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Maximum mean discrepancy (MMD), also called energy distance or N-distance in statistics and Hilbert-Schmidt independence criterion (HSIC), specifically distance covariance in statistics, are among the most popular and successful approaches to quantify the difference and independence of random variables, respectively. Thanks to their kernel-based foundations, MMD and HSIC are applicable on a wide variety of domains. Despite their tremendous success, quite little is known about when HSIC characterizes independence and when MMD with tensor product kernel can discriminate probability distributions. In this paper, we answer these questions by studying various notions of characteristic property of the tensor product kernel.

Introduction

Kernel methods [START_REF] Schölkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF] are among the most flexible and influential tools in machine learning and statistics, with superior performance demonstrated in a large number of areas and applications. The key idea in these methods is to map the data samples into a possibly infinite-dimensional feature space-precisely, a reproducing kernel Hilbert space (RKHS; [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]-and apply linear methods in the feature space, without the explicit need to compute the map. A generalization of this idea to probability measures, i.e., mapping probability measures into an RKHS (Berlinet and Thomas-Agnan, 2004, Chapter 4;[START_REF] Smola | A Hilbert space embedding for distributions[END_REF] has found novel applications in nonparametric statistics and machine learning. Formally, given a probability measure P defined on a measurable space X and an RKHS H k with k : X×X → R as the reproducing kernel (which is symmetric and positive definite), P is embedded into H k as

P → X k(•, x) dP(x) =: µ k (P), (1) 
where µ k (P) is called the mean element or kernel mean embedding of P. The mean embedding of P has lead to a new generation of solutions in two-sample testing [START_REF] Baringhaus | On a new multivariate two-sample test[END_REF]Székely andRizzo, 2004, 2005;[START_REF] Borgwardt | Integrating structured biological data by kernel maximum mean discrepancy[END_REF][START_REF] Harchaoui | Testing for homogeneity with kernel Fisher discriminant analysis[END_REF][START_REF] Gretton | A kernel twosample test[END_REF], goodness-of-fit testing [START_REF] Chwialkowski | A kernel test of goodness of fit[END_REF][START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF]Jitkrittum et al., 2017b;[START_REF] Balasubramanian | On the optimality of kernel-embedding based goodness-of-fit tests[END_REF], domain adaptation (Zhang et al., 2013) and generalization [START_REF] Blanchard | Domain generalization by marginal transfer learning[END_REF], kernel belief propagation [START_REF] Song | Kernel belief propagation[END_REF], kernel Bayes' rule [START_REF] Fukumizu | Kernel Bayes' rule: Bayesian inference with positive definite kernels[END_REF], model criticism [START_REF] Lloyd | Automatic construction and natural-language description of nonparametric regression models[END_REF][START_REF] Kim | Examples are not enough, learn to criticize! criticism for interpretability[END_REF], approximate Bayesian computation [START_REF] Park | K2-ABC: Approximate Bayesian computation with kernel embeddings[END_REF], probabilistic programming [START_REF] Schölkopf | Computing functions of random variables via reproducing kernel Hilbert space representations[END_REF], distribution classification [START_REF] Muandet | Learning from distributions via support measure machines[END_REF]Zaheer et al., 2017), distribution regression [START_REF] Szabó | Learning theory for distribution regression[END_REF][START_REF] Law | Bayesian approaches to distribution regression[END_REF] and topological data analysis [START_REF] Kusano | Persistence weighted Gaussian kernel for topological data analysis[END_REF]. A recent survey on the topic is provided by [START_REF] Muandet | Kernel mean embedding of distributions: A review and beyond[END_REF].

Crucial to the success of the mean embedding based representation is whether it encodes all the information about the distribution, in other words whether the map in (1) is injective in which case the kernel is referred to as characteristic [START_REF] Fukumizu | Kernel measures of conditional dependence[END_REF][START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF]. Various characterizations for the characteristic property of k is known in the literature [START_REF] Fukumizu | Kernel measures of conditional dependence[END_REF][START_REF] Fukumizu | Kernel dimension reduction in regression[END_REF][START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF][START_REF] Gretton | A kernel twosample test[END_REF] using which the popular kernels on R d such as Gaussian, Laplacian, B-spline, inverse multiquadrics, and the Matérn class are shown to be characteristic. The characteristic property is closely related to the notion of universality [START_REF] Steinwart | On the influence of the kernel on the consistency of support vector machines[END_REF][START_REF] Micchelli | Universal kernels[END_REF][START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF][START_REF] Sriperumbudur | Universality, characteristic kernels and RKHS embedding of measures[END_REF]-k is said to be universal if the corresponding RKHS H k is dense in a certain target function class, for example, the class of continuous functions on compact domains-and the relation between these notions has recently been explored by [START_REF] Sriperumbudur | Universality, characteristic kernels and RKHS embedding of measures[END_REF]; Simon-Gabriel and Schölkopf (2016).

Based on the mean embedding in (1), [START_REF] Smola | A Hilbert space embedding for distributions[END_REF] and [START_REF] Gretton | A kernel twosample test[END_REF] defined a semi-metric, called the maximum mean discrepancy (MMD) on the space of probability measures:

MMD k (P, Q) := µ k (P) -µ k (Q) H k ,
which is a metric iff k is characteristic. A fundamental application of MMD is in nonparametric hypothesis testing that includes two-sample [START_REF] Gretton | A kernel twosample test[END_REF] and independence tests [START_REF] Gretton | A kernel statistical test of independence[END_REF]. Particularly in independence testing, as a measure of independence, MMD measures the distance between the joint distribution P XY and the product of marginals P X ⊗ P Y of two random variables X and Y which are respectively defined on measurable spaces X and Y, with the kernel k being defined on X × Y. As aforementioned, if k is characteristic, then MMD k (P XY , P X ⊗ P Y ) = 0 implies P XY = P X ⊗ P Y , i.e., X and Y are independent. A simple way to define a kernel on X × Y is through the tensor product of kernels k X and k Y defined on X and Y respectively:

k = k X ⊗ k Y , i.e., k ((x, y) , (x , y )) = k X (x, x )k Y (y, y ), x, x ∈ X, y, y ∈ Y, with the corresponding RKHS H k = H k X ⊗ H k Y being the tensor product space generated by H k X and H k Y . This means, when k = k X ⊗ k Y , MMD k (P XY , P X ⊗ P Y ) = µ k X ⊗k Y (P XY ) -µ k X ⊗k Y (P X ⊗ P Y ) H k X ⊗H k Y . (2) 
In addition to the simplicity of defining a joint kernel k on X × Y, the tensor product kernel offers a principled way of combining inner products (k X and k Y ) on domains that can correspond to different modalities (say images, texts, audio). By exploiting the isomorphism between tensor product Hilbert spaces and the space of Hilbert-Schmidt operators 1 , it follows from (2) that

MMD k (P XY , P X ⊗ P Y ) = C XY HS =: HSIC k (P XY ), (3) 
which is the Hilbert-Schmidt norm of the cross-covariance operator

C XY := µ k X ⊗k Y (P XY )- µ k X (P X ) ⊗ µ k Y (P Y )
and is known as the Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2005a). HSIC has enjoyed tremendous success in a variety of applications such as independent component analysis (Gretton et al., 2005a), feature selection [START_REF] Song | Feature selection via dependence maximization[END_REF], independence testing [START_REF] Gretton | A kernel statistical test of independence[END_REF]Jitkrittum et al., 2017a), post selection inference (Yamada et al., 2018) and causal detection [START_REF] Mooij | Distinguishing cause from effect using observational data: Methods and benchmarks[END_REF][START_REF] Pfister | Kernel-based tests for joint independence[END_REF][START_REF] Strobl | Approximate kernel-based conditional independence tests for fast non-parametric causal discovery[END_REF]. Recently, MMD and HSIC (as defined in (3) for two components) have been shown by Sejdinovic et al. (2013b) to be equivalent to other popular statistical measures such as the energy distance [START_REF] Baringhaus | On a new multivariate two-sample test[END_REF]Székely andRizzo, 2004, 2005)-also known as N-distance (Zinger et al., 1992;[START_REF] Klebanov | N-Distances and Their Applications[END_REF]-and distance covariance [START_REF] Székely | Measuring and testing dependence by correlation of distances[END_REF][START_REF] Székely | Brownian distance covariance[END_REF][START_REF] Lyons | Distance covariance in metric spaces[END_REF] respectively. HSIC has been generalized to M ≥ 2 components [START_REF] Quadrianto | Kernelized sorting[END_REF]Sejdinovic et al., 2013a) to measure the joint independence of M random variables

