

≤ −λβ + αM
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and

λv
α,β

+H(x,Dv
α,β
, D2v

α,β
)− λv −H(x,Dv,D2v)

≥ λβ − αM

for some constantM ≥ 0 depending on the bounds on b, σ and ‖Dζ‖∞, ‖D2ζ‖∞.
Moreover

−∂xMuα,β = −∂xMu+ α∂xM ζ ≤ −∂xMu− α
−∂xM vα,β = −∂xM v − α∂xM ζ ≥ −∂xM v + α

and thanks to the non negativity of ζ we also have that

u
α,β
≤Mg and v

α,β
≥Mg

on Γ1. It follows that for any β > 0 and for α = α(β) > 0 small enough,
u
α,β

(resp. v
α,β

) is a sub-solution (resp. super-solution) to (4.8) with the
following modified boundary condition on Γ2:

(4.10) −∂xMϑ+ α ≤ 0 (resp. − ∂xMϑ− α ≥ 0) .

In the sequel we are going to prove a comparison between u
α,β

and v
α,β

re-
spectively sub and super solution of the modified problem. The comparison
result between u and v follows taking the limit for α, β going to 0. In order
to simplify the notation we will continue to denote by u and v the sub and
super solution of the modified problem.
Let us consider

Φγ(x) := u(x)− v(x)− 2γ(1 + |x|2).

Thanks to the boundedness and the upper semicontinuity of u−v, Φγ admits

a maximum point x̂γ = x̂ in D.
Let us assume that there exists a sequence {γk}k≥0 such that γk → 0 and
the points x̂ approach the boundary Γ1, that is limk→∞ dist(x̂, Γ1) = 0. In
this case for any x ∈ D one has

u(x)− v(x) = lim supk→∞u(x)− v(x)− 2γk(1 + |x|2)

≤ lim supk→∞u(x̂)− v(x̂) ≤ 0

(the last inequality follows by the fact that any convergent subsequence
of points {x̂γk} converges to a point of Γ1 where one has u − v ≤ 0 by
assumption. The lim sup is then the sup of all the limits of the convergent
subsequence that will result also ≤ 0) and the proof is concluded. The same
result also follows if for the sequence {γk}k≥0 one assumes Φγk(x̂) ≤ 0.
Therefore, in the sequel, we assume that there exists a γ̄ small enough so
that dist(x̂, Γ1) = ρ > 0 and u(x̂) − v(x̂) ≥ Φγ(x̂) > ρ for any γ ≤ γ̄ for
some ρ > 0.
In this case, by the boundedness of u, v, we can deduce that

(4.11) γ|x̂| → 0 as γ → 0.
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Thanks to the property (4.9) of our domain, the existence of a family of C2

test functions {wε}ε>0 as in [16, Theorem 4.1] can be proved. Among the
other properties, {wε} : RM ×RM → R satisfies:

wε(x, x) ≤ ε(4.12)

wε(x, y) ≥ C |x− y|
2

ε
(4.13)

− ∂x
M
wε(x, y) ≥ −C |x− y|

2

ε
if x ∈ Γ2 ∩B(x̂, η), y ∈ B(x̂, η)(4.14)

− ∂y
M
wε(x, y) ≥ 0 if y ∈ Γ2 ∩B(x̂, η), x ∈ B(x̂, η)(4.15)

for ε > 0 and some η > 0 small enough.
Applying the doubling variables procedure we define

Φε(x, y) := u(x)− v(y)− γ(1 + |x|2)− γ(1 + |y|2)− wε(x, y)− |x− x̂|4.

and we denote by (xε, yε) its maximum point. Thanks to properties (4.12)
and (4.13), it is possible to prove that for ε going to 0

(4.16) xε, yε → x̂ and
|xε − yε|2

ε
→ 0.

It follows that for ε small enough we can assume that xε, yε /∈ Γ1. Taking
ε small enough we can also say that xε, yε ∈ B(x̂, η) and then we can make
use of properties (4.14) and (4.15).
If xε ∈ Γ2, using (4.11) and (4.16), we have that for ε small enough

− ∂x
M

(
wε(xε, yε) + γ(1 + |xε|2) + |xε − x̂|4

)
≥ −C |xε − yε|

2

ε
+ 2γ|xε| − 4|xε − x̂|3 > −α.

Similarly if yε ∈ Γ2 one has

−∂y
M

(
− wε(xε, yε)− γ(1 + |yε|2)

)
≤ 0 < α

for ε small enough.
This means that, considering respectively wε(·, yε)+γ(1+ | · |2)+ | ·−x̂|4 and
−wε(xε, ·) − γ(1 + | · |2) as test functions for u and v, for sufficiently small
values of ε the derivative boundary conditions in xε, yε can be neglected
and one can only consider in Γ2 ∪D

λu+H(xε, Du,D
2u) ≤ 0 and λv +H(yε, Dv,D

2v) ≥ 0

in the viscosity sense. Thanks to the properties of H, this leads to a con-
tradiction using the arguments in [16]. �

Corollary 4.4. The value function ϑ is the unique bounded continuous vis-
cosity solution to equation (4.8) in D.

We extend ϑ in a unique way to the full space Rd×R by (4.6). However,
we can observe that, in order to characterize the original value function v,
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the way we extend ϑ for y > Mg does not matter and only the values of ϑ
for y = g(x) ≤Mg are important.

5. Numerical approximation

In this section, convergence is proved for a general class of numerical
schemes. Then, we show that a fully-discrete semi-Lagrangian method ap-
plied to the problem under consideration belongs to this class.
Let BC the space of bounded and continuous functions in Rd+1 equipped
with the L∞-norm.
Let the discretization parameters be given by

∆x = (∆x1, . . . ,∆xd) ∈ (R>0)d, ∆y > 0, ρ = (∆x,∆y).

The corresponding mesh is denoted by

Gρ := { (xi, yj) = (i∆x, j∆y), (i, j) ∈ Zd ×Z } ,

where i∆x = (i1∆x1, . . . , iN∆xN ), i ∈ Zd. Further we define

jx := min { j ∈ Z | j∆y ≥ g(x) } ,(5.1)

jM := min { j ∈ Z | j∆y ≥Mg }(5.2)

and introduce a projection operator

(5.3) ΠG
ρ
(φ)(xi, yj) :=


yj if j ≥ jM
φ(xi, yj) if jM > j ≥ jxi
φ(xi, yjxi ) if j < jxi

for φ ∈ BC. We aim to define a general approximation of the value func-
tion ϑ. We start considering a general scheme

Sρ(xi, yj , φi,j , φ) = 0

that approximates the equation

λφ+H(x, y,Dxφ, ∂yφ,D
2
xφ) = 0

at node (xi, yj), with H defined by (4.2). Here φi,j = φ(xi, yj) and φ denote
all the values of φ at nodes different from (xi, yj). Sρ may represent a
finite difference operator (see [9, 8, 19]), or a semi-Lagrangian (SL) scheme
([20, 11, 15]). The main idea of the numerical method described here is to
mix the use of a standard scheme for (4.8a), together with a “projection step”
on ∂D in order to get the desired boundary conditions. Let us point out that
a similar method was introduced for treating oblique derivative boundary
conditions, i.e. the condition we have in Γ2, in [2] for the case g(x) ≡ |x|
and in [7] for a general Lipschitz continuous function g. In addition, here
the numerical solution has also to satisfy the Dirichlet condition on Γ1.
We define V on Gρ such that

(5.4)


Vi,j = yj if yj ≥Mg,

Sρ(xi, yj , Vij , Π
Gρ(V )) = 0 if g(xi) ≤ yj < Mg,

Vi,j = Vi,jxi if yj < g(xi)
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and we denote by V ρ its continuous extension by bilinear interpolation. We
assume the grid Gρ aligned with the domain [−Mg,Mg], so that we have
V ρ = Mg on Γ1.