HSIC k (P) = µ ⊗ M m=1 km (P) -⊗ M m=1 µ km (P m ) ⊗ M m=1 H km , (4) 
where P is a joint measure on the product space X := × M m=1 X m and (P m ) M m=1 are the marginal measures of P defined on (X m ) M m=1 respectively. The extended HSIC measure has recently been analyzed in the context of independence testing [START_REF] Pfister | Kernel-based tests for joint independence[END_REF]. In addition to testing, the extended HSIC measure is also useful in the problem of independent subspace analysis (ISA; [START_REF] Cardoso | Multidimensional independent component analysis[END_REF], wherein the latent sources are separated by maximizing the degree of independence among them. In all the applications of HSIC, the key requirement is that k = ⊗ M m=1 k m captures the joint independence of M random variables (with joint distribution P)-we call this property as I-characteristic-, which is guaranteed if k is characteristic. Since k is defined in terms of (k m ) M m=1 , it is of fundamental importance to understand the characteristic and I-characteristic properties of k in terms of the characteristic property of (k m ) M m=1 , which is one of the main goals of this work. For M = 2, the characterization of independence, i.e., the I-characteristic property of k, is studied by [START_REF] Blanchard | Generalizing from several related classification tasks to a new unlabeled sample[END_REF] and [START_REF] Gretton | A simpler condition for consistency of a kernel independence test[END_REF] where it has been shown that if k 1 and k 2 are universal, then k is universal 2 and therefore HSIC captures independence. A stronger version of this result can be obtained by combining (Lyons, 2013, Theorem 3.11) and (Sejdinovic et al., 2013b, Proposition 29): if k 1 and k 2 are characteristic, then the HSIC associated with k = k 1 ⊗ k 2 characterizes independence. Apart from these results, not much is known about the characteristic/I-characteristic/universality properties of k in terms of the individual kernels. Our goal is to resolve this question and understand the characteristic, I-characteristic and universal property of the product kernel (⊗ M m=1 k m ) in terms of the kernel components ((k m ) M m=1 ) for M ≥ 2. Because of the relatedness of MMD and HSIC to energy distance and distance covariance, our results also contribute to the better understanding of these other measures that are popular in the statistical literature.

Specifically, our results shed light on the following surprising phenomena of the Icharacteristic property of ⊗ M m=1 k m for M ≥ 3: 1. characteristic property of (k m ) M m=1 is not sufficient but necessary for ⊗ M m=1 k m to be I-characteristic; 2. universality of (k m ) M m=1 is sufficient for ⊗ M m=1 k m to be I-characteristic, and 3. if at least one of (k m ) M m=1 is only characteristic and not universal, then ⊗ M m=1 k m need not be I-characteristic. The paper is organized as follows. In Section 3, we conduct a comprehensive analysis about the above mentioned properties of k and (k m ) M m=1 for any positive integer M . To this end, we define various notions of characteristic property on the product space X (see Definition 1 and Figure 2(a) in Section 3) and explore the relation between them. In order to keep our presentation in this section to be non-technical, we relegate the problem formulation to Section 3, with the main results of the paper being presented in Section 4. A summary of the results is captured in Figure 1 while the proofs are provided in Section 5. Various definitions and notation that are used throughout the paper are collected in Section 2. 

Definitions and Notation

M m=1 A m = {(a 1 , . . . , a M ) : a m ∈ A m m ∈ [M ]
} is the Descartes product of sets (A m ) M m=1 . P(X) denotes the power set of a set X, i.e., all subsets of X (including the empty set and X). The Kronecker delta is defined as δ a,b = 1 if a = b, and zero otherwise. χ A is the indicator function of set A: χ

A (x) = 1 if x ∈ A and χ A (x) = 0 otherwise. R d 1 ×...×d M is the set of d 1 × . . . × d M -sized tensors.
For a topological space (X, τ X ), B(X) := B(τ X ) is the Borel sigma-algebra on X induced by the topology τ X . Probability and finite signed measures in the paper are meant w.r.t. the measurable space (X, B(X)). Given {(X i , τ i )} i∈I topological spaces, their product × i∈I X i is enriched with the product topology; it is the coarsest topology for which the canonical projections π i : × i∈I X i → (X i , τ i ) are continuous for all i ∈ I. A topological space (X, τ X ) is called second-countable if τ X has a countable basis.3 C(X) denotes the space of continuous functions on X. C 0 (X) denotes the class of real-valued functions vanishing at infinity on a locally compact Hausdorff (LCH) space4 X, i.e., for any > 0, the set {x ∈ is compact. C 0 (X) is endowed with the uniform norm f ∞ = sup x∈X |f (x)|. M b (X) and M + 1 (X) are the space of finite signed measures and probability measures on X, respectively. For P m ∈ M + 1 (X m ), ⊗ M m=1 P m denotes the product probability measure on the product space

X : |f (x)| ≥ } ⊗ 0 -char ⊗-char char c 0 -universal I-char (k m ) M m=1 char (k m ) M m=1 c 0 -universal ( 
× M m=1 X m , i.e., ⊗ M m=1 P m ∈ M + 1 (× M m=1 X m ). δ x is the Dirac measure supported on x ∈ X. For F ∈ M b × M
m=1 X m , the finite signed measure F m denotes its marginal on X m . H km is the reproducing kernel Hilbert space (RKHS) associated with the reproducing kernel k m : X m × X m → R, which in this paper is assumed to be measurable and bounded. The tensor product of (k m ) M m=1 is a kernel, defined as (Berlinet and Thomas-Agnan, 2004, Theorem 13), where the r.h.s. is the tensor product of RKHSs (H km

⊗ M m=1 k m (x 1 , . . . , x M ) , x 1 , . . . , x M = M m=1 k m x m , x m , x m , x m ∈ X m , whose associated RKHS is denoted as H ⊗ M m=1 km = ⊗ M m=1 H km
) M m=1 . For h m ∈ H m , m ∈ [M ], the multi-linear operator ⊗ M m=1 h m ∈ ⊗ M m=1 H m is defined as ⊗ M m=1 h m (v 1 , . . . , v M ) = M m=1 h m , v m Hm , v m ∈ H m . A kernel k : X × X → R defined on a LCH space X is called a c 0 -kernel if k(•, x) ∈ C 0 (X) for all x ∈ X. k : R d × R d → R is said to be a translation invariant kernel on R d if k(x, y) = ψ(x -y), x, y ∈ R d for a positive definite function ψ : R d → R. µ k (F) denotes the kernel mean embedding of F ∈ M b (X) to H k which is defined as µ k (F) = X k(•, x) dF(x),
where the integral is meant in the Bochner sense.

Problem Formulation

In this section, we formally introduce the goal of the paper. To this end, we start with a definition. For simplicity, throughout the paper, we assume that all kernels are bounded.

The definition is based on the observation (Sriperumbudur et al., 2010, Lemma 8) that a bounded kernel k on a topological space (X, τ X ) is characteristic if and only if

X X k(x, x ) dF(x) dF(x ) > 0, ∀ F ∈ M b (X)\{0} such that F(X) = 0.
In other words, characteristic kernels are integrally strictly positive definite (ispd; see [START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF]Sriperumbudur et al., , p. 1523) ) w.r.t. the class of finite signed measures that assign zero measure to X. The following definition extends this observation to tensor product kernels on product spaces.