5.1. General convergence result. In order to prove the convergence of
V ρ to ϑ, unique viscosity solution to (4.8), we will make use of the arguments
introduced by Barles and Souganidis in [3]. These make use of the properties
of stability, consistency and monotonicity of the scheme. The scheme defined
by (5.4) satisfies the following assumptions:

(H3.a) Stability: for any ρ the scheme (5.4) admits a solution V ρ ∈ BC(D).
Moreover, there exist M,L ≥ 0 such that

V ρ(x, y) ≤M and |V ρ(x, y)− V ρ(x, y′)| ≤ L|y − y′|

for any (x, y), (x, y′) ∈ D and ρ > 0.

(H3.b) Consistency: the scheme Sρ is consistent with respect to (4.1) in D,
i.e. for all (x, y) ∈ D and every φ ∈ C2(D) there holds

lim
ρ→0,

D3(ξ,γ)→(x,y),
ζ→0

Sρ(ξ, γ, φ(ξ, γ) + ζ, φ+ ζ) = λφ+H(x,Dxφ,D
2
xφ).

(H3.c) Monotonicity: for every ρ, r ∈ R, (x, y) ∈ D, Sρ(x, y, r, φ) depends
only on the values of φ in a neighborhood Bη(ρ)(x, y) of (x, y) with

η(ρ) ≥ 0 such that η(ρ)→ 0 for ρ→ 0. For all function φ1, φ2 : Rd×
R→ R with φ1 ≥ φ2 on Bρ(x, y), there holds

Sρ(x, y, r, φ1) ≤ Sρ(t, x, y, r, φ2).(5.5)

The reason for this formulation of the monotonicity condition is the fact,
that the numerical scheme Sρ defined on D may use some values of the
function V ρ outside the domain D.

Theorem 5.1. Let assumptions (H1)-(H2) be satisfied and let the scheme
(5.4) satisfy assumption (H3). Then for ρ→ 0 the solution V ρ converges to
the unique viscosity solution to (4.1).

Proof. Let us define for (x, y) ∈ D

V (x, y) := lim sup
D3(ξ,γ)→(x,y)

ρ→0

V ρ(ξ, γ),

V (x, y) := lim inf
D3(ξ,γ)→(x,y)

ρ→0

V ρ(ξ, γ)

Observe that the semi-limits are well defined thanks to the boundedness of
V ρ uniformly with respect to ρ. We start by proving that V is a viscosity
sub-solution to equation (4.1).
Thanks to the Lipschitz continuity of V ρ with respect to y (uniform with
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respect to ρ) and the fact that, by definition, V ρ(x, y) = Mg on Γ1 one has

for any (ξ, γ) ∈ D

|V ρ(ξ, γ)−Mg| = |V ρ(ξ, γ)− V ρ(ξ,Mg)| ≤ L|γ −Mg|,

so that

lim
D3(ξ,γ)→(x,y)

ρ→0

V ρ(ξ, γ) = Mg.

Hence, V = Mg on Γ1 and the Dirichlet condition is satisfied.

Let ϕ ∈ C2(D) and let (x̄, ȳ) be a local maximum point for V − ϕ on
D. Without loss of generality we can assume that (x̄, ȳ) is a strict local
maximum in Br(x̄, ȳ)∩D for a certain r > 0 and ϕ ≥ 2 supρ ‖W ρ‖∞ outside
the ball Br(x̄, ȳ). We claim that{

λu+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
x)ϕ ≤ 0 if (x̄, ȳ) ∈ D,

min(λu+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ),−∂yϕ) ≤ 0 if (x̄, ȳ) ∈ Γ2.

We follow the argument in Barles and Souganidis [3]. There exists a sequence
ρk, (xk, yk) such that ρk → 0, (xk, yk)→ (x̄, ȳ) for k →∞, and

(V ρk − ϕ)(xk, yk) = max
D

(V ρk − ϕ) = δk → 0, as k →∞(5.6)

and

V ρk(xk, yk)→ V (x̄, ȳ), as k →∞.
–Case 1: (x̄, ȳ) ∈ D. For k large enough (xk, yk) ∈ D. Since g is
continuous, for ρk small enough we can assume that y > g(x) for any
(x, y) ∈ Bη(ρk)(xk, yk) (where Bη(ρk)(xk, yk) is the neighborhood that ap-
pears in assumption (H3.c)). Consequently, for k big enough

ΠGρk (V ρk) = V ρk and V ρk < ϕ+ δk

in Bη(ρk)(xk, yk). By the monotonicity of the scheme (assumption (H3.c))
we further deduce

0 = Sρk(xk, yk, V
ρk(xk, yk), Π

Gρk (V ρk))

≥ Sρk(xk, yk, ϕ(xk, yk) + δk, ϕ+ δk))

and by the consistency assumption (H3.b) we obtain that as k →∞

λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ) ≤ 0.

– Case 2: (x̄, ȳ) ∈ Γ2. If −∂yϕ(x̄, ȳ) ≤ 0 the sub-solution property on Γ2 is
automatically satisfied. Let us assume that −∂yϕ(x̄, ȳ) > 0.
We point out that if ȳ = g(x̄), (xk, yk) can also be on Γ2 and the scheme
may involve values Vm,n on some point (xm, yn) which is not in D.
If −∂yϕ(x̄, ȳ) > 0, there exists a neighbourhood V of (x̄, ȳ) where ∂yϕ is well
defined and −∂yϕ > 0. Therefore,

y ≤ y′ ⇒ ϕ(x, y) ≥ ϕ(x, y′) ∀(x, y), (x, y′) ∈ V.(5.7)
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and, taking k large enough, Bη(ρk)(xk, yk) ⊂ V. Let (x, y) ∈ Bη(ρk)(xk, yk).
If y ≥ g(x), we have

ΠGρ(V ρk(x, y)) = V ρk(x, y) ≤ ϕ(x, y) + δk.

If y < g(x), ΠGρ(V ρk(x, y)) = V ρk(x, yjx) and we have

(5.8)

ΠGρ(V ρk(x, y)) = V ρk(x, yjx)

≤ ϕ(x, yjx) + δk using (5.6)

≤ ϕ(x, y) + δk using (5.7)

For the last inequality one also need to observe that if (x, y) ∈ V and
y < g(x), thanks to the continuity of g one can choose k big enough so
that also (x, yjx) ∈ V.
Consequently, we have ΠGρ(V ρk) ≤ ϕ+δk on Bη(ρk)(xk, yk). Thus by mono-
tonicity we have

0 = Sρk(xk, yk, V
ρk(xk, yk), Π

Gρ(V ρk))

≥ Sρk(xk, yk, ϕ(xk, yk) + δk, ϕ+ δk))

and using consistency when k →∞ we have

λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ) ≤ 0.(5.9)

This proves that V is a viscosity subsolution to (4.1). Analogously one can
show that V is a viscosity sub-solution. Applying the comparison principle
(Theorem 4.3), it follows that V ≥ V on D. Since V ≤ V is always true
by definition, it is possible to conclude that V = V on D, which proves the
assertion. �

5.2. Semi-Lagrangian scheme. In this section, a semi-Lagrangian scheme
is introduced and it is shown that it satisfies the conditions in assumption
(H3).

5.2.1. Semi-discretization. In order to simplify the presentation, we start
considering a semi-discrete version of the scheme, introducing a parameter
h > 0 which describes a discretization in time of the dynamics. The space
discretization, i.e. the space grid Gρ, is not taken into account for the
moment.