Definition 1 (F-ispd tensor product kernel) Suppose k m : X m × X m → R is a bounded kernel on a topological space (X m , τ Xm ) , m ∈ [M ]. Let F ⊆ M b (X) be such that 0 ∈ F where X := × M m=1 X m . k := ⊗ M m=1 k m is said to be F-ispd if µ k (F) = 0 ⇒ F = 0 (F ∈ F), or equivalently µ k (F) 2 H k = × M m=1 Xm × M m=1 Xm ⊗ M m=1 k m x, x dF(x) dF(x ) > 0, ∀ F ∈ F\{0}. (5)
Specifically,

• if k m -s are c 0 -kernels on locally compact Polish (LCP)5 spaces X m -s and

F = M b (X), then k is called c 0 -universal. • if F = [M b (X)] 0 := {F ∈ M b (X) : F(X) = 0} , F = ⊗ M m=1 M b (X m ) 0 := F ∈ ⊗ M m=1 M b (X m ) , F(X) = 0 , F = I := P -⊗ M m=1 P m : P ∈ M + 1 × M m=1 X m , (M ≥ 2) F = ⊗ M m=1 M 0 b (X m ) := F = ⊗ M m=1 F m : F m ∈ M b (X m ) , F m (X m ) = 0, ∀ m ∈ [M ] ,
then k is called characteristic, ⊗-characteristic, I-characteristic and ⊗ 0 -characteristic, respectively.

In Definition 1, k being characteristic matches the usual notion of characteristic kernels on a product space, i.e., there are no two distinct probability measures on X = × M m=1 X m such that the MMD between them is zero. The other notions such as ⊗-characteristic, I-characteristic and ⊗ 0 -characteristic are typically weaker than the usual characteristic property since

⊗ M m=1 M 0 b (X m ) ⊆ ⊗ M m=1 M b (X m ) 0 ⊆ M b × M m=1 X m 0 ⊆ M b × M m=1 X m I ⊆ . (6) 
Below we provide further intuition on the F measure classes enlisted in Definition 1.

Remark 2 (i) F = M b (X) : If k m -s are c 0 -kernels on LCH spaces X m for all m ∈ [M ],
then k is also a c 0 -kernel on LCH space X implying that if k satisfies (5), then k is c 0universal (Sriperumbudur et al., 2010, Proposition 2). It is well known [START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF]) that c 0 -universality reduces to c-universality (i.e., the notion of universality proposed by [START_REF] Steinwart | On the influence of the kernel on the consistency of support vector machines[END_REF] 

if X is compact which is guaranteed if and only if each X m , m ∈ [M ] is compact.
(ii) F = I : This family is useful to describe the joint independence of M random variableshence the name I-characteristic-defined on kernel-endowed domains (X m ) M m=1 : If P denotes the joint distribution of random variables (X m ) M m=1 and (P m ) M m=1 are the associated marginals on

(X m ) M m=1 , then by definition k = ⊗ M m=1 k m is I-characteristic iff HSIC k (P) = 0 ⇐⇒ P = ⊗ M m=1 P m .
In other words, HSIC captures joint independence exactly with I-characteristic kernels.

Similarly, the I-characteristic property ensures that COCO (constrained covariance; Gretton et al., 2005b) is a joint independence measure as COCO is defined by replacing the Hilbert-Schmidt norm of the cross-covariance operator (see (3) and (4)) with its spectral norm.

(iii) F = ⊗ M m=1 M 0 b (X m ) :
In this case F is chosen to be the product of finite signed measures on X such that each marginal measure F m assigns zero to the corresponding space X m . This choice is relevant as the characteristic property of individual kernels

(k m ) M m=1 need not imply the characteristic property of ⊗ M m=1 k m , but is equiva- lent to the ⊗ 0 -characteristic property of ⊗ M m=1 k m . The equivalence holds for bounded kernels k m : X m × X m → R on topological spaces X m (m ∈ [M ]) since for any F = ⊗ M m=1 F m ∈ ⊗ M m=1 M b (X m ), F m (X m ) = 0 (∀ m ∈ [M ]) µ k (F) 2 H ⊗ M m=1 km = M m=1 µ km (F m ) 2 H km , (7) 
and the l.h.s. is positive iff each term on the r.h.s. is positive.

(iv) F = ⊗ M m=1 M b (X m ) 0 :
This class is similar to the one discussed in (iii) abovei.e., class of product measures-with the slight difference that the joint measure F is restricted to assign zero measure to X without requiring all the marginal measures F m c 0 -univ.

characteristic

I-char. ⊗-char. ⊗ 0 -char. (a) Example 1 M b (X) [M b (X)] 0 I ⊗ m M 0 b (X m ) [⊗ m M b (X m )] 0 (b) Figure 2: (a) F-ispd ⊗ M m=1 k m kernels (see (8)); (b) F ⊆ M b (X), X = × M m=1 X m . Exam- ple 1: ⊗ M m=1 k m is ⊗ 0 -characteristic but not ⊗-characteristic and therefore not characteristic.
to assign zero measure to the corresponding space X m . While the need for considering such a measure class may not be clear at this juncture, however, based on (7), it turns out that this choice of F has quite surprising connections to the characteristic property and c 0 -universality of the product kernel; for details see Remark 7.

(v) F-ispd relations: Given the relations in (6), it immediately follows that k

= ⊗ M m=1 k m satisfies ⊗ 0 -characteristic ⊗-characteristic ⇐= characteristic ⇐= ⇐ c 0 -universal ⇐= I-characteristic (8)
when X m for all m ∈ [M ] are LCP. A visual illustration of (6) and (8) is provided in Figure 2.

(vi) ⊗ M m=1 M b (X m ) 0 ∩I = {0} : While it is clear that ⊗ M m=1 M b (X m ) 0 and I are subsets of M b (× M m=1 X m ) 0 , it is interesting to note that ⊗ M m=1 M b (X m )
0 and I have a trivial intersection with 0 being the measure common to each of them, assuming that X m -s are second-countable for all m ∈ [M ]; see Section 5.1.

Having defined the F-ispd property, our goal is to investigate whether the characteristic or c 0 -universal property of k m -s (m ∈ [M ]) imply different F-ispd properties of ⊗ M m=1 k m , and vice versa.

Main Results

In this section, we present our main results related to the F-ispd property of tensor product kernels, which are summarized in Figure 1. The results in this section will deal with various assumptions on X m , such as second-countability, Hausdorff, locally compact Hausdorff (LCH) and locally compact Polish (LCP), so that they are presented in more generality. However, for simplicity, all these assumptions can be unified by simply assuming a stronger condition that X m 's are LCP.

Our first example illustrates that the characteristic property of k m -s does not imply the characteristic property of the tensor product kernel. In light of Remark 2(iv) of Section 3, it follows that the class of ⊗ 0 -characteristic tensor product kernels form a strictly larger class than characteristic tensor product kernels; see also Figure 2.

Example 1 Let X 1 = X 2 = {1, 2}, τ X 1 = τ X 2 = P({1, 2}), k 1 (x, x ) = k 2 (x, x ) = 2δ x,x -1.
It is easy to verify that k 1 and k 2 are characteristic. However, it can be proved that k 1 ⊗ k 2 is not ⊗-characteristic and therefore not characteristic. On the hand, interestingly, k 1 ⊗ k 2 is I-characteristic. We refer the reader to Section 5.2 for details.

In the above example, we showed that the tensor product of k 1 and k 2 (which are characteristic kernels) is I-characteristic. The following result generalizes this behavior for any bounded characteristic kernels. In addition, under a mild assumption, it shows the converse to be true for any M .

Theorem 3 Let k m : X m × X m → R be bounded kernels on topological spaces X m for all m ∈ [M ], M ≥ 2. Then the following holds. (i) Suppose X m is second-countable for all m ∈ [M ] with M = 2. If k 1 and k 2 are characteristic, then k 1 ⊗ k 2 is I-characteristic. (ii) Suppose X m is Hausdorff and |X m | ≥ 2 for all m ∈ [M ]. If ⊗ M m=1 k m is I-characteristic, then k 1 , . . . , k M are characteristic.
Lyons (2013) has showed an analogous result to Theorem 3(i) for distance covariances (M = 2) on metric spaces of negative type (Lyons, 2013, Theorem 3.11), which by Sejdinovic et al. (2013b, Proposition 29) holds for HSIC yielding the I-characteristic property of k 1 ⊗k 2 . Recently, [START_REF] Gretton | A simpler condition for consistency of a kernel independence test[END_REF] presented a direct proof showing that HSIC corresponding to k 1 ⊗ k 2 captures independence if k 1 and k 2 are translation invariant characteristic kernels on R d (which is equivalent to c 0 -universality). [START_REF] Blanchard | Generalizing from several related classification tasks to a new unlabeled sample[END_REF] proved a result similar to Theorem 3(i) assuming that X m 's are compact and k 1 , k 2 being c-universal. In contrast, Theorem 3(i) establishes the result for bounded kernels on general secondcountable topological spaces. In fact, the results of [START_REF] Gretton | A simpler condition for consistency of a kernel independence test[END_REF]; [START_REF] Blanchard | Generalizing from several related classification tasks to a new unlabeled sample[END_REF] are special cases of Theorems 4 and 5 below. Theorem 3(i) raises a pertinent question:

whether ⊗ M m=1 k m is I-characteristic if k m -s are characteristic for all m ∈ [M ]
where M > 2?