We define the mapping T0 : BC → BC by

T0(φ)(x, y) :=

min
u∈U

{
(1− λh)

2p

2p∑
k=1

φ

(
x+ hb(x, u) +

√
hp(−1)kσb k+1

2
c(x, u),

y

1− λh

)}
where b·c denotes the integer part. We consider the following subset of BC:

X(Mg) :=
{
φ ∈ BC ∩ Lipy : φ(x, y) = y, ∀x ∈ Rd,Mg ≤ y ≤ 2Mg(1−λh)

}
where Lipy denotes the set of function that are Lipschitz continuous with
respect to y (we also denote by Lipy(L) the subset of Lipy of functions with
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Lipschitz constant L ≥ 0). We introduce the operator T0 : X(Mg)→ X(Mg)
defined by

(5.10) T0(φ)(x, y) := T0(Π(φ))(x, y)

where Π is the the continuous version of the projection ΠG
ρ
, i.e. :

Π(φ)(x, y) :=

 y ∧ 2Mg if y ≥Mg

φ(x, y) if g(x) ≤ y < Mg

φ(x, g(x)) if y ≤ g(x)

(compared with (5.3) here we have modified the value of the operator Π
for y ≥ Mg in order to guarantee the boundedness of the operator T . It is
possible to verify that this does not affect the proof of the main convergence
result which only concerns neighborhoord of points in D). Observe that if
functions φ in X(Mg) are considered, the operator Π simply reads:

(5.11) Π(φ)(x, y) = φ(x, g(x) ∨ (y ∧ 2Mg)).

Lemma 5.2. The operator T0 is well defined on the class of functions φ ∈
X(Mg).

Proof. For every φ ∈ X(Mg) one has T0(φ) is bounded and continuous. Let
φ ∈ Lipy(L). One has

|T0(φ)(x, y)− T0(φ)(x, y′)|

≤ max
u∈U

(1− λh)

2p

2p∑
k=1

∣∣∣Π(φ)
(
Xu,k,p
x (h), Y u

y (h)
)
−Π(φ)

(
Xu,k,p
x (h), Y u

y′(h)
)∣∣∣

where for any (x, y) ∈ Rd+1, u ∈ U we denoted

Xu,k,p
x (h) := x+ hb(x, u) +

√
hp(−1)kσb k+1

2
c(x, u), Y u

y (h) :=
y

1− λh
.

From (5.11), one gets

|Π(φ)(x, y)−Π(φ)(x, y′)|
= |φ(x, y ∨ (g(x) ∧ 2Mg))− φ(x, g(x) ∨ (y′ ∧ 2Mg))|
≤ L|(y ∨ (g(x) ∧ 2Mg))− (y′ ∨ (g(x) ∧ 2Mg))|
≤ L|y − y′|

where we used the classical inequalitites

(5.12)
|a ∨ b− c ∨ d| ≤ |a− c| ∨ |b− d|,
|a ∧ b− c ∧ d| ≤ |a− c| ∨ |b− d|.
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Therefore

|T0(φ)(x, y)− T0(φ)(x, y′)| ≤ max
u∈U

(1− λh)

2p

2p∑
k=1

L
∣∣Y u
y (h)− Y u

y′(h)
∣∣

≤ max
u∈U

(1− λh)

2p

2p∑
k=1

L
|y − y′|

(1− λh)

and T0(φ) ∈ Lipy(L) follows.
Moreover, for y ≥Mg one has y/(1− λh) > Mg and then

T0(φ)(x, y) = min
u∈U

{
(1− λh)

2p

2p∑
k=1

(
y

1− λh
) ∧ 2Mg

}
= y ∧ 2Mg(1− λh)

which proves that T0(φ) ∈ X(Mg). �

We are going to verify the properties of stability, consistency and mono-
tonicity (in the sense of assumption (H3)) of the scheme defined by

(5.13) Sh(x, y, φ(x, y), φ) :=
1

h

(
φ(x, y)−T0(φ)(x, y)

)
.

The fact of dealing with an infinite horizon problem and therefore with a
stationary PDE, requires the use of a fixed point argument in order to prove
the existence of a solution for (5.13). In order to guarantee the continuity of
T (φ) we had to restrict to functions φ ∈ X(Mg), so this is the space where
we have to look for proving the stability result.

Lemma 5.3 (Stability). For 0 ≤ λh < 1, there exists a fixed point of the
equation

(5.14) Sh(x, y, φ(x, y), Π(φ)) =
1

h

(
φ(x, y)− T0(φ)(x, y)

)
in X(Mg) and the scheme is stable in the sense of assumption (H3.a).

Proof. We show that the map T0 is a contraction on X(Mg). There holds

‖T0(v)− T0(w)‖∞ ≤
(1− λh)

2p

2p∑
k=1

‖(Πv)− (Πw)‖∞ ≤ (1− λh) ‖v − w‖∞ .

Being (X(Mg), ‖ · ‖∞) a complete metric space (completeness follows by the
fact that it is a closed subset of (BC, ‖ · ‖∞)) by the Banach-Cacioppoli fix
point theorem the result follows.
The stability in the sense of assumption (H3.a) then follows observing that
the bound and Lipschitz constant of the solution of the fix point problem
do not depend on h. �

In particular, this means that for any (x, y) ∈ D there exists a solution
in X(Mg) of the scheme

Sh(x, y, φ(x, y), Π(φ)) = 0.
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We will denote such a solution by V h. Observe that V h automatically
satisfies the boundary condition V h(x,Mg) = Mg.

Lemma 5.4 (Consistency). For any smooth and bounded function φ, there
exists some C > 0 such that∣∣∣∣1h(φ(x, y)−T0(φ)(x, y))−

(
λφ+H(x, y,Dxφ, ∂yφ,D

2
xφ)
)∣∣∣∣ ≤ Ch.

Proof. The assertion follows straightforward by a Taylor’s expansion. For
simplicity we show the results in the one dimensional case. In fact, in this
case, observing that

1

1− λh
= 1 + λh+O(h2),

one has

φ(x, y)−T0(φ)(x, y)

= φ(x, y)− (1− λh)

2
min
u∈U

{
φ

(
x+ hb(x, u) +

√
hσ(x, u),

y

1− λh

)
+ φ

(
x+ hb(x, u)−

√
hσ(x, u),

y

1− λh

)}
= λhφ(x, y)− (1− λh)

2
min
u∈U

{
φx(x, y)(hb(x, u) +

√
hσ(x, u)) + φy(x, y)(λhy)

+
1

2
φxx(x, y)(hb(x, u) +

√
hσ(x, u))2 + φxy(x, y)(hb(x, u) +

√
hσ(x, u))(λhy)

+
1

6
φxxx(x, y)(hb(x, u) +

√
hσ(x, u))3

+ φx(x, y)(hb(x, u)−
√
hσ(x, u)) + φy(x, y)(λhy)

+
1

2
φxx(x, y)(hb(x, u)−

√
hσ(x, u))2 + φxy(x, y)(hb(x, u)−

√
hσ(x, u))(λhy)

+
1

6
φxxx(x, y)(hb(x, u)−

√
hσ(x, u))3

}
+O(h2)

= λhφ(x, y)−min
u∈U

{
hb(x, u)φx(x, y) + hλyφy(x, y) +

1

2
hσ2(x, u)φxx(x, y)

}
+O(h2).

�

Lemma 5.5 (Monotonicity). For any h > 0 such that 0 ≤ λh < 1, the
scheme is monotone in the sense of assumption (H3.c).

Proof. Taken (x, y) ∈ D, it is clear by the very definition of the operator T
that it involves only values at points (x+hb(x, u)+

√
hp(−1)kσb k+1

2
c(x, u), y

1−λh)

which remain in a neighborhood Bη(h) of (x, y). Moreover, by definition one
has

Sh(x, y, φ(x, y), φ) :=
1

h

(
φ(x, y)−T0(φ)(x, y)

)
and the assertion follows immediately, since for φ1 ≤ φ2 one has

T0(φ1)(x, y) ≤ T0(φ2)(x, y).
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�

Having proved all the properties in assumption (H3), we are now ready
to apply Theorem 5.1 and state a convergence result for our semi-discrete
scheme:

Theorem 5.6. Let assumptions (H1)-(H2) be satisfied. Then for h→ 0 the
solution V h of the scheme (5.14) converges uniformly to ϑ in D.