The following example provides a negative answer to this question. On a positive side, however, we will see in Theorem 5 that the I-characteristic property of ⊗ M m=1 k m can be guaranteed for any M ≥ 2 if a stronger condition is imposed on k m -s (and X m -s). Theorem 3(ii) generalizes Proposition 3.15 of [START_REF] Lyons | Distance covariance in metric spaces[END_REF] for any M > 2, which states that every kernel k m , m ∈ [M ] being characteristic is necessary for the tensor kernel ⊗ M m=1 k m to be I-characteristic.

Example 2 Let M = 3 and X m := {1, 2}, τ Xm = P(X m ), k m (x, x ) = 2δ x,x -1 (m = 1, 2, 3). As mentioned in Example 1, (k m ) 3 m=1 are characteristic. However, it can be shown that ⊗ 3 m=1 k m is not I-characteristic. See Section 5.4 for details.

In Remark 2(iii) and Example 1, we showed that in general, only the ⊗ 0 -characteristic property of ⊗ M m=1 k m is equivalent to the characteristic property of k m -s. Our next result shows that all the various notions of characteristic property of ⊗ M m=1 k m coincide if k m -s are translation-invariant, continuous bounded kernels on R d .

Theorem 4 Suppose k m : R dm × R dm → R are continuous, bounded and translationinvariant kernels for all m ∈ [M ]. Then the following statements are equivalent:

(i) k m -s are characteristic for all m ∈ [M ]; (ii) ⊗ M m=1 k m is ⊗ 0 -characteristic; (iii) ⊗ M m=1 k m is ⊗-characteristic; (iv) ⊗ M m=1 k m is I-characteristic; (v) ⊗ M m=1 k m is characteristic.
The following result shows that on LCP spaces, the tensor product of M ≥ 2 c 0 -universal kernels is also c 0 -universal, and vice versa.

Theorem 5 Suppose k m : X m × X m → R are c 0 -kernels on LCP spaces X m (m ∈ [M ]). Then ⊗ M m=1 k m is c 0 -universal iff k m -s are c 0 -universal for all m ∈ [M ].
Remark 6 (i) A special case of Theorem 5 for M = 2 is proved by Lyons (2013, Lemma 3.8) in the context of distance covariance which reduces to Theorem 5 through the equivalence established by Sejdinovic et al. (2013b). Another special case of Theorem 5 is proved by Blanchard et al. (2011, Lemma 5.2) for c-universality with M = 2 using the Stone-Weierstrass theorem: if k 1 and k 2 are c-universal then k 1 ⊗ k 2 is c-universal.

(ii) Since the notions of c 0 -universality and characteristic property are equivalent for translation invariant c 0 -kernels on R d [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF], Prop. 5.16, Sriperumbudur et al., 2010, Theorem 9), Theorem 4 can be considered as a special case of Theorem 5. In other words, requiring (k m ) M m=1 to be also c 0 -kernels in Theorem 4(i)-(iv) is equivalent to

(v) k m -s are c 0 -universal for all m ∈ [M ]; (vi) ⊗ M m=1 k m is c 0 -universal. (iii) Since the c 0 -universality of ⊗ M
m=1 k m implies its I-characteristic property (see (8)), Theorem 5 also provides a generalization of Theorem 3(i) to M ≥ 2 under additional assumptions on k m -s, while constraining X m -s to LCP-s instead of second-countable topological spaces.

In Example 2 and Theorem 5, we showed that for M ≥ 3 components while the characteristic property of (k m ) M m=1 is not sufficient, their universality is enough to guarantee the I-characteristic property of ⊗ M m=1 k m . The next example demonstrates that these results are tight: If at least one k m is not universal but only characteristic, then ⊗ M m=1 k m might not be I-characteristic.

Example 3 Let M = 3 and X m := {1, 2}, τ Xm = P(X m ), for all m ∈ [3], k 1 (x, x ) = 2δ x,x -1, and k m (x, x ) = δ x,x (m = 2, 3). k 1 is characteristic (Example 1), k 2 and k 3 are universal since the associated Gram matrix G = [k m (x, x )] x,x ∈Xm is an identity matrix, ⊗-char. =characteristic =c 0 -universal I-char. ⊗ 0 -char. which is strictly positive definite (m = 2, 3). However, ⊗ 3 m=1 k m is not I-characteristic. See Section 5.7 for details.

Remark 7 Note that the l.h.s. in (7) is positive if and only if each term on the r.h.s. is positive, i.e., if k = ⊗ M m=1 k m is ⊗-characteristic with k m -s being c 0 -kernels on LCP X m -s, then all k m -s are c 0 -universal. A similar result was also proved by Steinwart and Ziegel (2017, Lemma 3.4). Combining this with Theorem 5 yields that for tensor product c 0kernels, the notions of ⊗-characteristic, characteristic and c 0 -universality are equivalent, which is quite surprising as for a joint kernel k (that is not of product type), these notions need not necessarily coincide. In light of this discussion, Figure 2(a) can be simplified to Figure 3.

Proofs

In this section, we provide the proofs of our results presented in Section 4.

Proof of Remark 2(iv)

By the second-countability of X m -s, B × M m=1 X m = ⊗ M m=1 B(X m )
, where the r.h.s. is defined as the σ-field generated by the cylinder sets A m × n =m X n where m ∈ [M ] and A m ∈ B(X m ). Suppose there exists

F ∈ ⊗ M m=1 M b (X m ) 0 ∩ I such that F = 0. This means there exists P ∈ M + 1 × M m=1 X m with (P m ) M m=1 being the marginals of P such that F = ⊗ M m=1 F m = P -⊗ M m=1 P m . Since F = 0 there exists A m × n =m X n for some m ∈ [M ] and A m ∈ B(X m ) such that 0 = F(A m × n =m X n ) = F m (A m ) n =m F n (X n ) = P (A m × n =m X n )- P m (A m ) n =m P n (X n ) = P m (A m ) -P m (A m ) = 0, leading to a contradiction.

Proof of Example 1

The proof is structured as follows.

1. First we show that k := k 1 = k 2 is a kernel and it is characteristic.

Next it is proved that k

1 ⊗ k 2 is not ⊗-characteristic, which implies k 1 ⊗ k 2 is not characteristic. 3. Finally, the I-characteristic property of k 1 ⊗ k 2 is established.
The individual steps are as follows:

k is a kernel. Assume w.l.o.g. that x 1 = . . . = x N = 1, x N +1 = . . . = x n = 2. Then it is easy to verify that the Gram matrix G = [k(x i , x j )] n i,j=1 = aa where a := 1 N , -1 n-N and a is the transpose of a. Clearly G is positive semidefinite and so k is a kernel. k is characteristic. We will show that k satisfies (5). On X = {1, 2} a finite signed measure F takes the form F = a 1 δ 1 + a 2 δ 2 for some a 1 , a 2 ∈ R. Thus,

F ∈ M b (X)\{0} ⇔ (a 1 , a 2 ) = 0 and F(X) = 0 ⇔ a 1 + a 2 = 0. (9) Consider X X k(x, x ) dF(x) dF(x ) = a 2 1 k(1, 1) + a 2 2 k(2, 2) + 2a 1 a 2 k(1, 2) = a 2 1 + a 2 2 -2a 1 a 2 = (a 1 -a 2 ) 2 = 4a 2 1 > 0, ( 10 
)
where we used ( 9) and the facts that

k(1, 1) = k(2, 2) = 1, k(1, 2) = -1. k 1 ⊗ k 2 is not ⊗-characteristic. We construct a witness F = F 1 ⊗ F 2 ∈ ⊗ 2 m=1 M b (X m )\{0} such that F(X 1 × X 2 ) = F 1 (X 1 )F 2 (X 2 ) = 0, ( 11 
) and 0 = X 1 ×X 2 X 1 ×X 2 (k 1 ⊗ k 2 )((i 1 , i 2 ), (i 1 , i 2 )) k 1 (i 1 ,i 1 )k 2 (i 2 ,i 2 ) dF(i 1 , i 2 ) dF(i 1 , i 2 ) = 2 m=1 Xm Xm k m (i m , i m ) dF m (i m ) dF m (i m ). ( 12 
)
Finite signed measures on {1, 2} take the form

F 1 = F 1 (a) = a 1 δ 1 + a 2 δ 2 , F 2 = F 2 (b) = b 1 δ 1 + b 2 δ 2 form, where a = (a 1 , a 2 ) ∈ R 2 , b = (b 1 , b 2 ) ∈ R 2 .
With these notations, ( 11) and ( 12) can be rewritten as

0 = (a 1 + a 2 )(b 1 + b 2 ), 0 =   2 i,i =1 k 1 (i, i )a i a i     2 j,j =1 k 2 (j, j )b j b j   = (a 1 -a 2 ) 2 (b 1 -b 2 ) 2 .
Keeping the solutions where neither a nor b is the zero vector, there are 2 (symmetric) possibilities: (i) 

a 1 + a 2 = 0, b 1 = b 2 and (ii) a 1 = a 2 , b 1 + b 2 = 0.
⊗ 2 m=1 M b (X m ) 0 -ispd property of k 1 ⊗ k 2 . k 1 ⊗ k 2 is I-characteristic. Our goal is to show that k 1 ⊗ k 2 is I-characteristic, i.e., for any P ∈ M + 1 (X 1 × X 2 ), µ k 1 ⊗k 2 (F) = 0 implies F = 0
, where F = P -P 1 ⊗ P 2 . We divide the proof into two parts:

1. First we derive the equations of F(X 1 × X 2 ) = 0 and

(X 1 ×X 2 ) 2 (k 1 ⊗ k 2 ) ((i, j), (r, s)) dF(i, j) dF(r, s) = 0 (13)
for general finite signed measures F = 2 i,j=1 a ij δ (i,j) on X 1 × X 2 . 2. Then, we apply the F = P-P 1 ⊗P 2 parameterization and solve for P that satisfies (13) to conclude that P = P 1 ⊗ P 2 , i.e., F = 0. Note that in the chosen parametrization for F, F(X 1 × X 2 ) = 0 holds automatically.

The details are as follows.

Step 1. Solving ( 14) and ( 15) yields a 11 + a 22 = 0 and a 12 + a 21 = 0. ( 16)

0 = F(X 1 × X 2 ) ⇔ 0 = a 11 + a 12 + a 21 + a 22 , ( 14 
) 0 = X 1 ×X 2 X 1 ×X 2 (k 1 ⊗ k 2 ) ((i, j), (r, s)) k 1 (i,r)k 2 (j,s) dF(i, j) dF (r, s) = 2 i,j=1 2 r,s=1 k 1 (i, r)k 2 (j, s)a ij a rs = 2 i,r=1 k 1 (i, r) 2 j,s=1 k 2 (j, s)a ij a rs = k 1 (1, 1) [k 2 (1,
Step 2. Any P ∈ M + 1 (X 1 × X 2 ) can be parametrized as

P = 2 i,j=1 p ij δ (i,j) , p ij ≥ 0, ∀ (i, j) and 2 i,j=1 p ij = 1. ( 17 
)
Let F = P-P 1 ⊗P 2 = 2 i,j=1 a ij δ (i,j) ; for illustration see Table 1. It follows from step 1 that F satisfying ( 16) is equivalent to satisfying (13). Therefore, for the choice of F := P-P 1: Joint (P), joint minus product of the marginals (P -P 1 ⊗ P 2 ). 

P: y\x 1 2 P 2 1 p 11 = a[1-(a+b)] a+b p 21 = a q 1 = a a+b 2 p 12 = b[1-(a+b)] a+b p 22 = b q 2 = b a+b P 1 p 1 = 1 -(a + b) p 2 = a + b
p 11 = a[1 -(a + b)] a + b , p 12 = b[1 -(a + b)] a + b , p 21 = a and p 22 = b, with 0 ≤ a, b ≤ 1, a + b ≤ 1 and (a, b) = 0.
The resulting distribution family with its marginals is summarized in Table 2. It can be seen that each member of this family (any a, b in the constraint set) factorizes: P = P 1 ⊗ P 2 . In other words,

F = P -P 1 ⊗ P 2 = 0; hence k 1 ⊗ k 2 is I-characteristic.
Remark. We would like to mention that while k 1 and k 2 are characteristic, they are not universal. Since X is finite, the usual notion of universality (also called c-universality) matches with c 0 -universality. Therefore, from (10), we have X X k(x, x ) dF(x) dF(x) = (a 1 -a 2 ) 2 where F = a 1 δ 1 + a 2 δ 2 for some a 1 , a 2 ∈ R\{0}. Clearly, the choice of a 1 = a 2 establishes that there exists F ∈ M b (X)\{0} such that X X k(x, x ) dF(x) dF(x) = 0. Hence k is not universal. Note that the constraint in (9), which is needed to verify the characteristic property of k is not needed to verify its universality.

Proof of Theorem 3

Define H m := H km .

(i) Suppose k 1 and k 2 are characteristic and that for some

F = P -P 1 ⊗ P 2 ∈ I, H 1 ⊗ H 2 X 1 ×X 2 (k 1 ⊗ k 2 ) (•, x) dF(x) = X 1 ×X 2 k 1 (•, x 1 ) ⊗ k 2 (•, x 2 ) dF(x) = 0, (20) 
where x = (x 1 , x 2 ). We want to show that F = 0. By the second-countability of X m -s, the product σ-field, i.e., ⊗ 2 m=1 B(X m ) generated by the cylinder sets B 1 × X 2 and X 1 × B 2 (B m ∈ B(X m ), m = 1, 2), coincides with the Borel σ-field B(X 1 × X 2 ) on the product space (Dudley, 2004, Lemma 4.1.7):

⊗ 2 m=1 B (X m ) = B (X 1 × X 2 ) .
Hence, it is sufficient to prove that

F (B 1 × B 2 ) = 0, ∀ B m ∈ B(X m ), m = 1, 2.
To this end, it follows from ( 20) that for all

h 2 ∈ H 2 , H 1 X 1 ×X 2 k 1 (•, x 1 )h 2 (x 2 ) dF(x) = X 1 k 1 (•, x 1 ) dν(x 1 ) = 0, (21) 
where

ν(B 1 ) := ν h 2 (B 1 ) = X 1 ×X 2 χ B 1 (x 1 )h 2 (x 2 ) dF(x), B 1 ∈ B(X 1 ).
Since k 1 is characteristic, ( 21) implies ν = 0, provided that |ν|(X 1 ) < ∞ and ν(X 1 ) = 0. These two requirements hold:

ν(X 1 ) = X 1 ×X 2 h 2 (x 2 ) dF(x) = X 2 h 2 (x 2 ) d[P 2 -P 2 ](x 2 ) = 0, |ν|(X 1 ) ≤ X 1 ×X 2 |h 2 (x 2 )| h 2 ,k 2 (•,x 2 ) H 2 d[P + P 1 ⊗ P 2 ](x 1 , x 2 ) ≤ h 2 H 2 X 1 ×X 2 k 2 (x 2 , x 2 ) d[P + P 1 ⊗ P 2 ](x 1 , x 2 ) ≤ 2 h 2 H 2 X 2 k 2 (x 2 , x 2 ) dP 2 (x 2 ) < ∞,
where the last inequality follows from the boundedness of k 2 . The established ν = 0 implies that for

∀ B 1 ∈ B(X 1 ) and ∀ h 2 ∈ H 2 , 0 = ν(B 1 ) = h 2 , X 1 ×X 2 χ B 1 (x 1 )k 2 (•, x 2 ) dF(x) H 2
, and hence 0 =

X 1 ×X 2 χ B 1 (x 1 )k 2 (•, x 2 ) dF(x) = X 2 k 2 (•, x 2 ) dθ B 1 (x 2 ), (22) 
where