5.2.2. Full-discretization. We pass now to consider the scheme on the dis-
cretized space. This requires to introduce an interpolation step in order to
define the value of the solution at points(

xi + hb(xi, u) +
√
hp(−1)kσb k+1

2
c(xi, u),

yj
1− λh

)
that may not belong to the grid Gρ (ρ ≡ (∆x,∆y)). We denote by [ · ] the
monotone, P1 interpolation operator, satisfying the following properties:

(5.15)

(i) [φ](xi, yj) = φ(xi, yj), ∀(xi, yj) ∈ Gρ;
(ii) |[φ](x, y)− φ(x, y)| ≤ L|(∆x,∆y)|, ∀φ ∈ Lip(L);
(iii) |[φ](x, y)− φ(x, y)| ≤ C(|∆x|2 +∆y2)

∥∥D2φ
∥∥
∞ ∀φ ∈ C2;

(iv) φ1 ≤ φ2 ⇒ [φ1] ≤ [φ2].

The fully discrete operator is then defined by

T (φ)(xi, yj) :=

min
u∈U

{
(1− λh)

2p

2p∑
k=1

[φ]

(
xi + hb(xi, u) +

√
hp(−1)kσb k+1

2
c(xi, u),

yj
1− λh

)}
The fully discrete scheme reads:

(5.16) Sρ(xi, yj , φ(xi, yj), Π
Gρφ) :=

1

h

(
φ(xi, yj)−T (ΠG

ρ
φ)(xi, yj)

)
.

where

ΠG
ρ
(φ)(xi, yj) :=

 yj ∧ 2Mg if yj ≥Mg,
φ(xi, yj) if g(xi) ≤ yj < Mg,
φ(xi, g(xi)) if yj ≤ g(xi).

In particular, the value of the solution at grid points is prescribed by (5.16)
and we extend it to a continuous function by linear interpolation.

Theorem 5.7. Let 0 ≤ λh < 1 and let the following condition be satisfied

∆x2 +∆y2

h
→ 0 as ρ, h→ 0.

Then scheme (5.16) is stable in the space of piecewise linear functions in
X(Mg), consistent and monotone in the sense of definition (H3).
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Proof. Stability follows by similar arguments as in the semi-discrete case.
Indeed, observing that the linear interpolation preserves the Lipschitz con-
stant, the fix point theorem still holds if we consider piecewise linear func-
tions in X(Mg). Consistency can follows by (5.15)(iii). Indeed, when in-
terpolation is taken into account, in the estimates obtained proving Lemma
5.4 one gets the extra term

∆x2 +∆y2

h
‖φxx‖

which goes to zero guaranteeing the consistency property. Monotonicity is
ensured by the use of a linear interpolation. �

Corollary 5.8. Let 0 ≤ λh < 1 and let the following condition be satisfied

∆x2 +∆y2

h
→ 0 as ρ, h→ 0.

Then, as ρ, h → 0 the sol V ρ of the fully discrete scheme (5.16) converges
in D to the unique viscosity of equation (4.8).

6. Conclusions

We have studied infinite horizon stochastic optimal control problems with
cost in a maximum form. By the introduction of an auxiliary Markovian
problem and dynamic programming arguments we have characterized the
associated value function by means of a HJB equation with mixed Dirichlet-
derivative boundary conditions. We have proposed a general numerical
scheme which incorporates the treatment of the boundary condition and
proved its convergence to the unique viscosity solution of the HJB equation
under the assumptions of monotonicitym consistency and stability. We have
shown that a particular semi-Lagrangian scheme satisfies such assumptions
and therefore can be used to approximate the value function of the original
problem.
Further directions of work might involve the application of our scheme to
the computation of viable and invariant sets as well as the theoretical proof
of the rate of convergence associated to our scheme.
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France

E-mail address: hasnaa.zidani@ensta-paristech.fr