θ B 1 (B 2 ) = X 1 ×X 2 χ B 1 (x 1 )χ B 2 (x 2 ) dF(x), B 2 ∈ B(X 2 ).
Using the characteristic property of k 2 , it follows from ( 22) that θ B 1 = 0 for ∀B 1 ∈ B(X 1 ), i.e.,

0 = θ B 1 (B 2 ) = F(B 1 × B 2 ), ∀ B 1 ∈ B(X 1 ), ∀ B 2 ∈ B(X 2 ) provided that θ B 1 (X 2 ) = 0 and |θ B 1 |(X 2 ) < ∞.
Indeed, both these conditions hold:

θ B 1 (X 2 ) = X 1 ×X 2 χ B 1 (x 1 ) dF(x) = X 1 χ B 1 (x 1 ) d[P 1 -P 1 ](x 1 ) = 0, |θ B 1 |(X 2 ) ≤ X 1 ×X 2 d[P + P 1 ⊗ P 2 ](x) = 2.
(ii) Assume w.l.o.g. that k 1 is not characteristic. This means there exists

P 1 = P 1 ∈ M + 1 (X 1 ) such that µ k 1 (P 1 ) = µ k 1 (P 1 ). Our goal is to construct an F ∈ M + 1 × M m=1 X m such that µ ⊗ M m=1 km F -⊗ M m=1 F m = × M m=1 ⊗ M m=1 k m (•, x m ) d F -⊗ M m=1 F m = 0, but F = ⊗ M m=1 F m . Define I := F -⊗ M m=1 F m ∈ I.
In other words we want to get a witness

I ∈ I proving that ⊗ M m=1 k m is not I-characteristic. Let us take z = z ∈ X 2 , which is possible since |X 2 | ≥ 2. Let us define F as 6 F = P 1 ⊗ δ z ⊗ (⊗ M m=3 Q m ) + P 1 ⊗ δ z ⊗ (⊗ M m=3 Q m ) 2 ∈ M + 1 × M m=1 X m .
It is easy to verify that

F 1 = P 1 + P 1 2 , F 2 = δ z + δ z 2 and F m = Q m (m = 3, . . . , M ),
where Q 3 , . . . , Q M are arbitrary probability measures on X 3 , . . . , X M , respectively. First we check that I = 0. Indeed it is the case since

• z = z and X 2 is a Hausdorff space, there exists B 2 ∈ B(X 2 ) such that z ∈ B 2 , z ∈ B 2 .

• P 1 = P 1 , P 1 (B 1 ) = P 1 (B 1 ) for some B 1 ∈ B(X 1 ).

Let S = B 1 × B 2 × × M m=3 X m , and compare its measure under F and ⊗ M m=1 F m :

F(S) = P 1 (B 1 ) =1 (z∈B 2 ) δ z (B 2 ) M m=3 =1 Q m (X m ) +P 1 (B 1 ) =0 (z ∈B 2 ) δ z (B 2 ) M m=3 =1 Q m (X m ) 2 = P 1 (B 1 ) 2 , ⊗ M m=1 F m (S) = M m=1 F m (B m ) = P 1 (B 1 ) + P 1 (B 1 ) 2 =1 δ z (B 2 ) + =0 δ z (B 2 ) 2 M m=3 =1 Q m (X m )
6. The F construction specializes to that of Lyons (2013, Proposition 3.15) in the M = 2 case; Lyons used it for distance covariances, which is known to be equivalent to HSIC (Sejdinovic et al., 2013b).

= P 1 (B 1 ) + P 1 (B 1 ) 4 = P 1 (B 1 ) 2 ,
where the last equality holds since P 1 (B 1 ) = P 1 (B 1 ). This shows that I = F -⊗ M m=1 F m = 0 since I(S) = 0. Next we prove that µ ⊗ M m=1 km F -⊗ M m=1 F m = 0. Indeed,

µ ⊗ M m=1 km (I) = × M m=1 Xm ⊗ M m=1 k m (•, x m ) d F -⊗ M m=1 F m (x 1 , . . . , x M ) = × M m=1 Xm ⊗ M m=1 k m (•, x m ) d P 1 ⊗ δ z + P 1 ⊗ δ z 2 - P 1 + P 1 2 ⊗ δ z + δ z 2 ⊗ ⊗ M m=3 Q m (x 1 , . . . , x M ) = × M m=1 Xm ⊗ M m=1 k m (•, x m ) d P 1 (x 1 ) ⊗ δ z (x 2 ) + P 1 (x 1 ) ⊗ δ z (x 2 ) 2 - P 1 (x 1 ) ⊗ δ z (x 2 ) + P 1 (x 1 ) ⊗ δ z (x 2 ) 4 - P 1 (x 1 ) ⊗ δ z (x 2 ) + P 1 (x 1 ) ⊗ δ z (x 2 ) 4 ⊗ (⊗ M m=3 Q m (x m )) ( * ) = µ k 1 (P 1 ) ⊗ k 2 (•, z) + µ k 1 (P 1 ) ⊗ k 2 (•, z ) 2 - µ k 1 (P 1 ) ⊗ k 2 (•, z) + µ k 1 (P 1 ) ⊗ k 2 (•, z ) 4 - µ k 1 (P 1 ) ⊗ k 2 (•, z) + µ k 1 (P 1 ) ⊗ k 2 (•, z ) 4 ⊗ ⊗ M m=3 µ km (Q m ) = 0 ∈ H k 1 ⊗k 2 ⊗ ⊗ M m=3 µ km (Q m ) = 0,
where we used µ k 1 (P 1 ) = µ k 1 (P 1 ) in ( * ).

Proof of Example 2

Let M = 3, × M m=1 X m = {(i 1 , i 2 , i 3 ) : i m ∈ {1, 2}, m ∈ [3]}, k m (x, x ) = 2δ x,x -1. Our goal is to show that ⊗ 3 m=1 k m is not I-characteristic.
The structure of the proof is as follows: 1. First we describe the equations of the non-characteristic property of ⊗ 3 m=1 k m with a general finite signed measure

F = 2 i 1 ,i 2 ,i 3 =1 a i 1 ,i 2 ,i 3 δ (i 1 ,i 2 ,i 3 ) on × 3 m=1 X m where a i 1 ,i 2 ,i 3 ∈ R (∀ i 1 , i 2 , i 3 ).
2. Next, we apply the F = P -⊗ 3 m=1 P m parameterization and show that there exists P that satisfies the equations of step 1 to conclude that ⊗ 3 m=1 k m is not I-characteristic. The details are as follows.

Step 1. The equations of non-characteristic property in terms of A

= [a i 1 ,i 2 ,i 3 ] (im) 3 m=1 ∈[2] 3 ∈ R 2×2×2 are F ∈ M b × 3 m=1 X m \{0} ⇔ A = 0, 0 = F(× 3 m=1 X m ) ⇔ 0 = 2 i 1 ,i 2 ,i 3 =1 a i 1 ,i 2 ,i 3 , (23) 0 
= × 3 m=1 Xm × 3 m=1 Xm (⊗ 3 m=1 k m ) (i 1 , i 2 , i 3 ), (i 1 , i 2 , i 3 ) 3 m=1 km(im,i m ) dF(i 1 , i 2 , i 3 ) dF(i 1 , i 2 , i 3 ) = 2 i 1 ,i 2 ,i 3 =1 2 i 1 ,i 2 ,i 3 =1 3 m=1 k m (i m , i m )a i 1 ,i 2 ,i 3 a i 1 ,i 2 ,i 3 . (24) 
Solving ( 23) and ( 24) yields

a 1,1,1 + a 1,2,2 + a 2,1,2 + a 2,2,1 = 0 and a 1,1,2 + a 1,2,1 + a 2,1,1 + a 2,2,2 = 0.
Step 2. The equations of non I-characteristic property can be obtained from step 1 by choosing F = P -⊗ M m=1 P m , where

P = 2 i 1 ,i 2 ,i 3 =1 p i 1 ,i 2 ,i 3 δ (i 1 ,i 2 ,i 3 ) and P = [p i 1 ,i 2 ,i 3 ] (im) 3 m=1 ∈[2] 3 ∈ R 2×2×2 .
In other words, it is sufficient to obtain a P that solves the following system of equations for which A = A(P) = 0:

2 i 1 ,i 2 ,i 3 =1 p i 1 ,i 2 ,i 3 = 1, ( 25 
)
p i 1 ,i 2 ,i 3 ≥ 0, ∀ (i 1 , i 2 , i 3 ) ∈ [2] 3 , (26) 
a 1,1,1 + a 1,2,2 + a 2,1,2 + a 2,2,1 = 0, ( 27)

a 1,1,2 + a 1,2,1 + a 2,1,1 + a 2,2,2 = 0, (28) 
where

a i 1 ,i 2 ,i 3 = p i 1 ,i 2 ,i 3 -p 1,i 1 p 2,i 2 p 3,i 3 , (29) 
and

p 1,i 1 = 2 i 2 ,i 3 =1 p i 1 ,i 2 ,i 3 , p 2,i 2 = 2 i 1 ,i 3 =1 p i 1 ,i 2 ,i 3 , p 3,i 3 = 2 i 1 ,i 2 =1 p i 1 ,i 2 ,i 3 . ( 30 
)
One can get an analytical description for the solution of ( 25)-( 30), where the solution P(z) is parameterized by z = (z 0 , . . . , z 5 ) ∈ R 6 . For explicit expressions, we refer the reader to Appendix A. In the following, we present two examples of P that satisfy (25)-( 30) such that A = 0, thereby establishing the non I-characteristic property of ⊗ 3 m=1 k m . 1. P: andA:

p 1,1,1 = 1 5 , p 1,1,2 = 1 10 , p 1,2,1 = 1 10 , p 1,2,2 = 1 10 , p 2,1,1 = 1 5 , p 2,1,2 = 1 10 , p 2,2,1 = 1 10 , p 2,2,2 = 1 10 ,
a 1,1,1 = 1 50 , a 1,1,2 = - 1 50 , a 1,2,1 = - 1 50 , a 1,2,2 = 1 50 , (31) 
a 2,1,1 = 1 50 , a 2,1,2 = - 1 50 , a 2,2,1 = - 1 50 , a 2,2,2 = 1 50 . (32) 
2. P:

p 1,1,1 = 0, p 1,1,2 = 1 10 , p 1,2,1 = 1 10 , p 1,2,2 = 1 10 , p 2,1,1 = 1 10 , p 2,1,2 = 1 10 , p 2,2,1 = 3 10 , p 2,2,2 = 1 5 ,
and A:

a 1,1,1 = - 9 200 , a 1,1,2 = 11 200 , a 1,2,1 = - 1 200 , a 1,2,2 = - 1 200 , a 2,1,1 = - 1 200 , a 2,1,2 = - 1 200 , a 2,2,1 = 11 200 , a 2,2,2 = - 9 200 .
In fact these examples are obtained with the choices z = ( 1 10 , 1 10 , 1 10 , 1 10 , 1 10 , 1 10 ) and z = ( 3 10 , 1 10 , 1 10 , 1 10 , 1 10 , 2 10 ) respectively. See Appendix A for details.

Proof of Theorem 4

It follows from (8) and Remark 2(iii) that (v) ⇒ (iii) ⇒ (ii) ⇔ (i). It also follows from (8) and Theorem 3(ii) that (v) ⇒ (iv) ⇒ (i). We now show that (i) ⇒ (v) which establishes the equivalence of (i)-(v). Suppose (i) holds. Then by Bochner's theorem (Wendland, 2005, Theorem 6.6), we have that for all m ∈ [M ],

k m (x m , y m ) = R dm e - √ -1 ωm,xm-ym dΛ m (ω m ), x m , y m ∈ R dm ,
where (Λ m ) M m=1 are finite non-negative Borel measures on (R dm ) M m=1 respectively. This implies Sriperumbudur et al. (2010, Theorem 9) showed that k m is characteristic iff supp (Λ m ) = R dm , where supp(•) denotes the support of its argument. Since supp

⊗ M m=1 k m (x m , y m ) = ⊗ M m=1 R dm e - √ -1 ωm,xm-ym dΛ m (ω m ) = R d e - √ -1 ω,x-y dΛ(ω), where x = (x 1 , . . . , x M ) ∈ R d , y = (y 1 , . . . , y M ) ∈ R d , ω = (ω 1 , . . . , ω M ) ∈ R d , d = M m=1 d m and Λ := ⊗ M m=1 Λ m .
(Λ) = supp ⊗ M m=1 Λ m = × M m=1 supp (Λ m ) = × M m=1 R dm = R d , it follows that ⊗ M m=1 k m is characteristic.

Proof of Theorem 5

The c 0 -kernel property of k m -s (m = 1, . . . , M ) implies that of ⊗ M m=1 k m . Moreover, X m -s are LCP spaces, hence × M m=1 X m is also LCP.

(⇐) Assume that ⊗ M m=1 k m is c 0 -universal. Since ⊗ M m=1 M b (X m ) ⊆ M b × M m=1 X m , we have that for all F = ⊗ M m=1 F m ∈ ⊗ M m=1 M b (X m )\{0}, 0 < × M m=1 Xm × M m=1 Xm ⊗ M m=1 k m (x, x ) M m=1 km(xm,x m ) dF(x) dF(x ) = M m=1 Xm×Xm k m (x m , x m ) dF m (x m ) dF m x m ,
where x = (x 1 , . . . , x M ) and x = (x 1 , . . . , x M ). The above inequality implies

Xm×Xm k m (x m , x m ) dF m (x m ) dF m x m > 0, ∀ m ∈ [M ]. Since F ∈ ⊗ M m=1 M b (X m ) \{0} iff F m ∈ M b (X m )\{0} for all m ∈ [M ], the result follows. (⇒) Assume that k m -s are c 0 -universal. By the note above ⊗ M m=1 k m is c 0 -kernel; its c 0 - universality is equivalent to the injectivity of µ = µ ⊗ M m=1 km on M b × M m=1 X m .
In other words, we want to prove that µ(F) = 0 implies F = 0, where F ∈ M b × M m=1 X m . We will use the shorthand H m = H km below.

Suppose there exists (Steinwart and Christmann, 2008, page 480). Hence, in order to get F = 0 it is sufficient to prove that

F ∈ M b × M m=1 X m such that µ F = × M m=1 Xm ⊗ M m=1 k m (•, x) ⊗ M m=1 km(•,xm) dF(x) = 0 (∈ ⊗ M m=1 H m ). ( 33 
) Since X m -s are LCP, ⊗ M m=1 B (X m ) = B × M m=1 X m
F × M m=1 B m = 0, ∀ B m ∈ B(X m ), m ∈ [M ].
We will prove by induction that for m = 0, . . . , M From the above, it is clear that (34) holds for m = 0. Assuming (34) holds for some m, we now prove that it holds for m + 1. To this end, it follows from (34) that ∀ h m+2 ∈ H m+2 , . By the c 0 -universality of k m+1 ,

⊗ M j=m+1 H j 0 = × M j=1 X j m j=1 χ B j (x j ) ⊗ M j=m+1 k j (•, x j ) dF(x) =: o(B 1 , . . . , B m , k m+1 , . . . , k M ), ∀ B j ∈ B(X j ), j ∈ [m], (34) 
ν = 0 for ∀ h m+2 ∈ H m+2 , . . . , ∀ h M ∈ H M (35) 
provided that ν ∈ M b (X m+1 ), in other words if |ν|(X m+1 ) < ∞. This condition is met:

|ν|(X m+1 ) ≤ × M j=1 X j M j=m+2 h j , k j (•, x j ) H j ≤ h j H j √ k j (x j ,x j ) d|F|(x) ≤ |F| × M m=1 X m M j=m+2 h j H j sup x∈X j ,x ∈X j k j (x, x ) < ∞,
where we used the boundedness of k m -s in the last inequality. (35) implies that for ∀ B 1 ∈ B(X 1 ), . . . , ∀ B m+1 ∈ B(X m+1 ) and ∀ h m+2 ∈ H m+2 , . . . , for ∀ B 1 ∈ B(X 1 ), . . . , ∀ B m+1 ∈ B(X m+1 ), i.e., (34) holds for m+1. Therefore, by induction, (34) holds for m = M and the result follows from ( †). To justify the convention in ( †), consider the case of m = M -1 in which case (34) can be written as

∀ h M ∈ H M 0 = ν(B m+1 ) = × M j=1 X j   m+1 j=1 χ B j (x j )     M j=m+2 h j (x j )   dF(x) = ⊗ M j=m+2 h j , × M j=1 X j   m+1 j=1 χ B j (x j )   ⊗ M j=m+2 k j (•, x j ) dF(x) ⊗ M j=m+2 H j
X M k M (•, x M ) dν(x M ) = 0,
where

ν(B) = × M j=1 X j   M -1 j=1 χ B j (x j )   χ B (x M ) dF(x), B ∈ B(X M ).
Then by the c 0 -universal property of k M , since

|ν|(X M ) ≤ × M j=1 X j 1 d|F|(x) = |F| × M j=1 X j < ∞ we obtain × M j=1 X j M j=1
χ B j (x j ) dF(x) = F × M j=1 B j = 0, ∀ B 1 ∈ B(X 1 ), . . . , ∀ B M ∈ B(X M ).

Proof of Example 3

The proof follows by a simple modification of that of Example 2 (Section 5.4). The equations of a witness A = [a i 1 ,i 2 ,i 3 ] (im) 3 m=1 ∈[2] 3 (and corresponding P = [p i 1 ,i 2 ,i 3 ] (im) 3 m=1 ∈[2] 3 ) for the non-I-characteristic property of ⊗ 3 m=1 k m take the form:

A = 0, 0 = 2 i 1 ,i 2 ,i 3 =1 a i 1 ,i 2 ,i 3 , (36) 0 
= 2 i 1 ,i 2 ,i 3 =1 2 i 1 ,i 2 ,i 3 =1 3 m=1
k m (i m , i m )a i 1 ,i 2 ,i 3 a i 1 ,i 2 ,i 3 = (a 1,1,1 -a 2,1,1 ) 2 + (a 1,1,2 -a 2,1,2 ) 2 + (a 1,2,1 -a 2,2,1 ) 2 + (a 1,2,2 -a 2,2,2 ) 2 , (37)

where ( 36) and ( 37) are equivalent to 0 = 2 i 1 ,i 2 ,i 3 =1 a i 1 ,i 2 ,i 3 , a 1,1,1 = a 2,1,1 , a 1,1,2 = a 2,1,2 , a 1,2,1 = a 2,2,1 , a 1,2,2 = a 2,2,2 . (38)

While ( 38) is more restrictive than ( 27) and (28) (hence its solution set might even be empty), one can immediately see that the example of A = 0 given in ( 31) and ( 32) fulfills (38) proving the non-I-characteristic property of ⊗ 3 m=1 k m . +2z 0 z 2 3 + 2z 2 0 z 3 + 2z 0 z 2 4 + 2z 1 z 2 3 + 2z 2 0 z 4 + 4z 0 z 2 5 + 2z 2 0 z 5 + 2z 1 z 2 5 + 2z 2 z 2 5 +2z 3 z 2 4 + 2z 2 3 z 4 + 4z 3 z 2 5 + 2z 2 3 z 5 + 4z 4 z 2 5 + 2z 2 4 z 5 -z 2 0 -z 2 3 -z 2 4 -3z 2 5 + 2z 3 5 +2z 0 z 1 z 2 + 2z 0 z 1 z 3 + 2z 0 z 1 z 4 + 2z 0 z 2 z 3 + 2z 0 z 1 z 5 + 2z 0 z 2 z 4 + 2z 1 z 2 z 3 +4z 0 z 2 z 5 + 4z 0 z 3 z 4 + 6z 0 z 3 z 5 + 2z 1 z 2 z 5 + 2z 1 z 3 z 4 + 6z 0 z 4 z 5 + 4z 1 z 3 z 5 +2z 2 z 3 z 4 + 2z 1 z 4 z 5 + 2z 2 z 3 z 5 + 2z 2 z 4 z 5 + 6z 3 z 4 z 5 ) ≤ 0, and 0 ≤ z 0 , z 1 , z 2 , z 3 , z 4 , z 5 ≤ 1.

The above analytic solution to ( 25)-( 30) is obtained by symbolic math programming in MATLAB.

N

  := {1, 2, . . .} and R denotes the set of natural numbers and real numbers respectively. For M ∈ N, [M ] := {1, . . . , M }. 1 d := (1, 1, . . . , 1) ∈ R d and 0 denotes the matrix of zeros. For a := (a 1 , . . . , a d ) ∈ R d and b := (b 1 , . . . , b d ) ∈ R d , a, b = d i=1 a i b i is the Euclidean inner product. For sets A and B, A\B = {a ∈ A : a / ∈ B} is their difference, |A| is the cardinality of A and ×

Figure 1 :

 1 Figure 1: Summary of results: "char" denotes characteristic. In addition to the usual characteristic property, three new notions ⊗ 0 -characteristic, ⊗-characteristic and I-characteristic are introduced in Definition 1 which along with c 0 -universal (in the top right corner) correspond to the property of the tensor product kernel ⊗ M m=1 k m , while the bottom part of the picture corresponds to the individual kernels (k m ) M m=1 being characteristic or c 0 -universal. If (k m ) M m=1 -s are continuous, bounded and translation invariant kernels on R dm , m ∈ [M ], all the notions are equivalent (see Theorem 4).

Figure 3 :

 3 Figure 3: Simplification of the F-ispd property of tensor product kernels; see Remark 7.

  In other words, for any a, b = 0, the possibilities are (i) a = (a, -a), b = (b, b) and (ii) a = (a, a), b = (b, -b). This establishes the non-

  reduces to (33) when m = 0 by defining0 j=1 χ B j (x j ) := 1; ( †) for m = M , ⊗ M m=M +1 H m is defined to be equal to R and ⊗ M m=M +1 k m (•, x m ) := 1, in which case o(B 1 , . . . , B M ) = F × M j=1 B j = 0 ⇒ F = 0, the result we want to prove.

k

  . . , ∀ h M ∈ H M , (H m+1 ) 0 = o(B 1 , . . . , B m , k m+1 , . . . , k M ) (h m+2 , . . . , h M ) m+1 (•, x m+1 ) dν(x m+1 ),where ν(B) := ν B 1 ,...,Bm,h m+2 ,...,h M (x), B ∈ B(X m+1 ).

χ

  1 , . . . , B m+1 , k m+2 , . . . , k M ) = B j (x j )   ⊗ M j=m+2 k(•, x j ) dF(x) = 0 ∈ ⊗ M j=m+2 H j

  1 ⊗P 2 , we obtain p 11 -(p 11 + p 12 )(p 11 + p 21 ) + p 22 -(p 21 + p 22 )(p 12 + p 22 ) = 0, 11 -(p 11 + p 12 )(p 11 + p 21 ) a 21 = p 21 -(p 21 + p 22 )(p 11 + p 21 ) 2 a 12 = p 12 -(p 11 + p 12 )(p 12 + p 22 ) a 22 = p 22 -(p 21 + p 22 )(p 12 + p 22 )

	P: y\x	1	2	P 2	
	1 2	p 11 p 12	p 21 p 22	q 1 = p 11 + p 21 q 2 = p 12 + p 22	⇒
	P 1	p 1 = p 11 + p 12 p 2 = p 21 + p 22		
	F := P -P 1 ⊗ P 2	1			2
	1 a 11 = p Table			
					(18)

Table 2 :

 2 Family of probability distributions solving (17)-(19).

p 12 -(p 11 + p 12 )(p 12 + p 22 ) + p 21 -(p 21 + p 22 )(p 11 + p 21 ) = 0, (19) where (p ij ) i,j∈[2] satisfy (17). Solving (17)-(19), we obtain

Second-countability implies separability; in metric spaces the two notions coincide(Dudley, 2004, Proposition 2.1.4). By the Urysohn's theorem, a topological space is separable and metrizable if and only if it is regular, Hausdorff and second-countable. Any uncountable discrete space is not second-countable.

4. LCH spaces include R d , discrete spaces, and topological manifolds. Open or closed subsets, finite products of LCH spaces are LCH. Infinite-dimensional Hilbert spaces are not LCH.

A topological space is called Polish if it is complete, separable and metrizable. For example, R d and countable discrete spaces are Polish. Open and closed subsets, products and disjoint unions of countably many Polish spaces are Polish. Every second-countable LCH space is Polish.
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Appendix A. Analytical Solution to (25)-( 30) in Example 2

The solution of ( 25)-( 30) takes the form p 1,1,1 = -